1
|
Ni Y, Szpiro AA, Loftus CT, Workman T, Sullivan A, Wallace ER, Riederer AM, Day DB, Murphy LE, Nguyen RHN, Sathyanarayana S, Barrett ES, Zhao Q, Enquobahrie DA, Simpson C, Ahmad SI, Arizaga JA, Collett BR, Derefinko KJ, Kannan K, Bush NR, LeWinn KZ, Karr CJ. Prenatal exposure to polycyclic aromatic hydrocarbons and executive functions at school age: Results from a combined cohort study. Int J Hyg Environ Health 2024; 260:114407. [PMID: 38879913 DOI: 10.1016/j.ijheh.2024.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Executive functions develop rapidly in childhood, enabling problem-solving, focused attention, and planning. Exposures to environmental toxicants in pregnancy may impair healthy executive function development in children. There is increasing concern regarding polycyclic aromatic hydrocarbons (PAHs) given their ability to transfer across the placenta and the fetal blood-brain barrier, yet evidence from epidemiological studies is limited. METHODS We examined associations between prenatal PAH exposure and executive functions in 814 children of non-smoking mothers from two U.S. cohorts in the ECHO-PATHWAYS Consortium. Seven mono-hydroxylated PAH metabolites were measured in mid-pregnancy urine and analyzed individually and as mixtures. Three executive function domains were measured at age 8-9: cognitive flexibility, working memory, and inhibitory control. A composite score quantifying overall performance was further calculated. We fitted linear regressions adjusted for socio-demographics, maternal health behaviors, and psychological measures, and examined modification by child sex and stressful life events in pregnancy. Bayesian kernel machine regression was performed to estimate the interactive and overall effects of the PAH mixture. RESULTS The results from primary analysis of linear regressions were generally null, and no modification by child sex or maternal stress was indicated. Mixture analyses suggested several pairwise interactions between individual PAH metabolites in varied directions on working memory, particularly interactions between 2/3/9-FLUO and other PAH metabolites, but no overall or individual effects were evident. CONCLUSION We conducted a novel exploration of PAH-executive functions association in a large, combined sample from two cohorts. Although findings were predominantly null, the study carries important implications for future research and contributes to evolving science regarding developmental origins of diseases.
Collapse
Affiliation(s)
- Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Division of Epidemiology and Biostatistics, School of Public Health, College of Health and Human Services, San Diego State University, San Diego, CA, USA.
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alexis Sullivan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Erin R Wallace
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Anne M Riederer
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laura E Murphy
- Department of Psychiatry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ruby H N Nguyen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minnesota, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel A Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christopher Simpson
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Shaikh I Ahmad
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica A Arizaga
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Brent R Collett
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Karen J Derefinko
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Wei Y, Guo X, Li L, Xue W, Wang L, Chen C, Sun S, Yang Y, Yao W, Wang W, Zhao J, Duan X. The role of N6-methyladenosine methylation in PAHs-induced cancers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118078-118101. [PMID: 37924411 DOI: 10.1007/s11356-023-30710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which are a wide range of environmental toxicants, may act on humans through inhalation, ingestion, and skin contact, resulting in a range of toxic reactions. Epidemiological studies showed that long-term exposure to PAHs in the occupational and living environment results in a substantial rise in the incidence rate of many cancers in the population, so the prevention and treatment of these diseases have become a major worldwide public health problem. N6-methyladenosine (m6A) modification greatly affects the metabolism of RNA and is implicated in the etiopathogenesis of many kinds of diseases. In addition, m6A-binding proteins have an important role in disease development. The abnormal expression of these can cause the malignant proliferation, migration, invasion, and metastasis of cancers. Furthermore, a growing number of studies revealed that environmental toxicants are one of the cancer risk factors and are related to m6A modifications. Exposure to environmental toxicants can alter the methylation level of m6A and the expression of the m6A-binding protein, thus promoting the occurrence and development of cancers through diverse mechanisms. m6A may serve as a biomarker for early environmental exposure. Through the study of m6A, we can find the health injury early, thus providing a new sight for preventing and curing environmental health-related diseases.
