1
|
Șerban RE, Boldeanu MV, Florescu DN, Ionescu M, Șerbănescu MS, Boldeanu L, Florescu MM, Stepan MD, Obleagă VC, Constantin C, Popescu DM, Streba CT, Vere CC. Comparison between Substance P and Calcitonin Gene-Related Peptide and Their Receptors in Colorectal Adenocarcinoma. J Clin Med 2024; 13:5616. [PMID: 39337103 PMCID: PMC11432560 DOI: 10.3390/jcm13185616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Colorectal cancer is a major health problem that still causes many deaths worldwide. Neuropeptides, such as substance P and calcitonin gene-related peptide, play the neurotransmitter and neurohormone roles that increase tumor invasiveness and metastasis potential. This study aimed to see whether these neuropeptides and their receptors-neurokinin 1 receptor and calcitonin receptor-like receptor-correlate with the diagnosis stage, tumor differentiation grade, and different patient characteristics in colorectal cancer and also to compare them. Methods: We performed serum analyses of substance P and CGRP levels in patients with colorectal cancer and also the immunohistochemical analysis of their receptors in colorectal tumors and then correlated them with the disease stage and with different tumor characteristics. Results: We demonstrated that both substance P and calcitonin gene-related peptide had increased levels in colorectal cancer and that their levels correlated with the stage of the disease and with the tumor differentiation grade. We also demonstrated the correlation of NK-1R and CRLR higher immunohistochemical scores with advanced and poorly differentiated tumors. Conclusions: This study demonstrates that the neuropeptides SP and CGRP and their receptors NK-1R and CRLR could play a role in the pathogenesis of colorectal cancer, and they could be used as diagnostic and prognostic markers and could represent potential therapeutic targets.
Collapse
Affiliation(s)
- Robert-Emmanuel Șerban
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dan Nicolae Florescu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mihaela Ionescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mircea-Sebastian Șerbănescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mirela-Marinela Florescu
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mioara-Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Vasile-Cosmin Obleagă
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristian Constantin
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dragoş-Marian Popescu
- Department of Extreme Conditions Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Costin Teodor Streba
- Department of Scientific Research Methodology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristin Constantin Vere
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| |
Collapse
|
2
|
Pascual-Mato M, Gárate G, González-Quintanilla V, Castro B, García MJ, Crespo J, Pascual J, Rivero M. Unravelling the role of beta-CGRP in inflammatory bowel disease and its potential role in gastrointestinal homeostasis. BMC Gastroenterol 2024; 24:262. [PMID: 39134940 PMCID: PMC11320777 DOI: 10.1186/s12876-024-03366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The role of beta calcitonin gene-related peptide (beta-CGRP) in gastrointestinal tract is obscure, but experimental models suggest an effect on the homeostasis of the intestinal mucosa. We measured beta-CGRP circulating levels in a large series of subjects with a recent diagnosis of inflammatory bowel disease (IBD), in order to assess the potential role of this neuropeptide in IBD pathogenesis. METHODS Morning serum beta-CGRP levels were measured by ELISA (CUSABIO, China) in 96 patients recently diagnosed of IBD and compared with those belonging from 50 matched healthy controls (HC) and 50 chronic migraine (CM) patients. RESULTS Beta-CGRP levels were lower in patients with IBD (3.1 ± 1.9 pg/mL; 2.9 [2.4-3.4] pg/mL) as compared to HC (4.7 ± 2.6; 4.9 [4.0-5.8] pg/mL; p < 0.001) and to CM patients (4.6 ± 2.6; 4.7 [3.3-6.2] pg/mL; p < 0.001). Beta-CGRP levels in CM were not significantly different to those of HC (p = 0.92). Regarding IBD diagnostic subtypes, beta-CGRP levels for ulcerative colitis (3.0 ± 1.9pg/mL; 2.5 [2.1-3.4] pg/mL) and Crohn's disease (3.3 ± 2.0 pg/mL; 3.2 [2.4-3.9] pg/mL) were significantly lower to those of HC (p < 0.01 and p < 0.05, respectively) and CM (p < 0.01 and p < 0.05, respectively). CONCLUSIONS We have found a significant reduction in serum beta-CGRP levels in patients with a recent diagnosis of all kinds of IBD as compared to two control groups without active intestinal disease, HC and CM, which may suggest a role for this neuropeptide in the pathophysiology of IBD. Our data indicate a protective role of beta-CGRP in the homeostasis of the alimentary tract.
Collapse
Affiliation(s)
- Marta Pascual-Mato
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), University Hospital Marqués de Valdecilla and Universidad de Cantabria, Santander, Spain
| | - Gabriel Gárate
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Av. Valdecilla s/n, Santander, 39008, Spain
| | - Vicente González-Quintanilla
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Av. Valdecilla s/n, Santander, 39008, Spain
| | - Beatriz Castro
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), University Hospital Marqués de Valdecilla and Universidad de Cantabria, Santander, Spain
| | - María José García
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), University Hospital Marqués de Valdecilla and Universidad de Cantabria, Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), University Hospital Marqués de Valdecilla and Universidad de Cantabria, Santander, Spain
| | - Julio Pascual
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Av. Valdecilla s/n, Santander, 39008, Spain.
| | - Montserrat Rivero
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), University Hospital Marqués de Valdecilla and Universidad de Cantabria, Santander, Spain
| |
Collapse
|
3
|
Cao Y, Jiang W, Yan F, Pan Y, Gei L, Lu S, Chen X, Huang Y, Yan Y, Feng Y, Li Q, Zeng W, Xing W, Chen D. Sex differences in PD-L1-induced analgesia in paclitaxel-induced peripheral neuropathy mice depend on TRPV1-based inhibition of CGRP. CNS Neurosci Ther 2024; 30:e14829. [PMID: 38961264 PMCID: PMC11222069 DOI: 10.1111/cns.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Paclitaxel (PTX) is extensively utilized in the management of diverse solid tumors, frequently resulting in paclitaxel-induced peripheral neuropathy (PIPN). The present study aimed to investigate sex differences in the behavioral manifestations and underlying pathogenesis of PIPN and search for clinically efficacious interventions. METHODS Male and female C57BL/6 mice (5-6 weeks and 12 months, weighing 18-30 g) were intraperitoneally (i.p.) administered paclitaxel diluted in saline (NaCl 0.9%) at a dose of 2 mg/kg every other day for a total of 4 injections. Von Frey and hot plate tests were performed before and after administration to confirm the successful establishment of the PIPN model and also to evaluate the pain of PIPN and the analgesic effect of PD-L1. On day 14 after PTX administration, PD-L1 protein (10 ng/pc) was injected into the PIPN via the intrathecal (i.t.) route. To knock down TRPV1 in the spinal cord, adeno-associated virus 9 (AAV9)-Trpv1-RNAi (5 μL, 1 × 1013 vg/mL) was slowly injected via the i.t. route. Four weeks after AAV9 delivery, the downregulation of TRPV1 expression was verified by immunofluorescence staining and Western blotting. The levels of PD-L1, TRPV1 and CGRP were measured via Western blotting, RT-PCR, and immunofluorescence staining. The levels of TNF-α and IL-1β were measured via RT-PCR. RESULTS TRPV1 and CGRP protein and mRNA levels were higher in the spinal cords of control female mice than in those of control male mice. PTX-induced nociceptive behaviors in female PIPN mice were greater than those in male PIPN mice, as indicated by increased expression of TRPV1 and CGRP. The analgesic effects of PD-L1 on mechanical hyperalgesia and thermal sensitivity were significantly greater in female mice than in male mice, with calculated relative therapeutic levels increasing by approximately 2.717-fold and 2.303-fold, respectively. PD-L1 and CGRP were partly co-localized with TRPV1 in the dorsal horn of the mouse spinal cord. The analgesic effect of PD-L1 in PIPN mice was observed to be mediated through the downregulation of TRPV1 and CGRP expression following AAV9-mediated spinal cord specific decreased TRPV1 expression. CONCLUSIONS PTX-induced nociceptive behaviors and the analgesic effect of PD-L1 in PIPN mice were sexually dimorphic, highlighting the significance of incorporating sex as a crucial biological factor in forthcoming mechanistic studies of PIPN and providing insights for potential sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Yan Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wenqi Jiang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Fang Yan
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yuyan Pan
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Liba Gei
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of AnesthesiologyPeking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer HospitalHohhotChina
| | - Simin Lu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xiangnan Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of AnesthesiologyGuangdong Women and Children HospitalGuangzhouChina
| | - Yang Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yan Yan
- Department of AnesthesiologyHuizhou Municipal Central HospitalHuizhouChina
| | - Yan Feng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Qiang Li
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wei Xing
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Dongtai Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
4
|
Zidan AA, Zhu S, Elbasiony E, Najafi S, Lin Z, Singh RB, Naderi A, Yin J. Topical application of calcitonin gene-related peptide as a regenerative, antifibrotic, and immunomodulatory therapy for corneal injury. Commun Biol 2024; 7:264. [PMID: 38438549 PMCID: PMC10912681 DOI: 10.1038/s42003-024-05934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a multifunctional neuropeptide abundantly expressed by corneal nerves. Using a murine model of corneal mechanical injury, we found CGRP levels in the cornea significantly reduced after injury. Topical application of CGRP as an eye drop accelerates corneal epithelial wound closure, reduces corneal opacification, and prevents corneal edema after injury in vivo. CGRP promotes corneal epithelial cell migration, proliferation, and the secretion of laminin. It reduces TGF-β1 signaling and prevents TGF-β1-mediated stromal fibroblast activation and tissue fibrosis. CGRP preserves corneal endothelial cell density, morphology, and pump function, thus reducing corneal edema. Lastly, CGRP reduces neutrophil infiltration, macrophage maturation, and the production of inflammatory cytokines in the cornea. Taken together, our results show that corneal nerve-derived CGRP plays a cytoprotective, pro-regenerative, anti-fibrotic, and anti-inflammatory role in corneal wound healing. In addition, our results highlight the critical role of sensory nerves in ocular surface homeostasis and injury repair.
