1
|
Tanwar NA, Malhotra R, Satheesh AP, Khuntia SP, Sreekanthreddy P, Varghese L, Kolla S, Chandrani P, Choughule A, Pange P, Gupta V, Noronha V, Patil VM, Pramanik R, Kumar S, Nayak SP, Babu S, Shetty R, Kantharaju M, Chinder PS, Korlimarla A, Srinath BS, Prabhash K, Rishi KD, Goswami HM, Veldore VH. Understanding the Impact of Population and Cancer Type on Tumor Mutation Burden Scores: A Comprehensive Whole-Exome Study in Cancer Patients From India. JCO Glob Oncol 2023; 9:e2300047. [PMID: 38085046 PMCID: PMC10846780 DOI: 10.1200/go.23.00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE The purpose of this study was to understand the impact of population diversity and geographic variation on tumor mutation burden (TMB) scores across cancers and its implication on stratification of patients for immune checkpoint inhibitor (ICI) therapy. MATERIALS AND METHODS This retrospective study used whole-exome sequencing (WES) to profile 1,233 Indian patients with cancer across 30 different cancer types and to estimate their TMB scores. A WES-based pipeline was adopted, along with an indigenously developed strategy for arriving at true somatic mutations. A robust unsupervised machine learning approach was used to understand the distribution of TMB scores across different populations and within the population. RESULTS The results of the study showed a biphasic distribution of TMB scores in most cancers, with different threshold scores across cancer types. Patients with cancer in India had higher TMB scores compared with the Caucasian patients. We also observed that the TMB score value at 90th percentile (predicting high efficacy to ICI) was high in four different cancer types (sarcoma, ovary, head and neck, and breast) in the Indian cohort as compared with The Cancer Genome Atlas or public cohort. However, in lung and colorectal cancers, the TMB score distribution was similar between the two population cohorts. CONCLUSION The findings of this study indicate that it is crucial to benchmark both cancer-specific and population-specific TMB distributions to establish a TMB threshold for each cancer in various populations. Additional prospective studies on much larger population across different cancers are warranted to validate this observation to become the standard of care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anuradha Choughule
- Medical Oncology Molecular Laboratory, Tata Memorial Centre, Mumbai, India
| | - Priyanka Pange
- Medical Oncology Molecular Laboratory, Tata Memorial Centre, Mumbai, India
| | - Vinod Gupta
- Medical Oncology Molecular Laboratory, Tata Memorial Centre, Mumbai, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | | | | | | | | | - Suresh Babu
- Fortis Cancer Research Centre, Bangalore, India
| | | | | | | | - Aruna Korlimarla
- Sri Shankara Cancer Hospital & Research Centre, Bangalore, India
| | - BS Srinath
- Sri Shankara Cancer Hospital & Research Centre, Bangalore, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | | | | | | |
Collapse
|
2
|
Malhotra R, Javle V, Tanwar N, Gowda P, Varghese L, K A, Madhusudhan N, Jaiswal N, K. S. B, Chatterjee M, Prabhash K, Sreekanthreddy P, Rishi KD, Goswami HM, Veldore VH. An absolute approach to using whole exome DNA and RNA workflow for cancer biomarker testing. Front Oncol 2023; 13:1002792. [PMID: 36994199 PMCID: PMC10040847 DOI: 10.3389/fonc.2023.1002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionThe concept of personalized medicine in cancer has emerged rapidly with the advancement of genome sequencing and the identification of clinically relevant variants that contribute to disease prognosis and facilitates targeted therapy options. In this study, we propose to validate a whole exome-based tumor molecular profiling for DNA and RNA from formalin-fixed paraffin-embedded (FFPE) tumor tissue.MethodsThe study included 166 patients across 17 different cancer types. The scope of this study includes the identification of single-nucleotide variants (SNVs), insertions/deletions (INDELS), copy number alterations (CNAs), gene fusions, tumor mutational burden (TMB), and microsatellite instability (MSI). The assay yielded a mean read depth of 200×, with >80% of on-target reads and a mean uniformity of >90%. Clinical maturation of whole exome sequencing (WES) (DNA and RNA)- based assay was achieved by analytical and clinical validations for all the types of genomic alterations in multiple cancers. We here demonstrate a limit of detection (LOD) of 5% for SNVs and 10% for INDELS with 97.5% specificity, 100% sensitivity, and 100% reproducibility.ResultsThe results were >98% concordant with other orthogonal techniques and appeared to be more robust and comprehensive in detecting all the clinically relevant alterations. Our study demonstrates the clinical utility of the exome-based approach of comprehensive genomic profiling (CGP) for cancer patients at diagnosis and disease progression.DiscussionThe assay provides a consolidated picture of tumor heterogeneity and prognostic and predictive biomarkers, thus helping in precision oncology practice. The primary intended use of WES (DNA+RNA) assay would be for patients with rare cancers as well as for patients with unknown primary tumors, and this category constitutes nearly 20–30% of all cancers. The WES approach may also help us understand the clonal evolution during disease progression to precisely plan the treatment in advanced stage disease.
Collapse
Affiliation(s)
| | - Vyomesh Javle
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | - Pooja Gowda
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | - Linu Varghese
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | - Anju K
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | - Nupur Jaiswal
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | | | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | | | | | | | - Vidya H. Veldore
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
- *Correspondence: Vidya H. Veldore,
| |
Collapse
|
3
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int J Mol Sci 2020; 21:ijms21103726. [PMID: 32466293 PMCID: PMC7279491 DOI: 10.3390/ijms21103726] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are major contributors to immunosurveillance and control of tumor development by inducing apoptosis of malignant cells. Among the main mechanisms involved in NK cell-mediated cytotoxicity, the death receptor pathway and the release of granules containing perforin/granzymes stand out due to their efficacy in eliminating tumor cells. However, accumulated evidence suggest a profound immune suppression in the context of tumor progression affecting effector cells, such as NK cells, leading to decreased cytotoxicity. This diminished capability, together with the development of resistance to apoptosis by cancer cells, favor the loss of immunogenicity and promote immunosuppression, thus partially inducing NK cell-mediated killing resistance. Altered expression patterns of pro- and anti-apoptotic proteins along with genetic background comprise the main mechanisms of resistance to NK cell-related apoptosis. Herein, we summarize the main effector cytotoxic mechanisms against tumor cells, as well as the major resistance strategies acquired by tumor cells that hamper the extrinsic and intrinsic apoptotic pathways related to NK cell-mediated killing.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ángel R. Payer
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| |
Collapse
|
4
|
Kong R, Duan H, Sheng Z, Xu K, Acharya P, Chen X, Cheng C, Dingens AS, Gorman J, Sastry M, Shen CH, Zhang B, Zhou T, Chuang GY, Chao CW, Gu Y, Jafari AJ, Louder MK, O'Dell S, Rowshan AP, Viox EG, Wang Y, Choi CW, Corcoran MM, Corrigan AR, Dandey VP, Eng ET, Geng H, Foulds KE, Guo Y, Kwon YD, Lin B, Liu K, Mason RD, Nason MC, Ohr TY, Ou L, Rawi R, Sarfo EK, Schön A, Todd JP, Wang S, Wei H, Wu W, Mullikin JC, Bailer RT, Doria-Rose NA, Karlsson Hedestam GB, Scorpio DG, Overbaugh J, Bloom JD, Carragher B, Potter CS, Shapiro L, Kwong PD, Mascola JR. Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell 2020; 178:567-584.e19. [PMID: 31348886 DOI: 10.1016/j.cell.2019.06.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/03/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023]
Abstract
The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.
