1
|
Lee JH, Yang YH, Lin YT, Wang LC, Yu HH, Hu YC, Chiang BL. Characterizing Non-T2 Asthma: Key Pathways and Molecular Implications Indicative of Attenuated Th2 Response. Inflammation 2024:10.1007/s10753-024-02159-3. [PMID: 39466498 DOI: 10.1007/s10753-024-02159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Non-Type 2 (non-T2) asthma is characterized by a lack of allergic sensitization and normal to low total IgE levels. We aimed to explore molecular mechanisms and pathways differentiating non-T2 from T2-high pediatric asthma. We analyzed peripheral blood RNA samples from 11 non-T2 and 17 T2-high pediatric asthma patients using bulk RNA sequencing. Differentially expressed genes (DEGs) were identified, followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and Protein-Protein Interaction (PPI) network construction. Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) were employed to explore significance of these DEGs. We utilized independent public datasets GSE145505 to validate our findings. We investigated Th cytokine profiles in an independent cohort of pediatric patients with non-T2 asthma (n = 38) and T2-high asthma (n = 64). We demonstrated that the total serum IgE levels of children with non-T2 asthma (128.4 ± 159.5 IU/mL) was significantly lower than that of those with T2-high asthma (405.8 ± 252.1 IU/mL). Our analysis revealed 136 DEGs distinguishing non-T2 from T2-high asthma. IPA identified predicted inhibition of IgE-FcεRI signaling pathways in non-T2 asthma. Our DEG data showed the expression of IGHV4-39, IGLV1-40, IGLV1-47, IGLV1-44, IGHV1-69, IGLV6-57, IGLV3-19, IGLV3-1, and IGLC7 were downregulated in our non-T2 asthma patient. The non-T2 group exhibited significantly higher concentrations of IL-2, IFN-γ, IL-6, and IL-17A compared to the T2-high group. Our integrated analysis differentiated non-T2 from T2-high asthma by revealing downregulation of specific immunoglobulin genes influencing FcεRI signaling, elevated Th1 cytokines and Th17 cytokines might affect IgE associated sensitization and alter Th2 allergic response.
Collapse
Affiliation(s)
- Jyh-Hong Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China.
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Yu-Tsan Lin
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Hsin-Hui Yu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Ya-Chiao Hu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| |
Collapse
|
2
|
Tang D, Wang C, Gu Z, Li J, Jin L, Li J, Wang Z, Jiang RW. Discovery of anti-allergic components in Guomingkang Formula using sensitive HEMT biochips coupled with in vitro and in vivo validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154837. [PMID: 37126969 DOI: 10.1016/j.phymed.2023.154837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a prevalent allergic disease, which seriously affects the sufferers' life quality and increases the socioeconomic burden. Guominkang (GMK), a well-known prescription for AR treatment, showed satisfactory effects; while its anti-allergic components remain to be disclosed. AlGaN/GaN HEMT biochip is more sensitive and cost-effective than other binding equipments, indicating its great potential for screening of active ingredients from herbal medicines. METHODS AR mouse models were first established to test the anti-allergic effect of GMK and discover the ingredients absorbed into blood by ultra-high performance liquid chromatography-mass spectra (UHPLC-MS). Then, novel Syk/Lyn/Fyn-functionalized high electron mobility transistor (HEMT) biochips with high sensitivity and specificity were constructed and applied to screen the active components. Finally, the results from HEMT biochips screening were validated via in silico (molecular docking and molecular dynamics simulation), in vitro (RBL-2H3 cells), and in vivo (PCA mice model) assays. RESULTS GMK showed a potent therapeutic effect on AR mice, and fifteen components were identified from the medicated plasma. Furthermore, hamaudol was firstly found to selectively inhibit the Syk and Lyn, and emodin was to selectively inhibit Lyn, which were further confirmed by isothermal titration calorimetry, molecular docking, and molecular dynamics simulation analyses. Suppression of the activation of FcεRI-MAPK signals might be the possible mechanism of the anti-allergic effect of hamaudol. CONCLUSIONS The targets of emodin and hamaudol were discovered by HEMT biochips for the first time. This study provided a novel and effective strategy to discover active components in a complex herbal formula by using AlGaN/GaN HEMT biochips.
Collapse
Affiliation(s)
- Ding Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China; Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Chen Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China
| | - Zhiqi Gu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, PR China
| | - Jiadong Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, PR China
| | - Lu Jin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China
| | - Juan Li
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Zhixin Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China.
| | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China.
| |
Collapse
|
3
|
Fosdick MG, Loftus S, Phillips I, Zacharias ZR, Houtman JCD. Glycerol monolaurate inhibition of human B cell activation. Sci Rep 2022; 12:13506. [PMID: 35931746 PMCID: PMC9355977 DOI: 10.1038/s41598-022-17432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Glycerol monolaurate (GML) is a naturally occurring antimicrobial agent used commercially in numerous products and food items. GML is also used as a homeopathic agent and is being clinically tested to treat several human diseases. In addition to its anti-microbial function, GML suppresses immune cell proliferation and inhibits primary human T cell activation. GML suppresses T cell activation by altering membrane dynamics and disrupting the formation of protein clusters necessary for intracellular signaling. The ability of GML to disrupt cellular membranes suggests it may alter other cell types. To explore this possibility, we tested how GML affects human B cells. We found that GML inhibits BCR-induced cytokine production, phosphorylation of signaling proteins, and protein clustering, while also changing cellular membrane dynamics and dysregulating cytoskeleton rearrangement. Although similar, there are also differences between how B cells and T cells respond to GML. These differences suggest that unique intrinsic features of a cell may result in differential responses to GML treatment. Overall, this study expands our understanding of how GML impacts the adaptive immune response and contributes to a broader knowledge of immune modulating monoglycerides.
Collapse
Affiliation(s)
- Micaela G Fosdick
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA
| | - Shannon Loftus
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Isabella Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Zeb R Zacharias
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Jon C D Houtman
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA.
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
4
|
Rodríguez-Sanz A, Sánchez-Villanueva R, Domínguez-Ortega J, Álvarez L, Fiandor A, Nozal P, Sanz P, Pizarro-Sánchez MS, Andrés E, Cabezas A, Pérez-Alba A, Bajo MA, Selgas R, Bellón T. Characterization of hypersensitivity reactions to polysulfone hemodialysis membranes. Ann Allergy Asthma Immunol 2022; 128:713-720.e2. [PMID: 35288272 DOI: 10.1016/j.anai.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND In recent years, cases have been reported in which unexpected systemic hypersensitivity reactions occurred in patients dialyzed with polysulfone- or polyethersulfone-biocompatible membranes in the absence of other risk factors. The pathomechanisms involved in these reactions are largely unknown. OBJECTIVE To characterize hypersensitivity reactions to polysulfone hemodialysis using clinical and laboratory data and to identify biomarkers suitable for endotype identification and diagnosis. METHODS We prospectively collected data from 29 patients with suspected hypersensitivity reactions to polysulfone hemodialysis membranes. Clinical laboratory parameters such as tryptase, blood cell counts, and complement levels were recorded. Acute samples were obtained from 18 cases for the ex vivo assessment of basophil activation by flow cytometry analysis of CD63, CD203, and FcεRI cell membrane expression. Serum cytokines and anaphylatoxin concentrations were evaluated in 16 cases by Luminex and cytometric bead array analysis. RESULTS Tryptase was elevated during the acute reaction in 4 cases. Evidence of basophil activation was obtained in 10 patients. Complement activation was found in only 2 cases. However, C5a serum levels tended to increase during the acute reaction in those patients with hypoxemia. Significantly higher serum levels of interleukin-6 were observed during the acute reactions to polysulfone hemodialysis (P = .0103). CONCLUSION Based on biomarker analysis, various endotypes were identified, including type I-like (with the involvement of mast cells or basophils), complement, and cytokine (interleukin-6) release-related reactions, with some patients showing mixed reactions. Further research is needed to unravel the exact mechanisms involved in the activation of these cellular and molecular pathways.
