1
|
Li YF, Lin YT, Wang YQ, Ni JY, Power DM. Ioxynil and diethylstilbestrol impair cardiac performance and shell growth in the mussel Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166834. [PMID: 37717744 DOI: 10.1016/j.scitotenv.2023.166834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 09/02/2023] [Indexed: 09/19/2023]
Abstract
The herbicide ioxynil (IOX) and the synthetic estrogen diethylstilbestrol (DES) are environmentally relevant contaminants that act as endocrine disruptors (EDCs) and have recently been shown to be cardiovascular disruptors in vertebrates. Mussels, Mytilus coruscus, were exposed to low doses of IOX (0.37, 0.037 and 0.0037 mg/L) and DES (0.27, 0.027 and 0.0027 mg/L) via the water and the effect monitored by generating whole animal transcriptomes and measuring cardiac performance and shell growth. One day after IOX (0.37 and 0.037 mg/L) and DES (0.27 and 0.027 mg/L) exposure heart rate frequency was decreased in both groups and 0.27 mg/L DES significantly reduced heart rate frequency with increasing time of exposure (P < 0.05) and no acclimatization occurred. The functional effects were coupled to significant differential expression of genes of the serotonergic synapse pathway and cardiac-related genes at 0.027 mg/L DES, which suggests that impaired heart function may be due to interference with neuroendocrine regulation and direct cardiac effect genes. Multiple genes related to detoxifying xenobiotic substances were up regulated and genes related to immune function were down regulated in the DES group (vs. control), indicating that detoxification processes were enhanced, and the immune response was depressed. In contrast, IOX had a minor disrupting effect at a molecular level. Of note was a significant suppression (P < 0.05) by DES of shell growth in juveniles and lower doses (< 0.0027 mg/L) had a more severe effect. The shell growth depression in 0.0027 mg/L DES-treated juveniles was not accompanied by abundant differential gene expression, suggesting that the effect of 0.0027 mg/L DES on shell growth may be direct. The results obtained in the present study reveal for the first time that IOX and DES may act as neuroendocrine disrupters with a broad spectrum of effects on cardiac performance and shell growth, and that DES exposure had a much more pronounced effect than IOX in a marine bivalve.
Collapse
Affiliation(s)
- Yi-Feng Li
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal.
| | - Yue-Tong Lin
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yu-Qing Wang
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ji-Yue Ni
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal.
| |
Collapse
|
2
|
Giglio A, Vommaro ML. Dinitroaniline herbicides: a comprehensive review of toxicity and side effects on animal non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76687-76711. [PMID: 36175724 PMCID: PMC9581837 DOI: 10.1007/s11356-022-23169-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/18/2022] [Indexed: 05/23/2023]
Abstract
The widespread use of herbicides has increased concern about the hazards and risks to animals living in terrestrial and aquatic ecosystems. A comprehensive understanding of their effective action at different levels of biological organization is critical for establishing guidelines to protect ecosystems and human health. Dinitroanilines are broad-spectrum pre-emergence herbicides currently used for weed control in the conventional agriculture. They are considered extremely safe agrochemicals because they act specifically on tubulin proteins and inhibit shoot and root growth of plants. However, there is a lack of toxicity information regarding the potential risk of exposure to non-target organisms. The aim of the present review is to focus on side effects of the most commonly used active ingredients, e.g. pendimethalin, oryzalin, trifluralin and benfluralin, on animal non-target cells of invertebrates and vertebrates. Acute toxicity varies from slightly to high in terrestrial and aquatic species (i.e. nematodes, earthworms, snails, insects, crustaceans, fish and mammals) depending on the species-specific ability of tested organisms to adsorb and discharge toxicants. Cytotoxicity, genotoxicity and activation of oxidative stress pathways as well as alterations of physiological, metabolic, morphological, developmental and behavioural traits, reviewed here, indicate that exposure to sublethal concentrations of active ingredients poses a clear hazard to animals and humans. Further research is required to evaluate the molecular mechanisms of action of these herbicides in the animal cell and on biological functions at multiple levels, from organisms to communities, including the effects of commercial formulations.
Collapse
Affiliation(s)
- Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy.
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy
| |
Collapse
|
3
|
Klein K, Piana T, Lauschke T, Schweyen P, Dierkes G, Ternes T, Schulte-Oehlmann U, Oehlmann J. Chemicals associated with biodegradable microplastic drive the toxicity to the freshwater oligochaete Lumbriculus variegatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105723. [PMID: 33385845 DOI: 10.1016/j.aquatox.2020.105723] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/18/2020] [Accepted: 12/09/2020] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) as complex synthetic pollutants represent a growing concern for the aquatic environment. Previous studies examined the toxicity of MPs, but infrequently used a natural particle control such as kaolin. The cause of toxicity, either the physical structure of the particles or chemical components originating from the MPs, has rarely been resolved. Moreover, the ecotoxicological assessment of biodegradable plastics has received little attention. To narrow down the main driver for toxicity of irregular biodegradable MPs, we conducted a series of 28-days sediment toxicity tests with the freshwater oligochaete Lumbriculus variegatus and recorded the number of worms and dry weight as endpoints. Therefore, MPs containing several biodegradable polymers were either mixed with the sediment or layered on the sediment surface with concentrations from 1 to 8.4% sediment dw-1. Kaolin particles were evaluated in parallel as particle control. Furthermore, aqueous leachates and methanolic extracts as MP equivalents as well as solvent-treated, presumably pure MPs were investigated after mixing them into the sediment. Our results reveal that MP mixed with the sediment induced stronger adverse effects than layered MP. Kaolin particles caused no adverse effects. In contrast, they enhanced dry weight in both applications. The impact of aqueous leachates was comparable to the control without MPs, whereas methanolic extracts affected the worm number at the highest concentration with 100% mortality. Solvent-treated, presumably pure MP resulted in mostly higher worm numbers when compared to untreated MPs mixed into the sediment. This study demonstrates that MPs mixed into the sediment affect L. variegatus more than MPs that are layered on the sediment surface. Kaolin as a natural, fine-sized particle control created somewhat favorable conditions for the worm. The main driver for toxicity, however, proved to be chemicals associated with the plastic product and its previous content.