Collapse
Affiliation(s)
- Asmaa A Zidan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shuyan Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sheyda Najafi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhirong Lin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Amirreza Naderi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Ashina M, Hoffmann J, Ashina H, Hay DL, Flores-Montanez Y, Do TP, De Icco R, Dodick DW. Pharmacotherapies for Migraine and Translating Evidence From Bench to Bedside. Mayo Clin Proc 2024; 99:285-299. [PMID: 38180396 DOI: 10.1016/j.mayocp.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/02/2023] [Accepted: 07/11/2023] [Indexed: 01/06/2024]
Abstract
Migraine is a ubiquitous neurologic disorder that afflicts more than 1 billion people worldwide. Recommended therapeutic strategies include the use of acute and, if needed, preventive medications. During the past 2 decades, tremendous progress has been made in better understanding the molecular mechanisms underlying migraine pathogenesis, which in turn has resulted in the advent of novel medications targeting signaling molecule calcitonin gene-related peptide or its receptor. Here, we provide an update on the rational use of pharmacotherapies for migraine to facilitate more informed clinical decision-making. We then discuss the scientific discoveries that led to the advent of new medications targeting calcitonin gene-related peptide signaling. Last, we conclude with recent advances that are being made to identify novel drug targets for migraine.
Collapse
Affiliation(s)
- Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience.), King's College Hospital, London, United Kingdom; NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Anaesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Brain and Spinal Cord Injury, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Yadira Flores-Montanez
- BIDMC Comprehensive Headache Center, Department of Neurology and Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA; University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | | |
Collapse
|
6
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
7
|
Tringali G, Lavanco G, Castelli V, Pizzolanti G, Kuchar M, Currò D, Cannizzaro C, Brancato A. Cannabidiol tempers alcohol intake and neuroendocrine and behavioural correlates in alcohol binge drinking adolescent rats. Focus on calcitonin gene-related peptide's brain levels. Phytother Res 2023; 37:4870-4884. [PMID: 37525534 DOI: 10.1002/ptr.7972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
Alcohol binge drinking is common among adolescents and may challenge the signalling systems that process affective stimuli, including calcitonin gene-related peptide (CGRP) signalling. Here, we employed a rat model of adolescent binge drinking to evaluate reward-, social- and aversion-related behaviour, glucocorticoid output and CGRP levels in affect-related brain regions. As a potential rescue, the effect of the phytocannabinoid cannabidiol was explored. Adolescent male rats underwent the intermittent 20% alcohol two-bottle choice paradigm; at the binge day (BD) and the 24 h withdrawal day (WD), we assessed CGRP expression in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), amygdala, hypothalamus and brainstem; in addition, we evaluated sucrose preference, social motivation and drive, nociceptive response, and serum corticosterone levels. Cannabidiol (40 mg/kg, i.p.) was administered before each drinking session, and its effect was measured on the above-mentioned readouts. At BD and WD, rats displayed decreased CGRP expression in mPFC, NAc and amygdala; increased CGRP levels in the brainstem; increased response to rewarding- and nociceptive stimuli and decreased social drive; reduced serum corticosterone levels. Cannabidiol reduced alcohol consumption and preference; normalised the abnormal corticolimbic CGRP expression, and the reward and aversion-related hyper-responsivity, as well as glucocorticoid levels in alcohol binge-like drinking rats. Overall, CGRP can represent both a mediator and a target of alcohol binge-like drinking and provides a further piece in the intricate puzzle of alcohol-induced behavioural and neuroendocrine sequelae. CBD shows promising effects in limiting adolescent alcohol binge drinking and rebalancing the bio-behavioural abnormalities.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Pizzolanti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Diego Currò
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Labastida-Ramírez A, Caronna E, Gollion C, Stanyer E, Dapkute A, Braniste D, Naghshineh H, Meksa L, Chkhitunidze N, Gudadze T, Pozo-Rosich P, Burstein R, Hoffmann J. Mode and site of action of therapies targeting CGRP signaling. J Headache Pain 2023; 24:125. [PMID: 37691118 PMCID: PMC10494408 DOI: 10.1186/s10194-023-01644-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Targeting CGRP has proved to be efficacious, tolerable, and safe to treat migraine; however, many patients with migraine do not benefit from drugs that antagonize the CGRPergic system. Therefore, this review focuses on summarizing the general pharmacology of the different types of treatments currently available, which target directly or indirectly the CGRP receptor or its ligand. Moreover, the latest evidence regarding the selectivity and site of action of CGRP small molecule antagonists (gepants) and monoclonal antibodies is critically discussed. Finally, the reasons behind non-responders to anti-CGRP drugs and rationale for combining and/or switching between these therapies are addressed.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Edoardo Caronna
- Headache Unit, Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | | | - Diana Braniste
- Institute of Neurology and Neurosurgery, Diomid Gherman, Chișinău, Moldova
- State University of Medicine and Pharmacy, Nicolae Testemițanu, Moldova
| | - Hoda Naghshineh
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Liga Meksa
- Headache Unit, Neurology and Neurosurgery Department, Riga East University Hospital Gailezers, Riga, Latvia
| | | | - Tamari Gudadze
- Department of Neurology, Christian Hospital Unna, Unna, Germany
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
- Center for Life Science, Room 649, 3 Blackfan Circle, Boston, MA, 02215, USA
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK.
- NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK.
| |
Collapse
|
9
|
Ma J, Nguyen D, Madas J, Bizanti A, Mistareehi A, Kwiat AM, Chen J, Lin M, Christie R, Hunter P, Heal M, Baldwin S, Tappan S, Furness JB, Powley TL, Cheng ZJ. Mapping the Organization and Morphology of Calcitonin Gene-Related Peptide (CGRP)-IR Axons in the Whole Mouse Stomach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541811. [PMID: 37398245 PMCID: PMC10312482 DOI: 10.1101/2023.05.23.541811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers [e.g., substance P (SP) and calcitonin gene-related peptide (CGRP)]. We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: 1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. 2) CGRP-IR axons densely innervated the blood vessels. 3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. 4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. 5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. 6) CGRP-IR axons did not colocalize with tyrosine hydroxylase (TH) or vesicular acetylcholine transporter (VAChT) axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. 7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.
Collapse
|
10
|
Luo L, Qi W, Zhang Y, Wang J, Guo L, Wang M, Wang HB, Yu LC. Calcitonin gene-related peptide and its receptor plays important role in nociceptive regulation in the arcuate nucleus of hypothalamus of rats with inflammatory pain. Behav Brain Res 2023; 443:114351. [PMID: 36804439 DOI: 10.1016/j.bbr.2023.114351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
The present study has explored the role of calcitonin gene-related peptide (CGRP) and its receptor in inflammatory pain modulation in arcuate nucleus of hypothalamus (ARC). Our study demonstrated that intra-ARC injection of CGRP induced antinociceptive effects to naïve rats and rats with inflammatory pain, the effect could be inhibited by the selective CGRP receptor antagonist CGRP8-37. Interestingly, the CGRP-induced antinociception effect was decreased in rats with inflammatory pain compared to naïve rats. Similarly, we found that calcitonin receptor like receptor (CLR), a main component of CGRP receptor, had a low decreased expression levels in the ARC regions of rats with inflammatory pain. The CGRP-induced antinociceptive effect was significantly impaired after reducing CLR expression by intra-ARC administration of CLR targeted siRNA. These findings demonstrated that CGRP might play a crucial role in nociceptive modulation in the ARC during inflammatory pain, which was mediated by CGRP receptor in the ARC. This study shed light upon CGRP and its receptor interaction might be valuable strategies for the alleviation of inflammatory pain.
Collapse
Affiliation(s)
- Laixi Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Wentao Qi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Yuyan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Jingyi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Li Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Milin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Hong-Bo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Long-Chuan Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; Neurobiology Laboratory, School of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
11
|
Qiu T, Zhou Y, Hu L, Shan Z, Zhang Y, Fang Y, Huang W, Zhang L, Fan S, Xiao Z. 2-Deoxyglucose alleviates migraine-related behaviors by modulating microglial inflammatory factors in experimental model of migraine. Front Neurol 2023; 14:1115318. [PMID: 37090989 PMCID: PMC10117646 DOI: 10.3389/fneur.2023.1115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundTargeting metabolic pathways has emerged as a new migraine treatment strategy as researchers realize the critical role metabolism plays in migraine. Activated inflammatory cells undergo metabolic reprogramming and rely on glycolysis to function. The objective of this study was to investigate the glycolysis changes in the experimental model of migraine and the effect of glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) in the pathophysiology of migraine.MethodsWe used a rat model of migraine that triggered migraine attacks by applying inflammatory soup (IS) to the dura and examined changes in glycolysis. 2-DG was used to inhibit glycolysis, and the effects of 2-DG on mechanical ectopic pain, microglial cell activation, calcitonin gene-related peptides (CGRP), c-Fos, and inflammatory factors induced by inflammatory soup were observed. LPS stimulated BV2 cells to establish a model in vitro to observe the effects of 2-DG on brain-derived neurotrophic factor (BDNF) after microglia activation.ResultsIn the experimental model of migraine, key enzymes involved in glycolysis such as phosphofructokinase platelet (PFKP), hexokinase (HK2), hypoxia inducible factor-1α (HIF-1α), lactate dehydrogenase (LDH) and pyruvate kinase (PKM2) were expressed in the medullary dorsal horn. While the expression of electronic respiratory transport chain complex IV (COXIV) decreased. There were no significant changes in glucose 6-phosphate dehydrogenase (G6PD), a key enzyme in the pentose phosphate pathway. The glycolysis inhibitor 2-DG alleviated migraine-like symptoms in an experimental model of migraine, reduced the release of proinflammatory cytokines caused by microglia activation, and decreased the expression of CGRP and c-Fos. Further experiments in vitro demonstrated that glycolysis inhibition can reduce the release of Iba-1/proBDNF/BDNF and inhibit the activation of microglia.ConclusionThe migraine rat model showed enhanced glycolysis. This study suggests that glycolytic inhibitor 2-DG is an effective strategy for alleviating migraine-like symptoms. Glycolysis inhibition may be a new target for migraine treatment.
Collapse
|
12
|
Mi S, Chang Z, Wang X, Gao J, Liu Y, Liu W, He W, Qi Z. Bioactive Spinal Cord Scaffold Releasing Neurotrophic Exosomes to Promote In Situ Centralis Neuroplasticity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16355-16368. [PMID: 36958016 DOI: 10.1021/acsami.2c19607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spinal cord injury (SCI), one of the most serious injuries of the central nervous system, causes physical functional dysfunction and even paralysis in millions of patients. As a matter of necessity, redressing the neuroleptic pathologic microenvironment to a neurotrophic microenvironment is essential in order to alleviate this dilemma and facilitate the recovery of the spinal cord. Herein, based on cell-sheet technology, two functional cell types─uninduced and neural-induced stem cells from human exfoliated deciduous teeth─were formed into a composite membrane that subsequently self-assembled to form a bioactive scaffold with a spinal-cord-like structure, called a spinal cord assembly (SCA). In a stable extracellular matrix microenvironment, SCA continuously released SCA-derived exosomes containing various neurotrophic factors, which effectively promoted neuronal regeneration, axonal extension, and angiogenesis and inhibited glial scar generation in a rat model of SCI. Neurotrophic exosomes significantly improved the pathological microenvironment and promoted in situ centralis neuroplasticity, ultimately eliciting a strong repair effect in this model. SCA therapy is a promising strategy for the effective treatment of SCI based on neurotrophic exosome delivery.