Collapse
Affiliation(s)
- Aranzazu Rodríguez-Sanz
- Drug Hypersensitivity Laboratory, Institute for Health Research Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Javier Domínguez-Ortega
- Drug Hypersensitivity Laboratory, Institute for Health Research Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; Allergy Service, Hospital Universitario La Paz, Madrid, Spain
| | - Laura Álvarez
- Nephrology Service, Hospital Universitario La Paz, Madrid, Spain
| | - Ana Fiandor
- Allergy Service, Hospital Universitario La Paz, Madrid, Spain
| | - Pilar Nozal
- Immunology Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Paloma Sanz
- Nephrology Service, Hospital Quirón Ruber Juan Bravo, Madrid, Spain
| | | | - Elena Andrés
- Nephrology Service, Hospital General Universitario de Albacete, Albacete, Spain
| | - Antonio Cabezas
- Nephrology Service, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - Alejandro Pérez-Alba
- Nephrology Service, Hospital General Universitario de Castellón, Castellón, Spain
| | - M Auxiliadora Bajo
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Nephrology Service, Hospital Universitario La Paz, Madrid, Spain
| | - Rafael Selgas
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Nephrology Service, Hospital Universitario La Paz, Madrid, Spain
| | - Teresa Bellón
- Drug Hypersensitivity Laboratory, Institute for Health Research Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.
| |
Collapse
|
5
|
Fosdick MG, Chheda PR, Tran PM, Wolff A, Peralta R, Zhang MY, Kerns R, Houtman JCD. Suppression of human T cell activation by derivatives of glycerol monolaurate. Sci Rep 2021; 11:8943. [PMID: 33903712 PMCID: PMC8076190 DOI: 10.1038/s41598-021-88584-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
Glycerol monolaurate (GML), a naturally occurring monoglyceride, is widely used commercially for its antimicrobial properties. Interestingly, several studies have shown that GML not only has antimicrobial properties but is also an anti-inflammatory agent. GML inhibits peripheral blood mononuclear cell proliferation and inhibits T cell receptor (TCR)-induced signaling events. In this study, we perform an extensive structure activity relationship analysis to investigate the structural components of GML necessary for its suppression of human T cell activation. Human T cells were treated with analogs of GML, differing in acyl chain length, head group, linkage of acyl chain, and number of laurate groups. Treated cells were then tested for changes in membrane dynamics, LAT clustering, calcium signaling, and cytokine production. We found that an acyl chain with 12-14 carbons, a polar head group, an ester linkage, and a single laurate group at any position are all necessary for GML to inhibit protein clustering, calcium signaling, and cytokine production. Removing the glycerol head group or replacing the ester linkage with a nitrogen prevented derivative-mediated inhibition of protein cluster formation and calcium signaling, while still inhibiting TCR-induced cytokine production. These findings expand our current understanding of the mechanisms of action of GML and the of GML needed to function as a novel immunosuppressant.
Collapse
Affiliation(s)
- Micaela G Fosdick
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA
| | - Pratik Rajesh Chheda
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, USA
| | - Phuong M Tran
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Alex Wolff
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Ronal Peralta
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Michael Y Zhang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Robert Kerns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, USA
| | - Jon C D Houtman
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
6
|
Sun Y, Yang Y, Zhao Y, Li X, Zhang Y, Liu Z. The role of the tyrosine kinase Lyn in allergy and cancer. Mol Immunol 2021; 131:121-126. [PMID: 33419562 DOI: 10.1016/j.molimm.2020.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023]
Abstract
With worsening air pollution brought by global social development, the prevalence of allergic diseases has increased dramatically in the past few decades. The novel Lck/yes-related protein tyrosine kinase (Lyn) belongs to the Src kinase family (SFK) and plays a pivotal role in the pathogenesis of inflammation, tumor, and allergy. This signaling molecule is vital in the IgE/FcεRI signaling pathway that regulates allergy. The Lyn-FcεRIβ interaction is essential for mast cell activation. The signaling pathway of Lyn has become the focus of immune, inflammatory, tumor, and allergy research. This molecule has positive and negative regulatory effects, which have attracted researchers' attention. This paper reviews the basic characteristics of Lyn and its regulatory mechanism and role in tumor and other diseases, specifically in allergies.
Collapse
Affiliation(s)
- Yizhao Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yanlei Yang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yang Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xiangsheng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, 071002, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
7
|
Roberts AD, Davenport TM, Dickey AM, Ahn R, Sochacki KA, Taraska JW. Structurally distinct endocytic pathways for B cell receptors in B lymphocytes. Mol Biol Cell 2020; 31:2826-2840. [PMID: 33085561 PMCID: PMC7851864 DOI: 10.1091/mbc.e20-08-0532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
B lymphocytes play a critical role in adaptive immunity. On antigen binding, B cell receptors (BCR) cluster on the plasma membrane and are internalized by endocytosis. In this process, B cells capture diverse antigens in various contexts and concentrations. However, it is unclear whether the mechanism of BCR endocytosis changes in response to these factors. Here, we studied the mechanism of soluble antigen-induced BCR clustering and internalization in a cultured human B cell line using correlative superresolution fluorescence and platinum replica electron microscopy. First, by visualizing nanoscale BCR clusters, we provide direct evidence that BCR cluster size increases with F(ab’)2 concentration. Next, we show that the physical mechanism of internalization switches in response to BCR cluster size. At low concentrations of antigen, B cells internalize small BCR clusters by classical clathrin-mediated endocytosis. At high antigen concentrations, when cluster size increases beyond the size of a single clathrin-coated pit, B cells retrieve receptor clusters using large invaginations of the plasma membrane capped with clathrin. At these sites, we observed early and sustained recruitment of actin and an actin polymerizing protein FCHSD2. We further show that actin recruitment is required for the efficient generation of these novel endocytic carriers and for their capture into the cytosol. We propose that in B cells, the mechanism of endocytosis switches to accommodate large receptor clusters formed when cells encounter high concentrations of soluble antigen. This mechanism is regulated by the organization and dynamics of the cortical actin cytoskeleton.
Collapse
Affiliation(s)
- Aleah D Roberts
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thaddeus M Davenport
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrea M Dickey
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Regina Ahn
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
8
|
Shi P, Zhang L, Wang J, Lu D, Li Y, Ren J, Shen M, Zhang L, Huang J. Porcine FcεRI Mediates Porcine Reproductive and Respiratory Syndrome Virus Multiplication and Regulates the Inflammatory Reaction. Virol Sin 2018; 33:249-260. [PMID: 29761267 PMCID: PMC6178556 DOI: 10.1007/s12250-018-0032-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/02/2018] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) shows characteristic antibody-dependent enhancement (ADE) of infection and causes porcine systemic inflammation, which is similar to a type I allergic reaction; however, the role of porcine FcεRI in ADE is still unclear. In this study, the expression of different Fc receptors (FcRs) on macrophages was investigated in a PRRSV 3D4/21 cell infection model in the presence or absence of PRRSV antibody. The transcription level of FcγII and FcεRI was significantly up-regulated under PRRSV-antibody complex infection. Internalization and proliferation of PRRSV were promoted by the ADE mechanism when FcεRI was expressed in permissive 3D4/21 cells and the non-permissive cell line HEK 293T. Transcriptome sequencing data showed that the expression levels of AKT, ERK and other signal molecules in the anti-inflammatory pathway were significantly increased, especially in the cells infected with the PRRSV-antibody immune complex. Inflammatory regulatory molecules such as PLA2G6, LOX, TRPM8 and TRPM4 were significantly up-regulated following PRRSV infection but significantly down-regulated in the cells infected with the PRRSV-antibody immune complex. Our results demonstrated that FcεRI could be involved in PRRSV ADE, the antigen presenting process and regulation of the inflammatory response during PRRSV infection, which provides new insights into PRRSV infection mediated by FcεRI and the PRRSV-antibody immune complex.