Collapse
Affiliation(s)
- Kristina Klein
- Goethe University Frankfurt, Faculty of Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany.
| | - Theresa Piana
- Goethe University Frankfurt, Faculty of Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Tim Lauschke
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Peter Schweyen
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Georg Dierkes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Thomas Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Ulrike Schulte-Oehlmann
- Goethe University Frankfurt, Faculty of Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Goethe University Frankfurt, Faculty of Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Zhai Y, Xia X, Wang H, Lin H. Effect of suspended particles with different grain sizes on the bioaccumulation of PAHs by zebrafish (Danio rerio). CHEMOSPHERE 2020; 242:125299. [PMID: 31896194 DOI: 10.1016/j.chemosphere.2019.125299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The physicochemical characteristics are different for suspended particles (SPS) with different sizes in rivers. Here, we studied the effect of SPS (1 g L-1) with three different sizes (63-106 μm, 20-63 μm, and <20 μm) on the bioaccumulation of deuterated polycyclic aromatic hydrocarbons (phenanthrene-d10, anthracene-d10, fluoranthene-d10 and pyrene-d10) in zebrafish using passive dosing devices to maintain the freely dissolved concentrations of PAHs-d10 constant in water. The results showed that all the three grain size SPS could be ingested by zebrafish, and there was no significant difference in the amount of ingested SPS among the three grain sizes. The concentrations (lipid-normalized or not) of PAHs-d10 in zebrafish were promoted in the presence of the three different size SPS, and the PAH-d10 concentrations in zebrafish increased with decreasing particle size. Compared with the systems without SPS, the lipid-normalized concentrations of PAHs-d10 increased by 12%-72%, 34%-130%, and 60%-196%, respectively in zebrafish in systems with 63-106 μm, 20-63 μm, and <20 μm of SPS after exposure for 20 h. The stronger effect of SPS with smaller grain sizes was probably due to their lower organic carbon content, lower ratio of black carbon to organic carbon content, smaller particle size, and higher dissolved organic matter contents, which could promote the desorption of PAHs-d10 from ingested SPS and bioaccessibility of PAHs-d10 to zebrafish. This study suggests that in addition to SPS concentration, the suspended particle size should be considered in ecological risk assessment for hydrophobic organic compounds in aquatic environment.
Collapse
Affiliation(s)
- Yawei Zhai
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing, 100875, China
| | - Xinghui Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing, 100875, China.
| | - Haotian Wang
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing, 100875, China
| | - Hui Lin
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing, 100875, China
| |
Collapse
|
5
|
Chen M, Wang Q, Zhu Y, Zhu L, Xiao B, Liu M, Yang L. Species dependent accumulation and transformation of 8:2 polyfluoroalkyl phosphate esters in sediment by three benthic organisms. ENVIRONMENT INTERNATIONAL 2019; 133:105171. [PMID: 31610368 DOI: 10.1016/j.envint.2019.105171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Sediment is a major sink for 8:2 polyfluoroalkyl phosphate diester (8:2 diPAP) in the environment. In the present study, three representative benthic organisms, including carp (Cyrinus carpio), loach (Misgurnus anguillicaudatus) and worm (Limnodrilus hoffmeisteri), were exposed to 8:2 diPAP spiked sediment at 300 ng g-1. 8:2 diPAP in the sediment was bioavailable to carp, loach and worm even though the biota-sediment accumulation factors (BSAFs) (0.137, 0.0273, 0.413 g g-1, respectively) were relatively low due to its large molecular weight and high log KOW value. The worm displayed the greatest enrichment ability among the three species, implying the utility of using worm as a bio-indicator of 8:2 diPAP pollution in sediment. The biotransformation products (e.g. 8:2 FTUCA and 7:3 FTCA) were detected in all the three species, suggesting that they had the ability to transform 8:2 diPAP. Loach displayed the strongest metabolism capacity while worm displayed the weakest. Transformation of 8:2 diPAP also took place in the sediment by microorganisms. Notably, the concentration ratio of 7:3 FTCA and 8:2 FTUCA in the sediment was much lower than that in benthic organisms, suggesting that the aquatic benthic organisms and microorganisms had different transformation activities and mechanisms.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qiang Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi 712100, PR China.
| | - Bowen Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
6
|
Dupuy C, Cabon J, Louboutin L, Le Floch S, Morin T, Danion M. Cellular, humoral and molecular responses in rainbow trout (Oncorhynchus mykiss) exposed to a herbicide and subsequently infected with infectious hematopoietic necrosis virus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105282. [PMID: 31509759 DOI: 10.1016/j.aquatox.2019.105282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Aquatic ecosystems are now chronically polluted by a cocktail of many chemical substances. There is now clear evidence of associations between exposure to pollutants and greater susceptibility to pathogens. The aim of the present study was to characterize the defense capacities of rainbow trout (Oncorhynchus mykiss), chronically exposed to pendimethalin (PD), to subsequent experimental challenge with the infectious hematopoietic necrosis virus (IHNV). Immunological responses were examined at different organizational levels, from individuals to gene expression. No negative effects of PD were noted on the Fulton index nor on the liver or spleen somatic indices (LSI; SSI) before viral infection, but the infectious stress seems to generate a weak but significant decrease in Fulton and LSI values, which could be associated with consumption of energy reserves. During the viral challenges, the distribution of cumulative mortality was slightly different between infected groups. The impact of the virus on fish previously contaminated by PD started earlier and lasted longer than controls. The proportion of seropositive fish was lower in the fish group exposed to PD than in the control group, with similar quantities of anti-IHNV antibodies secreted in positive fish, regardless of the treatment. While no significant differences in C3-1 expression levels were detected throughout the experiment, TNF1&2, TLR3, Il-1β and IFN expression levels were increased in all infected fish, but the difference was more significant in fish groups previously exposed to herbicide. On the other hand, β-def expression was decreased in the pendimethalin-IHNV group compared to that in fish only infected by the virus (control-IHNV group).
Collapse
Affiliation(s)
- Célie Dupuy
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Lénaïg Louboutin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Stéphane Le Floch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200, Brest, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France.
| |
Collapse
|
7
|
Danion M, Le Floch S, Pannetier P, Van Arkel K, Morin T. Transchem project - Part I: Impact of long-term exposure to pendimethalin on the health status of rainbow trout (Oncorhynchus mykiss L.) genitors. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:207-215. [PMID: 30025873 DOI: 10.1016/j.aquatox.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Pendimethalin is a herbicide active substance commonly used in terrestrial agricultural systems and is thus detected at high concentrations in the surface water of several European countries. Previous studies reported several histopathological changes, enzymatic antioxidant modulation and immunity disturbance in fish exposed to this pesticide. The objective of this work was to investigate the direct effects of long-term exposure to environmental concentrations of pendimethalin over a period of 18 months in rainbow trout (Oncorhynchus mykiss) genitors. To do so, an experimental system consisting of eight similar 400 L tanks with a flow-through of fresh river water was used to perform daily chemical contamination. Fish were exposed to 850 ng/L for one hour and the pendimethalin concentration was then gradually diluted during the day to maintain optimal conditions for the fish throughout the experiment and to achieve a mean theoretical exposure level of around 100 ng L-1 per day. Every November, males and females were stripped to collect eggs and sperm and two new first generations of offspring were obtained. Kinetic sampling revealed differences in immune system parameters and antioxidative defences in the contaminated trout compared to the controls, due to pesticide exposure combined with seasonal changes related to gamete maturation. Moreover, reproductive capacity was significantly affected by exposure to the herbicide; a time lag of more than five weeks was observed for egg maturation in contaminated females and high bioconcentrations of pendimethalin were measured in eggs and sperm. Chemical transfer from genitors to offspring via gametes may affect embryo development and negatively impact the early stages of development.