Collapse
Affiliation(s)
- Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hongying Duan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology and Epidemiology Program, Seattle, WA 98195, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Alexander J Jafari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ariana P Rowshan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Elise G Viox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chang W Choi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Martin M Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Venkata P Dandey
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Edward T Eng
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Bob Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tiffany Y Ohr
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John P Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Winston Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | -
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Haddox HK, Dingens AS, Hilton SK, Overbaugh J, Bloom JD. Mapping mutational effects along the evolutionary landscape of HIV envelope. eLife 2018; 7:34420. [PMID: 29590010 PMCID: PMC5910023 DOI: 10.7554/elife.34420] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
The immediate evolutionary space accessible to HIV is largely determined by how single amino acid mutations affect fitness. These mutational effects can shift as the virus evolves. However, the prevalence of such shifts in mutational effects remains unclear. Here, we quantify the effects on viral growth of all amino acid mutations to two HIV envelope (Env) proteins that differ at >100 residues. Most mutations similarly affect both Envs, but the amino acid preferences of a minority of sites have clearly shifted. These shifted sites usually prefer a specific amino acid in one Env, but tolerate many amino acids in the other. Surprisingly, shifts are only slightly enriched at sites that have substituted between the Envs—and many occur at residues that do not even contact substitutions. Therefore, long-range epistasis can unpredictably shift Env’s mutational tolerance during HIV evolution, although the amino acid preferences of most sites are conserved between moderately diverged viral strains. The virus that causes AIDS, or HIV, has a protein called Env on its surface, which is essential for the virus to infect cells. Env can also be recognized by the immune system, which then targets the virus for destruction or blocks it from infecting cells. Unfortunately, Env evolves very quickly, which means that HIV can evade our defenses. However, there are limits to how much this protein can change, since it still needs to perform its essential role in helping viruses enter cells. In the century since HIV first appeared in human populations, the virus has evolved considerably. There are now many HIV strains that infect people, and they bear Env proteins with substantially different sequences. However, it is not clear if these changes in sequence have resulted in Envs from distinct strains being able to tolerate different mutations. To examine this question, Haddox et al. compared how the Envs from two strains of HIV react to modifications in their sequences. They created all possible individual mutations in the proteins, and the resulting collections of mutated viruses were then tested for their ability to infect cells in the laboratory. Most mutations had similar effects in both Env proteins. This allowed Haddox et al. to identify portions of the protein that easily accommodate changes, and portions that must remain unchanged for viruses to remain infectious—at least in the laboratory. Some of these mutations are under different types of pressures when the virus faces the immune system, and those were identified using computational approaches. However, some mutations were tolerated differently by the two Env proteins. Therefore, viral strains differ in how their Env proteins can evolve. The parts of Env that showed differences in mutational tolerance between the strains were not necessarily the parts that differ in sequence. This shows that changes in sequence in one part of the protein can modify how other portions evolve. It remains to be determined whether changes in tolerance to mutations translate into differences in how the virus can escape immunity. This is an important question given that the rapid evolution of Env is a major obstacle to creating a vaccine for HIV.
Collapse
Affiliation(s)
- Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology PhD program, University of Washington, Seattle, United States
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology PhD program, University of Washington, Seattle, United States
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
6
|
Bhattacharya P, Patel TN. Microsatellite Instability and Promoter Hypermethylation of DNA repair genes in Hematologic Malignancies: a forthcoming direction toward diagnostics. ACTA ACUST UNITED AC 2017; 23:77-82. [PMID: 28728506 DOI: 10.1080/10245332.2017.1354428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of our review is to highlight the significance of microsatellite hypervariation in diagnostics of hematologic malignancies. METHODS For the past few decades, extensive experiments in cancer research have explored all the possible pathways and a number of deleterious mutations that either make the tumor suppressor genes (TSGs) dysfunctional or cause the proto-oncogenes to behave abnormally by changing the cellular phenotype hence rendering disease. To prevent the deleterious effects of mutations and to protect the genomic integrity, our system possesses multiple repair mechanisms. DNA Mismatch Repair (MMR) and Direct Reversal of Damage (DRD) are two repair mechanisms which help in removal of faulty base pairs and alkyl adduct formation respectively to avoid long term effects of toxicity, tumorigenesis and mutagenesis. There are nine major MMR genes - MutS homolog (MSH2, MSH3, MSH4, MSH5, MSH6), MutL homolog (MLH1, MLH3), human post-meiotic segregation genes (PMS1, PMS2), and three major damage reversal genes - O6-methylguanine-DNA-methyltransferase (MGMT), ABH2 and DEPC1. RESULTS Any malfunction in DNA repair machinery can cause microsatellite instability (MSI), a form of genomic abnormality with hyper mutable repeats that is directly associated with cancer. Microsatellites are short, repetitive sequences, non-randomly distributed and localized in 3'-UTR (Untranslated Region), introns, coding regions and promoters. Besides MSI, evidence on promoter hypermethylation of selected repair genes also points toward a prominent reason for cancer initiation and progression. CONCLUSION The presence of specific microsatellite marker hyper-mutability and consistent promoter hypermethylation in leukemia or lymphoma can be considered as a part of routine diagnostic test in clinical laboratories.