Collapse
Affiliation(s)
- Peidian Shi
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Jiashun Wang
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Dong Lu
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Yi Li
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Jie Ren
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Menglu Shen
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Lei Zhang
- School of Life Sciences, Tianjin University, 300072, Tianjin, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
9
|
Falcone FH, Wan D, Barwary N, Sagi-Eisenberg R. RBL cells as models for in vitro studies of mast cells and basophils. Immunol Rev 2018; 282:47-57. [DOI: 10.1111/imr.12628] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Franco H. Falcone
- Division of Molecular Therapeutics and Formulation; School of Pharmacy; University of Nottingham; Nottingham UK
| | - Daniel Wan
- Division of Molecular Therapeutics and Formulation; School of Pharmacy; University of Nottingham; Nottingham UK
| | - Nafal Barwary
- Division of Molecular Therapeutics and Formulation; School of Pharmacy; University of Nottingham; Nottingham UK
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
10
|
Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Hum Vaccin Immunother 2018; 14:815-831. [PMID: 29257936 DOI: 10.1080/21645515.2017.1417711] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Basophils are circulating cells that are associated quite exclusively with allergy response and hypersensitivity reactions but their role in the immune network might be much more intriguing and complex than previously expected. The feasibility of testing their biology in vitro for allergy research and diagnosis, due fundamentally to their quite easy availability in the peripheral blood, made them the major source for assessing allergy in the laboratory assay, when yet many further cells such as mast cells and eosinophils are much more involved as effector cells in allergy than circulating basophils. Interestingly, basophil numbers change rarely in peripheral blood during an atopic response, while we might yet observe an increase in eosinophils and modification in the biology of mast cells in the tissue during an hypersensitivity response. Furthermore, the fact that basophils are very scanty in numbers suggests that they should mainly serve as regulatory cells in immunity, rather than effector leukocytes, as still believed by the majority of physicians. In this review we will try to describe and elucidate the possible role of these cells, known as "innate IL4-producing cells" in the immune regulation of allergy and their function in allergen immunotherapy.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- a Department of Neurological and Movement Sciences , University of Verona , Verona , Italy
| | - Geir Bjørklund
- b Council for Nutritional and Environmental Medicine (CONEM) , Mo i Rana , Norway
| | - Andrea Sboarina
- c Department of Surgery , Dentistry, Paediatrics and Gynaecology-University of Verona , Verona , Italy
| | - Antonio Vella
- d Unit of Immunology-Azienda Ospedaliera Universitaria Integrata (AOUI) , Verona , Italy
| |
Collapse
|
11
|
Halova I, Draber P. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case. Front Cell Dev Biol 2016; 4:43. [PMID: 27243007 PMCID: PMC4861716 DOI: 10.3389/fcell.2016.00043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
12
|
Krager KJ, Koland JG. Metabolically Biotinylated Reporters for Electron Microscopic Imaging of Cytoplasmic Membrane Microdomains. Methods Mol Biol 2015; 1376:87-96. [PMID: 26552677 DOI: 10.1007/978-1-4939-3170-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The protein and lipid substituents of cytoplasmic membranes are not in general homogeneously distributed across the membrane surface. Many membrane proteins, including ion channels, receptors, and other signaling molecules, exhibit a profound submicroscopic spatial organization, in some cases clustering in submicron membrane subdomains having a protein and lipid composition distinct from that of the bulk membrane. In the case of membrane-associated signaling molecules, mounting evidence indicates that their nanoscale organization, for example the colocalization of differing signaling molecules in the same membrane microdomains versus their segregation into distinct microdomain species, can significantly impact signal transduction. Biochemical membrane fractionation approaches have been used to characterize membrane subdomains of unique protein and lipid composition, including cholesterol-rich lipid raft structures. However, the intrinsically perturbing nature of fractionation methods makes the interpretation of such characterization subject to question, and indeed the existence and significance of lipid rafts remain controversial. Electron microscopic (EM) imaging of immunogold-labeled proteins in plasma membrane sheets has emerged as a powerful method for visualizing the nanoscale organization and colocalization of membrane proteins, which is not as perturbing of membrane structure as are biochemical approaches. For the purpose of imaging putative lipid raft structures, we recently developed a streamlined EM membrane sheet imaging procedure that employs a unique genetically encoded and metabolically biotinylated reporter that is targeted to membrane inner leaflet lipid rafts. We describe here the principles of this procedure and its application in the imaging of plasma membrane inner leaflet lipid rafts.
Collapse
Affiliation(s)
- Kimberly J Krager
- Department of Pharmacology, The University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA.,Division of Radiation Health, University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, 72205, USA
| | - John G Koland
- Department of Pharmacology, The University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
13
|
Maity PC, Blount A, Jumaa H, Ronneberger O, Lillemeier BF, Reth M. B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Sci Signal 2015; 8:ra93. [PMID: 26373673 DOI: 10.1126/scisignal.2005887] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The B cell antigen receptors (BCRs) play an important role in the clonal selection of B cells and their differentiation into antibody-secreting plasma cells. Mature B cells have both immunoglobulin M (IgM) and IgD types of BCRs, which have identical antigen-binding sites and are both associated with the signaling subunits Igα and Igβ, but differ in their membrane-bound heavy chain isoforms. By two-color direct stochastic optical reconstruction microscopy (dSTORM), we showed that IgM-BCRs and IgD-BCRs reside in the plasma membrane in different protein islands with average sizes of 150 and 240 nm, respectively. Upon B cell activation, the BCR protein islands became smaller and more dispersed such that the IgM-BCRs and IgD-BCRs were found in close proximity to each other. Moreover, specific stimulation of one class of BCR had minimal effects on the organization of the other. These conclusions were supported by the findings from two-marker transmission electron microscopy and proximity ligation assays. Together, these data provide evidence for a preformed multimeric organization of BCRs on the plasma membrane that is remodeled after B cell activation.
Collapse
Affiliation(s)
- Palash Chandra Maity
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany. Department of Molecular Immunology, Institute of Biology III at the Faculty of Biology of the University of Freiburg, D-79104, and at the Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany.
| | - Amy Blount
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hassan Jumaa
- Department of Molecular Immunology, Institute of Biology III at the Faculty of Biology of the University of Freiburg, D-79104, and at the Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany. Institute of Immunology, Ulm University, D-89081 Ulm, Germany
| | - Olaf Ronneberger
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany. Institute of Computer Science, University of Freiburg, D-79110 Freiburg Germany
| | | | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany. Department of Molecular Immunology, Institute of Biology III at the Faculty of Biology of the University of Freiburg, D-79104, and at the Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany.
| |
Collapse
|
14
|
Li JR, Ross SS, Liu Y, Liu YX, Wang KH, Chen HY, Liu FT, Laurence TA, Liu GY. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells. ACS NANO 2015; 9:6738-6746. [PMID: 26057701 PMCID: PMC4758354 DOI: 10.1021/acsnano.5b02270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A recent finding reports that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113-128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. These results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.
Collapse
Affiliation(s)
- Jie-Ren Li
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Shailise S. Ross
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yang Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ying X. Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kang-hsin Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Huan-Yuan Chen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Fu-Tong Liu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Ted A. Laurence
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
15
|
Maity PC, Yang J, Klaesener K, Reth M. The nanoscale organization of the B lymphocyte membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:830-40. [PMID: 25450974 PMCID: PMC4547082 DOI: 10.1016/j.bbamcr.2014.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 12/13/2022]
Abstract
The fluid mosaic model of Singer and Nicolson correctly predicted that the plasma membrane (PM) forms a lipid bi-layer containing many integral trans-membrane proteins. This model also suggested that most of these proteins were randomly dispersed and freely diffusing moieties. Initially, this view of a dynamic and rather unorganized membrane was supported by early observations of the cell surfaces using the light microscope. However, recent studies on the PM below the diffraction limit of visible light (~250nm) revealed that, at nanoscale dimensions, membranes are highly organized and compartmentalized structures. Lymphocytes are particularly useful to study this nanoscale membrane organization because they grow as single cells and are not permanently engaged in cell:cell contacts within a tissue that can influence membrane organization. In this review, we describe the methods that can be used to better study the protein:protein interaction and nanoscale organization of lymphocyte membrane proteins, with a focus on the B cell antigen receptor (BCR). Furthermore, we discuss the factors that may generate and maintain these membrane structures.