Collapse
Affiliation(s)
- Sisi Mi
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhuo Chang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xue Wang
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiaxin Gao
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Wangxiao He
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
13
|
Kuburas A, Russo AF. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J Headache Pain 2023; 24:34. [PMID: 37009867 PMCID: PMC10069045 DOI: 10.1186/s10194-023-01569-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have emerged as mediators of migraine pathogenesis. Both are vasodilatory peptides that can cause migraine-like attacks when infused into people and migraine-like symptoms when injected into rodents. In this narrative review, we compare the similarities and differences between the peptides in both their clinical and preclinical migraine actions. A notable clinical difference is that PACAP, but not CGRP, causes premonitory-like symptoms in patients. Both peptides are found in distinct, but overlapping areas relevant to migraine, most notably with the prevalence of CGRP in trigeminal ganglia and PACAP in sphenopalatine ganglia. In rodents, the two peptides share activities, including vasodilation, neurogenic inflammation, and nociception. Most strikingly, CGRP and PACAP cause similar migraine-like symptoms in rodents that are manifested as light aversion and tactile allodynia. Yet, the peptides appear to act by independent mechanisms possibly by distinct intracellular signaling pathways. The complexity of these signaling pathways is magnified by the existence of multiple CGRP and PACAP receptors that may contribute to migraine pathogenesis. Based on these differences, we suggest PACAP and its receptors provide a rich set of targets to complement and augment the current CGRP-based migraine therapeutics.
Collapse
Affiliation(s)
- Adisa Kuburas
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
14
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Root S, Ahn K, Kirsch J, Hoskin JL. Review of Tolerability of Fremanezumab for Episodic and Chronic Migraine. Neuropsychiatr Dis Treat 2023; 19:391-401. [PMID: 36846598 PMCID: PMC9951598 DOI: 10.2147/ndt.s371686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs) were the first class of medication specifically developed for the prevention of migraine. Fremanezumab is one of four CGRP mAbs currently available and is approved by the US Food and Drug Administration (FDA) for the preventative treatment of episodic and chronic migraines. This narrative review summarizes the history of fremanezumab development, the trials that led to its approval, and the later studies published evaluating its tolerability and efficacy. Evidence of fremanezumab for clinically significant efficacy and tolerability in patients with chronic migraine is especially important when considering the high level of disability, lower quality of life scores, and higher levels of health-care utilization associated with this condition. Multiple clinical trials demonstrated superiority of fremanezumab over placebo in terms of efficacy while demonstrating good tolerability. Treatment-related adverse reactions did not differ significantly compared to placebo and dropout rates were minimal. The most commonly observed treatment-related adverse reaction was mild-to-moderate injection site reaction, described as erythema, pain, induration, or swelling at the injection site.
Collapse
Affiliation(s)
- Shane Root
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
- University of Arizona School of Medicine, Phoenix, AZ, USA
- Creighton University School of Medicine, Omaha, NE, USA
| | - Kevin Ahn
- Creighton University School of Medicine, Omaha, NE, USA
| | - Jack Kirsch
- Creighton University School of Medicine, Omaha, NE, USA
| | - Justin L Hoskin
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
- University of Arizona School of Medicine, Phoenix, AZ, USA
- Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
16
|
Spekker E, Bohár Z, Fejes-Szabó A, Szűcs M, Vécsei L, Párdutz Á. Estradiol Treatment Enhances Behavioral and Molecular Changes Induced by Repetitive Trigeminal Activation in a Rat Model of Migraine. Biomedicines 2022; 10:biomedicines10123175. [PMID: 36551931 PMCID: PMC9776064 DOI: 10.3390/biomedicines10123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
A migraine is a neurological condition that can cause multiple symptoms. It is up to three times more common in women than men, thus, estrogen may play an important role in the appearance attacks. Its exact pathomechanism is still unknown; however, the activation and sensitization of the trigeminal system play an essential role. We aimed to use an animal model, which would better illustrate the process of repeated episodic migraine attacks to reveal possible new mechanisms of trigeminal pain chronification. Twenty male (M) and forty ovariectomized (OVX) female adult rats were used for our experiment. Male rats were divided into two groups (M + SIF, M + IS), while female rats were divided into four groups (OVX + SIF, OVX + IS, OVX + E2 + SIF, OVX + E2 + IS); half of the female rats received capsules filled with cholesterol (OVX + SIF, OVX + IS), while the other half received a 1:1 mixture of cholesterol and 17β-estradiol (OVX + E2 + SIF, OVX + E2 + IS). The animals received synthetic interstitial fluid (SIF) (M + SIF, OVX + SIF, OVX + E2 + SIF) or inflammatory soup (IS) (M + IS, OVX + IS, OVX + E2 + IS) treatment on the dural surface through a cannula for three consecutive days each week (12 times in total). Behavior tests and immunostainings were performed. After IS application, a significant decrease was observed in the pain threshold in the M + IS (0.001 < p < 0.5), OVX + IS (0.01 < p < 0.05), and OVX + E2 + IS (0.001 < p < 0.05) groups compared to the control groups (M + SIF; OVX + SIF, OVX + E2 + SIF). The locomotor activity of the rats was lower in the IS treated groups (M + IS, 0.01 < p < 0.05; OVX + IS, p < 0.05; OVX + E2 + IS, 0.001 < p < 0.05), and these animals spent more time in the dark room (M + IS, p < 0.05; OVX + IS, 0.01 < p < 0.05; OVX + E2 + IS, 0.001 < p < 0.01). We found a significant difference between M + IS and OVX + E2 + IS groups (p < 0.05) in the behavior tests. Furthermore, IS increased the area covered by calcitonin gene-related peptide (CGRP) immunoreactive (IR) fibers (M + IS, p < 0.01; OVX + IS, p < 0.01; OVX + E2 + IS, p < 0.001) and the number of neuronal nitric oxide synthase (nNOS) IR cells (M + IS, 0.001< p < 0.05; OVX + IS, 0.01 < p < 0.05; OVX + E2 + IS, 0.001 < p < 0.05) in the caudal trigeminal nucleus (TNC). There was no difference between M + IS and OVX + IS groups; however, the area was covered by CGRP IR fibers (0.01 < p < 0.05) and the number of nNOS IR cells was significantly higher in the OVX + E2 + IS (p < 0.05) group than the other two IS- (M + IS, OVX + IS) treated animals. Overall, repeated administration of IS triggers activation and sensitization processes and develops nociceptive behavior changes. CGRP and nNOS levels increased significantly in the TNC after IS treatments, and moreover, pain thresholds and locomotor activity decreased with the development of photophobia. In our model, stable high estradiol levels proved to be pronociceptive. Thus, repeated trigeminal activation causes marked behavioral changes, which is more prominent in rats treated with estradiol, also reflected by the expression of the sensitization markers of the trigeminal system.
Collapse
Affiliation(s)
- Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Zsuzsanna Bohár
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Annamária Fejes-Szabó
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-351; Fax: +36-62-545-597
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
17
|
Chen Y, Liu Y, Song Y, Zhao S, Li B, Sun J, Liu L. Therapeutic applications and potential mechanisms of acupuncture in migraine: A literature review and perspectives. Front Neurosci 2022; 16:1022455. [PMID: 36340786 PMCID: PMC9630645 DOI: 10.3389/fnins.2022.1022455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Acupuncture is commonly used as a treatment for migraines. Animal studies have suggested that acupuncture can decrease neuropeptides, immune cells, and proinflammatory and excitatory neurotransmitters, which are associated with the pathogenesis of neuroinflammation. In addition, acupuncture participates in the development of peripheral and central sensitization through modulation of the release of neuronal-sensitization-related mediators (brain-derived neurotrophic factor, glutamate), endocannabinoid system, and serotonin system activation. Clinical studies have demonstrated that acupuncture may be a beneficial migraine treatment, particularly in decreasing pain intensity, duration, emotional comorbidity, and days of acute medication intake. However, specific clinical effectiveness has not been substantiated, and the mechanisms underlying its efficacy remain obscure. With the development of biomedical and neuroimaging techniques, the neural mechanism of acupuncture in migraine has gained increasing attention. Neuroimaging studies have indicated that acupuncture may alter the abnormal functional activity and connectivity of the descending pain modulatory system, default mode network, thalamus, frontal-parietal network, occipital-temporal network, and cerebellum. Acupuncture may reduce neuroinflammation, regulate peripheral and central sensitization, and normalize abnormal brain activity, thereby preventing pain signal transmission. To summarize the effects and neural mechanisms of acupuncture in migraine, we performed a systematic review of literature about migraine and acupuncture. We summarized the characteristics of current clinical studies, including the types of participants, study designs, and clinical outcomes. The published findings from basic neuroimaging studies support the hypothesis that acupuncture alters abnormal neuroplasticity and brain activity. The benefits of acupuncture require further investigation through basic and clinical studies.
Collapse
|
18
|
Pooled Analysis of Real-World Evidence Supports Anti-CGRP mAbs and OnabotulinumtoxinA Combined Trial in Chronic Migraine. Toxins (Basel) 2022; 14:toxins14080529. [PMID: 36006191 PMCID: PMC9413678 DOI: 10.3390/toxins14080529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
OnabotulinumtoxinA, targeting the CGRP machinery, has been approved for the last two decades for chronic migraine prevention. The recently approved monoclonal antibodies (mAbs) directed towards the calcitonin gene-related peptide (CGRP) pathway open a new age for chronic migraine control. However, some 40% patients suffering from chronic migraine is still resistant to treatment. The aim of this work is to answer the following PICOS (participants intervention comparator outcome study design) question: Is there evidence of efficacy and safety of the combined administration of anti-CGRP mAbs and onabotulinumtoxinA in chronic migraine? A systematic review and meta-analysis [Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 recommendations] was made up to 19 April 2022. The results are encouraging: the combined treatment proved to afford ≥50% monthly headache days (MHDs)/frequency reduction respect to baseline in up to 58.8% of patients; in comparison, anti-CGRP mAbs reduce MHDs of 1.94 days from baseline and botulinum toxin of 1.86 days. Our study demonstrates for the first time that the combination therapy of onabotulinumtoxinA with anti-CGRP mAbs affords a reduction of 2.67 MHDs with respect to onabotulinumtoxinA alone, with moderate certainty of evidence. Adequately powered, good-quality studies are needed to confirm the response to combination therapy in terms of efficacy and safety. PROSPERO registration: CRD42022313640.