Collapse
Affiliation(s)
- Priyanjali Bhattacharya
- a Department of Integrative Biology , Vellore Institute of Technology , Vellore , Tamil Nadu , India
| | - Trupti N Patel
- a Department of Integrative Biology , Vellore Institute of Technology , Vellore , Tamil Nadu , India
| |
Collapse
|
7
|
Eshtad S, Mavajian Z, Rudd SG, Visnes T, Boström J, Altun M, Helleday T. hMYH and hMTH1 cooperate for survival in mismatch repair defective T-cell acute lymphoblastic leukemia. Oncogenesis 2016; 5:e275. [PMID: 27918552 PMCID: PMC5177770 DOI: 10.1038/oncsis.2016.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
hMTH1 is an 8-oxodGTPase that prevents mis-incorporation of free oxidized nucleotides into genomic DNA. Base excision and mismatch repair pathways also restrict the accumulation of oxidized lesions in DNA by removing the mis-inserted 8-oxo-7,8-dihydro-2'-deoxyguanosines (8-oxodGs). In this study, we aimed to investigate the interplay between hMYH DNA glycosylase and hMTH1 for cancer cell survival by using mismatch repair defective T-cell acute lymphoblastic leukemia (T-ALL) cells. To this end, MYH and MTH1 were silenced individually or simultaneously using small hairpin RNAs. Increased sub-G1 population and apoptotic cells were observed upon concurrent depletion of both enzymes. Elevated cell death was consistent with cleaved caspase 3 accumulation in double knockdown cells. Importantly, overexpression of the nuclear isoform of hMYH could remove the G1 arrest and partially rescue the toxicity observed in hMTH1-depleted cells. In addition, expression profiles of human DNA glycosylases were generated using quantitative reverse transcriptase-PCR in MTH1 and/or MYH knockdown cells. NEIL1 DNA glycosylase, involved in repair of oxidized nucleosides, was found to be significantly downregulated as a cellular response to MTH1-MYH co-suppression. Overall, the results suggest that hMYH and hMTH1 functionally cooperate for effective repair and survival in mismatch repair defective T-ALL Jurkat A3 cells.
Collapse
Affiliation(s)
- S Eshtad
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Z Mavajian
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - S G Rudd
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - T Visnes
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - J Boström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - M Altun
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - T Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Huang J, Fairbrother W, Reed JC. Therapeutic targeting of Bcl-2 family for treatment of B-cell malignancies. Expert Rev Hematol 2015; 8:283-97. [PMID: 25912824 DOI: 10.1586/17474086.2015.1026321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The BCL2 gene was discovered nearly 30 years ago, launching a field of scientific inquiry and medical research with the potential for delivering transformational therapeutics. Revealed by its involvement in chromosomal translocations of B-cell lymphomas, BCL2 is the founding member of a family of cell survival genes that endow cells with long life spans and provide protection from a myriad of cellular stresses, including chemotherapy. Anti-apoptotic Bcl-2 family members are commonly overexpressed in a variety of human malignancies through a diversity of genetic and epigenetic mechanisms. Here, we review therapeutic strategies for targeting Bcl-2 family members with an emphasis on B-cell malignancies, providing insights into their current promise and remaining challenges.
Collapse
Affiliation(s)
- Jane Huang
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | | |
Collapse
|
9
|
Sheard MA, Ghent MV, Cabral DJ, Lee JC, Khankaldyyan V, Ji L, Wu SQ, Kang MH, Sposto R, Asgharzadeh S, Reynolds CP. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration. Exp Cell Res 2015; 334:78-89. [PMID: 25845499 DOI: 10.1016/j.yexcr.2015.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/13/2015] [Accepted: 03/26/2015] [Indexed: 11/19/2022]
Abstract
Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo.
Collapse
Affiliation(s)
- Michael A Sheard
- Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children׳s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA.
| | - Matthew V Ghent
- Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089, USA.
| | - Daniel J Cabral
- Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Joanne C Lee
- Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Vazgen Khankaldyyan
- Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children׳s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA.
| | - Lingyun Ji
- Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children׳s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA.
| | - Samuel Q Wu
- Medical Genetics, Children׳s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA.
| | - Min H Kang
- Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Richard Sposto
- Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children׳s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA.
| | - Shahab Asgharzadeh
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089, USA.
| | - C Patrick Reynolds
- Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
10
|
Frameshift-derived neoantigens constitute immunotherapeutic targets for patients with microsatellite-instable haematological malignancies: frameshift peptides for treating MSI+ blood cancers. Eur J Cancer 2013; 49:2587-95. [PMID: 23561850 DOI: 10.1016/j.ejca.2013.02.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/11/2013] [Accepted: 02/27/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE Microsatellite instability (MSI) resulting from loss of functional DNA mismatch repair was recently found in various haematological disorders. In coding sequences, MSI leads to frameshift mutations (FSMs) and the production of C-terminally altered proteins which are foreign to the immune system. Here, we wondered whether these frame-shifted peptide (FSP) sequences represent tumour-specific antigens also for MSI(+) leukaemia and lymphomas (L/L). MATERIAL AND METHODS A total of 33 coding region microsatellites were examined in MSI(+) L/L cell lines for the presence of FSMs. Thereafter, recognition of MSI(+) cells by established FSP-specific CD8(+) T cell lines was quantified using interferon (IFN)-γ enzyme-linked immunospot (ELISpot) assays. In each experiment, MSI(+) L/L cell lines and T2 targets exogenously loaded with the cognate peptide (=internal control) were employed. Supplementary, lytic activity towards tumour cells was analysed by standard chromium release assay ((51)Cr). RESULTS Mutational profiling of 33 coding microsatellite loci in nine MSI(+) L/L cell lines revealed instability in at least nine microsatellites. In each cell line, a distinct mutational profile was observed. Only three of the 33 loci were stable. FSP-specific and human leukocyte antigen-A2 (HLA-A2)-restricted T cells specifically recognised MSI(+) L/L cells endogenously expressing TGFβRII(-1), Caspase 5 (-1) and MSH3 (-1) in ELISpot assays. Moreover, specific killing of Caspase 5 (-1) and MSH3 (-1) expressing L/L cell lines was achieved in functional cytotoxicity assays. CONCLUSION Data presented here expand the importance of FSPs as shared and general tumour-specific antigens. Consequently, they open new avenues for specific immunotherapies not only for solid but also for MSI(+) haematological malignancies.