Collapse
Affiliation(s)
- Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France.
| | - Stéphane Le Floch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200 Brest, France
| | - Pauline Pannetier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| | - Kim Van Arkel
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| |
Collapse
|
8
|
Zhai Y, Xia X, Xiong X, Xia L, Guo X, Gan J. Role of fluoranthene and pyrene associated with suspended particles in their bioaccumulation by zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:89-94. [PMID: 29609108 DOI: 10.1016/j.ecoenv.2018.03.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Hydrophobic organic compounds (HOCs) tend to be associated with suspended particles in surface aquatic systems, however, the bioavailability of HOCs on suspended particles to fish is not well understood. In this study, a passive dosing device was used to control the freely dissolved concentrations (Cfree) of polycyclic aromatic hydrocarbons (PAHs) including fluoranthene and pyrene, and the influence of particle-associated PAHs on their bioaccumulation by zebrafish was investigated. The results showed that, when the Cfree of PAHs were kept constant, the presence of suspended particles did not significantly affect the steady state of PAH bioaccumulation in zebrafish tissues excluding head and digestive tracts, suggesting that the bioaccumulation steady state was controlled by the freely dissolved concentrations of PAHs. However, suspended particles promoted the uptake and elimination rate constants of PAHs in zebrafish body excluding head and digestive tracts. The uptake rate constants with 0.5 g/L suspended particles were approximately twice of those without suspended particles, and the body burden in zebrafish increased by 16.4% - 109.3% for pyrene and 21.8% - 490.4% for fluoranthene during the first 8-d exposure. This was due to the reasons that suspended particles could be ingested, and part of PAHs associated with them could be desorbed in digestive tract and absorbed by the zebfrafish, leading to the enhancement of uptake rates of PAHs in zebfrafish. The findings obtained from this study indicate that PAHs on suspended particles are partly bioavailable to zebrafish and particle ingestion is an important route in PAH bioaccumulation. Therefore, it is important to consider the bioavailability of HOCs on suspended particles to improve ecological risk assessment.
Collapse
Affiliation(s)
- Yawei Zhai
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Xinghui Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China.
| | - Xinyue Xiong
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Lingzi Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Xuejun Guo
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| |
Collapse
|
9
|
Svobodová M, Šmídová K, Hvězdová M, Hofman J. Uptake kinetics of pesticides chlorpyrifos and tebuconazole in the earthworm Eisenia andrei in two different soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:257-264. [PMID: 29414347 DOI: 10.1016/j.envpol.2018.01.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Agriculture is today indispensably connected with enormous use of pesticides. Despite tough regulation, their entrance into soil cannot be excluded and they might enter soil organisms and plants and continue further to terrestrial food chains. This study was conducted to investigate the bioaccumulation of two pesticides currently used in large amounts, the insecticide chlorpyrifos (CLP) and the fungicide tebuconazole (TBZ). Their detailed uptake kinetics in the model earthworm species Eisenia andrei were measured in two arable soils differing in organic carbon content (1.02 and 1.93% respectively). According to our results, a steady state was reached after 3-5 days for both pesticides and soils. The values of bioaccumulation factors calculated at the steady state ranged from 4.5 to 6.3 for CLP and 2.2-13.1 for TBZ. Bioaccumulation factors were also calculated as the ratio of uptake and elimination rate constants with results comparable with steady-state bioaccumulation factors. The results suggested that the degradation and bioaccumulation of tested compounds might be influenced by other factors than only total organic carbon (e.g. clay content). The lower Koc and hydrophobicity of TBZ relative to CLP probably led to higher availability of TBZ through pore water exposure. On the other hand, CLP's higher hydrophobicity probably caused an increase in availability by its additional uptake via ingestion. To enable a proper ecological risk assessment of current pesticides in soils, it is necessary to accurately determine their bioaccumulation in soil invertebrates. We believe that our study not only brings such information for two specific pesticides but also addresses key methodological issues in this area.
Collapse
Affiliation(s)
- Markéta Svobodová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic
| | - Klára Šmídová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic
| | - Martina Hvězdová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic.
| |
Collapse
|
10
|
Rajala JE, Vehniäinen ER, Väisänen A, Kukkonen JVK. Partitioning of nanoparticle-originated dissolved silver in natural and artificial sediments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2593-2601. [PMID: 28304113 DOI: 10.1002/etc.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
Sediments are believed to be a major sink for silver nanoparticles (AgNPs) in the aquatic environment, but there is a lack of knowledge about the environmental effects and behavior of AgNPs in sediments. The release of highly toxic Ag+ through dissolution of AgNPs is one mechanism leading to toxic effects in sediments. We applied an ultrasound-assisted sequential extraction method to evaluate the dissolution of AgNPs and to study the partitioning of dissolved Ag in sediments. Silver was spiked into artificial and 2 natural sediments (Lake Höytiäinen sediment and Lake Kuorinka sediment) as silver nitrate (AgNO3 ), uncoated AgNPs, or polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs). In addition, the total body burdens of Ag in the sediment-dwelling oligochaete Lumbriculus variegatus were assessed over a 28-d exposure period. The dissolution rate was found to be similar between the uncoated AgNP and PVP-AgNP groups. In all sediments, dissolved Ag was mainly bound to the residual fraction of the sediment, followed by iron and manganese oxides or natural organic matter. In Lake Kuorinka sediment, dissolved Ag that originated from PVP-AgNPs was relatively more bioaccessible, also resulting in higher total body burden in L. variegatus than that from uncoated AgNPs or AgNO3 . In artificial sediment and Lake Höytiäinen sediment, AgNO3 was significantly more bioaccessible than AgNPs. Our results highlight the importance of sediment properties and AgNP surface chemistry when evaluating the environmental exposure of AgNPs. Environ Toxicol Chem 2017;36:2593-2601. © 2017 SETAC.
Collapse
Affiliation(s)
- Juho E Rajala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Ari Väisänen
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Jussi V K Kukkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
11
|
Rajala JE, Mäenpää K, Vehniäinen ER, Väisänen A, Scott-Fordsmand JJ, Akkanen J, Kukkonen JVK. Toxicity Testing of Silver Nanoparticles in Artificial and Natural Sediments Using the Benthic Organism Lumbriculus variegatus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:405-414. [PMID: 27406409 DOI: 10.1007/s00244-016-0294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
The increased use of silver nanoparticles (AgNP) in industrial and consumer products worldwide has resulted in their release to aquatic environments. Previous studies have mainly focused on the effects of AgNP on pelagic species, whereas few studies have assessed the risks to benthic invertebrates despite the fact that the sediments act as a large potential sink for NPs. In this study, the toxicity of sediment-associated AgNP was evaluated using the standard sediment toxicity test for chemicals provided by the Organization of Economic Cooperation and Development. The freshwater benthic oligochaete worm Lumbriculus variegatus was exposed to sediment-associated AgNP in artificial and natural sediments at concentrations ranging from 91 to 1098 mg Ag/kg sediment dry weight. Silver nitrate (AgNO3) was used as a reference compound for Ag toxicity. The measured end points of toxicity were mortality, reproduction, and total biomass. In addition, the impact of sediment-associated AgNP on the feeding rate of L. variegatus was studied in a similar test set-up as mentioned previously. The addition of AgNP into the sediment significantly affected the feeding rate and reproduction of the test species only at the highest concentration (1098 mg/kg) of Ag in the natural sediment with the lowest pH. In comparison, the addition of AgNO3 resulted in reproductive toxicity in every tested sediment, and Ag was more toxic when spiked as AgNO3 than AgNP. In general, sediments were observed to have a high capacity to eliminate the AgNP-derived toxicity. However, the capacity of sediments to eliminate the toxicity of Ag follows a different pattern when spiked as AgNP than AgNO3. The results of this study emphasize the importance of sediment-toxicity testing and the role of sediment properties when evaluating the environmental effects and behavior of AgNP in sediments.