Collapse
|
19
|
Bründl E, Proescholdt M, Störr EM, Schödel P, Bele S, Zeman F, Hohenberger C, Kieninger M, Schmidt NO, Schebesch KM. The endogenous neuropeptide calcitonin gene-related peptide after spontaneous subarachnoid hemorrhage–A potential psychoactive prognostic serum biomarker of pain-associated neuropsychological symptoms. Front Neurol 2022; 13:889213. [PMID: 35968282 PMCID: PMC9366609 DOI: 10.3389/fneur.2022.889213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background The pronociceptive neuromediator calcitonin gene-related peptide (CGRP) is associated with pain transmission and modulation. After spontaneous subarachnoid hemorrhage (sSAH), the vasodilatory CGRP is excessively released into cerebrospinal fluid (CSF) and serum and modulates psycho-behavioral function. In CSF, the hypersecretion of CGRP subacutely after good-grade sSAH was significantly correlated with an impaired health-related quality of life (hrQoL). Now, we prospectively analyzed the treatment-specific differences in the secretion of endogenous CGRP into serum after good-grade sSAH and its impact on hrQoL. Methods Twenty-six consecutive patients (f:m = 13:8; mean age 50.6 years) with good-grade sSAH were enrolled (drop out n = 5): n = 9 underwent endovascular aneurysm occlusion, n = 6 microsurgery, and n = 6 patients with perimesencephalic SAH received standardized intensive medical care. Plasma was drawn daily from day 1 to 10, at 3 weeks, and at the 6-month follow-up (FU). CGRP levels were determined with competitive enzyme immunoassay in duplicate serum samples. All patients underwent neuropsychological self-report assessment after the onset of sSAH (t1: day 11–35) and at the FU (t2). Results During the first 10 days, the mean CGRP levels in serum (0.470 ± 0.10 ng/ml) were significantly lower than the previously analyzed mean CGRP values in CSF (0.662 ± 0.173; p = 0.0001). The mean serum CGRP levels within the first 10 days did not differ significantly from the values at 3 weeks (p = 0.304). At 6 months, the mean serum CGRP value (0.429 ± 0.121 ng/ml) was significantly lower compared to 3 weeks (p = 0.010) and compared to the first 10 days (p = 0.026). Higher mean serum CGRP levels at 3 weeks (p = 0.001) and at 6 months (p = 0.005) correlated with a significantly poorer performance in the item pain, and, at 3 weeks, with a higher symptom burden regarding somatoform syndrome (p = 0.001) at t2. Conclusion Our study reveals the first insight into the serum levels of endogenous CGRP in good-grade sSAH patients with regard to hrQoL. In serum, upregulated CGRP levels at 3 weeks and 6 months seem to be associated with a poorer mid-term hrQoL in terms of pain. In migraineurs, CGRP receptor antagonists have proven clinical efficacy. Our findings corroborate the potential capacity of CGRP in pain processing.
Collapse
Affiliation(s)
- Elisabeth Bründl
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
- *Correspondence: Elisabeth Bründl
| | - Martin Proescholdt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Eva-Maria Störr
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Petra Schödel
- Section Neurosurgery, Department of Orthopedics, Trauma and Hand Surgery, Medical Center St. Elisabeth, Straubing, Germany
| | - Sylvia Bele
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Studies, University Medical Center Regensburg, Regensburg, Germany
| | - Christoph Hohenberger
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Martin Kieninger
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
20
|
Anapindi KDB, Romanova EV, Checco JW, Sweedler JV. Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacol Rev 2022; 74:662-679. [PMID: 35710134 DOI: 10.1124/pharmrev.121.000423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of insulin in the early 1900s ushered in the era of research related to peptides acting as hormones and neuromodulators, among other regulatory roles. These essential gene products are found in all organisms, from the most primitive to the most evolved, and carry important biologic information that coordinates complex physiology and behavior; their misregulation has been implicated in a variety of diseases. The evolutionary origins of at least 30 neuropeptide signaling systems have been traced to the common ancestor of protostomes and deuterostomes. With the use of relevant animal models and modern technologies, we can gain mechanistic insight into orthologous and paralogous endogenous peptides and translate that knowledge into medically relevant insights and new treatments. Groundbreaking advances in medicine and basic science influence how signaling peptides are defined today. The precise mechanistic pathways for over 100 endogenous peptides in mammals are now known and have laid the foundation for multiple drug development pipelines. Peptide biologics have become valuable drugs due to their unique specificity and biologic activity, lack of toxic metabolites, and minimal undesirable interactions. This review outlines modern technologies that enable neuropeptide discovery and characterization, and highlights lessons from nature made possible by neuropeptide research in relevant animal models that is being adopted by the pharmaceutical industry. We conclude with a brief overview of approaches/strategies for effective development of peptides as drugs. SIGNIFICANCE STATEMENT: Neuropeptides, an important class of cell-cell signaling molecules, are involved in maintaining a range of physiological functions. Since the discovery of insulin's activity, over 100 bioactive peptides and peptide analogs have been used as therapeutics. Because these are complex molecules not easily predicted from a genome and their activity can change with subtle chemical modifications, mass spectrometry (MS) has significantly empowered peptide discovery and characterization. This review highlights contributions of MS-based research towards the development of therapeutic peptides.
Collapse
Affiliation(s)
- Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - James W Checco
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| |
Collapse
|
21
|
Rubio MA, Herrando-Grabulosa M, Gaja-Capdevila N, Vilches JJ, Navarro X. Characterization of somatosensory neuron involvement in the SOD1 G93A mouse model. Sci Rep 2022; 12:7600. [PMID: 35534694 PMCID: PMC9085861 DOI: 10.1038/s41598-022-11767-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
SOD1G93A mice show loss of cutaneous small fibers, as in ALS patients. Our objective is to characterize the involvement of different somatosensory neuron populations and its temporal progression in the SOD1G93A mice. We aim to further define peripheral sensory involvement, analyzing at the same time points the neuronal bodies located in the dorsal root ganglia (DRG) and the distal part of their axons in the skin, in order to shed light in the mechanisms of sensory involvement in ALS. We performed immunohistochemical analysis of peptidergic (CGRP), non-peptidergic (IB4) fibers in epidermis, as well as sympathetic sudomotor fibers (VIP) in the footpads of SOD1G93A mice and wild type littermates at 4, 8, 12 and 16 weeks of age. We also immunolabeled and quantified neuronal bodies of IB4, CGRP and parvalbumin (PV) positive sensory neurons in lumbar DRG. We detected a reduction of intraepidermal nerve fiber density in the SOD1G93A mice of both peptidergic and non-peptidergic axons, compared with the WT, being the non-peptidergic the fewest. Sweat gland innervation was similarly affected in the SOD1G93A mouse at 12 weeks. Nonetheless, the number of DRG neurons from different sensory populations remained unchanged during all stages. Cutaneous sensory axons are affected in the SOD1G93A mouse, with non-peptidergic being slightly more vulnerable than peptidergic axons. Loss or lack of growth of the distal portion of sensory axons with preservation of the corresponding neuronal bodies suggest a distal axonopathy.
Collapse
Affiliation(s)
- Miguel A Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Nuria Gaja-Capdevila
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jorge J Vilches
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Unitat de Fisiologia Medica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
22
|
Kumar A, Williamson M, Hess A, DiPette DJ, Potts JD. Alpha-Calcitonin Gene Related Peptide: New Therapeutic Strategies for the Treatment and Prevention of Cardiovascular Disease and Migraine. Front Physiol 2022; 13:826122. [PMID: 35222088 PMCID: PMC8874280 DOI: 10.3389/fphys.2022.826122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-calcitonin gene-related peptide (α-CGRP) is a vasodilator neuropeptide of the calcitonin gene family. Pharmacological and gene knock-out studies have established a significant role of α-CGRP in normal and pathophysiological states, particularly in cardiovascular disease and migraines. α-CGRP knock-out mice with transverse aortic constriction (TAC)-induced pressure-overload heart failure have higher mortality rates and exhibit higher levels of cardiac fibrosis, inflammation, oxidative stress, and cell death compared to the wild-type TAC-mice. However, administration of α-CGRP, either in its native- or modified-form, improves cardiac function at the pathophysiological level, and significantly protects the heart from the adverse effects of heart failure and hypertension. Similar cardioprotective effects of the peptide were demonstrated in pressure-overload heart failure mice when α-CGRP was delivered using an alginate microcapsules-based drug delivery system. In contrast to cardiovascular disease, an elevated level of α-CGRP causes migraine-related headaches, thus the use of α-CGRP antagonists that block the interaction of the peptide to its receptor are beneficial in reducing chronic and episodic migraine headaches. Currently, several α-CGRP antagonists are being used as migraine treatments or in clinical trials for migraine pain management. Overall, agonists and antagonists of α-CGRP are clinically relevant to treat and prevent cardiovascular disease and migraine pain, respectively. This review focuses on the pharmacological and therapeutic significance of α-CGRP-agonists and -antagonists in various diseases, particularly in cardiac diseases and migraine pain.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Maelee Williamson
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Andrew Hess
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald J. DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay D. Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
- *Correspondence: Jay D. Potts,
| |
Collapse
|
23
|
Abstract
Migraine is a common and disabling neurological disorder, with several manifestations, of which pain is just one. Despite its worldwide prevalence, there remains a paucity of targeted and effective treatments for the condition, leaving many of those affected underserved by available treatments. Work over the last 30+ years has recently led to the emergence of the first targeted acute and preventive treatments in our practice since the triptan era in the early 1990s, which are changing the landscape of migraine treatment. These include the monoclonal antibodies targeting calcitonin gene-related peptide or its receptor. Evolving work on novel therapeutic targets, as well as continuing to exploit drugs used in other disorders that may also have a therapeutic effect in migraine, is likely to lead to more and more treatments being able to be offered to migraineurs. Future work involves the development of agents that lack vasoconstrictive effects, such as lasmiditan, do not contribute to medication overuse, such as the gepants, and do not interact with other drugs that may be used for the disorder, as well as agents that can act both acutely and preventively, thereby utilising the quantum between acute and preventive drug effects which has been demonstrated with different migraine drugs before. Here we discuss the evolution of oral migraine treatments over the last 5 years, including those that have gained regulatory approval and reached clinical practice, those in development and potential other targets for the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility and South London and Maudsley Biomedical Research Centre, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- NIHR King's Clinical Research Facility and South London and Maudsley Biomedical Research Centre, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK.