Collapse
|
11
|
Capes-Davis A, Reid YA, Kline MC, Storts DR, Strauss E, Dirks WG, Drexler HG, MacLeod RA, Sykes G, Kohara A, Nakamura Y, Elmore E, Nims RW, Alston-Roberts C, Barallon R, Los GV, Nardone RM, Price PJ, Steuer A, Thomson J, Masters JR, Kerrigan L. Match criteria for human cell line authentication: Where do we draw the line? Int J Cancer 2012; 132:2510-9. [DOI: 10.1002/ijc.27931] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/26/2012] [Indexed: 12/18/2022]
|
12
|
Abstract
Bcl-2 Family Proteins in Development and Treatment of Malignant DiseasesProteins of Bcl-2 family are key regulators of mitochondrial pathway of apoptosis. Deregulation of apoptosis disrupts the complex and delicate balance between cell proliferation, survival and death and plays an important role in the development of malignant diseases. In addition to uncontrolled proliferation, alterations in apoptotic proteins are frequently associated with resistance of malignant cells to chemotherapy, leading to ineffective treatment with chemotherapy that primarily acts by apoptosis initiation. Despite the progress in combinatory and biologic therapy, response rates for treatment of different malignant diseases are not high enough. Therefore, new anti-cancer agents that selectively kill tumour cells and spare normal tissues are still urgently needed. Progress in biochemistry and cell biology leading to detailed dissection of cell signalling pathways allows development of new therapeutic strategies targeting different proteins involved in malignant transformation and uncontrolled proliferation of malignant cells. Emerging knowledge on molecular mechanisms of apoptosis deregulation in cancer development has revealed Bcl-2 family proteins as potential targets for drugs discovery. Structural analysis of these proteins together with studies of apoptosis mechanisms have outlined strategies for generation of new drugs, resulting in numerous novel chemical entities with mechanism-based activity. Many of the most logical targets for promoting apoptosis of malignant cells are technically challenging, involving often disruption of protein interactions or changes in gene expression, as opposed to traditional pharmaceutical approach that predominantly attacks enzymes. Understanding of the core components of the apoptotic machinery at the molecular and structural levels may lead to new era in cancer therapy where the intrinsic and acquired resistance of malignant cells to apoptosis can be pharmacologically reversed, reinstating natural pathways of cell suicide.
Collapse
|
13
|
Best A, Matheson E, Minto L, Hall AG, Irving JAE. Mismatch repair and the downstream target genes, PAX5 and Ikaros, in childhood acute lymphoblastic leukemia. Leuk Res 2010; 34:1098-102. [PMID: 20233627 DOI: 10.1016/j.leukres.2010.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/08/2010] [Accepted: 02/13/2010] [Indexed: 12/16/2022]
Abstract
The mismatch repair (MMR) pathway is a post-replicative DNA repair process and MMR deficiency is a common feature of ALL cell lines. In this study we have investigated MMR deficiency in a large cohort of primary relapsed ALL (n=40) and investigated coding microsatellites (MS) of the lymphoid transcription factors, PAX5 and IKZF1 as downstream target genes. Only one patient showed MMR deficiency, as evidenced by microsatellite instability, which was acquired at relapse and was associated with reduced expression of both MLH1 and MSH2. Coding MS in candidate target genes including PAX5, IKZF1, BAX and TGFBRII were all wild type in this patient but the MMR-deficient cell line REH, was confirmed to have a coding MS in both PAX5 and TGFBRII. Whilst MMR deficiency is not highly prevalent in primary ALL, optimisation of the drug regimen to omit/replace thioguanines should be considered for children with MMR deficiency and/or reduced expression of key pathway components.
Collapse
MESH Headings
- Adolescent
- Blotting, Western
- Child
- Child, Preschool
- Cohort Studies
- DNA Methylation
- DNA Mismatch Repair/genetics
- Humans
- Ikaros Transcription Factor/genetics
- Ikaros Transcription Factor/metabolism
- Immunoenzyme Techniques
- Infant
- Microsatellite Instability
- Microsatellite Repeats/genetics
- Mutation/genetics
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- PAX5 Transcription Factor/genetics
- PAX5 Transcription Factor/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Andrew Best
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
14
|
Terui Y, Mishima Y, Sugimura N, Kojima K, Sakurai T, Mishima Y, Kuniyoshi R, Taniyama A, Yokoyama M, Sakajiri S, Takeuchi K, Watanabe C, Takahashi S, Ito Y, Hatake K. Identification of CD20 C-Terminal Deletion Mutations Associated with Loss of CD20 Expression in Non-Hodgkin's Lymphoma. Clin Cancer Res 2009; 15:2523-30. [DOI: 10.1158/1078-0432.ccr-08-1403] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Olejniczak SH, Hernandez-Ilizaliturri FJ, Clements JL, Czuczman MS. Acquired Resistance to Rituximab Is Associated with Chemotherapy Resistance Resulting from Decreased Bax and Bak Expression. Clin Cancer Res 2008; 14:1550-60. [DOI: 10.1158/1078-0432.ccr-07-1255] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Thomadaki H, Scorilas A. BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 2006; 43:1-67. [PMID: 16531274 DOI: 10.1080/10408360500295626] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One of the most effective ways to combat different types of cancer is through early diagnosis and administration of effective treatment, followed by efficient monitoring that will allow physicians to detect relapsing disease and treat it at the earliest possible time. Apoptosis, a normal physiological form of cell death, is critically involved in the regulation of cellular homeostasis. Dysregulation of programmed cell death mechanisms plays an important role in the pathogenesis and progression of cancer as well as in the responses of tumours to therapeutic interventions. Many members of the BCL2 (B-cell CLL/lymphoma 2; Bcl-2) family of apoptosis-related genes have been found to be differentially expressed in various malignancies, and some are useful prognostic cancer biomarkers. We have recently cloned a new member of this family, BCL2L12, which was found to be differentially expressed in many tumours. Most of the BCL2 family genes have been found to play a central regulatory role in apoptosis induction. Results have made it clear that a number of coordinating alterations in the BCL2 family of genes must occur to inhibit apoptosis and provoke carcinogenesis in a wide variety of cancers. However, more research is required to increase our understanding of the extent to which and the mechanisms by which they are involved in cancer development, providing the basis for earlier and more accurate cancer diagnosis, prognosis and therapeutic intervention that targets the apoptosis pathways. In the present review, we describe current knowledge of the function and molecular characteristics of a series of classic but also newly discovered genes of the BCL2 family as well as their implications in cancer development, prognosis and treatment.