Collapse
Affiliation(s)
- Juho Elias Rajala
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| | - Kimmo Mäenpää
- Department of Biology, University of Eastern Finland, 80101, Joensuu, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Ari Väisänen
- Department of Chemistry, University of Jyväskylä, 40014, Jyväskylä, Finland
| | | | - Jarkko Akkanen
- Department of Biology, University of Eastern Finland, 80101, Joensuu, Finland
| | | |
Collapse
|
12
|
Goretti E, Pallottini M, Ricciarini MI, Selvaggi R, Cappelletti D. Heavy metals bioaccumulation in selected tissues of red swamp crayfish: An easy tool for monitoring environmental contamination levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 559:339-346. [PMID: 27085675 DOI: 10.1016/j.scitotenv.2016.03.169] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 05/26/2023]
Abstract
In this paper we explored the heavy metal bioaccumulation (Cd, Cu, Pb and Zn) in Procambarus clarkii, a crayfish recently suggested as a potential bioindicator for metals pollution in freshwater systems. The present study is focused on crayfishes populations caught in a heavily polluted industrial and in a reference sites (Central Italy), though the results are generalized with a thorough analysis of literature metadata. In agreement with the literature, the hepatopancreas (Hep, detoxification tissues) of the red swamp crayfish showed a higher concentration of heavy metals in comparison to the abdominal muscle (AbM, not detoxification tissues) in the sites under scrutiny. Hep/AbM concentration ratio was dependent on the specific metal investigated and on its sediment contamination level. Specifically we found that Hep/AbM ratio decreases as follows: Cd (11.7)>Cu (5.5)>Pb (3.6)>Zn (1.0) and Pb (4.34)>Cd (3.66)>Zn (1.69)>Cu (0.87) for the industrial and reference sites, respectively. The analysis of our bioaccumulation data as well as of literature metadata allowed to elaborate a specific contamination index (Toxic Contamination Index, TCI), dependent only on the bioaccumulation data of hepatopancreas and abdominal muscle. In the industrial site, TCI expressed values much higher than the unit for Cd and Cu, confirming that these metals were the main contaminants; in contrast for lower levels of heavy metals, as those observed in the reference site for Cu, Zn and Pb, the index provided values below unit. TCI is proposed as a useful and easy tool to assess the toxicity level of contaminated sites by heavy metals in the environmental management.
Collapse
Affiliation(s)
- E Goretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce Di Sotto, 06123 Perugia, Italy.
| | - M Pallottini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce Di Sotto, 06123 Perugia, Italy
| | - M I Ricciarini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce Di Sotto, 06123 Perugia, Italy
| | - R Selvaggi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce Di Sotto, 06123 Perugia, Italy
| | - D Cappelletti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce Di Sotto, 06123 Perugia, Italy
| |
Collapse
|
13
|
Sidney LA, Diepens NJ, Guo X, Koelmans AA. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:88-96. [PMID: 27126443 DOI: 10.1016/j.aquatox.2016.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 05/02/2023]
Abstract
Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)<S. corneum (10-17)≤L. variegatus (7-61)≤H. Azteca (5-114), thus challenging the presumed value of 1-2 typically employed in ecological risk assessment schemes. BSAFs for freshwater taxonomic groups were compared with their marine counterparts and showed overlapping values. The dynamic bioaccumulation model with species-specific bioaccumulation parameters fitted well to the experimental data and showed that bioaccumulation parameters were depended on species traits. Enclosure-based battery tests and mechanistic BSAF models are expected to improve the quality of the exposure assessment in whole sediment toxicity tests.
Collapse
Affiliation(s)
- Livia Alvarenga Sidney
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - Noël J Diepens
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Xiaoying Guo
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; IMARES, Institute for Marine Resources & Ecosystem Studies, Wageningen UR, P.O. Box 68, 1970 AB IJmuiden, The Netherlands.
| |
Collapse
|
14
|
Zhai Y, Xia X, Zhao X, Dong H, Zhu B, Xia N, Dong J. Role of ingestion route in the perfluoroalkyl substance bioaccumulation by Chironomus plumosus larvae in sediments amended with carbonaceous materials. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:404-414. [PMID: 26489915 DOI: 10.1016/j.jhazmat.2015.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/04/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
The role of ingestion route in the bioaccumulation of six types of perfluoroalkyl substances (PFASs) by Chironomus plumosus larvae in sediments amended with four types of carbonaceous materials (CMs) was studied. The results showed that the body burden of PFASs decreased in the presence of CMs at mass ratios of 0.2-2%, regardless of ingestion. PFASs accumulated by the larvae with ingestion exposure were higher than those without ingestion, and the role of ingestion route was altered in the presence of CMs. The contribution of ingestion route to PFAS bioaccumulation was 2.7-31.6% without CMs, and it increased to more than 61.4% in the presence of fullerene at mass ratios of 0.2-2%. The enhancement of the ingestion route contribution caused by CMs is due to the fact that the CMs can be ingested and CM-associated PFASs can be partly desorbed in larvae. The maximum desorption efficiency of perfluorooctanoic acid was 20.8% from fullerene by the larval digestive juice. This study suggests that CM-associated PFASs could be accumulated partly by organisms, and the ecological risk of PFASs might increase in some cases with the presence of CMs. This should be considered when applying CMs in PFAS and other hydrophobic organic compound pollution remediation.
Collapse
Affiliation(s)
- Yawei Zhai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xiuli Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haiyang Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baotong Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Na Xia
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jianwei Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
15
|
Pinto AP, Rodrigues SC, Caldeira AT, Teixeira DM. Exploring the potential of novel biomixtures and Lentinula edodes fungus for the degradation of selected pesticides. Evaluation for use in biobed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1372-1381. [PMID: 26479911 DOI: 10.1016/j.scitotenv.2015.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
An approach to reduce the contamination of water sources with pesticides is the use of biopurificaction systems. The active core of these systems is the biomixture. The composition of biomixtures depends on the availability of local agro-industrial wastes and design should be adapted to every region. In Portugal, cork processing is generally regarded as environmentally friendly and would be interesting to find applications for its industry residues. In this work the potential use of different substrates in biomixtures, as cork (CBX); cork and straw, coat pine and LECA (Light Expanded Clay Aggregates), was tested on the degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin pesticides. Bioaugmentation strategies using the white-rot fungus Lentinula edodes inoculated into the CBX, was also assessed. The results obtained from this study clearly demonstrated the relevance of using natural biosorbents as cork residues to increase the capacity of pesticide dissipation in biomixtures for establishing biobeds. Furthermore, higher degradation of all the pesticides was achieved by use of bioaugmented biomixtures. Indeed, the biomixtures inoculated with L. edodes EL1 were able to mineralize the selected xenobiotics, revelling that these white-rot fungi might be a suitable fungus for being used as inoculum sources in on-farm sustainable biopurification system, in order to increase its degradation efficiency. After 120 days, maximum degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin, of bioaugmented CBX, was 89.9%, 75.0%, 65.0% and 99.4%, respectively.. The dominant metabolic route of terbuthylazine in biomixtures inoculated with L. edodes EL1 proceeded mainly via hydroxylation, towards production of terbuthylazine-hydroxy-2 metabolite. Finally, sorption process to cork by pesticides proved to be a reversible process, working cork as a mitigating factor reducing the toxicity to microorganisms in the biomixture, especially in the early stages.