Collapse
Affiliation(s)
- Palash Chandra Maity
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Jianying Yang
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kathrin Klaesener
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
16
|
Uermösi C, Zabel F, Manolova V, Bauer M, Beerli RR, Senti G, Kündig TM, Saudan P, Bachmann MF. IgG-mediated down-regulation of IgE bound to mast cells: a potential novel mechanism of allergen-specific desensitization. Allergy 2014; 69:338-47. [PMID: 24354793 DOI: 10.1111/all.12327] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allergen-specific IgGs are known to inhibit IgE-mediated mast cell degranulation by two mechanisms, allergen-neutralization and engagement of the inhibitory FcγRIIB recruiting the phosphatase SHIP-1. Here we unravel an additional mechanism of IgG-mediated mast cell desensitization in mice: down-regulation of allergen-specific IgE. METHODS Mast cells were loaded in vitro and in vivo with monoclonal IgE antibodies specific for Fel d1 and exposed to immune complexes consisting of Fel d1-specific IgG antibodies recognizing different epitopes. Down regulation of IgE was followed by flow cytometry. RESULTS Mast cells loaded with 2 different IgE antibodies efficiently internalized the IgE antibodies if exposed to recombinant Feld d1. In contrast, no down-regulation occurred if mast cells were loaded with IgE antibodies exhibiting a single specificity before stimulation with recombinant Fel d1 [corrected]. Interestingly, however, IgEs of a single specificity were rapidly down-regulated in vitro and in vivo in the presence of Fel d1-specific monoclonal IgGs recognizing another epitope on Fel d1. Despite FceRI-internalization, little calcium flux or mast cell degranulation occurred. FcγRIIB played a dual role in the process since it enhanced IgE internalization and prevented cellular activation as documented by the inhibited calcium flux and mast cell degranulation. Similar observations were made in the presence of low concentrations of IgEs recognizing several epitopes on Fel d1. CONCLUSION We demonstrate here that Fel d1-specific IgG antibodies interact with FcγRIIB which (i) promotes IgE internalization; and (ii) inhibits mast cell activation. These results broaden our understanding of allergen-specific desensitization and may provide a mechanism for long-term desensitization of mast cells by selective removal of long-lived IgE antibodies on mast cells.
Collapse
Affiliation(s)
- C. Uermösi
- Cytos Biotechnology AG; Zurich-Schlieren Switzerland
| | - F. Zabel
- Department of Dermatology; Zurich University Hospital; Zurich Switzerland
| | - V. Manolova
- Cytos Biotechnology AG; Zurich-Schlieren Switzerland
| | - M. Bauer
- Intercell AG; Schlieren Switzerland
| | | | - G. Senti
- Department of Dermatology; Zurich University Hospital; Zurich Switzerland
| | - T. M. Kündig
- Department of Dermatology; Zurich University Hospital; Zurich Switzerland
| | - P. Saudan
- Cytos Biotechnology AG; Zurich-Schlieren Switzerland
| | - M. F. Bachmann
- Department of Dermatology; Zurich University Hospital; Zurich Switzerland
- The Jenner Institute; University of Oxford; Headington Oxford UK
| |
Collapse
|
17
|
Li Q, Zhao Y, Zheng X, Chen Q, Zhang X. Chlorogenic acid alters the biological characteristics of basophil granulocytes by affecting the fluidity of the cell membrane and triggering pseudoallergic reactions. Int J Mol Med 2013; 32:1273-80. [PMID: 24064570 DOI: 10.3892/ijmm.2013.1505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/27/2013] [Indexed: 11/06/2022] Open
Abstract
It is not clear whether pseudoallergic reactions are caused by similar mechanisms as type I allergic reactions. 3‑Caffeoylquinic acid (chlorogenic acid) is an active ingredient in traditional Chinese medicines used for antibacterial, anti-inflammatory and cholagogic purposes. It is assumed to be the reason for the high allergic reaction rates associated with certain traditional Chinese medicine injection solutions. The aim of the present study was to investigate the possible mechanisms through which chlorogenic acid triggers pseudoallergic reactions. The fluidity of the cell membrane was investigated using fluorescence recovery after photobleaching. Western blot analysis was used to measure the phosphorylation levels of the Spleen tyrosine kinase (Syk) protein and Fluo‑3/AM fluorescent probes were used to investigate the influx of calcium ions. In addition, fluorescence microscopy and phalloidin were used to determine F‑actin depolymerization levels. The secretion rate of β‑hexosaminidase by RBL‑2H3 cells clearly increased following treatment with chlorogenic acid and the levels of cytoskeletal disintegration were also markedly increased. Furthermore, we detected an increase in the intracellular calcium ion concentration along with distinct changes in Syk protein phosphorylation and cellular F‑actin. These changes indicated that chlorogenic acid affected the restructuring of the cytoskeleton and played a role in cell degranulation. In conclusion, chlorogenic acid may lead to the aggregation of lipid rafts on the cell membrane surface by altering RBL‑2H3 cell membrane fluidity, thus triggering Syk‑related signal transduction and inducing a truncated type I like allergic reaction.
Collapse
Affiliation(s)
- Qin Li
- Department of Pharmacology, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | | | | | | | | |
Collapse
|
18
|
Cleyrat C, Darehshouri A, Anderson KL, Page C, Lidke DS, Volkmann N, Hanein D, Wilson BS. The architectural relationship of components controlling mast cell endocytosis. J Cell Sci 2013; 126:4913-25. [PMID: 23986485 DOI: 10.1242/jcs.128876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells use multiple routes for receptor internalization. Here, we examine the topographical relationships of clathrin-dependent and clathrin-independent endocytic structures on the plasma membranes of leukemia-derived mast cells. The high affinity IgE receptor (FcεRI) utilizes both pathways, whereas transferrin receptor serves as a marker for the classical clathrin-mediated endocytosis pathway. Both receptors were tracked by live-cell imaging in the presence or absence of inhibitors that established their differential dependence on specific endocytic adaptor proteins. The topology of antigen-bound FcεRI, clathrin, dynamin, Arf6 and Eps15-positive structures were analyzed by 2D and 3D immunoelectron microscopy techniques, revealing their remarkable spatial relationships and unique geometry. We conclude that the mast cell plasma membrane has multiple specialized domains for endocytosis. Their close proximity might reflect shared components, such as lipids and adaptor proteins, that facilitate inward membrane curvature. Intersections between these specialized domains might represent sorting stations that direct cargo to specific endocytic pathways.
Collapse
Affiliation(s)
- Cédric Cleyrat
- Department of Pathology University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Barua D, Goldstein B. A mechanistic model of early FcεRI signaling: lipid rafts and the question of protection from dephosphorylation. PLoS One 2012; 7:e51669. [PMID: 23284735 PMCID: PMC3524258 DOI: 10.1371/journal.pone.0051669] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
We present a model of the early events in mast cell signaling mediated by FcεRI where the plasma membrane is composed of many small ordered lipid domains (rafts), surrounded by a non-order region of lipids consisting of the remaining plasma membrane. The model treats the rafts as transient structures that constantly form and breakup, but that maintain a fixed average number per cell. The rafts have a high propensity for harboring Lyn kinase, aggregated, but not unaggregated receptors, and the linker for the activation of T cells (LAT). Phosphatase activity in the rafts is substantially reduced compared to the nonraft region. We use the model to analyze published experiments on the rat basophilic leukemia (RBL)-2H3 cell line that seem to contradict the notion that rafts offer protection. In these experiments IgE was cross-linked with a multivalent antigen and then excess monovalent hapten was added to break-up cross-links. The dephosphorylation of the unaggregated receptor (nonraft associated) and of LAT (raft associated) were then monitored in time and found to decay at similar rates, leading to the conclusion that rafts offer no protection from dephosphorylation. In the model, because the rafts are transient, a protein that is protected while in a raft will be subject to dephosphorylation when the raft breaks up and the protein finds itself in the nonraft region of the membrane. We show that the model is consistent with the receptor and LAT dephosphorylation experiments while still allowing rafts to enhance signaling by providing substantial protection from phosphatases.