Collapse
Affiliation(s)
- Hellinida Thomadaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | | |
Collapse
|
17
|
Ham MF, Takakuwa T, Luo WJ, Liu A, Horii A, Aozasa K. Impairment of double-strand breaks repair and aberrant splicing of ATM and MRE11 in leukemia-lymphoma cell lines with microsatellite instability. Cancer Sci 2006; 97:226-34. [PMID: 16542220 PMCID: PMC11159514 DOI: 10.1111/j.1349-7006.2006.00165.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mutations of DNA double-strand breaks (DSB) repair genes, ATM, MRE11, RAD50, NBS1 and ATR, are postulated to play a role in the development of gastrointestinal malignancies with an impaired mismatch repair (MMR) function. In the present study, mutations of these genes together with the presence of microsatellite instability (MSI) were examined in 50 leukemia-lymphoma cell lines. MSI was detected in 13 (26%) lines. Mutations of intronic mononucleotide repeats in ATM and MRE11 were found in nine and six lines, respectively, whereas mutations of mononucleotide repeats of RAD50 were found in only one line, and none were found in either NBS1 or ATR. Frequencies of ATM and MRE11 mutations were significantly higher in MSI-positive than MSI-negative lines. These mutations generated aberrant splicing in both genes. The intensity of the aberrant transcript of ATM (497del22) was stronger in five lines harboring mononucleotide mutations of 2 bp or more than in the lines without or with a 1-bp mutation. The intensity of the aberrant transcript of MRE11 (315del88) was stronger in four lines with mononucleotide mutations than in lines without. The expression levels of ATM and MRE11 transcripts in MSI-positive lines were significantly higher than those in MSI-negative lines. MSI-positive cell lines showed delay or abrogation of DSB repair. The present study suggests that impairment of the MMR system causes aberrant transcripts in the DSB repair genes ATM and MRE11. This might result in inactivation of the DSB repair system, thus inducing an acceleration of genome instability and accumulation of genetic damage.
Collapse
Affiliation(s)
- Maria Francisca Ham
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Rund D, Krichevsky S, Bar-Cohen S, Goldschmidt N, Kedmi M, Malik E, Gural A, Shafran-Tikva S, Ben-Neriah S, Ben-Yehuda D. Therapy-related leukemia: clinical characteristics and analysis of new molecular risk factors in 96 adult patients. Leukemia 2005; 19:1919-28. [PMID: 16167058 DOI: 10.1038/sj.leu.2403947] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Therapy-related leukemia or myelodysplasia (t-leuk/MDS) is a serious problem that is increasing in frequency. We studied the clinical characteristics of 96 patients (pts) with a mean age of 48 years, and analyzed the molecular parameters that could predispose to t-leuk/MDS. Hematological malignancies were the most common primary (53%), followed by breast and ovarian cancer (30% combined). The mean latency until the development of t-AML was 45.5 months. Median survival was 10 months. Cytogenetics was abnormal in 89% of pts. FLT3 internal tandem duplications were found in six of 41 (14.6%) pts, of whom four had an abnormal karyotype. Analysis of drug metabolism and disposition genes showed a protective effect of the CYP3A4 1*B genotype against the development of t-leuk/MDS, whereas the CC genotype of MDR1 C3435T and the NAD(P)H:quinone oxidoreductase1 codon 187 polymorphism were both noncontributory. Microsatellite instability (MSI) analysis using fluoresceinated PCR with ABI sequence analyzer demonstrated that 41% of pts had high levels of MSI in four or more of 10 microsatellite loci. Immunohistochemistry demonstrated reduced expression of MSH2 and MLH1 in 6/10 pts with MSI as compared to 0/5 of pts without MSI. In conclusion, genetic predisposition as well as epigenetic events contribute to the etiology of t-AML/MDS.
Collapse
Affiliation(s)
- D Rund
- Department of Hematology, Hadassah University Hospital, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Apoptosis is an intrinsic cell death program that plays critical roles in tissue homeostasis, especially in organs where high rates of daily cell production are offset by rapid cell turnover. The hematopoietic system provides numerous examples attesting to the importance of cell death mechanisms for achieving homeostatic control. Much has been learned about the mechanisms of apoptosis of lymphoid and hematopoietic cells since the seminal observation in 1980 that glucocorticoids induce DNA fragmentation and apoptosis of thymocytes and the demonstration in 1990 that depriving colony-stimulating factors from factor-dependent hematopoietic cells causes programmed cell death. From an understanding of the core components of the apoptosis machinery at the molecular and structural levels, many potential new therapies for leukemia and lymphoma are emerging. In this review, we introduce some of the drug discovery targets thus far identified within the core apoptotic machinery and describe some of the progress to date toward translating our growing knowledge about these targets into new therapies for cancer and leukemia.
Collapse
Affiliation(s)
- John C Reed
- Burnham Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | |
Collapse
|
20
|
Parson W, Kirchebner R, Mühlmann R, Renner K, Kofler A, Schmidt S, Kofler R. Cancer cell line identification by short tandem repeat profiling: power and limitations. FASEB J 2005; 19:434-6. [PMID: 15637111 DOI: 10.1096/fj.04-3062fje] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cancer cell lines are used worldwide in biological research, and data interpretation depends on unambiguous attribution of the respective cell line to its original source. Short-tandem-repeat (STR) profiling (DNA fingerprinting) is the method of choice for this purpose; however, the genetic stability of cell lines under various experimental conditions is not well defined. We tested the effect of long-term culture, subcloning, and generation of drug-resistant subclones on fingerprinting profiles in four widely used leukemia cell lines. The DNA fingerprinting profile remained unaltered in two of them (U937 and K562) throughout 12 months in culture, and the vast majority of subclones derived therefrom by limiting dilution after long-term culture revealed the same profile, indicating a high degree of stability and clonotypic homogeneity. In contrast, two other cell lines (CCRF-CEM and Jurkat) showed marked alterations in DNA fingerprinting profiles during long-term culture. Limiting dilution subcloning revealed extensive clonotypic heterogeneity with subclones differing in up to eight STR loci from the parental culture. Similar heterogeneity was observed in subclones generated by selection culture for drug resistance where DNA fingerprinting proved useful in identifying possible resistance mechanisms. Thus, common tissue culture procedures may dramatically affect the fingerprinting profile of certain cell lines and thus render definition of their origin difficult.