- Department of Neurology, University of California, Los Angeles, USA.
| |
Collapse
|
24
|
Martins-Oliveira M, Tavares I, Goadsby PJ. Was it something I ate? Understanding the bidirectional interaction of migraine and appetite neural circuits. Brain Res 2021; 1770:147629. [PMID: 34428465 DOI: 10.1016/j.brainres.2021.147629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022]
Abstract
Migraine attacks can involve changes of appetite: while fasting or skipping meals are often reported triggers in susceptible individuals, hunger or food craving are reported in the premonitory phase. Over the last decade, there has been a growing interest and recognition of the importance of studying these overlapping fields of neuroscience, which has led to novel findings. The data suggest additional studies are needed to unravel key neurobiological mechanisms underlying the bidirectional interaction between migraine and appetite. Herein, we review information about the metabolic migraine phenotype and explore migraine therapeutic targets that have a strong input on appetite neuronal circuits, including the calcitonin gene-related peptide (CGRP), the pituitary adenylate cyclase-activating polypeptide (PACAP) and the orexins. Furthermore, we focus on potential therapeutic peptide targets that are involved in regulation of feeding and play a role in migraine pathophysiology, such as neuropeptide Y, insulin, glucagon and leptin. We then examine the orexigenic - anorexigenic circuit feedback loop and explore glucose metabolism disturbances. Additionally, it is proposed a different perspective on the most reported feeding-related trigger - skipping meals - as well as a link between contrasting feeding behaviors (skipping meals vs food craving). Our review aims to increase awareness of migraine through the lens of appetite neurobiology in order to improve our understanding of the earlier phase of migraine, encourage better studies and cross-disciplinary collaborations, and provide novel migraine-specific therapeutic opportunities.
Collapse
Affiliation(s)
- Margarida Martins-Oliveira
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Nutrition and Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas de Lisboa, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal.
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Institute of Investigation and Innovation in Health (i3S), University of Porto, Portugal.
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Koşar Can Ö, Cabuş Ü, Kabukcu C, Fenkci S, Fenkci V, Enli Y, Korkmaz B. Changes in serum levels of calcitonin gene-related peptide, adiponectin, and ghrelin in pregnant women with gestational diabetes mellitus. J Obstet Gynaecol Res 2021; 47:4171-4179. [PMID: 34492741 DOI: 10.1111/jog.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 12/01/2022]
Abstract
AIM This study was designed to determine serum calcitonin gene-related peptide (CGRP) levels and define whether serum CGRP concentration is associated with adiponectin and ghrelin in pregnant women with gestational diabetes mellitus (GDM). STUDY DESIGN Thirty-six pregnant women with GDM and 43 normal pregnant women without glucose intolerance were evaluated in this study. The serum concentration of CGRP, adiponectin, and ghrelin were measured in two groups at the last trimester of gestation. MAIN FINDINGS The serum CGRP level in the GDM group was significantly higher than the control group. Serum levels of adiponectin and ghrelin in the GDM group were significantly lower than in the control group. In pregnant women with GDM, there was a significant negative correlation between serum CGRP level and adiponectin level. However, the correlation between maternal serum CGRP levels and ghrelin levels was not significant. CONCLUSION Our investigation shows that serum CGRP level was significantly higher in pregnant women with GDM in comparison with the control group. These results suggest that CGRP may play a very important role in GDM pathogenesis.
Collapse
Affiliation(s)
- Özlem Koşar Can
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ümit Cabuş
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Cihan Kabukcu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Semin Fenkci
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Veysel Fenkci
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Yasar Enli
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Berker Korkmaz
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
26
|
Choquet H, Yin J, Jacobson AS, Horton BH, Hoffmann TJ, Jorgenson E, Avins AL, Pressman AR. New and sex-specific migraine susceptibility loci identified from a multiethnic genome-wide meta-analysis. Commun Biol 2021; 4:864. [PMID: 34294844 PMCID: PMC8298472 DOI: 10.1038/s42003-021-02356-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Migraine is a common disabling primary headache disorder that is ranked as the most common neurological cause of disability worldwide. Women present with migraine much more frequently than men, but the reasons for this difference are unknown. Migraine heritability is estimated to up to 57%, yet much of the genetic risk remains unaccounted for, especially in non-European ancestry populations. To elucidate the etiology of this common disorder, we conduct a multiethnic genome-wide association meta-analysis of migraine, combining results from the GERA and UK Biobank cohorts, followed by a European-ancestry meta-analysis using public summary statistics. We report 79 loci associated with migraine, of which 45 were novel. Sex-stratified analyses identify three additional novel loci (CPS1, PBRM1, and SLC25A21) specific to women. This large multiethnic migraine study provides important information that may substantially improve our understanding of the etiology of migraine susceptibility.
Collapse
Affiliation(s)
- Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA.
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | | | - Brandon H Horton
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Thomas J Hoffmann
- Institute for Human Genetics, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Andrew L Avins
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Alice R Pressman
- Sutter Health, Walnut Creek, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
27
|
Mirzoyan RS, Gan’shina TS, Kurdyumov IN, Maslennikov DV, Gnezdilova AV, Gorbunov AA, Kursa EV, Turilova AI, Kostochka LM, Mirzoyan NR. Migraine pharmacology and brain ischemia. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.67463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Introduction: The aim of this review article was to analyze in details the mechanism of drugs’ effects in the treatment and prevention of a migraine attack, as well as to discuss the hypotheses of migraine pathogenesis.
Migraine attack treatment agents: The main agents for migraine attack treatment have an anti-nociceptive activity.
Agents for migraine preventive treatment: β-blocker propranolol also has anti-serotonin and analgesic activities, and most drugs used for the prophylactic treatment of migraine have a vasodilating activity.
Vascular hypothesis of migraine pathogenesis: Despite numerous studies that have expanded our understanding of migraine pathogenesis, the importance of the vascular component in the pathogenesis of this disease has not questioned yet.
Neurogenic hypotheses of cortical spreading depression: It is necessary to take into account the points of this hypothesis in the context of the pathophysiology of migraine.
Neurochemical serotonin hypotheses of migraine pathogenesis: Serotonin plays an important role in the pathogenesis of migraine.
Trigemino-vascular hypotheses of migraine pathogenesis: The trigemino-vascular hypothesis claims to solve the problem of migraine pain.
Migraine and ischemic brain damage: Migraine is a risk factor for ischemic stroke and cognitive disorders.
Search for the new anti-ischemic anti-migraine preparations: A methodology for the search for new anti-ischemic anti-serotonin drugs for the treatment of migraine is proposed.
Conclusion: Belonging of a drug to one or another pharmacological group does not always correspond to its therapeutic effect on the pathogenetic processes of migraine. Migraine with its variety of forms cannot fit only one of the proposed hypotheses on the pathogenesis of this disease.
Graphical abstract:
Collapse
|
28
|
Moattari CR, Granstein RD. Neuropeptides and neurohormones in immune, inflammatory and cellular responses to ultraviolet radiation. Acta Physiol (Oxf) 2021; 232:e13644. [PMID: 33724698 DOI: 10.1111/apha.13644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Humans are exposed to varying amounts of ultraviolet radiation (UVR) through sunlight. UVR penetrates into human skin leading to release of neuropeptides, neurotransmitters and neuroendocrine hormones. These messengers released from local sensory nerves, keratinocytes, Langerhans cells (LCs), mast cells, melanocytes and endothelial cells (ECs) modulate local and systemic immune responses, mediate inflammation and promote differing cell biologic effects. In this review, we will focus on both animal and human studies that elucidate the roles of calcitonin gene-related peptide (CGRP), substance P (SP), nerve growth factor (NGF), nitric oxide and proopiomelanocortin (POMC) derivatives in mediating immune and inflammatory effects of exposure to UVR as well as other cell biologic effects of UVR exposure.
Collapse
|
29
|
Spekker E, Laborc KF, Bohár Z, Nagy-Grócz G, Fejes-Szabó A, Szűcs M, Vécsei L, Párdutz Á. Effect of dural inflammatory soup application on activation and sensitization markers in the caudal trigeminal nucleus of the rat and the modulatory effects of sumatriptan and kynurenic acid. J Headache Pain 2021; 22:17. [PMID: 33789568 PMCID: PMC8011387 DOI: 10.1186/s10194-021-01229-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/15/2021] [Indexed: 01/12/2023] Open
Abstract
Background The topical inflammatory soup can model the inflammation of the dura mater causing hypersensitivity and activation of the trigeminal system, a phenomenon present in migraineurs. Calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase are important in the sensitization process there. 5-HT1B/1D receptor agonists, triptans are used as a treatment of migraine. Kynurenic acid an NMDA antagonist can act on structures involved in trigeminal activation. Aim We investigated the effect of inflammatory soup induced dural inflammation on the calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase levels in the caudal trigeminal nucleus. We also tested whether pretreatment with a well-known antimigraine drug, such as sumatriptan and kynurenic acid, a compound with a different mechanism of action, can affect these changes and if their modulatory effects are comparable. Material and methods After subcutaneous sumatriptan or intraperitoneal kynurenic acid the dura mater of adult male Sprague-Dawley rats (n = 72) was treated with inflammatory soup or its vehicle (synthetic interstitial fluid). Two and a half or four hours later perfusion was performed and the caudal trigeminal nucleus was removed for immunohistochemistry. Results and conclusion Inflammatory soup increased calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase in the caudal trigeminal nucleus compared to placebo, which was attenuated by sumatriptan and kynurenic acid. This suggests the involvement of 5-HT1B/1D and NMDA receptors in neurogenic inflammation development of the dura and thus in migraine attacks.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Klaudia Flóra Laborc
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | | | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| |
Collapse
|
30
|
Hashikawa-Hobara N, Mishima S, Okujima C, Shitanishi Y, Hashikawa N. Npas4 impairs fear memory via phosphorylated HDAC5 induced by CGRP administration in mice. Sci Rep 2021; 11:7006. [PMID: 33772088 PMCID: PMC7997869 DOI: 10.1038/s41598-021-86556-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
The relationships among neuropeptide, calcitonin gene-related peptide (CGRP), and memory formation remain unclear. Here, we showed that the intracerebroventricular administration of CGRP impaired the traumatic fear memories, in a widely studied animal model of post-traumatic stress disorder. We found that CGRP administration suppressed fear memory by increasing neuronal PAS domain protein 4 (Npas4), phosphorylated histone deacetylase 5 (HDAC5), and protein kinase D (PKD). We also discovered that Npas4 knockdown inhibited CGRP-mediated fear memory. CGRP decreased the binding between HDAC5 and the Npas4 enhancer site and increased the binding between acetylated histone H3 and the Npas4 enhancer site. The pharmacological inhibition or knockdown of PKD attenuated the CGRP-mediated impairment of fear memory and the increased phosphorylation of HDAC5 and Npas4 expression. Our findings demonstrated that the CGRP-PKD pathway was associated with the histone H3 acetylation-Npas4 pathway. These results suggested a novel function for CGRP on fear memory, through epigenetic regulation.