Collapse
Affiliation(s)
- Yujie Wei
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaona Guo
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan, China
| | - Lifeng Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Longhao Wang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Chengxin Chen
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shilong Sun
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqi Yang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China.
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Cao XY, Wang S, Tian SQ, Lou H, Kong YC, Yang ZJ, Liu JL. Spectroscopic and molecular modeling studies on the interactions of fluoranthene with bovine hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:301-307. [PMID: 29879645 DOI: 10.1016/j.saa.2018.05.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/16/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
This study aims to investigate the interaction between fluoranthene (FLA) and Bovine hemoglobin (BHb) by ultraviolet-visible (UV-vis) absorption, fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking method. The results showed that the fluorescence intensity of BHb was declined with the increase of FLA concentration. The binding procedure was spontaneous mainly driven by hydrophobic force. The number of binding sites were 0.709 (298 K), and 1.41 (310 K). The binding constants were equal to 4.68 × 103 mol·L-1 at 298 K and 6.17 × 105 mol·L-1 at 310 K. The binding distance between FLA and the tryptophan residue of BHb was 4.50 nm. The results of UV-vis spectra, synchronous fluorescence and CD spectra revealed that FLA could change the conformation of BHb, which might affect the physiological functions of hemoglobin. Moreover, molecular modeling results showed that the fluorescence experimental results were in agreement with the results obtained by molecular docking.
Collapse
Affiliation(s)
- Xiang-Yu Cao
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Shuai Wang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Si-Qi Tian
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Hong Lou
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Yu-Chi Kong
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Zhi-Jun Yang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jian-Li Liu
- School of Life Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
4
|
Polycyclic aromatic hydrocarbons and female reproductive health: A scoping review. Reprod Toxicol 2017; 73:61-74. [DOI: 10.1016/j.reprotox.2017.07.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
|
5
|
Harris KL, Myers JN, Ramesh A. Benzo(a)pyrene modulates fluoranthene-induced cellular responses in HT-29 colon cells in a dual exposure system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:358-367. [PMID: 23732482 PMCID: PMC3826174 DOI: 10.1016/j.etap.2013.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 05/30/2023]
Abstract
Our environment is contaminated with a diverse array of chemicals; one of which is polycyclic aromatic hydrocarbons (PAHs). While some PAHs are potent by nature, others undergo interactions such as additivity, synergism, antagonism or potentiation to manifest their toxicity. Therefore, the objective of this study was to investigate whether exposure to benzo(a)pyrene (BaP), a PAH compound influences the cytotoxicity and metabolism of fluoranthene (FLA; another PAH compound) using HT-29 cells. Cells cultured in Dulbecco's Modified Eagle Medium were treated with 1, 5, 10, 25μM BaP and FLA (0.01% dimethylsulfoxide as vehicle) individually and in combination over the course of 0-96h. At the end of exposure, cells were stained with propidium iodide and the changes in cell cycle were analyzed using FACS analysis. Apoptosis was determined by caspase-3 assay. Post-incubation, samples were extracted and analyzed for FLA metabolites by reverse-phase HPLC with fluorescence detection. Cells exposed to BaP+FLA showed a marginal decrease in growth as compared to FLA alone and vehicle controls. Also, a decline in the percentage of cells in the S and G2 phases compared to G1 phase of cell cycle was noted when cells were treated with BaP and FLA together, compared to individual FLA treatment. The rate of FLA metabolism was more when cells were exposed to FLA in combination with BaP, compared to FLA alone. The enhanced biotransformation of FLA as a result of concomitant exposure to BaP may have implications for colon cancer risks arising from human dietary exposure to PAH mixtures through consumption of barbecued meat.
Collapse
Affiliation(s)
- Kelly L Harris
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | - Jeremy N Myers
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | - Aramandla Ramesh
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA.