Collapse
Affiliation(s)
- A P Pinto
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; ICAAM - Institute of Mediterranean Agricultural and Environmental Sciences, Évora University, Portugal.
| | - S C Rodrigues
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - A T Caldeira
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; HERCULES Laboratory, Évora University, Portugal
| | - D M Teixeira
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; HERCULES Laboratory, Évora University, Portugal
| |
Collapse
|
16
|
Multi-residue analysis of emerging pollutants in benthic invertebrates by modified micro-quick-easy-cheap-efficient-rugged-safe extraction and nanoliquid chromatography–nanospray–tandem mass spectrometry analysis. J Chromatogr A 2014; 1367:16-32. [DOI: 10.1016/j.chroma.2014.09.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/30/2022]
|
17
|
Pinto AP, Serrano C, Pires T, Mestrinho E, Dias L, Teixeira DM, Caldeira AT. Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 435-436:402-410. [PMID: 22878100 DOI: 10.1016/j.scitotenv.2012.07.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 05/27/2023]
Abstract
Contamination of waters by xenobiotic compounds such as pesticides presents a serious environmental problem with substantial levels of pesticides now contaminating European water resources. The aim of this work was to evaluate the ability of the fungi Fusarium oxysporum, Aspergillus oryzae, Lentinula edodes, Penicillium brevicompactum and Lecanicillium saksenae, for the biodegradation of the pesticides terbuthylazine, difenoconazole and pendimethalin in batch liquid cultures. These pesticides are common soil and water contaminants and terbuthylazine is considered the most persistent triazine herbicide in surface environments. P. brevicompactum and L. saksenae were achieved by enrichment, isolation and screening of fungi capable to metabolize the pesticides studied. The isolates were obtained from two pesticide-primed materials (soil and biomixture). Despite the relatively high persistence of terbuthylazine, the results obtained in this work showed that the fungi species studied have a high capability of biotransformation of this xenobiotic, comparatively the results obtained in other similar studies. The highest removal percentage of terbuthylazine from liquid medium was achieved with A. oryzae (~80%), although the major biodegradation has been reached with P. brevicompactum. The higher ability of P. brevicompactum to metabolize terbuthylazine was presumably acquired through chronic exposure to contamination with the herbicide. L. saksenae could remove 99.5% of the available pendimethalin in batch liquid cultures. L. edodes proved to be a fungus with a high potential for biodegradation of pesticides, especially difenoconazole and pendimethalin. Furthermore, the metabolite desethyl-terbuthylazine was detected in L. edodes liquid culture medium, indicating terbuthylazine biodegradation by this fungus. The fungi strains investigated could prove to be valuable as active pesticide-degrading microorganisms, increasing the efficiency of biopurification systems containing wastewaters contaminated with the xenobiotics studied or compounds with similar intrinsic characteristics.
Collapse
Affiliation(s)
- A P Pinto
- Chemistry Department, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal.
| | | | | | | | | | | | | |
Collapse
|
18
|
García ME, Rodrígues Capítulo A, Ferrari L. Age differential response of Hyalella curvispina to a cadmium pulse: influence of sediment particle size. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 80:314-320. [PMID: 22521810 DOI: 10.1016/j.ecoenv.2012.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/21/2012] [Accepted: 03/25/2012] [Indexed: 05/31/2023]
Abstract
In Argentina periurban streams frequently receive agricultural, livestock and industrial discharges. Heavy metals have been found in the water column and sediments of numerous water bodies of the pampean region, at levels above the limits established for aquatic life protection. This study aimed to evaluate the effect of a contaminant pulse of cadmium discharged into a water-sediment system of different particle sizes, by means of laboratory tests using juveniles and adults of Hyalella curvispina, a native amphipod. We found that the substrate particle size was a determining factor in the toxicity of cadmium and that the adults of H. curvispina were more sensitive than juveniles. We also observed a temporal difference between the two ages for the same type of sediment. Given the nature of the sediments of regional water bodies, it is expected that a discharge of cadmium, even at concentrations as low as those tested here, will affect the survival of native amphipods.
Collapse
Affiliation(s)
- M E García
- Aquatic Ecology Program, Basic Sciences Department, - National University of Luján (UNLu), Buenos Aires, Argentina
| | | | | |
Collapse
|
19
|
Danion M, Le Floch S, Kanan R, Lamour F, Quentel C. Effects of in vivo chronic exposure to pendimethalin/Prowl 400® on sanitary status and the immune system in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:143-152. [PMID: 22444063 DOI: 10.1016/j.scitotenv.2012.02.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
The in vivo effects of the herbicide active substance (AS) pendimethalin (alone and with Prowl 400® adjuvant) were evaluated on sanitary status i.e. the health status with regard to chemical pollution and on the physiological state via the immune system in rainbow trout, Oncorhynchus mykiss. Four nominal exposure conditions were tested: i) control (C), ii) AS at 500 ng L(-1) (P500), iii) AS at 800 ng L(-1) (P800) and iv) Prowl 400® at 500 ng L(-1) (Pw). After a 28 day exposure period (D28), 10 fish were sampled for each condition and 10 other after a 15 day recovery period in clean fresh water (D43). Pendimethalin concentrations in the exposure water and muscles were followed. White blood cell counts, differential leucocyte counts, cell mortality and phagocytosis activity were measured. Haemolytic alternative complement activity, lysozyme concentration and stress parameters were analyzed. The resulting concentration of pendimethalin in the exposure water was lower than the expected concentration. At D28, the concentration quantified in the contaminated fish was negligible in comparison with the Reference Dose for Oral Exposure estimated by US-EPA's Integrated Risk Information System. Leucopenia was noted in all contaminated fish. A decrease in phagocytosis activity and ACH(50) was also observed in contaminated fish by P800 and Pw. Disturbed lysozyme activity was noted only in fish exposed to Pw. Furthermore, during exposure to a similar concentration of pendimethalin, the commercial product seemed to be more immunotoxic than the AS alone. Finally, at D43, the effects proved reversible for sanitary status while immunity was still disturbed in contaminated fish by P800 and Pw.