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Shuta Mishima
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Chihiro Okujima
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Youdai Shitanishi
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| |
Collapse
|
31
|
Huang D, Grady FS, Peltekian L, Laing JJ, Geerling JC. Efferent projections of CGRP/Calca-expressing parabrachial neurons in mice. J Comp Neurol 2021; 529:2911-2957. [PMID: 33715169 DOI: 10.1002/cne.25136] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
The parabrachial nucleus (PB) is composed of glutamatergic neurons at the midbrain-hindbrain junction. These neurons form many subpopulations, one of which expresses Calca, which encodes the neuropeptide calcitonin gene-related peptide (CGRP). This Calca-expressing subpopulation has been implicated in a variety of homeostatic functions, but the overall distribution of Calca-expressing neurons in this region remains unclear. Also, while previous studies in rats and mice have identified output projections from CGRP-immunoreactive or Calca-expressing neurons, we lack a comprehensive understanding of their efferent projections. We began by identifying neurons with Calca mRNA and CGRP immunoreactivity in and around the PB, including populations in the locus coeruleus and motor trigeminal nucleus. Calca-expressing neurons in the PB prominently express the mu opioid receptor (Oprm1) and are distinct from neighboring neurons that express Foxp2 and Pdyn. Next, we used Cre-dependent anterograde tracing with synaptophysin-mCherry to map the efferent projections of these neurons. Calca-expressing PB neurons heavily target subregions of the amygdala, bed nucleus of the stria terminalis, basal forebrain, thalamic intralaminar and ventral posterior parvicellular nuclei, and hindbrain, in different patterns depending on the injection site location within the PB region. Retrograde axonal tracing revealed that the previously unreported hindbrain projections arise from a rostral-ventral subset of CGRP/Calca neurons. Finally, we show that these efferent projections of Calca-expressing neurons are distinct from those of neighboring PB neurons that express Pdyn. This information provides a detailed neuroanatomical framework for interpreting experimental work involving CGRP/Calca-expressing neurons and opioid action in the PB region.
Collapse
Affiliation(s)
- Dake Huang
- Department of Neurology, University of Iowa, Iowa, USA
| | | | | | | | | |
Collapse
|
32
|
Wang LL, Wang HB, Fu FH, Yu LC. Role of calcitonin gene-related peptide in pain regulation in the parabrachial nucleus of naive rats and rats with neuropathic pain. Toxicol Appl Pharmacol 2021; 414:115428. [PMID: 33524449 DOI: 10.1016/j.taap.2021.115428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 01/14/2023]
Abstract
Researches have shown that calcitonin gene-related peptide (CGRP) plays a pivotal role in pain modulation. Nociceptive information from the periphery is relayed from parabrachial nucleus (PBN) to brain regions implicated involved in pain. This study investigated the effects and mechanisms of CGRP and CGRP receptors in pain regulation in the PBN of naive and neuropathic pain rats. Chronic sciatic nerve ligation was used to model neuropathic pain, CGRP and CGRP 8-37 were injected into the PBN of the rats, and calcitonin receptor-like receptor (CLR), a main structure of CGRP receptor, was knocked down by lentivirus-coated CLR siRNA. The hot plate test (HPT) and the Randall Selitto Test (RST) was used to determine the latency of the rat hindpaw response. The expression of CLR was detected with RT-PCR and western blotting. We found that intra-PBN injecting of CGRP induced an obvious anti-nociceptive effect in naive and neuropathic pain rats in a dose-dependent manner, the CGRP-induced antinociception was significantly reduced after injection of CGRP 8-37, Moreover, the mRNA and protein levels of CLR, in PBN decreased significantly and the antinociception CGRP-induced was also significantly lower in neuropathic pain rats than that in naive rats. Knockdown CLR in PBN decreased the expression of CLR and the antinociception induced by CGRP was observably decreased. Our results demonstrate that CGRP induced antinociception in PBN of naive or neuropathic pain rats, CGRP receptor mediates this effect. Neuropathic pain induced decreases in the expression of CGRP receptor, as well as in CGRP-induced antinociception in PBN.
Collapse
Affiliation(s)
- Lin-Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Hong-Bo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Feng-Hua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Long-Chuan Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; Neurobiology Laboratory, School of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
33
|
Endogenous calcitonin gene-related peptide in cerebrospinal fluid and early quality of life and mental health after good-grade spontaneous subarachnoid hemorrhage-a feasibility series. Neurosurg Rev 2020; 44:1479-1492. [PMID: 32572710 PMCID: PMC8121729 DOI: 10.1007/s10143-020-01333-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/22/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
The vasodilatory calcitonin gene-related peptide (CGRP) is excessively released after spontaneous subarachnoid hemorrhage (sSAH) and modulates psycho-behavioral function. In this pilot study, we prospectively analyzed the treatment-specific differences in the secretion of endogenous CGRP into cerebrospinal fluid (CSF) during the acute stage after good-grade sSAH and its impact on self-reported health-related quality of life (hrQoL). Twenty-six consecutive patients (f:m = 13:8; mean age 50.6 years) with good-grade sSAH were enrolled (drop out 19% (n = 5)): 35% (n = 9) underwent endovascular aneurysm occlusion, 23% (n = 6) microsurgery, and 23% (n = 6) of the patients with perimesencephalic SAH received standardized intensive medical care. An external ventricular drain was inserted within 72 h after the onset of bleeding. CSF was drawn daily from day 1–10. CGRP levels were determined via competitive enzyme immunoassay and calculated as “area under the curve” (AUC). All patients underwent a hrQoL self-report assessment (36-Item Short Form Health Survey (SF-36), ICD-10-Symptom-Rating questionnaire (ISR)) after the onset of sSAH (t1: day 11–35) and at the 6-month follow-up (t2). AUC CGRP (total mean ± SD, 5.7 ± 1.8 ng/ml/24 h) was excessively released into CSF after sSAH. AUC CGRP levels did not differ significantly when dichotomizing the aSAH (5.63 ± 1.77) and pSAH group (5.68 ± 2.08). aSAH patients revealed a higher symptom burden in the ISR supplementary item score (p = 0.021). Multiple logistic regression analyses corroborated increased mean levels of AUC CGRP in CSF at t1 as an independent prognostic factor for a significantly higher symptom burden in most ISR scores (compulsive-obsessive syndrome (OR 5.741, p = 0.018), anxiety (OR 7.748, p = 0.021), depression (OR 2.740, p = 0.005), the supplementary items (OR 2.392, p = 0.004)) and for a poorer performance in the SF-36 physical component summary score (OR 0.177, p = 0.001). In contrast, at t2, CSF AUC CGRP concentrations no longer correlated with hrQoL. To the best of our knowledge, this study is the first to correlate the levels of endogenous CSF CGRP with hrQoL outcome in good-grade sSAH patients. Excessive CGRP release into CSF may have a negative short-term impact on hrQoL and emotional health like anxiety and depression. While subacutely after sSAH, higher CSF levels of the vasodilator CGRP are supposed to be protective against vasospasm-associated cerebral ischemia, from a psychopathological point of view, our results suggest an involvement of CSF CGRP in the dysregulation of higher integrated behavior.
Collapse
|
34
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
35
|
Calcitonin Gene-Related Peptide (CGRP) and Cluster Headache. Brain Sci 2020; 10:brainsci10010030. [PMID: 31935868 PMCID: PMC7016902 DOI: 10.3390/brainsci10010030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Cluster headache (CH) is a severe primary headache with a prevalence of 1/1000 individuals, and a predominance in men. Calcitonin gene-related peptide (CGRP) is a potent vasodilator, originating in trigeminal neurons and has a central role in CH pathophysiology. CGRP and the CGRP receptor complex have recently taken center stage as therapeutic targets for primary headaches, such as migraine. Multiple CGRP and CGRP receptor monoclonal antibodies, as well as small molecule antagonists (gepants) are on their way constituting a new frontier of migraine and possibly CH medication. During a CH attack, there is an activation of the trigeminal-autonomic reflex with the release of CGRP, and inversely if CGRP is administered to a CH patient in an active disease phase, it triggers an attack. Increased levels of CGRP have been found in ipsilateral jugular vein blood during the active phase of CH. This process is hypothesized to have a key role in the intense pain perception and in the associated distinctive vasodilation. So far, clinical tests of CGRP antibodies have been inconclusive in CH patients. This review summarizes the current state of knowledge on the role of CGRP in CH pathology, and as a target for future treatments.
Collapse
|
36
|
Autonomic nerve dysfunction and impaired diabetic wound healing: The role of neuropeptides. Auton Neurosci 2019; 223:102610. [PMID: 31790954 DOI: 10.1016/j.autneu.2019.102610] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Abstract
Lower extremity ulcerations represent a major complication in diabetes mellitus and involve multiple physiological factors that lead to impairment of wound healing. Neuropeptides are neuromodulators implicated in various processes including diabetic wound healing. Diabetes causes autonomic and small sensory nerve fibers neuropathy as well as inflammatory dysregulation, which manifest with decreased neuropeptide expression and a disproportion in pro- and anti- inflammatory cytokine response. Therefore to fully understand the contribution of autonomic nerve dysfunction in diabetic wound healing it is crucial to explore the implication of neuropeptides. Here, we will discuss recent studies elucidating the role of specific neuropeptides in wound healing.