| |
Collapse
|
6
|
Iwano S, Higashi E, Miyoshi T, Ando A, Miyamoto Y. Focused DNA microarray analysis for sex-dependent gene expression of drug metabolizing enzymes, transporters and nuclear receptors in rat livers and kidneys. J Toxicol Sci 2012; 37:863-9. [PMID: 22863866 DOI: 10.2131/jts.37.863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cytochrome P450(CYP)s are known to show a sexual dimorphic expression in rat livers. However, the comprehensive analysis for the sex-dependent gene expressions of drug metabolizing enzymes except for CYPs, transporters and nuclear receptors in rat livers and kidneys has not been investigated yet. The purpose of the present study was to identify the novel drug metabolizing and pharmacokinetics (DMPK)-related gene(s) which show the sex difference in the mRNA expressions in rat livers and kidneys. Total RNAs were prepared from livers and kidneys in both male and female rats (Crl:CD(SD) and Crlj:WI). A DNA microarray analysis using a "GeneSQUARE Multiple Assay DNA Microarray Drug Metabolism Gene Expression for Rat" was performed. DMPK-related genes which showed sex differences in the mRNA expression were identified in rat livers or kidneys. Especially, the female dominant expressions of UDP glucuronosyltransferase (UGT) s were seen in rat livers and kidneys. The sex difference of UGT expressions in rats might be one of the causal factors of the sex difference of the biological response to UGT substrates.
Collapse
|
7
|
Diggs DL, Harris KL, Rekhadevi PV, Ramesh A. Tumor microsomal metabolism of the food toxicant, benzo(a)pyrene, in ApcMin mouse model of colon cancer. Tumour Biol 2012; 33:1255-60. [PMID: 22430258 DOI: 10.1007/s13277-012-0375-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 03/05/2012] [Indexed: 12/22/2022] Open
Abstract
The present study was conducted to investigate whether colon tumors were capable of metabolizing benzo(a)pyrene (BaP), and fluoranthene (FLA), two toxicants that belong to the polycyclic aromatic hydrocarbon family of compounds. Microsomes were isolated from the colon tumors of Apc( Min ) mice that received subchronic doses of 50 μg/kg BaP and incubated with either BaP or FLA (3 μM each) alone or in combination and appropriate control groups that received nothing. Subsequent to incubation, samples were extracted with ethyl acetate and analyzed for BaP and FLA metabolites by reverse-phase HPLC equipped with fluorescence detection. Microsomes from tumor tissues were found to metabolize BaP to a greater extent than those from the non-tumor tissues. The rate of BaP metabolism (picomoles of metabolite per minute per milligram of protein) was found to be more when microsomes from BaP-pretreated mice were exposed to BaP alone and FLA in combination with BaP, compared to controls. The microsomes from BaP-preexposed mice generated greater proportion of BaP 7,8-diol and BaP 3,6- and 6,12-diones compared to other experimental groups. Additionally, microsomes from BaP-pretreated mice produced greater proportion of FLA 2, 3-diol and 2, 3 D FLA when microsomes were incubated with FLA alone or a combination of BaP and FLA. Our studies revealed that the tumor microsomes were competent to metabolize BaP and FLA either singly or in combination. The biotransformation of BaP and FLA as a consequence of prior and simultaneous exposure to BaP may influence the growth of tumors. Our findings may have relevance to human long-term dietary intake of these toxicants and the consequent acceleration of the colon carcinogenesis process.
Collapse
Affiliation(s)
- Deacqunita L Diggs
- Department of Biochemistry and Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
8
|
Huderson AC, Harris DL, Niaz MS, Ramesh A. Effect of benzo(a)pyrene exposure on fluoranthene metabolism by mouse adipose tissue microsomes. Toxicol Mech Methods 2010; 20:53-8. [PMID: 20158385 DOI: 10.3109/15376510903584677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study has been undertaken to examine whether exposure to benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) compound, influences the metabolism of fluoranthene (FLA), another PAH compound. Microsomes were isolated from the adipose tissue of mice that received 50 microg/kg BaP and incubated with FLA (3 microM) alone; FLA in combination with BaP at equimolar concentrations, and a control group that received nothing. Post-incubation, samples were extracted with ethyl acetate and analyzed for FLA metabolites by reverse-phase HPLC with fluorescence detection. The rate of FLA metabolism (pmol of metabolite/min/mg protein) was increased when microsomes from BaP-treated mice were exposed to FLA alone and FLA in combination with BaP, compared to controls. On the other hand, the difference in FLA metabolic rate between microsomes that were exposed to FLA + BaP was higher than the ones that received FLA. The microsomes from BaP-pre-treated mice produced a considerably higher proportion of FLA 2, 3-diol, and 2, 3 D FLA when microsomes were incubated with FLA. There were no differences in the FLA metabolite types formed when BaP-pre-treated mice were co-incubated with BaP and FLA than with FLA alone. The enhanced biotransformation of FLA as a result of prior and concomitant exposure to BaP may have implications for assessment of risks arising from human exposure to PAH mixtures.