Collapse
Affiliation(s)
- Morgane Danion
- Anses, Ploufragan-Plouzané Laboratory, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | | | | | | | | |
Collapse
|
20
|
Belden JB, Hanson BR, McMurry ST, Smith LM, Haukos DA. Assessment of the effects of farming and conservation programs on pesticide deposition in high plains wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3424-3432. [PMID: 22356096 DOI: 10.1021/es300316q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We examined pesticide contamination in sediments from depressional playa wetlands embedded in the three dominant land-use types in the western High Plains and Rainwater Basin of the United States including cropland, perennial grassland enrolled in conservation programs (e.g., Conservation Reserve Program [CRP]), and native grassland or reference condition. Two hundred and sixty four playas, selected from the three land-use types, were sampled from Nebraska and Colorado in the north to Texas and New Mexico in the south. Sediments were examined for most of the commonly used agricultural pesticides. Atrazine, acetochlor, metolachlor, and trifluralin were the most commonly detected pesticides in the northern High Plains and Rainwater Basin. Atrazine, metolachlor, trifluralin, and pendimethalin were the most commonly detected pesticides in the southern High Plains. The top 5-10% of playas contained herbicide concentrations that are high enough to pose a hazard for plants. However, insecticides and fungicides were rarely detected. Pesticide occurrence and concentrations were higher in wetlands surrounded by cropland as compared to native grassland and CRP perennial grasses. The CRP, which is the largest conservation program in the U.S., was protective and had lower pesticide concentrations compared to cropland.
Collapse
Affiliation(s)
- Jason B Belden
- Department of Zoology, Oklahoma State University, Stillwater, Oklahoma, United States.
| | | | | | | | | |
Collapse
|
21
|
Di Veroli A, Selvaggi R, Goretti E. Chironomid mouthpart deformities as indicator of environmental quality: a case study in Lake Trasimeno (Italy). ACTA ACUST UNITED AC 2012; 14:1473-8. [DOI: 10.1039/c2em10882h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Alessandra Di Veroli
- Dipartimento di Biologia Cellulare e Ambientale, Università degli Studi di Perugia, Via Elce Di Sotto, 06123 Perugia, Italy
| | | | | |
Collapse
|
22
|
Davis AM, Lewis SE, Bainbridge ZT, Glendenning L, Turner RDR, Brodie JE. Dynamics of herbicide transport and partitioning under event flow conditions in the lower Burdekin region, Australia. MARINE POLLUTION BULLETIN 2011; 65:182-193. [PMID: 21937063 DOI: 10.1016/j.marpolbul.2011.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 05/31/2023]
Abstract
This study examined the temporal variability in herbicide delivery to the Great Barrier Reef (GBR) lagoon (Australia) from one of the GBR catchment's major sugarcane growing regions. Annual loads of measured herbicides were consistently in the order of 200+kg. Atrazine, it's degradate desethylatrazine, and diuron contributed approximately 90% of annual herbicide load, with early 'first-flush' events accounting for the majority of herbicide loads leaving the catchment. Assessment of herbicide water-sediment partitioning in flood runoff highlighted the majority of herbicides were transported in predominantly dissolved form, although a considerable fraction of diuron was transported in particulate-bound form (ca. 33%). Diuron was also the herbicide demonstrating the highest concentrations and frequency of detection in sediments collected from catchment waterways and adjacent estuarine-marine environments, an outcome aligning with previous research. Herbicide physico-chemical properties appear to play a crucial role in partitioning between water column and sediment habitat types in GBR receiving ecosystems.
Collapse
Affiliation(s)
- Aaron M Davis
- Catchment to Reef Research Group, Australian Centre for Tropical Freshwater Research, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Di Veroli A, Selvaggi R, Pellegrino RM, Goretti E. Sediment toxicity and deformities of chironomid larvae in Lake Piediluco (Central Italy). CHEMOSPHERE 2010; 79:33-39. [PMID: 20172586 DOI: 10.1016/j.chemosphere.2010.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/18/2010] [Accepted: 01/28/2010] [Indexed: 05/28/2023]
Abstract
The chemical analysis of the bottom sediments of the Lake Piediluco (Central Italy) has been carried out in order to individuate the potential correlation between the sediment toxicity and the high incidence of mouthpart deformities in chironomid larvae (biological indicators) found in this lake. The environmental contamination has been analyzed by determining the concentrations of the main heavy metals (lead, copper, cadmium, chromium, zinc and nickel), and the concentrations of organic compounds of anthropic source: PAHs, NPPs and OCPs. Heavy metals concentrations have pointed out a non-elevated contamination grade for the Lake Piediluco. The highest level of metals has been detected in the western area that feels the effect of the continuous tributaries incoming load. Also, concerning PAHs, NPPs and OCPs the lake does not present high values of pollution. The highest concentrations of the organic toxicants has been observed in the eastern sector of the lake, which presents typical lentic characteristics. A clear relationship has not found between the toxic substances present in the lacustrine sediments and the deformities incidence for chironomid larvae, which represent an index of environmental alteration. Probably, the mouthpart deformities found in the chironomid larvae of Chironomus plumosus are affected by a synergic action due to the whole toxic mixture present in the sediments of the Lake Piediluco.
Collapse
Affiliation(s)
- Alessandra Di Veroli
- Dipartimento di Biologia Cellulare e Ambientale, Università degli Studi di Perugia, Via Elce Di Sotto, 06123 Perugia, Italy
| | | | | | | |
Collapse
|
24
|
Katagi T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 204:1-132. [PMID: 19957234 DOI: 10.1007/978-1-4419-1440-8_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is detoxification and bioactivation. Hydrophobic pesticides that are expected to be highly stored in tissues would not be bioconcentrated if susceptible to biotic transformation by aquatic organisms to more rapidly metabolized to hydrophilic entities are generally less toxic. By analogy, pesticides that are metabolized to similar entities by aquatic species surely are les ecotoxicologically significant. One feature of fish and other aquatic species that makes them more relevant as targets of environmental studies and of regulation is that they may not only become contaminated by pesticides or other chemicals, but that they constitute and important part of the human diet. In this chapter, we provide an overview of the enzymes that are capable of metabolizing or otherwise assisting in the removal of xenobiotics from aquatic species. Many studies have been performed on the enzymes that are responsible for metabolizing xenobiotics. In addition to the use of conventional biochemical methods, such studies on enzymes are increasingly being conducted using immunochemical methods and amino acid or gene sequences analysis. Such studies have been performed in algae, in some aquatic macrophytes, and in bivalva, but less information is available for other aquatic species such as crustacea, annelids, aquatic insecta, and other species. Although their catabolizing activity is often lower than in mammals, oxidases, especially cytochrome P450 enzymes, play a central role in transforming pesticides in aquatic organisms. Primary metabolites, formed from such initial enzymatic action, are further conjugated with natural components such as carbohydrates, and this aids removal form the organisms. The pesticides that are susceptible to abiotic hydrolysis are generally also biotically degraded by various esterases to from hydrophilic conjugates. Reductive transformation is the main metabolic pathway for organochlorine pesticides, but less information on reductive enzymology processes is available. The information on aquatic species, other than fish, that pertains to bioconcentration factors, metabolism, and elimination is rather limited in the literature. The kinds of basic information that is unavailable but is needed on important aquatic species includes biochemistry, physiology, position in food web, habitat, life cycle, etc. such information is very important to obtaining improved ecotoxicology risk assessments for many pesticides and other chemicals. More research attention on the behavior of pesticides in, and affect on many standard aquatic test species (e.g., daphnids, chironomids, oligochaetes and some bivalves) would particularly be welcome. In addition to improving ecotoxicology risk assessments on target species, such information would also assist in better delineating affects on species at higher trophic levels that are predaceous on the target species. There is also need for designing and employing more realistic approaches to measure bioconcentration and bioaccumulation, and ecotoxicology effects of pesticides in natural environment. The currently employed steady-state laboratory exposure studies are insufficient to deal with the complexity of parameters that control the contrasts to the abiotic processes of pesticide investigated under the strictly controlled conditions, each process is significantly affected in the natural environment not only by the site-specific chemistry of water and sediment but also by climate. From this viewpoint, ecotoxicological assessment should be conducted, together with the detailed analyses of abiotic processes, when higher-tier mesocosm studies are performed. Moreover, in-depth investigation is needed to better understand the relationship between pesticide residues in organisms and associated ecotoxicological endpoints. The usual exposure assessment is based on apparent (nominal) concentrations fo pesticides, and the residues of pesticides or their metabolites in the organisms are not considered in to the context of ecotoxicological endpoints. Therefore, more metabolic and tissue distribution information for terminal pesticide residues is needed for aquatic species both in laboratory settings and in higher-tier (microcosm, mesocosm) studies.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Hyogo, 665-8555, Japan.