Collapse
Affiliation(s)
- Walther Parson
- Institute of Legal Medicine, Department Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Henry-Mowatt J, Dive C, Martinou JC, James D. Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene 2004; 23:2850-60. [PMID: 15077148 DOI: 10.1038/sj.onc.1207534] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The release of proteins from the intermembrane space of mitochondria is one of the pivotal events in the apoptotic process, which can lead to the activation of caspases and the ultimate demise of the cell. How these proteins exit the mitochondria is still a matter of intense debate. Here, we discuss the possible mechanisms behind the release of apoptogenic proteins, the ways in which cancer cells subvert these mechanisms, and the therapeutic regimens that aim to promote the timely loss of integrity of the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Judith Henry-Mowatt
- Cellular and Molecular Pharmacology Group, The Paterson Institute for Cancer Research, Wilmslow Road M20 4BX, Manchester, UK
| | | | | | | |
Collapse
|
22
|
Ivanovska I, Galonek HL, Hildeman DA, Hardwick JM. Regulation of cell death in the lymphoid system by Bcl-2 family proteins. Acta Haematol 2004; 111:42-55. [PMID: 14646344 DOI: 10.1159/000074485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Programmed cell death is an ordered process that is essential for the normal development and homeostasis of an organism. Dysregulation of this programmed pathway, resulting in either excess cell numbers or unscheduled cell death, underlies a number of disease states. Bcl-2 family proteins play a key role in regulating cell death and survival, and a number of studies have demonstrated their role as important regulators of cell fate in the lymphoid system. Mice that are genetically deficient or overexpress various Bcl-2 family proteins have provided important clues regarding their roles in lymphocyte development, progression of lymphoid tumors and analogous human disorders. In addition, lymphotropic viruses may trigger cell proliferation and inhibit cell death with the help of their own Bcl-2 homologues. Comparing the shared and distinct functions of viral and cellular Bcl-2-related proteins yields new insight into their fundamental mechanisms.
Collapse
Affiliation(s)
- Iva Ivanovska
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
23
|
Richard SM, Knuutila S, Peltomäki P, Bianchi MS, Bianchi NO. Y chromosome instability in lymphoproliferative disorders. Mutat Res 2003; 525:103-7. [PMID: 12650910 DOI: 10.1016/s0027-5107(03)00007-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Silvina M Richard
- Instituto Multidisciplinario de Biología Celular, Calle 526 e/10 y 11, CC 403, 1900 La Plata, Argentina.
| | | | | | | | | |
Collapse
|
24
|
Scott S, Kimura T, Ichinohasama R, Bergen S, Magliocco A, Reimer C, Kerviche A, Sheridan D, DeCoteau JF. Microsatellite mutations of transforming growth factor-beta receptor type II and caspase-5 occur in human precursor T-cell lymphoblastic lymphomas/leukemias in vivo but are not associated with hMSH2 or hMLH1 promoter methylation. Leuk Res 2003; 27:23-34. [PMID: 12479849 DOI: 10.1016/s0145-2126(02)00078-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In solid cancers, defective DNA mismatch repair (MMR) is most commonly caused by hMSH2 or hMLH1 mutations, or epigenetic silencing of hMLH1 by promoter hypermethylation, and results in the acquisition of characteristic frameshift microsatellite mutations of mononucleotide repeats located within the coding regions of defined target genes. We previously identified hMSH2 mutations in T-cell lymphoblastic lymphoma (T-LBL) patient tumor samples and others have reported coding region microsatellite mutations in T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Thus, while MMR gene mutations are known to occur in some human T-lymphoblastic tumors in vivo, it is still unknown if the coding region microsatellite mutations detected in human cell lines also occur in vivo or if hMLH1 or hMSH2 promoter hypermethylation contributes to defective MMR in these tumors. We analyzed the TGFbetaRII (A)10 and caspase-5 (A)10 coding region repeats in 16 human T-LBL/ALL patient tumor samples and identified six with microsatellite mutations in one or both repeats. There was no evidence of hMSH2 or hMLH1 promoter methylation as assessed by standard methylation specific PCR or by a novel temporal temperature gradient electrophoresis (TTGE) method that analyzed 25 and 30 CpG sites in the hMLH1 and hMSH2 promoters, respectively. Our results indicate that coding region microsatellite mutations characteristic of defective MMR occur in some human T-LBL/ALL in vivo but not as a consequence of hMLH1 or hMSH2 promoter hypermethylation. Furthermore, the identification of TGFbetaRII and caspase-5 coding region mutations in vivo implicates these genes in the pathogenesis of human T-LBL/ALL.
Collapse
Affiliation(s)
- Stuart Scott
- Saskatoon Cancer Centre, Department of Pathology, Royal University Hospital, University of Saskatchewan, 103 Hospital Drive, Saskatoon, S7N 0W8, SK, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dereure O, Levi E, Vonderheid EC, Kadin ME. Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin. J Invest Dermatol 2002; 118:949-56. [PMID: 12060388 DOI: 10.1046/j.1523-1747.2002.01794.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycosis fungoides (MF) is the most frequent manifestation of cutaneous T cell lymphoma but its cause and pathophysiology remain unclear. Because progression of lesions is characteristically slow, we hypothesized that mycosis fungoides originates from an accumulation of lymphocytes due to defective apoptosis of skin homing T lymphocytes. In this study, we investigate possible alterations of three molecules regulating apoptosis, i.e., Fas antigen, Bax, and p53, at the genomic level in skin lesions from 44 patients with MF, as Fas mediates one of two major pathways for apoptosis of activated T cells. Fas mutations were found in six patients using a polymerase chain reaction and single-strand conformational polymorphism method followed by cloning and sequencing of abnormal polymerase chain reaction products. The mutations predict for defective transmission of the death signal in three cases. Immunohistochemistry demonstrated the lack of Fas protein expression on dermal lymphocytes in one case with Fas gene mutation predicting for a truncated death domain, whereas Fas protein was expressed by dermal lymphocytes in the other investigated cases. By contrast, no mutations of Bax or p53 were found, whereas immunohistochemistry demonstrated increased p53 expression in the nucleus of basal keratinocytes above the neoplastic infiltrate in some MF cases. These results support the hypothesis that Fas defects may play a role in the pathogenesis of MF.