Collapse
Affiliation(s)
- Ashley C Huderson
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
9
|
Hirata-Koizumi M, Matsuyama T, Imai T, Hirose A, Kamata E, Ema M. Disappearance of gender-related difference in the toxicity of benzotriazole ultraviolet absorber in juvenile rats. Congenit Anom (Kyoto) 2009; 49:247-52. [PMID: 20021483 DOI: 10.1111/j.1741-4520.2009.00248.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole (HDBB) is an ultraviolet absorber used in plastic resin products, such as building materials and automobile components. In oral repeated dose toxicity studies using 5- or 6-week-old rats, this chemical induced hepatic histopathological changes, such as hypertrophy accompanied with eosinophilic granular changes and focal necrosis of hepatocytes, and male rats showed nearly 25 times higher susceptibility to the toxic effects than females. Castration at approximately 4 weeks of age markedly reduced the sex-related variation in HDBB toxicity, but some difference, less than five times, remained between male and female castrated rats. Following oral HDBB administration to male and female juvenile rats from postnatal days 4-21, such gender-related difference in toxic susceptibility was not detected; therefore, it is speculated that the determinants of susceptibility to HDBB toxicity are differentiated between sexes after weaning. In young rats given HDBB, there was no gender-related difference in plasma HDBB concentration, and no metabolites were detected in the plasma of either sex. HDBB induced lauric acid 12-hydroxylase activity in the liver and this change was more pronounced in males than in females. These findings indicate that HDBB could show hepatic peroxisome proliferation activity, and the difference in the susceptibility of male and female rats to this effect might lead to marked gender-related differences in toxicity.
Collapse
Affiliation(s)
- Mutsuko Hirata-Koizumi
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Hirata-Koizumi M, Matsuno K, Kawabata M, Yajima K, Matsuyama T, Hirose A, Kamata E, Ema M. Gender-related difference in the toxicity of 2-(2′-hydroxy-3′,5′-di-tert-butylphenyl)benzotriazole in rats: Relationship to the plasma concentration,in vitrohepatic metabolism, and effects on hepatic metabolizing enzyme activity. Drug Chem Toxicol 2009; 32:204-14. [DOI: 10.1080/01480540902862244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Hirata-Koizumi M, Matsuyama T, Imai T, Hirose A, Kamata E, Ema M. Gender-Related Difference in the Toxicity of Ultraviolet Absorber 2-(3′,5′-Di-tert-butyl-2′-hydroxyphenyl)-5-chlorobenzotriazole in Rats. Drug Chem Toxicol 2008; 31:383-98. [DOI: 10.1080/01480540802171431] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Hirata-Koizumi M, Ogata H, Imai T, Hirose A, Kamata E, Ema M. A 52-Week Repeated Dose Toxicity Study of Ultraviolet Absorber 2-(2′-Hydroxy-3′,5′-di-tert-butylphenyl)benzotriazole in Rats. Drug Chem Toxicol 2008; 31:81-96. [DOI: 10.1080/01480540701688758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Hirata-Koizumi M, Matsuyama T, Imai T, Hirose A, Kamata E, Ema M. Lack of Gender-Related Difference in the Toxicity of 2-(2′-Hydroxy-3′,5′-di-tert-butylphenyl)benzotriazole in Preweaning Rats. Drug Chem Toxicol 2008; 31:275-87. [DOI: 10.1080/01480540701873368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Ema M, Fukunishi K, Hirose A, Hirata-Koizumi M, Matsumoto M, Kamata E. Repeated-Dose and Reproductive Toxicity of the Ultraviolet Absorber 2-(3′,5′-Di-tert-butyl-2′-hydroxyphenyl)-5-chlorobenzotriazole in Rats. Drug Chem Toxicol 2008; 31:399-412. [DOI: 10.1080/01480540802171282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Hirata-Koizumi M, Matsuyama T, Imai T, Hirose A, Kamata E, Ema M. Gonadal Influence on the Toxicity of 2-(2′-Hydroxy-3′,5′-di-tert-butylphenyl) benzotriazole in Rats. Drug Chem Toxicol 2008; 31:115-26. [DOI: 10.1080/01480540701688808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Hirata-Koizumi M, Watari N, Mukai D, Imai T, Hirose A, Kamata E, Ema M. A 28-Day Repeated Dose Toxicity Study of Ultraviolet Absorber 2-(2′-Hydroxy-3′,5′-di-tert-butylphenyl) benzotriazole in Rats. Drug Chem Toxicol 2008; 30:327-41. [DOI: 10.1080/01480540701522254] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Harris DL, Hood DB, Ramesh A. Vehicle-dependent disposition kinetics of fluoranthene in Fisher-344 rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2008; 5:41-8. [PMID: 18441404 PMCID: PMC2760079 DOI: 