| |
Collapse
|
25
|
Mosleh YYI. Assessing the toxicity of herbicide isoproturon on Aporrectodea caliginosa (Oligochaeta) and its fate in soil ecosystem. ENVIRONMENTAL TOXICOLOGY 2009; 24:396-403. [PMID: 18825701 DOI: 10.1002/tox.20437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study was conducted to determine the residues of isoproturon and its metabolites, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl) urea, and 4-isopropylanilin in soil and mature earthworms under laboratory conditions. Mature earthworms (Aporrectodea caliginosa) were exposed for various durations (7, 15, 30, and 60 days) to soils contaminated with isoproturon concentrations (2, 4, 6, 8, and 10 mg kg(-1) soil). The decrease in isoproturon concentration in the soil was inversely correlated to it's initial concentration. The highest concentration detected for isoproturon in earthworms was observed during the first 15 days and decreased thereafter. Acute toxicity of isoproturon was investigated; total soluble protein content and glycogen of the worms were evaluated. Levels of these parameters were related to isoproturon concentration in soil and earthworms. No lethal effect of isoproturon was observed even at the concentration of 1200 mg kg(-1) soil after 60 days of exposure. A reduction of total soluble protein was observed in all treated worms (maximum 59.54%). This study suggests the use of the total soluble protein content and glycogen of earthworms as biomarkers of exposure to isoproturon.
Collapse
|
26
|
Jantunen APK, Tuikka A, Akkanen J, Kukkonen JVK. Bioaccumulation of atrazine and chlorpyrifos to Lumbriculus variegatus from lake sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 71:860-868. [PMID: 18353437 DOI: 10.1016/j.ecoenv.2008.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 01/10/2008] [Accepted: 01/19/2008] [Indexed: 05/26/2023]
Abstract
The bioaccumulation of the pesticides chlorpyrifos and atrazine to the benthic oligochaeta Lumbriculus variegatus from four diverse artificially contaminated lake sediments (OC 0.13-21.5%) was studied in the laboratory. The steady state of bioaccumulation was not reached within 10d. Chlorpyrifos showed stronger bioaccumulation than the less lipophilic atrazine, the biota-sediment accumulation factors (BSAFs) being 6.2-99 for the former and 1.9-5.3 for the latter. While bioaccumulation factors (BAFs) dropped with increasing organic content of the sediments, the high level and considerable range of the obtained BSAFs indicate other sediment qualities, such as the age and characteristics of the organic material, having a strong effect on the bioavailability of these compounds. The slow and incomplete desorption of chlorpyrifos from the most inorganic sediment indicates also that this compound may be strongly bound to some type of inorganic material. Any specific influential sediment fraction or characteristic could not be identified.
Collapse
Affiliation(s)
- A P K Jantunen
- Faculty of Biosciences, Laboratory of Aquatic Ecology and Ecotoxicology, University of Joensuu, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland.
| | | | | | | |
Collapse
|
27
|
Widenfalk A, Lundqvist A, Goedkoop W. Sediment microbes and biofilms increase the bioavailability of chlorpyrifos in Chironomus riparius (Chironomidae, Diptera). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 71:490-497. [PMID: 18093655 DOI: 10.1016/j.ecoenv.2007.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 09/07/2007] [Accepted: 10/13/2007] [Indexed: 05/25/2023]
Abstract
In a microcosm study, the importance of different sources of organic matter (humic acids, sterile sediment, sediment, and a microbial extract) for the bioavailability of the hydrophobic pesticide chlorpyrifos to Chironomus riparius larvae was quantified. In the last two treatments biofilms were allowed to grow before (14)C-chlorpyrifos addition. Chlorpyrifos accumulation was quantified after 25 h of exposure and after 21 h of depuration. Larval accumulation was twice as high in the microbial extract treatment (447+/-79 microg/kg ww larvae) and 1.7 times higher in the sediment treatment (371+/-33 microg/kg). After depuration, chlorpyrifos accumulation in larval tissue showed even higher differences; 3.1 times higher tissue concentrations in the microbial extract treatment (218+/-21 microg/kg) and 2.2 times higher in the sediment treatment (156+/-35 microg/kg). In contrast, chlorpyrifos accumulation in the humic acid and sterile sediment did not differ from that in controls. These results show that living microbes and biofilms, by creating a microenvironment and providing food for larvae, markedly increase the bioavailability of chlorpyrifos to Chironomus riparius.
Collapse
Affiliation(s)
- Anneli Widenfalk
- Department of Environmental Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
28
|
Contardo-Jara V, Wiegand C. Biotransformation and antioxidant enzymes of Lumbriculus variegates as biomarkers of contaminated sediment exposure. CHEMOSPHERE 2008; 70:1879-88. [PMID: 17868770 DOI: 10.1016/j.chemosphere.2007.07.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/27/2007] [Accepted: 07/30/2007] [Indexed: 05/17/2023]
Abstract
In this study the black worm Lumbriculus variegatus was tested for suitability as biomonitor for moderately contaminated sediments. The response capacity of the biotransformation system phase II enzyme glutathione-S-transferase (GST) and the oxidative defense enzyme catalase (CAT) to contaminated sediment and atrazine was investigated to establish them as sensitive biomarkers. To get an integrated view on the enzyme activity kinetics, increasing concentrations of the herbicide atrazine were applied to stimulate GST response, and relationship between enzyme activity and herbicide concentration was observed at various exposure durations. Furthermore, animals were exposed for up to 1 week to sediments of four typical urban river sections with high anthropogenic impact. L. variegatus was capable to accomplish the environmental stress and the selected enzymes showed elevation. Significant changes of GST (membrane-bound and soluble) were detected after at least 4 days of exposure to atrazine and contaminated sediments. Although CAT increase could be observed already after 1 day of exposure to sediments, an exposure time of one week is considerable for accurate interpretation of the enzymatic response. The clear enzymatic response of especially the membrane-bound GST indicated charges with organic lipophilic substances at all sampling sites.