Collapse
|
37
|
Abstract
Introduction: Calcitonin Gene-Related Peptide (CGRP) plays a crucial role in migraine pathophysiology. A novel specific treatment strategy for the prevention of migraine incorporates monoclonal antibodies (mAbs) against CGRP and its canonical receptor. Eptinezumab, fremanezumab and galcanezumab block CGRP mediated effects by binding to the peptide, while erenumab blocks the CGRP receptor.Areas covered: Following a brief overview of pharmacological characteristics, we will review phase III trials for the use of CGRP mAbs in the prevention of episodic and chronic migraine.Expert opinion: All four CGRP mAbs demonstrated an excellent safety, tolerability and efficacy profile in migraine patients. Across all trials mAbs showed superior efficacy for the reduction of monthly migraine days compared to placebo with a net benefit of 2.8 days. Neither cardiovascular nor immunological safety concerns have emerged from clinical trials. Fremanezumab, galcanezumab, and erenumab are approved in the USA and Europe. Based on trial data there is no reason why these mAbs should not become first-line therapies in future. For now, we advocate for the use of mAbs in migraine prevention for patients who failed a minimum of two standard oral treatments based on the novelty and costs of this approach. mAbs are also effective in patients with medication overuse and with comorbid depression or anxiety disorders. Taken together, mAbs are likely to usher in a new era in migraine prevention and provide significant value to patients.
Collapse
Affiliation(s)
- Bianca Raffaelli
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Clinician Scientist Programm, Berlin Institute of Health (BIH), Berlin, Germany
| | - Lars Neeb
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Abstract
Over the past three decades, calcitonin gene-related peptide (CGRP) has emerged as a key molecule. Provocation experiments have demonstrated that intravenous CGRP infusion induces migraine-like attacks in migraine with and without aura patients. In addition, these studies have revealed a heterogeneous CGRP response, i.e., some migraine patients develop migraine-like attacks after CGRP infusion, while others do not. The role of CGRP in human migraine models has pointed to three potential sites of CGRP-induced migraine: (1) vasodilation via cyclic adenosine monophosphate (cAMP) and possibly cyclic guanosine monophosphate (cGMP); (2) activation of trigeminal sensory afferents, and (3) modulation of deep brain structures. In the future, refined human experimental studies will continue to unveil the role of CGRP in migraine pathogenesis.
Collapse
Affiliation(s)
- Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
|
40
|
Bersellini Farinotti A, Wigerblad G, Nascimento D, Bas DB, Morado Urbina C, Nandakumar KS, Sandor K, Xu B, Abdelmoaty S, Hunt MA, Ängeby Möller K, Baharpoor A, Sinclair J, Jardemark K, Lanner JT, Khmaladze I, Borm LE, Zhang L, Wermeling F, Cragg MS, Lengqvist J, Chabot-Doré AJ, Diatchenko L, Belfer I, Collin M, Kultima K, Heyman B, Jimenez-Andrade JM, Codeluppi S, Holmdahl R, Svensson CI. Cartilage-binding antibodies induce pain through immune complex-mediated activation of neurons. J Exp Med 2019; 216:1904-1924. [PMID: 31196979 PMCID: PMC6683987 DOI: 10.1084/jem.20181657] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis-associated joint pain is frequently observed independent of disease activity, suggesting unidentified pain mechanisms. We demonstrate that antibodies binding to cartilage, specific for collagen type II (CII) or cartilage oligomeric matrix protein (COMP), elicit mechanical hypersensitivity in mice, uncoupled from visual, histological and molecular indications of inflammation. Cartilage antibody-induced pain-like behavior does not depend on complement activation or joint inflammation, but instead on tissue antigen recognition and local immune complex (IC) formation. smFISH and IHC suggest that neuronal Fcgr1 and Fcgr2b mRNA are transported to peripheral ends of primary afferents. CII-ICs directly activate cultured WT but not FcRγ chain-deficient DRG neurons. In line with this observation, CII-IC does not induce mechanical hypersensitivity in FcRγ chain-deficient mice. Furthermore, injection of CII antibodies does not generate pain-like behavior in FcRγ chain-deficient mice or mice lacking activating FcγRs in neurons. In summary, this study defines functional coupling between autoantibodies and pain transmission that may facilitate the development of new disease-relevant pain therapeutics.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigen-Antibody Complex/metabolism
- Arthralgia/drug therapy
- Arthralgia/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Autoantibodies/immunology
- Autoantibodies/therapeutic use
- Behavior, Animal/drug effects
- Cartilage/immunology
- Cartilage Oligomeric Matrix Protein/immunology
- Collagen Type II/immunology
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Neurons/metabolism
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
Collapse
Affiliation(s)
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Diana Nascimento
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Duygu B Bas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Morado Urbina
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bingze Xu
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sally Abdelmoaty
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Azar Baharpoor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon Sinclair
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ia Khmaladze
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lars E Borm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lu Zhang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Wermeling
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Johan Lengqvist
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Quebec, Canada
| | - Inna Belfer
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kim Kultima
- Department of Medical Science, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Juan Miguel Jimenez-Andrade
- Department of Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Simone Codeluppi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Tardiolo G, Bramanti P, Mazzon E. Migraine: Experimental Models and Novel Therapeutic Approaches. Int J Mol Sci 2019; 20:E2932. [PMID: 31208068 PMCID: PMC6628212 DOI: 10.3390/ijms20122932] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
Migraine is a disorder affecting an increasing number of subjects. Currently, this disorder is not entirely understood, and limited therapeutic solutions are available. Migraine manifests as a debilitating headache associated with an altered sensory perception that may compromise the quality of life. Animal models have been developed using chemical, physical or genetic modifications, to evoke migraine-like hallmarks for the identification of novel molecules for the treatment of migraine. In this context, experimental models based on the use of chemicals as nitroglycerin or inflammatory soup were extensively used to mimic the acute state and the chronicity of the disorder. This manuscript is aimed to provide an overview of murine models used to investigate migraine pathophysiology. Pharmacological targets as 5-HT and calcitonin gene-related peptide (CGRP) receptors were evaluated for their relevance in the development of migraine therapeutics. Drug delivery systems using nanoparticles may be helpful for the enhancement of the brain targeting and bioavailability of anti-migraine drugs as triptans. In conclusion, the progresses in migraine management have been reached with the development of emerging agonists of 5-HT receptors and novel antagonists of CGRP receptors. The nanoformulations may represent a future perspective in which already known anti-migraine drugs showed to better exert their therapeutic effects.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy.
| |
Collapse
|
42
|
Yan JJ, Hwang PP. Novel discoveries in acid-base regulation and osmoregulation: A review of selected hormonal actions in zebrafish and medaka. Gen Comp Endocrinol 2019; 277:20-29. [PMID: 30878350 DOI: 10.1016/j.ygcen.2019.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 12/28/2022]
Abstract
Maintenance of internal ionic and acid-base homeostasis is critical for survival in all biological systems. Similar to mammals, aquatic fishes have developed sophisticated homeostatic mechanisms to mitigate metabolic or environmental disruptions in ionic and acid-base status of systemic body fluids via hormone-controlled transport of ions or acid equivalents. The present review summarizes newly discovered actions of several hormones in zebrafish (Danio rerio) and medaka (Oryzias latipes) that have greatly contributed to our overall understanding of ionic/acid-base regulation. For example, isotocin and cortisol were reported to enhance transport of various ions by stimulating the proliferation and/or differentiation of ionocyte progenitors. Meanwhile, stanniocalcin-1, a well-documented hypocalcemic hormone, was found to suppress ionocyte differentiation and thus downregulate secretion of H+ and uptake of Na+ and Cl-. Estrogen-related receptor and calcitonin gene-related peptide also regulate the differentiation of certain types of ionocytes to either stimulate or suppress H+ secretion and Cl- uptake. On the other hand, endothelin and insulin-like growth factor 1 activate the respective secretion of H+ and Na+/Cl through fast actions. These new findings enhance our understanding of how hormones regulate fish ionic and acid-base regulation while further providing new insights into vertebrate evolution, mammalian endocrinology and human disease-related therapeutics.
Collapse
Affiliation(s)
- Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
43
|
Akhtar A. The Role of Anti-calcitonin Gene-related Peptide in Migraine and its Implication in Developing Countries: A Reasonable Option to Consider Despite Higher Cost. Cureus 2019; 11:e4796. [PMID: 31396466 PMCID: PMC6679707 DOI: 10.7759/cureus.4796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Migraine is among the commonest causes of headache in all ages. It is the second most common cause of neurological disability. Currently, antihypertensive, antidepressants and antiepileptic drugs are reasonable preventable medications for chronic migraine. Despite the higher levels of stigma associated with this disease, fewer attempts were made in past regarding the treatment options for chronic migraine. Recently, a novelty treatment was introduced known as calcitonin gene-related peptide (CGRP) monoclonal antibodies as a possible mechanism for the prevention of migraine attacks. CGRP played an important role in the etiology of migraine headaches and was considered as the major peptide behind the cause of the headache disorders. We have reviewed the benefits of these monoclonal antibodies in terms of their efficacy and adverse effects with the available treatment choices. These drugs showed superior results when compared to the placebo and were considered generally safe in the majority of clinical trials. Earlier versions of CGRP antagonists, known as gepants, were less tolerable due to their tendency to cause liver and cardiovascular complications. Thus, in comparison to the earlier gepants, these CGRP monoclonal antibodies were safer and demonstrated excellent tolerability. Short-term side effects were only limited to mild-moderate injection site rash or pruritus, however, their long-term side effects are still unknown. Despite the higher cost of these drugs, we have analyzed the applicability of this drug in the developing countries. Although the quality-adjusted life year (QALY) gained per cost of the drug is still expensive and majority of people may not afford, its excellent tolerability and less adverse effects should also be considered a reason to implement this drug, particularly for resource-limited countries. Moreover, these medications could also become a prototype for future inventions and creations (cost-effective versions for resource-limited countries). In conclusion, this review suggests that CGRP monoclonal antibodies are safer and excellent alternate option for patients with chronic migraine as it has better efficacy, tolerability, and provides a hope to reduce the stigma associated with migraine. All these benefits should be the deciding factors when opting for this treatment and the decision should not be made solely on the socioeconomic status.
Collapse
Affiliation(s)
- Ali Akhtar
- Internal Medicine, Pakistan Air Force Hospital, Islamabad, PAK
| |
Collapse
|
44
|
Ong JJY, Wei DYT, Goadsby PJ. Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs. Drugs 2019; 78:411-437. [PMID: 29396834 DOI: 10.1007/s40265-018-0865-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Migraine is a common and disabling neurological disorder, with a significant socioeconomic burden. Its pathophysiology involves abnormalities in complex neuronal networks, interacting at different levels of the central and peripheral nervous system, resulting in the constellation of symptoms characteristic of a migraine attack. Management of migraine is individualised and often necessitates the commencement of preventive medication. Recent advancements in the understanding of the neurobiology of migraine have begun to account for some parts of the symptomatology, which has led to the development of novel target-based therapies that may revolutionise how migraine is treated in the future. This review will explore recent advances in the understanding of migraine pathophysiology, and pharmacotherapeutic developments for migraine prevention, with particular emphasis on novel treatments targeted at the calcitonin gene-related peptide (CGRP) pathway.