Collapse
Affiliation(s)
- Dipak Barua
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
20
|
Li JR, Shi L, Deng Z, Lo SH, Liu GY. Nanostructures of designed geometry and functionality enable regulation of cellular signaling processes. Biochemistry 2012; 51:5876-93. [PMID: 22783801 PMCID: PMC4041195 DOI: 10.1021/bi200880p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Extracellular matrices (ECM) triggered cellular signaling processes often begin with the clustering of the cellular receptors such as integrin and FcεRI. The sizes of these initial protein complexes or clusters are tens to 100 nm in dimension; therefore, engineered nanostructures could provide effective mimics of ECM for investigation and control of the initial and downstream specific signaling processes. This current topic discusses recent advances in nanotechnology in the context of design and production of matching chemical functionality and geometry for control of specific cellular signaling processes. Two investigations are reported to demonstrate this concept: (a) how the presentation of antigen at the nanometer scale would influence the aggregation of FcεRI, which would impact the formation of activation complexes, leading to the rearrangement of actin in cytoskeleton and degranulation or activation of mast cells; (b) how the engineered nanostructure could guide the initial integrin clustering, which would impact the formation of focal adhesion and downstream cell signaling cascades, leading to polarization, migration, and morphological changes. Complementary to engineered ECMs using synthetic ligands or peptides, or topographic control at the micrometer scale, nanostructures of designed geometry and chemical functionality provide new and effective biochemical cues for regulation of cellular signaling processes and downstream behaviors.
Collapse
Affiliation(s)
- Jie-Ren Li
- Department of Chemistry, University of California, Davis, California 95616
| | - Lifang Shi
- Department of Chemistry, University of California, Davis, California 95616
| | - Zhao Deng
- Department of Chemistry, University of California, Davis, California 95616
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, Center for Tissue Regeneration and Repair, University of California-Davis, Medical Center, Sacramento, California 95817
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California 95616
| |
Collapse
|
21
|
Krager KJ, Sarkar M, Twait EC, Lill NL, Koland JG. A novel biotinylated lipid raft reporter for electron microscopic imaging of plasma membrane microdomains. J Lipid Res 2012; 53:2214-2225. [PMID: 22822037 DOI: 10.1194/jlr.d026468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The submicroscopic spatial organization of cell surface receptors and plasma membrane signaling molecules is readily characterized by electron microscopy (EM) via immunogold labeling of plasma membrane sheets. Although various signaling molecules have been seen to segregate within plasma membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of plasma membrane sheets, the streptavidin-gold-labeled reporter was clustered in 20-50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Kimberly J Krager
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AK 72205; and
| | - Mitul Sarkar
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Erik C Twait
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Nancy L Lill
- Department of Pathology and the OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - John G Koland
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242.
| |
Collapse
|
22
|
Espinoza FA, Wester MJ, Oliver JM, Wilson BS, Andrews NL, Lidke DS, Steinberg SL. Insights into cell membrane microdomain organization from live cell single particle tracking of the IgE high affinity receptor FcϵRI of mast cells. Bull Math Biol 2012; 74:1857-911. [PMID: 22733211 DOI: 10.1007/s11538-012-9738-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
Current models propose that the plasma membrane of animal cells is composed of heterogeneous and dynamic microdomains known variously as cytoskeletal corrals, lipid rafts and protein islands. Much of the experimental evidence for these membrane compartments is indirect. Recently, live cell single particle tracking studies using quantum dot-labeled IgE bound to its high affinity receptor FcϵRI, provided direct evidence for the confinement of receptors within micrometer-scale cytoskeletal corrals. In this study, we show that an innovative time-series analysis of single particle tracking data for the high affinity IgE receptor, FcϵRI, on mast cells provides substantial quantitative information about the submicrometer organization of the membrane. The analysis focuses on the probability distribution function of the lengths of the jumps in the positions of the quantum dots labeling individual IgE FcϵRI complexes between frames in movies of their motion. Our results demonstrate the presence, within the micrometer-scale cytoskeletal corrals, of smaller subdomains that provide an additional level of receptor confinement. There is no characteristic size for these subdomains; their size varies smoothly from a few tens of nanometers to a over a hundred nanometers. In QD-IGE labeled unstimulated cells, jumps of less than 70 nm predominate over longer jumps. Addition of multivalent antigen to crosslink the QD-IgE-FcϵRI complexes causes a rapid slowing of receptor motion followed by a long tail of mostly jumps less than 70 nm. The reduced receptor mobility likely reflects both the membrane heterogeneity revealed by the confined motion of the monomeric receptor complexes and the antigen-induced cross linking of these complexes into dimers and higher oligomers. In both cases, the probability distribution of the jump lengths is well fit, from 10 nm to over 100 nm, by a novel power law. The fit for short jumps suggests that the motion of the quantum dots can be modeled as diffusion in a fractal space of dimension less than two.
Collapse
Affiliation(s)
- Flor A Espinoza
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, 87131-1141, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Nag A, Monine M, Perelson AS, Goldstein B. Modeling and simulation of aggregation of membrane protein LAT with molecular variability in the number of binding sites for cytosolic Grb2-SOS1-Grb2. PLoS One 2012; 7:e28758. [PMID: 22396725 PMCID: PMC3291652 DOI: 10.1371/journal.pone.0028758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/14/2011] [Indexed: 01/08/2023] Open
Abstract
The linker for activation of T cells (LAT), the linker for activation of B cells (LAB), and the linker for activation of X cells (LAX) form a family of transmembrane adaptor proteins widely expressed in lymphocytes. These scaffolding proteins have multiple binding motifs that, when phosphorylated, bind the SH2 domain of the cytosolic adaptor Grb2. Thus, the valence of LAT, LAB and LAX for Grb2 is variable, depending on the strength of receptor activation that initiates phosphorylation. During signaling, the LAT population will exhibit a time-varying distribution of Grb2 valences from zero to three. In the cytosol, Grb2 forms 1∶1 and 2∶1 complexes with the guanine nucleotide exchange factor SOS1. The 2∶1 complex can bridge two LAT molecules when each Grb2, through their SH2 domains, binds to a phosphorylated site on a separate LAT. In T cells and mast cells, after receptor engagement, receptor phosphoyrlation is rapidly followed by LAT phosphorylation and aggregation. In mast cells, aggregates containing more than one hundred LAT molecules have been detected. Previously we considered a homogeneous population of trivalent LAT molecules and showed that for a range of Grb2, SOS1 and LAT concentrations, an equilibrium theory for LAT aggregation predicts the formation of a gel-like phase comprising a very large aggregate (superaggregate). We now extend this theory to investigate the effects of a distribution of Grb2 valence in the LAT population on the formation of LAT aggregates and superaggregate and use stochastic simulations to calculate the fraction of the total LAT population in the superaggregate.
Collapse
Affiliation(s)
- Ambarish Nag
- Theoretical Biololgy and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
| | | | | | | |
Collapse
|
24
|
Cambi A, Lidke DS. Nanoscale membrane organization: where biochemistry meets advanced microscopy. ACS Chem Biol 2012; 7:139-49. [PMID: 22004174 DOI: 10.1021/cb200326g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the molecular mechanisms that shape an effective cellular response is a fundamental question in biology. Biochemical measurements have revealed critical information about the order of protein-protein interactions along signaling cascades but lack the resolution to determine kinetics and localization of interactions on the plasma membrane. Furthermore, the local membrane environment influences membrane receptor distributions and dynamics, which in turn influences signal transduction. To measure dynamic protein interactions and elucidate the consequences of membrane architecture interplay, direct measurements at high spatiotemporal resolution are needed. In this review, we discuss the biochemical principles regulating membrane nanodomain formation and protein function, ranging from the lipid nanoenvironment to the cortical cytoskeleton. We also discuss recent advances in fluorescence microscopy that are making it possible to quantify protein organization and biochemical events at the nanoscale in the living cell membrane.