Collapse
Affiliation(s)
- Valeska Contardo-Jara
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Inland Fisheries, Biochemical Regulation, Müggelseedamm 301, 12587 Berlin, Germany
| | | |
Collapse
|
29
|
Higgins CP, McLeod PB, MacManus-Spencer LA, Luthy RG. Bioaccumulation of perfluorochemicals in sediments by the aquatic oligochaete Lumbriculus variegatus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:4600-6. [PMID: 17695903 DOI: 10.1021/es062792o] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bioaccumulation of perfluoroalkyl sulfonates, perfluorocarboxylates, and 2-(N-ethylperfluorooctane sulfonamido) acetic acid (N-EtFOSAA) from laboratory-spiked and contaminated field sediments was assessed using the freshwater oligochaete, Lumbriculus variegatus. Semistatic batch experiments were conducted to monitor the biological uptake of these perfluorochemicals (PFCs) over 56 days. The elimination of PFCs was measured as the loss of PFCs in L. variegatus exposed to PFC-spiked sediment for 28 days and then transferred to clean sediment. The resultant data suggest that PFCs in sediments are readily bioavailable and that bioaccumulation from sediments does not continually increase with increasing perfluorocarbon chain length. Perfluorooctane sulfonate (PFOS) and perfluorononanoate were the most bioaccumulative PFCs, as measured by laboratory-based estimated steady-state biota sediment accumulation factors (BSAFs) and BSAFs measured using contaminated field sediments. Elimination rate constants for perfluoroalkyl sulfonates and perfluorocaroboxylates were generally smaller than those previously measured for other organic contaminants. Last, a PFOS precursor, N-EtFOSAA, accumulated in the worm tissues and appeared to undergo biotransformation to PFOS and other PFOS precursors. This suggests that N-EtFOSAA, which has been detected in sediments and sludge often at levels exceeding PFOS, may contribute to the bioaccumulation of PFOS in aquatic organisms.
Collapse
Affiliation(s)
- Christopher P Higgins
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305-4020, USA
| | | | | | | |
Collapse
|
30
|
Xiao N, Jing B, Ge F, Liu X. The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions. CHEMOSPHERE 2006; 62:1366-73. [PMID: 16169041 DOI: 10.1016/j.chemosphere.2005.07.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 07/04/2005] [Accepted: 07/13/2005] [Indexed: 05/04/2023]
Abstract
To assess the toxic effects of the herbicide acetochlor on earthworms, we exposed Eisenia fetida (Savigny) to artificial soils (OECD soil) supplemented with different concentrations (5, 10, 20, 40 and 80 mg kg-1 soil) of acetochlor. The residues of acetochlor in soil and the effect of the herbicide on growth, reproduction, glutathione-S-transferases (GST) activity and cellulase activity of earthworms were determined. The degradation half-life of acetochlor in soil of acetochlor was between 9.3 and 15.6 days under laboratory condition; the degradation rate with low concentrations was faster than it was with higher concentrations. At 5 and 10 mg kg-1, acetochlor had not significant effect on growth of E. fetida except after 15 and 30 days of exposure. When concentration>20 mg kg-1, growth rates and numbers of juveniles per cocoon decreased significantly compared to the control in all treatments. However, cellulase activity decreased significantly in all treatments (5-80 mg kg-1). This study showed that acetochlor had no long-term effect on the growth and reproduction of E. fetida at field dose (5-10 mg kg-1). At higher concentrations of acetochlor (20-80 mg kg-1), acetochlor revealed sublethal toxicity to E. fetida. Growth, numbers of juveniles per cocoon and cellulase activity can be regarded as sensitive parameters to evaluate the toxicity of acetochlor on earthworms.
Collapse
Affiliation(s)
- Nengwen Xiao
- State key Lab of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Beisihuanxi Road, Haidian, Beijing 100080, PR China
| | | | | | | |
Collapse
|
31
|
Oetken M, Stachel B, Pfenninger M, Oehlmann J. Impact of a flood disaster on sediment toxicity in a major river system--the Elbe flood 2002 as a case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2005; 134:87-95. [PMID: 15572227 DOI: 10.1016/j.envpol.2004.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Accepted: 07/17/2004] [Indexed: 05/05/2023]
Abstract
The ecotoxicological implications of a flooding disaster were investigated with the exceptional Elbe flood in August 2002 as an example. Sediment samples were taken shortly after the flood at 37 sites. For toxicity assessment the midge Chironomus riparius (Insecta) and the mudsnail Potamopyrgus antipodarum (Gastropoda) were exposed to the sediment samples for 28 days. For a subset of 19 sampling sites, the contamination level and the biological response of both species were also recorded before the flood in 2000. The direct comparison of biological responses at identical sites revealed significant differences for samples taken before and immediately after the flood. After flood sediments of the river Elbe caused both higher emergence rates in the midge and higher numbers of embryos in the mudsnail. Contrary to expectations the toxicity of the sediments decreased after the flood, probably because of a dilution of toxic substances along the river Elbe and a reduction in bioavailability of pollutants as a result of increasing TOC values after the flood.
Collapse
Affiliation(s)
- Matthias Oetken
- Johann Wolfgang Goethe University Frankfurt am Main, Department of Ecology and Evolution, Siesmayerstrasse 70, D-60054 Frankfurt, Germany.
| | | | | | | |
Collapse
|
32
|
Stachel B, Jantzen E, Knoth W, Krüger F, Lepom P, Oetken M, Reincke H, Sawal G, Schwartz R, Uhlig S. The Elbe flood in August 2002--organic contaminants in sediment samples taken after the flood event. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2005; 40:265-287. [PMID: 15717776 DOI: 10.1081/ese-200045531] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the course of this study 37 sediment samples were analyzed. They were taken after the flooding in September 2002 along the Elbe and at the mouths of its major tributaries. The sampling program covered the entire river stretch that was affected by the floods, from Obristvi (Czech Republic) to the Elbe estuary (North Sea) on the German coast. Analyses were performed for dioxins, nonylphenols, nonylphenol ethoxylates, bisphenol A, DEHP, musk fragrances, polybrominated diphenylethers, chloroalkylphosphates, organochlorine compounds, PAH, and organotin compounds. The results show that only a few weeks after the flood, contaminant concentrations in solid matter were comparable to those prevailing beforehand. Significant sources of contaminant input proved to be the tributaries Vltava (Moldau), Bilina (both in the Czech Republic), and the Mulde (Germany), as well as industrial and municipal sewage treatment works (STW) located along the Elbe. Further point sources are to be found in still water zones such as harbors and abandoned channels. These sources are activated when erosive action stirs up older sediments. Statistical analyses of the congener distribution of the dioxins provided evidence on the sources of these contaminants and freight levels in different river sections. The chemical analyses were complemented by results of ecotoxicological investigations with two sediment organisms (Chironomus riparius and Potamopyrgus antipodarum).
Collapse
Affiliation(s)
- Burkhard Stachel
- Wassergütestelle Elbe der Arbeitsgemeinschaft für die Reinhaltung der Elbe, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|