Collapse
Affiliation(s)
- Jonathan Jia Yuan Ong
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.,Division of Neurology, Department of Medicine, National University Health System, University Medicine Cluster, Singapore, Singapore
| | - Diana Yi-Ting Wei
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.
| |
Collapse
|
45
|
Sabharwal R, Mason BN, Kuburas A, Abboud FM, Russo AF, Chapleau MW. Increased receptor activity-modifying protein 1 in the nervous system is sufficient to protect against autonomic dysregulation and hypertension. J Cereb Blood Flow Metab 2019; 39:690-703. [PMID: 29297736 PMCID: PMC6446426 DOI: 10.1177/0271678x17751352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Calcitonin gene-related peptide (CGRP) can cause migraines, yet it is also a potent vasodilator that protects against hypertension. Given the emerging role of CGRP-targeted antibodies for migraine prevention, an important question is whether the protective actions of CGRP are mediated by vascular or neural CGRP receptors. To address this, we have characterized the cardiovascular phenotype of transgenic nestin/hRAMP1 mice that have selective elevation of a CGRP receptor subunit in the nervous system, human receptor activity-modifying protein 1 (hRAMP1). Nestin/hRAMP1 mice had relatively little hRAMP1 RNA in blood vessels and intravenous injection of CGRP caused a similar blood pressure decrease in transgenic and control mice. At baseline, nestin/hRAMP1 mice exhibited similar mean arterial pressure, heart rate, baroreflex sensitivity, and sympathetic vasomotor tone as control mice. We previously reported that expression of hRAMP1 in all tissues favorably improved autonomic regulation and attenuated hypertension induced by angiotensin II (Ang II). Similarly, in nestin/hRAMP1 mice, hypertension caused by Ang II or phenylephrine was greatly attenuated, and associated autonomic dysregulation and increased sympathetic vasomotor tone were diminished or abolished. We conclude that increased expression of neuronal CGRP receptors is sufficient to induce a protective change in cardiovascular autonomic regulation with implications for migraine therapy.
Collapse
Affiliation(s)
- Rasna Sabharwal
- 1 Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Bianca N Mason
- 2 Molecular and Cell Biology Program, University of Iowa, Iowa City, IA, USA
| | - Adisa Kuburas
- 3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Francois M Abboud
- 1 Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Andrew F Russo
- 2 Molecular and Cell Biology Program, University of Iowa, Iowa City, IA, USA.,3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,4 Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,5 Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Mark W Chapleau
- 1 Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,5 Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
46
|
Abstract
Vascular theories of migraine and cluster headache have dominated for many years the pathobiological concept of these disorders. This view is supported by observations that trigeminal activation induces a vascular response and that several vasodilating molecules trigger acute attacks of migraine and cluster headache in susceptible individuals. Over the past 30 years, this rationale has been questioned as it became clear that the actions of some of these molecules, in particular, calcitonin gene-related peptide and pituitary adenylate cyclase-activating peptide, extend far beyond the vasoactive effects, as they possess the ability to modulate nociceptive neuronal activity in several key regions of the trigeminovascular system. These findings have shifted our understanding of these disorders to a primarily neuronal origin with the vascular manifestations being the consequence rather than the origin of trigeminal activation. Nevertheless, the neurovascular component, or coupling, seems to be far more complex than initially thought, being involved in several accompanying features. The review will discuss in detail the anatomical basis and the functional role of the neurovascular mechanisms relevant to migraine and cluster headache.
Collapse
Affiliation(s)
- Jan Hoffmann
- 1 Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serapio M Baca
- 2 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Simon Akerman
- 3 Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
47
|
Abstract
OBJECTIVE Genetic and environmental factors interact in the development of major depressive disorder (MDD). While neurobiological correlates have only partially been elucidated, altered levels of calcitonin gene-related peptide (CGRP)-like immunoreactivity (LI) in animal models and in the cerebrospinal fluid of depressed patients were reported, suggesting that CGRP may be involved in the pathophysiology and/or be a trait marker of MDD. However, changes in CGRP brain levels resulting from interactions between genetic and environmental risk factors and the response to antidepressant treatment have not been explored. METHODS We therefore superimposed maternal separation (MS) onto a genetic rat model (Flinders-sensitive and -resistant lines, FSL/FRL) of depression, treated these rats with antidepressants (escitalopram and nortriptyline) and measured CGRP-LI in selected brain regions. RESULTS CGRP was elevated in the frontal cortex, hippocampus and amygdala (but not in the hypothalamus) of FSL rats. However, MS did not significantly alter levels of this peptide. Likewise, there were no significant interactions between the genetic and environmental factors. Most importantly, neither escitalopram nor nortriptyline significantly altered brain CGRP levels. CONCLUSION Our data demonstrate that increased brain levels of CGRP are present in a well-established rat model of depression. Given that antidepressants have virtually no effect on the brain level of this peptide, our study indicates that further research is needed to evaluate the functional role of CGRP in the FSL model for depression.
Collapse
|
48
|
Maasumi K, Michael RL, Rapoport AM. CGRP and Migraine: The Role of Blocking Calcitonin Gene-Related Peptide Ligand and Receptor in the Management of Migraine. Drugs 2019; 78:913-928. [PMID: 29869205 DOI: 10.1007/s40265-018-0923-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Migraine is a highly prevalent, complex neurological disorder. The burden of disease and the direct/indirect annual costs are enormous. Thus far, treatment options have been inadequate and mostly based on trial and error, leaving a significant unmet need for effective therapies. While the underlying pathophysiology of migraine is incompletely understood, blocking the calcitonin gene-related peptide (CGRP) using monoclonal antibodies targeting CGRP or its receptor and small molecule CGRP receptor antagonists (gepants) have emerged as a promising therapeutic opportunity for the management of migraine. In this review, we discuss new concepts in the pathophysiology of migraine and the role of CGRP, the current guidelines for treating migraine preventively, the medications that are being used, and their limitations. We then discuss small molecule CGRP receptor antagonists, monoclonal antibodies to CGRP ligand and receptor, as well as the detailed results of Phase II and III trials involving these novel treatments. We conclude with a discussion of the implications of blocking CGRP and its receptor.
Collapse
Affiliation(s)
- Kasra Maasumi
- Department of Neurology, University of California, San Francisco, USA.
| | - Rebecca L Michael
- Department of Neurology, University of California, San Francisco, USA
| | - Alan M Rapoport
- Department of Neurology, University of California, Los Angeles, USA
| |
Collapse
|
49
|
Oliveira MA, Lima WG, Schettini DA, Tilelli CQ, Chaves VE. Is calcitonin gene-related peptide a modulator of menopausal vasomotor symptoms? Endocrine 2019; 63:193-203. [PMID: 30306319 DOI: 10.1007/s12020-018-1777-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/29/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Calcitonin gene-related peptide (CGRP) is a neuropeptide widely distributed in the central and peripheral nervous systems, which is known as a potent vasodilator. Postmenopausal women who experience hot flushes have high levels of plasma CGRP, suggesting its involvement in menopausal vasomotor symptoms. METHODS In this review, we describe the biochemical aspects of CGRP and its effects associated with deficiencies of sexual hormones on skin temperature, vasodilatation, and sweating as well as the possible peripheral and central mechanisms involved in these events. RESULTS Several studies have shown that the effects of CGRP on increasing skin temperature and inducing vasodilatation are potentiated by a deficiency of sex hormones, a common condition of postmenopausal women. Additionally, the medial preoptic area of the hypothalamus, involved in thermoregulation, contains over 25-fold more CGRP-immunoreactive cells in female rodents compared with male rodents, reinforcing the role of female sex hormones on the action of CGRP. Some studies suggest that ovarian hormone deficiency decreases circulating endogenous CGRP, inducing an upregulation of CGRP receptors. Consequently, the high CGRP receptor density, especially in blood vessels, amplifies the stimulatory effects of this neuropeptide to raise skin temperature in postmenopausal women during hot flushes. CONCLUSIONS The duration of the perception of each hot flush in a woman is brief, while local reddening after intradermal administration of α-CGRP persists for 1 to 6 h. This contrast remains unclear.
Collapse
Affiliation(s)
- Maria Alice Oliveira
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - William Gustavo Lima
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Cristiane Queixa Tilelli
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
50
|
Lo CCW, Moosavi SM, Bubb KJ. The Regulation of Pulmonary Vascular Tone by Neuropeptides and the Implications for Pulmonary Hypertension. Front Physiol 2018; 9:1167. [PMID: 30190678 PMCID: PMC6116211 DOI: 10.3389/fphys.2018.01167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension (PH) is an incurable, chronic disease of small pulmonary vessels. Progressive remodeling of the pulmonary vasculature results in increased pulmonary vascular resistance (PVR). This causes secondary right heart failure. PVR is tightly regulated by a range of pulmonary vasodilators and constrictors. Endothelium-derived substances form the basis of most current PH treatments. This is particularly the case for pulmonary arterial hypertension. The major limitation of current treatments is their inability to reverse morphological changes. Thus, there is an unmet need for novel therapies to reduce the morbidity and mortality in PH. Microvessels in the lungs are highly innervated by sensory C fibers. Substance P and calcitonin gene-related peptide (CGRP) are released from C-fiber nerve endings. These neuropeptides can directly regulate vascular tone. Substance P tends to act as a vasoconstrictor in the pulmonary circulation and it increases in the lungs during experimental PH. The receptor for substance P, neurokinin 1 (NK1R), mediates increased pulmonary pressure. Deactivation of NK1R with antagonists, or depletion of substance P prevents PH development. CGRP is a potent pulmonary vasodilator. CGRP receptor antagonists cause elevated pulmonary pressure. Thus, the balance of these peptides is crucial within the pulmonary circulation (Graphical Abstract). Limited progress has been made in understanding their impact on pulmonary pathophysiology. This is an intriguing area of investigation to pursue. It may lead to promising new candidate therapies to combat this fatal disease. This review provides a summary of the current knowledge in this area. It also explores possible future directions for neuropeptides in PH.
Collapse
Affiliation(s)
- Charmaine C. W. Lo
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW, Australia
| | - Seyed M. Moosavi
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kristen J. Bubb
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW, Australia
| |
Collapse
|