Collapse
Affiliation(s)
- Olivier Dereure
- Department of Pathology, Beth Israel Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
26
|
Humbert O, Hermine T, Hernandez H, Bouget T, Selves J, Laurent G, Salles B, Lautier D. Implication of protein kinase C in the regulation of DNA mismatch repair protein expression and function. J Biol Chem 2002; 277:18061-8. [PMID: 11880362 DOI: 10.1074/jbc.m103451200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA mismatch repair (MMR) proteins are essential for the maintenance of genomic stability of human cells. Compared with hereditary or even sporadic carcinomas, MMR gene mutations are very uncommon in leukemia. However, genetic instability, attested by either loss of heterozygosity or microsatellite instability, has been extensively documented in chronic or acute malignant myeloid disorders. This observation suggests that in leukemia some internal or external signals may interfere with MMR protein expression and/or function. We investigated the effects of protein kinase C (PKC) stimulation by 12-O-tetradecanoylphorbol-13-acetate (TPA) on MMR protein expression and activity in human myeloid leukemia cell lines. First, we show here that unstimulated U937 cells displayed low level of PKC activity as well as MMR protein expression and activity compared with a panel of myeloid cell lines. Second, treatment of U937 cells with TPA significantly increased (3-5-fold) hMSH2 expression and, to a lesser extent, hMSH6 and hPMS2 expression, correlated to a restoration of MMR function. In addition, diacylglycerol, a physiological PKC agonist, induced a significant increase in hMSH2 expression, whereas chelerythrine or calphostin C, two PKC inhibitors, significantly decreased TPA-induced hMSH2 expression. Reciprocally, treatment of HEL and KG1a cells that exhibited a high level of PKC expression, with chelerythrine significantly decreased hMSH2 and hMSH6 expression. Moreover, the alteration of MMR protein expression paralleled the difference in microsatellite instability and cell sensitivity to 6-thioguanine. Our results suggest that PKC could play a role in regulating MMR protein expression and function in some myeloid leukemia cells.
Collapse
Affiliation(s)
- Odile Humbert
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089, CNRS, 205 route de Narbonne, 31077 Toulouse cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kitada S, Pedersen IM, Schimmer AD, Reed JC. Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 2002; 21:3459-74. [PMID: 12032782 DOI: 10.1038/sj.onc.1205327] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ever since the discovery of Bcl-2 and the elucidation of its role in apoptosis, tremendous interest has arisen in prospects for triggering suicide of malignant cells by exploiting knowledge emerging from apoptosis research. In this review, we summarize information about the multiple genetic lesions which have been identified in apoptosis-regulatory genes of hematopoietic and lymphoid neoplasms. Emerging data about the structural and biochemical details of apoptosis proteins and their upstream regulators have reveal novel strategies for therapeutic intervention, some of which are under interrogation in clinical trials currently.
Collapse
Affiliation(s)
- Shinichi Kitada
- The Burnham Institute, 10901 N. Torrey Pines Rd, La Jolla, California, CA 92037, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Over the last decade, a growing number of tumor suppressor genes have been discovered to play a role in tumorigenesis. Mutations of p53 have been found in hematological malignant diseases, but the frequency of these alterations is much lower than in solid tumors. These mutations occur especially as hematopoietic abnormalities become more malignant such as going from the chronic phase to the blast crisis of chronic myeloid leukemia. A broad spectrum of tumor suppressor gene alterations do occur in hematological malignancies, especially structural alterations of p15(INK4A), p15(INK4B) and p14(ARF) in acute lymphoblastic leukemia as well as methylation of these genes in several myeloproliferative disorders. Tumor suppressor genes are altered via different mechanisms, including deletions and point mutations, which may result in an inactive or dominant negative protein. Methylation of the promoter of the tumor suppressor gene can blunt its expression. Chimeric proteins formed by chromosomal translocations (i.e. AML1-ETO, PML-RARalpha, PLZF-RARalpha) can produce a dominant negative transcription factor that can decrease expression of tumor suppressor genes. This review provides an overview of the current knowledge about the involvement of tumor suppressor genes in hematopoietic malignancies including those involved in cell cycle control, apoptosis and transcriptional control.
Collapse
Affiliation(s)
- Utz Krug
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California, CA 90048, USA.
| | | | | |
Collapse
|
29
|
Sheikhha MH, Tobal K, Liu Yin JA. High level of microsatellite instability but not hypermethylation of mismatch repair genes in therapy-related and secondary acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 2002; 117:359-65. [PMID: 11972518 DOI: 10.1046/j.1365-2141.2002.03458.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microsatellite instability (MSI) is associated with defects in the DNA mismatch repair (MMR) system, such as mutation or epigenetic silencing of the genes by promoter hypermethylation. We investigated the presence of MSI and promoter hypermethylation of hMLH1 and hMSH2 genes in 82 patients (68 acute myeloid leukaemia, AML; 14 myelodysplastic syndromes, MDS). Twelve separate microsatellite loci, including three mononucleotide repeat markers, were used. Mutator phenotype (RER+) was detected in 20 AML (29.4%) and 3 MDS (21.4%) patients. RER+ rate was much higher in the therapy-related and secondary cases compared with the de novo cases. Three out of 7 (42.9%) secondary (s-AML) and 8 out of 17 (47.1%) therapy-related (t-AML) showed RER+ in comparison with 9 out of 44 (20.5%) de novo cases. Similar rates were detected in MDS patients (2/2 therapy-related and 1/12 de novo). The promoter hypermethylation was found in three hMLH1 (3.7%) and two hMSH2 (2.4%) genes. All these five patients had AML and were older than 60 years of age. Two of them had s-AML and one had t-AML. RER+ was detected in three of these five patients. Our data suggest that genetic instability is associated with AML and MDS, especially t-AML and s-AML. In addition, our results indicate that the hMSH2 and hMLH1 promoter hypermethylation is not a common event in these malignancies, but may play a role in the development of AML in elderly patients.
Collapse
Affiliation(s)
- Mohammad H Sheikhha
- Molecular Oncology Group, University Department of Haematology, Manchester Royal Infirmary, Cobbett House, Oxford Road, Manchester M13 9WL, UK
| | | | | |
Collapse
|
30
|
Sasaki O, Meguro K, Tohmiya Y, Funato T, Shibahara S, Sasaki T. Nucleotide alteration of retinoblastoma protein-interacting zinc finger gene, RIZ, in human leukemia. TOHOKU J EXP MED 2002; 196:193-201. [PMID: 12002276 DOI: 10.1620/tjem.196.193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The retinoblastoma protein-interacting zinc finger gene (RIZ) is a zinc-finger type DNA binding protein and is postulated as a member of the nuclear protein-methyltransferase superfamily. RIZ gene encodes for two proteins, RIZ1 and RIZ2. While RIZ1 contains the N-terminal PR (PRDI-BF1 and RIZ homologous)-domain, RIZ2 lacks it. RIZ1 is now considered as a tumor suppressor. We analyzed nucleotide alteration of RIZ gene in human leukemia. The results revealed a single nucleotide polymorphism (SNP), T1704 to A, near the conserved Rb-binding domain, leading to an amino acid change, Asp283 to Glu. Interestingly, 17 of 21 leukemia cell lines are homozygous for the T1704 allele whereas only 2 of 20 normal subjects are homozygous for the allele. In addition, one base pair deletion in the poly (A)9 tract in the coding region near the C-terminal zinc-fingers was identified, resulting in frameshift, in 1 out of 17 leukemia cell lines, but no mutation in samples from 15 patients with acute lymphoblastic leukemia (ALL) and 6 patients with adult T cell leukemia (ATL). In the PR or SH3 (src homology 3) domain of the RIZ gene, no mutation was found. These findings suggest that RIZ may be a possible target of structural alteration leading to leukemia.