10.3390/ijerph5010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate how the vehicles of choice affect the pharmacokinetics of orally administered Fluoranthene [FLA] in rats. Fluoranthene is a member of the family of polycyclic aromatic hydrocarbon chemicals. Fluoranthene exposure to humans may occur as a result of cigarette smoking, consumption of contaminated food and water, heating woods in stoves and boilers, industrial sources such as coal gasification, carbon and graphite electrode manufacturing. Adult male Fisher-344 rats were given single oral doses of 25 and 50 μg/kg FLA in tricaprylin, peanut oil, cod liver oil, tween 80/isotonic saline (1:5) and 2% Alkamuls-EL620 through gavage. After administration, the rats were housed individually in metabolic cages and sacrificed at 2, 4, 6, 8, 10 and 12 hours post FLA exposure. Blood, lung, liver, small intestine, adipose tissue samples, urine, and feces were collected at each time point. Samples were subjected to a liquid-liquid extraction using methanol, chloroform, and water. The extracts were analyzed by a reverse-phase HPLC, equipped with a fluorescence detector. The results revealed a dose-dependent increase in FLA concentrations in plasma and tissues for all the vehicles used. Plasma and tissue FLA concentrations were greater for peanut oil; cod liver oil, and tricaprylin vehicles compared to Alkamuls (p < 0.05), and tween 80/isotonic saline (1:5). Most of the FLA administered through peanut oil, cod liver oil and tricaprylin was cleared from the body by 8 hours (90%) and 12 hours (80%) post administration for the 25 μg/kg and 50 μg/kg dose groups, respectively. With both doses employed, the metabolism of FLA was highest when cod liver oil was used as a vehicle and lowest in vehicles containing detergent/water [cod liver oil > peanut oil > tricaprylin > alkamuls > tween 80/isotonic saline (1:5)]. These findings suggest that uptake and elimination of FLA is accelerated when administered through oil-based vehicles. The low uptake of FLA from alkamuls and tween 80/isotonic saline may have been a result of the poor solubility of the chemical. In summary, our findings reiterate that absorption characteristics of FLA were governed by the dose as well as the dosing vehicle. The vehicle-dependent bioavailability of FLA suggests a need for the judicious selection of vehicles in evaluating oral toxicity studies for risk assessment purposes.
Collapse
Affiliation(s)
| | - Darryl B. Hood
- Department of Neurobiology & Neurotoxicology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208, USA
| | - Aramandla Ramesh
- Department of Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Correspondence to Dr. Aramandla Ramesh:
| |
Collapse
|
18
|
Gad SC, Cassidy CD, Aubert N, Spainhour B, Robbe H. Nonclinical vehicle use in studies by multiple routes in multiple species. Int J Toxicol 2007; 25:499-521. [PMID: 17132609 DOI: 10.1080/10915810600961531] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The laboratory toxicologist is frequently faced with the challenge of selecting appropriate vehicles or developing utilitarian formulations for use in in vivo nonclinical safety assessment studies. Although there are many vehicles available that may meet physical and chemical requirements for chemical or pharmaceutical formulation, there are wide differences in species and route of administration specific to tolerances to these vehicles. In current practice, these differences are largely approached on a basis of individual experience as there is only scattered literature on individual vehicles and no comprehensive treatment or information source. This approach leads to excessive animal use and unplanned delays in testing and development. To address this need, a consulting firm and three contract research organizations conducted a rigorous data mining operation of control (vehicle) data from studies dating from 1991 to present. The results identified 65 single component vehicles used in 368 studies across multiple species (dog, primate, rat, mouse, rabbit, guinea pig, minipig, chick embryo, and cat) by multiple routes. Reported here are the results of this effort, including maximum tolerated use levels by species, route, and duration of study, with accompanying dose limiting toxicity. Also included are basic chemical information and a review of available literature on each vehicle, as well as guidance on volume limits and pH by route and some basic guidance on nonclinical formulation development.