Collapse
Affiliation(s)
- Alessandra Cambi
- Department of Tumor Immunology,
Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Diane S. Lidke
- Department of Pathology and
Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
25
|
Draber P, Halova I, Levi-Schaffer F, Draberova L. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front Immunol 2012; 2:95. [PMID: 22566884 PMCID: PMC3342071 DOI: 10.3389/fimmu.2011.00095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/28/2011] [Indexed: 11/24/2022] Open
Abstract
Aggregation of the high-affinity IgE receptor (FcεRI) initiates a cascade of signaling events leading to release of preformed inflammatory and allergy mediators and de novo synthesis and secretion of cytokines and other compounds. The first biochemically well defined step of this signaling cascade is tyrosine phosphorylation of the FcεRI subunits by Src family kinase Lyn, followed by recruitment and activation of spleen tyrosine kinase (Syk). Activity of Syk is decisive for the formation of multicomponent signaling assemblies, the signalosomes, in the vicinity of the receptors. Formation of the signalosomes is dependent on the presence of transmembrane adaptor proteins (TRAPs). These proteins are characterized by a short extracellular domain, a single transmembrane domain, and a cytoplasmic tail with various motifs serving as anchors for cytoplasmic signaling molecules. In mast cells five TRAPs have been identified [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), linker for activation of X cells (LAX), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG), and growth factor receptor-bound protein 2 (Grb2)-binding adaptor protein, transmembrane (GAPT)]; engagement of four of them (LAT, NTAL, LAX, and PAG) in FcεRI signaling has been documented. Here we discuss recent progress in the understanding of how TRAPs affect FcεRI-mediated mast cell signaling. The combined data indicate that individual TRAPs have irreplaceable roles in important signaling events such as calcium response, degranulation, cytokines production, and chemotaxis.
Collapse
Affiliation(s)
- Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | | | | | | |
Collapse
|
26
|
Deng Z, Weng IC, Li JR, Chen HY, Liu FT, Liu GY. Engineered nanostructures of antigen provide an effective means for regulating mast cell activation. ACS NANO 2011; 5:8672-83. [PMID: 21999491 PMCID: PMC3228856 DOI: 10.1021/nn202510n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanostructures containing 2,4-dinitrophenyl (DNP) as antigen were designed and produced to investigate antibody-mediated activation of mast cells. The design consists of nanogrids of DNP termini inlaid in alkanethiol self-assembled monolayers (SAMs). Using scanning probe-based nanografting, nanometer precision was attained for designed geometry, size, and periodicity. Rat basophilic leukemia (RBL) cells exhibited high sensitivity to the geometry and local environment of DNP presented on these nanostructures. The impact included cellular adherence, spreading, membrane morphology, cytoskeleton structure, and activation. The highest level of spreading and activation was induced by nanogrids of 17 nm line width and 40 nm periodicity, with DNP haptens 1.4 nm above the surroundings. The high efficacy is attributed to two main factors. First, DNP sites in the nanostructure are highly accessible by anti-DNP IgE during recognition. Second, the arrangement or geometry of DNP termini in nanostructures promotes clustering of FcεRI receptors that are prelinked to IgE. The clustering effectively initiates Lyn-mediated signaling cascades, ultimately leading to the degranulation of RBL cells. This work demonstrates an important concept: that nanostructures of ligands provide new and effective cues for directing cellular signaling processes.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Chemistry, University of California, Davis, CA 95616
| | - I-Chun Weng
- Department of Dermatology, School of Medicine, Sacramento, University of California at Davis, CA 95817
- Institute of Biomedical Sciences, Academia Sinica, Taiwan, ROC
| | - Jie-Ren Li
- Department of Chemistry, University of California, Davis, CA 95616
| | - Huan-Yuan Chen
- Department of Dermatology, School of Medicine, Sacramento, University of California at Davis, CA 95817
- Institute of Biomedical Sciences, Academia Sinica, Taiwan, ROC
| | - Fu-Tong Liu
- Department of Dermatology, School of Medicine, Sacramento, University of California at Davis, CA 95817
- Institute of Biomedical Sciences, Academia Sinica, Taiwan, ROC
- Author to whom correspondence should be addressed: Phone: (530) 754-9678: Fax: (530) 754-8557
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, CA 95616
- Author to whom correspondence should be addressed: Phone: (530) 754-9678: Fax: (530) 754-8557
| |
Collapse
|
27
|
Jin C, Shelburne CP, Li G, Potts EN, Riebe KJ, Sempowski GD, Foster WM, Abraham SN. Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation. J Clin Invest 2011; 121:941-55. [PMID: 21285515 PMCID: PMC3049384 DOI: 10.1172/jci43584] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 12/01/2010] [Indexed: 11/17/2022] Open
Abstract
Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and a cellular infiltrate dominated by eosinophils. Numerous epidemiological studies have related the exacerbation of allergic asthma with an increase in ambient inhalable particulate matter from air pollutants. This is because inhalable particles efficiently deliver airborne allergens deep into the airways, where they can aggravate allergic asthma symptoms. However, the cellular mechanisms by which inhalable particulate allergens (pAgs) potentiate asthmatic symptoms remain unknown, in part because most in vivo and in vitro studies exploring the pathogenesis of allergic asthma use soluble allergens (sAgs). Using a mouse model of allergic asthma, we found that, compared with their sAg counterparts, pAgs triggered markedly heightened airway hyperresponsiveness and pulmonary eosinophilia in allergen-sensitized mice. Mast cells (MCs) were implicated in this divergent response, as the differences in airway inflammatory responses provoked by the physical nature of the allergens were attenuated in MC-deficient mice. The pAgs were found to mediate MC-dependent responses by enhancing retention of pAg/IgE/FcεRI complexes within lipid raft–enriched, CD63(+) endocytic compartments, which prolonged IgE/FcεRI-initiated signaling and resulted in heightened cytokine responses. These results reveal how the physical attributes of allergens can co-opt MC endocytic circuitry and signaling responses to aggravate pathological responses of allergic asthma in mice.
Collapse
Affiliation(s)
- Cong Jin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27514, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mast cells are multifunctional cells that initiate not only IgE-dependent allergic diseases but also play a fundamental role in innate and adaptive immune responses to microbial infection. They are also thought to play a role in angiogenesis, tissue remodeling, wound healing, and tumor repression or growth. The broad scope of these physiologic and pathologic roles illustrates the flexible nature of mast cells, which is enabled in part by their phenotypic adaptability to different tissue microenvironments and their ability to generate and release a diverse array of bioactive mediators in response to multiple types of cell-surface and cytosolic receptors. There is increasing evidence from studies in cell cultures that release of these mediators can be selectively modulated depending on the types or groups of receptors activated. The intent of this review is to foster interest in the interplay among mast cell receptors to help understand the underlying mechanisms for each of the immunological and non-immunological functions attributed to mast cells. The second intent of this review is to assess the pathophysiologic roles of mast cells and their products in health and disease. Although mast cells have a sufficient repertoire of bioactive mediators to mount effective innate and adaptive defense mechanisms against invading microorganisms, these same mediators can adversely affect surrounding tissues in the host, resulting in autoimmune disease as well as allergic disorders.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| | | |
Collapse
|
29
|
Mast cell biology: introduction and overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:2-12. [PMID: 21713648 DOI: 10.1007/978-1-4419-9533-9_1] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the field of mast cell biology has expanded well beyond the boundaries of atopic disorders and anaphy laxis, on which it has been historically focused. The biochemical and signaling events responsible for the development and regulation of mast cells has been increasingly studied, aided in large part by novel breakthroughs in laboratory techniques used to study these cells. The result of these studies has been a more comprehensive definition of mast cells that includes added insights to their overall biology as well as the various disease states that can now be traced to defects in mast cells. This introductory chapter outlines and highlights the various topics of mast cell biology that will be discussed in further detail in subsequent chapters.