Collapse
Affiliation(s)
- Osam Sasaki
- Department of Rheumatology and Hematology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Transforming growth factor beta (TGF-beta) is an effective and ubiquitous mediator of cell growth. The significance of this cytokine in cancer susceptibility, cancer development and progression has become apparent over the past few years. TGF-beta plays various roles in the process of malignant progression. It is a potent inhibitor of normal stromal, hematopoietic, and epithelial cell growth. However, at some point during cancer development the majority of transformed cells become either partly or completely resistant to TGF-beta growth inhibition. There is growing evidence that in the later stages of cancer development TGF-beta is actively secreted by tumor cells and not merely acts as a bystander but rather contributes to cell growth, invasion, and metastasis and decreases host-tumor immune responses. Subtle alteration of TGF-beta signaling may also contribute to the development of cancer. These various effects are tissue and tumor dependent. Identifying and understanding TGF-beta signaling pathway abnormalities in various malignancies is a promising avenue of study that may yield new modalities to both prevent and treat cancer. The nature, prevalence, and significance of TGF-beta signaling pathway alterations in various forms of human cancer as well as potential preventive and therapeutic interventions are discussed in this review.
Collapse
Affiliation(s)
- B Pasche
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, 710 North Fairbanks, Room 8410, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Abstract
Transforming growth factor beta (TGF-beta) is an effective and ubiquitous mediator of cell growth. The significance of this cytokine in cancer susceptibility, cancer development and progression has become apparent over the past few years. TGF-beta plays various roles in the process of malignant progression. It is a potent inhibitor of normal stromal, hematopoietic, and epithelial cell growth. However, at some point during cancer development the majority of transformed cells become either partly or completely resistant to TGF-beta growth inhibition. There is growing evidence that in the later stages of cancer development TGF-beta is actively secreted by tumor cells and not merely acts as a bystander but rather contributes to cell growth, invasion, and metastasis and decreases host-tumor immune responses. Subtle alteration of TGF-beta signaling may also contribute to the development of cancer. These various effects are tissue and tumor dependent. Identifying and understanding TGF-beta signaling pathway abnormalities in various malignancies is a promising avenue of study that may yield new modalities to both prevent and treat cancer. The nature, prevalence, and significance of TGF-beta signaling pathway alterations in various forms of human cancer as well as potential preventive and therapeutic interventions are discussed in this review.
Collapse
Affiliation(s)
- B Pasche
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, 710 North Fairbanks, Room 8410, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Drexler HG, Matsuo AY, MacLeod RA. Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research. Leuk Res 2000; 24:881-911. [PMID: 11086173 DOI: 10.1016/s0145-2126(00)00070-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Along with other improvements, the advent of continuous human leukemia-lymphoma (LL) cell lines as a rich resource of abundant, accessible and manipulable living cells has contributed significantly to a better understanding of the pathophysiology of hematopoietic tumors. The first LL cell lines, Burkitt's lymphoma-derived lines, were established in 1963. Since then, more than 1000 cell lines have been described, although not all of them in full detail. The major advantages of continuous cell lines is the unlimited supply and worldwide availability of identical cell material, and the infinite viable storability in liquid nitrogen. LL cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro under preservation of most cellular features, and specific genetic alterations. The most practical classification of LL cell lines assigns them to one of the physiologically occurring cell lineages, based on their immunophenotype, genotype and functional features. Truly malignant cell lines must be discerned from Epstein-Barr virus (EBV)-immortalized normal cells, using various distinguishing parameters. However, the picture is not quite so straightforward, as some types of LL cell lines are indeed EBV+, and some EBV+ normal cell lines carry also genetic aberrations and may mimic malignancy-associated features. Apart from EBV and human T-cell leukemia virus in some lines, the majority of wild-type LL cell lines are virus-negative. The efficiency of cell line establishment is rather low and the deliberate establishment of new LL cell lines remains by and large an unpredictable random process. Difficulties in establishing continuous cell lines may be caused by the inappropriate selection of nutrients and growth factors for these cells. Clearly, a generally suitable microenvironment for hematopoietic cells, either malignant or normal, cannot yet be created in vitro. The characterization and publication of new LL cell lines should provide important and informative core data, attesting to their scientific significance. Large percentages of LL cell lines are contaminated with mycoplasma (about 30%) or are cross-contaminated with other cell lines (about 15-20%). Solutions to these problems are sensitive detection, effective elimination and rigorous prevention of mycoplasma infection, and proper, regular authentication of cell lines. The underlying cause, however, appears to be negligent cell culture practice. The willingness of investigators to make their LL cell lines available to others is all too often limited. There is a need in the scientific community for clean and authenticated high-quality LL cell lines to which every scientist has access. These are offered by various institutionalized public cell line banks. It has been argued that LL cell lines are genetically unstable (both cytogenetically and molecular genetically). For instance, cell lines are supposed to acquire numerical and structural chromosomal alterations and various types of mutations (e.g. point mutations) in vitro. We present evidence that while nearly 100% of all LL cell lines indeed carry genetic alterations, these alterations appear to be stable rather than unstable. As an example of the practical utility of LL cell lines, the recent advances in studies of classical and molecular cytogenetics, which in large part were made possible by cell lines, are highlighted. A list of the most useful, robust and publicly available reference cell lines that may be used for a variety of experimental purposes is proposed. Clearly, by opening new avenues for investigation, studies of LL cell lines have provided seminal insights into the biology of hematopoietic neoplasia. Over a period of nearly four decades, these initially rather exotic cell cultures, known only to a few specialists, have become ubiquitous powerful research tools that are available to every investigator.
Collapse
Affiliation(s)
- H G Drexler
- DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany.
| | | | | |
Collapse
|