Collapse
Affiliation(s)
- Shayne C Gad
- Gad Consulting Services, Cary, North Carolina 27518, USA.
| | | | | | | | | |
Collapse
|
19
|
Walker SA, Whitten LB, Seals GB, Lee WE, Archibong AE, Ramesh A. Inter-species comparison of liver and small intestinal microsomal metabolism of fluoranthene. Food Chem Toxicol 2005; 44:380-7. [PMID: 16182425 DOI: 10.1016/j.fct.2005.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/09/2005] [Accepted: 08/11/2005] [Indexed: 11/27/2022]
Abstract
The magnitude of susceptibility to toxicant exposure may depend on the ability of animals to metabolize the chemicals. The present study has been undertaken to see whether any differences exist among mammals in the metabolism of fluoranthene (FLA), a polycyclic aromatic hydrocarbon (PAH) compound. Microsomes were isolated from the small intestine and liver of rat, mouse, hamster, goat, sheep, pig, dog, cow, monkey, and humans (commercially procured), and incubated with FLA. Post-incubation, samples were extracted with ethyl acetate and analyzed for FLA/metabolites by reverse-phase HPLC with fluorescence detection. The metabolism of FLA in both liver and small intestine was in the order: human > monkey > cow > goat > sheep > dog > pig > hamster > rat > mouse under conditions of the test system used. The rate of metabolism (pmol of metabolite/min/mg protein) was found to be more in liver than in intestine in all the species studied. The FLA metabolites identified were FLA 2,3-diol, trans-2,3-dihydroxy-1,10b-epoxy-1,2,3,10beta tetrahydro FLA (2,3D FLA), 3-hydroxy FLA, and 8-hydroxy FLA. The rodent microsomes produced considerably higher proportion of FLA 2,3-diol, and 2,3D FLA than did pig, dog, and humans. On the other hand, microsomes from higher mammals converted a greater proportion of FLA to 3-hydroxy FLA, the detoxification product of FLA. Overall, our results revealed a great variation among species to metabolize FLA.
Collapse
Affiliation(s)
- Stormy A Walker
- Department of Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol 2005; 23:301-33. [PMID: 15513831 DOI: 10.1080/10915810490517063] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a family of toxicants that are ubiquitous in the environment. These contaminants generate considerable interest, because some of them are highly carcinogenic in laboratory animals and have been implicated in breast, lung, and colon cancers in humans. These chemicals commonly enter the human body through inhalation of cigarette smoke or consumption of contaminated food. Of these two pathways, dietary intake of PAHs constitutes a major source of exposure in humans. Although many reviews and books on PAHs have been published, factors affecting the accumulation of PAHs in the diet, their absorption following ingestion, and strategies to assess risk from exposure to these hydrocarbons following ingestion have received much less attention. This review, therefore, focuses on concentrations of PAHs in widely consumed dietary ingredients along with gastrointestinal absorption rates in humans. Metabolism and bioavailability of PAHs in animal models and the processes, which influence the disposition of these chemicals, are discussed. The utilitarian value of structure and metabolism in predicting PAH toxicity and carcinogenesis is also emphasized. Finally, based on intake, disposition, and tumorigenesis data, the exposure risk to PAHs from diet, and contaminated soil is presented. This information is expected to provide a framework for refinements in risk assessment of PAHs from a multimedia exposure perspective.
Collapse
Affiliation(s)
- Aramandla Ramesh
- Department of Pharmacology, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | | | | | |
Collapse
|