Collapse
|
30
|
Zhang J, Mendoza M, Guiraldelli MF, Barbu EA, Siraganian RP. Small interfering RNA screen for phosphatases involved in IgE-mediated mast cell degranulation. THE JOURNAL OF IMMUNOLOGY 2010; 184:7178-85. [PMID: 20483767 DOI: 10.4049/jimmunol.0904169] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mast cells play pivotal roles in the initiation of the allergic response. To gain an understanding of the functions played by phosphatases in IgE-mediated mast cell activation, a small interfering RNA (siRNA) library that targets all mouse phosphatase genes was screened in a mouse mast cell line, MMC-1. Of 198 targets, 10 enhanced and 7 inhibited FcepsilonRI-induced degranulation. For seven of the strongest hits, four different siRNAs per target were tested, and at least two out of the four single siRNA per target had similar effects as the pool suggesting that these were true hits. Bone marrow-derived mast cells from normal mice further validated these results for six definite positive targets. The mechanism of the reduced mast cell degranulation due to calcineurin B deficiency was investigated. Calcineurin B deficiency reduced the phosphorylation of MAPKs and the phosphorylation of protein kinase D/protein kinase Cmu and protein kinase Cdelta, which are involved in FcepsilonRI signaling. The screen, therefore, has identified several new molecules that are critical for FcepsilonRI-induced degranulation. Regulating the function of these proteins may be potential targets for the treatment of allergic inflammation. The result also indicates that the system used is efficient for searching molecules implicated in complex receptor-induced signaling.
Collapse
Affiliation(s)
- Juan Zhang
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
31
|
Heneberg P, Dráberová L, Bambousková M, Pompach P, Dráber P. Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J Biol Chem 2010; 285:12787-802. [PMID: 20157115 DOI: 10.1074/jbc.m109.052555] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The earliest known biochemical step that occurs after ligand binding to the multichain immune recognition receptor is tyrosine phosphorylation of the receptor subunits. In mast cells and basophils activated by multivalent antigen-IgE complexes, this step is mediated by Src family kinase Lyn, which phosphorylates the high affinity IgE receptor (Fc epsilonRI). However, the exact molecular mechanism of this phosphorylation step is incompletely understood. In this study, we tested the hypothesis that changes in activity and/or topography of protein-tyrosine phosphatases (PTPs) could play a major role in the Fc epsilonRI triggering. We found that exposure of rat basophilic leukemia cells or mouse bone marrow-derived mast cells to PTP inhibitors, H(2)O(2) or pervanadate, induced phosphorylation of the Fc epsilonRI subunits, similarly as Fc epsilonRI triggering. Interestingly, and in sharp contrast to antigen-induced activation, neither H(2)O(2) nor pervanadate induced any changes in the association of Fc epsilonRI with detergent-resistant membranes and in the topography of Fc epsilonRI detectable by electron microscopy on isolated plasma membrane sheets. In cells stimulated with pervanadate, H(2)O(2) or antigen, enhanced oxidation of active site cysteine of several PTPs was detected. Unexpectedly, most of oxidized phosphatases bound to the plasma membrane were associated with the actin cytoskeleton. Several PTPs (SHP-1, SHP-2, hematopoietic PTP, and PTP-MEG2) showed changes in their enzymatic activity and/or oxidation state during activation. Based on these and other data, we propose that down-regulation of enzymatic activity of PTPs and/or changes in their accessibility to the substrates play a key role in initial tyrosine phosphorylation of the Fc epsilonRI and other multichain immune receptors.
Collapse
Affiliation(s)
- Petr Heneberg
- Laboratory of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
32
|
Carroll-Portillo A, Spendier K, Pfeiffer J, Griffiths G, Li H, Lidke KA, Oliver JM, Lidke DS, Thomas JL, Wilson BS, Timlin JA. Formation of a mast cell synapse: Fc epsilon RI membrane dynamics upon binding mobile or immobilized ligands on surfaces. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:1328-38. [PMID: 20042583 PMCID: PMC3087819 DOI: 10.4049/jimmunol.0903071] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fc epsilonRI on mast cells form a synapse when presented with mobile, bilayer-incorporated Ag. In this study, we show that receptor reorganization within the contacting mast cell membrane is markedly different upon binding of mobile and immobilized ligands. Rat basophilic leukemia mast cells primed with fluorescent anti-DNP IgE were engaged by surfaces presenting either bilayer-incorporated, monovalent DNP-lipid (mobile ligand), or chemically cross-linked, multivalent DNP (immobilized ligand). Total internal reflection fluorescence imaging and electron microscopy methods were used to visualize receptor reorganization at the contact site. The spatial relationships of Fc epsilonRI to other cellular components at the synapse, such as actin, cholesterol, and linker for activation of T cells, were also analyzed. Stimulation of mast cells with immobilized polyvalent ligand resulted in typical levels of degranulation. Remarkably, degranulation also followed interaction of mast cells, with bilayers presenting mobile, monovalent ligand. Receptors engaged with mobile ligand coalesce into large, cholesterol-rich clusters that occupy the central portion of the contacting membrane. These data indicate that Fc epsilonRI cross-linking is not an obligatory step in triggering mast cell signaling and suggest that dense populations of mobile receptors are capable of initiating low-level degranulation upon ligand recognition.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Biofuels and Defense Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185-0895
| | - Kathrin Spendier
- Department of Physics and Astronomy and Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Janet Pfeiffer
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Gary Griffiths
- Imaging Probe Development Center, NIH, NHLBI, Bethesda, MD 20892
| | - Haitao Li
- Imaging Probe Development Center, NIH, NHLBI, Bethesda, MD 20892
| | - Keith A. Lidke
- Department of Physics and Astronomy and Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Janet M. Oliver
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - James L. Thomas
- Department of Physics and Astronomy and Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Jerilyn A. Timlin
- Biofuels and Defense Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185-0895
| |
Collapse
|
33
|
Nag A, Monine MI, Faeder JR, Goldstein B. Aggregation of membrane proteins by cytosolic cross-linkers: theory and simulation of the LAT-Grb2-SOS1 system. Biophys J 2009; 96:2604-23. [PMID: 19348745 DOI: 10.1016/j.bpj.2009.01.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/18/2008] [Accepted: 01/05/2009] [Indexed: 01/12/2023] Open
Abstract
Ligand-induced receptor aggregation is a well-known mechanism for initiating intracellular signals but oligomerization of distal signaling molecules may also be required for signal propagation. Formation of complexes containing oligomers of the transmembrane adaptor protein, linker for the activation of T cells (LAT), has been identified as critical in mast cell and T cell activation mediated by immune response receptors. Cross-linking of LAT arises from the formation of a 2:1 complex between the adaptor Grb2 and the nucleotide exchange factor SOS1, which bridges two LAT molecules through the interaction of the Grb2 SH2 domain with a phosphotyrosine on LAT. We model this oligomerization and find that the valence of LAT for Grb2, which ranges from zero to three, is critical in determining the nature and extent of aggregation. A dramatic rise in oligomerization can occur when the valence switches from two to three. For valence three, an equilibrium theory predicts the possibility of forming a gel-like phase. This prediction is confirmed by stochastic simulations, which make additional predictions about the size of the gel and the kinetics of LAT oligomerization. We discuss the model predictions in light of recent experiments on RBL-2H3 and Jurkat E6.1 cells and suggest that the gel phase has been observed in activated mast cells.
Collapse
Affiliation(s)
- Ambarish Nag
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos, New Mexico, USA
| | | | | | | |
Collapse
|
34
|
Ryu SD, Lee HS, Suk HY, Park CS, Choi OH. Cross-linking of FcepsilonRI causes Ca2+ mobilization via a sphingosine kinase pathway in a clathrin-dependent manner. Cell Calcium 2009; 45:99-108. [PMID: 18675457 DOI: 10.1016/j.ceca.2008.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
Clathrin-coated pits are now recognized to be involved in cell signaling in addition to receptor down-regulation. Here we tried to identify signaling pathways that might be dependent on clathrin. Our initial data with pharmacological inhibitors of formation of clathrin-coated pits or lipid-rafts indicated that Ca(2+) response evoked by cross-linking of the high affinity receptors for IgE (FcepsilonRI) was dependent on clathrin. To confirm this finding, we created clathrin-knockdown cells by transfecting the mast cell line RBL-2H3 with a shRNA-clathrin heavy chain construct. In these cells, the FcepsilonRI-mediated Ca(2+) response was almost completely abolished, which was accompanied by the inhibition of sphingosine 1-phosphate (S1P) production with no changes in inositol 1,4,5-trisphosphate (IP(3)) production. This suggests that the Ca(2+) signaling pathway via a sphingosine kinase (SK) is dependent on clathrin. Furthermore, antigen-induced tyrosine phosphorylation of p85 and p110 subunits of PI3K was almost completely inhibited in clathrin-knockdown cells. In contrast, antigen-induced tyrosine phosphorylation of phospholipase Cgamma was not affected by clathrin-knockdown and tyrosine phosphorylation of Syk and degranulation were partially inhibited in clathrin-knockdown cells. The present study identifies the SK/Ca(2+) pathway to be dependent on clathrin.
Collapse
Affiliation(s)
- Seung-Duk Ryu
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
35
|
Zink T, Deng Z, Chen H, Yu L, Liu FT, Liu GY. High-resolution three-dimensional imaging of the rich membrane structures of bone marrow-derived mast cells. Ultramicroscopy 2008; 109:22-31. [PMID: 18790570 DOI: 10.1016/j.ultramic.2008.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 05/01/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Atomic force microscopy (AFM) enables high-resolution three-dimensional (3D) imaging of cultured bone marrow-derived mast cells. Cells were immobilized by a quick centrifugation and fixation to preserve their transient cellular morphologies followed by AFM characterization in buffer. This "fix-and-look" approach preserves the structural integrity of individual cells. Well-known membrane morphologies, such as ridges and microvilli, are visualized, consistent with prior electron microscopy observations. Additional information including the 3D measurements of these characteristic features are attained from AFM topographs. Filopodia and lamellopodia, associated with cell spreading, were captured and visualized in three dimensions. New morphologies are also revealed, such as high-density ridges and micro-craters. This investigation demonstrates that the "fix-and-look" approach followed by AFM imaging provides an effective means to characterize the membrane structure of hydrated cells with high resolution. The quantitative imaging and measurements pave the way for systematic correlation of membrane structural features with the biological status of individual cells.
Collapse
Affiliation(s)
- T Zink
- Biophysics Graduate Group, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
36
|
Mazuc E, Villoutreix BO, Malbec O, Roumier T, Fleury S, Leonetti JP, Dombrowicz D, Daëron M, Martineau P, Dariavach P. A novel druglike spleen tyrosine kinase binder prevents anaphylactic shock when administered orally. J Allergy Clin Immunol 2008; 122:188-94, 194.e1-3. [PMID: 18539317 DOI: 10.1016/j.jaci.2008.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 12/18/2022]
Abstract
BACKGROUND The spleen tyrosine kinase (Syk) is recognized as a potential pharmaceutical target for the treatment of type I hypersensitivity reactions including allergic rhinitis, urticaria, asthma, and anaphylaxis because of its critical position upstream of immunoreceptor signaling complexes that regulate inflammatory responses in leukocytes. OBJECTIVE Our aim was to improve the selectivity of anti-Syk therapies by impeding the interaction of Syk with its cellular partners, instead of targeting its catalytic site. METHODS We have previously studied the inhibitory effects of the anti-Syk intracellular antibody G4G11 on Fc epsilonRI-induced release of allergic mediators. A compound collection was screened by using an antibody displacement assay to identify functional mimics of G4G11 that act as potential inhibitors of the allergic response. The effects of the selected druglike compounds on mast cell activation were evaluated in vitro and in vivo. RESULTS We discovered compound 13, a small molecule that inhibits Fc epsilonRI-induced mast cell degranulation in vitro and anaphylactic shock in vivo. Importantly, compound 13 was efficient when administered orally to mice. Structural analysis, docking, and site-directed mutagenesis allowed us to identify the binding cavity of this compound, located at the interface between the 2 Src homology 2 domains and the interdomain A of Syk. CONCLUSION We have isolated a new class of druglike compounds that modulate the interaction of Syk with some of its macromolecular substrates implicated in the degranulation pathway in mast cells.
Collapse
Affiliation(s)
- Elsa Mazuc
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Korade Z, Kenworthy AK. Lipid rafts, cholesterol, and the brain. Neuropharmacology 2008; 55:1265-73. [PMID: 18402986 DOI: 10.1016/j.neuropharm.2008.02.019] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 02/15/2008] [Accepted: 02/26/2008] [Indexed: 01/11/2023]
Abstract
Lipid rafts are specialized membrane microdomains that serve as organizing centers for assembly of signaling molecules, influence membrane fluidity and trafficking of membrane proteins, and regulate different cellular processes such as neurotransmission and receptor trafficking. In this article, we provide an overview of current methods for studying lipid rafts and models for how lipid rafts might form and function. Next, we propose a potential mechanism for regulating lipid rafts in the brain via local control of cholesterol biosynthesis by neurotrophins and their receptors. Finally, we discuss evidence that altered cholesterol metabolism and/or lipid rafts play a critical role in the pathophysiology of multiple CNS disorders, including Smith-Lemli-Opitz syndrome, Huntington's, Alzheimer's, and Niemann-Pick Type C diseases.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
38
|
Lebduska P, Korb J, Tůmová M, Heneberg P, Dráber P. Topography of signaling molecules as detected by electron microscopy on plasma membrane sheets isolated from non-adherent mast cells. J Immunol Methods 2007; 328:139-51. [PMID: 17900607 DOI: 10.1016/j.jim.2007.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/16/2007] [Accepted: 08/29/2007] [Indexed: 01/03/2023]
Abstract
Immunolabeling of isolated plasma membrane (PM) sheets combined with high-resolution electron microscopy is a powerful technique for understanding the topography of PM-bound signaling molecules. However, this technique has been mostly confined to analysis of membrane sheets from adherent cells. Here we present a rapid, simple and versatile method for isolation of PM sheets from non-adherent cells, and show its use for examination of the topography of Fcepsilon receptor I (FcepsilonRI) and transmembrane adaptors, LAT (linker for activation of T cells) and NTAL (non-T cell activation linker), in murine bone marrow-derived mast cells (BMMC). The data were compared with those obtained from widely used but tumor-derived rat basophilic leukemia (RBL) cells. In non-activated cells, FcepsilonRI was distributed either individually or in small clusters of comparable size in both cell types. In multivalent antigen-activated BMMC as well as RBL cells, FcepsilonRI was internalized to a similar extent, but, strikingly, internalization in BMMC was not preceded by formation of large (~200 nm) aggregates of FcepsilonRI, described previously in activated RBL cells. On the other hand, downstream adaptor proteins, LAT and NTAL, were localized in independent domains in both BMMC and RBL cells before and after FcepsilonRI triggering. The combined data demonstrate unexpected properties of FcepsilonRI signaling assemblies in BMMC and emphasize the importance of studies of PM sheets isolated from non-tumor cells.
Collapse
Affiliation(s)
- Pavel Lebduska
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, vvi, Vídenská 1083, 142 20, Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
39
|
Zhang J, Steinberg SL, Wilson BS, Oliver JM, Williams LR. Markov Random Field Modeling of the Spatial Distribution of Proteins on Cell Membranes. Bull Math Biol 2007; 70:297-321. [PMID: 17906899 DOI: 10.1007/s11538-007-9259-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 06/22/2007] [Indexed: 01/20/2023]
Abstract
Cell membranes display a range of receptors that bind ligands and activate signaling pathways. Signaling is characterized by dramatic changes in membrane molecular topography, including the co-clustering of receptors with signaling molecules and the segregation of other signaling molecules away from receptors. Electron microscopy of immunogold-labeled membranes is a critical technique to generate topographical information at the 5-10 nm resolution needed to understand how signaling complexes assemble and function. However, due to experimental limitations, only two molecular species can usually be labeled at a time. A formidable challenge is to integrate experimental data across multiple experiments where there are from 10 to 100 different proteins and lipids of interest and only the positions of two species can be observed simultaneously. As a solution, we propose the use of Markov random field (MRF) modeling to reconstruct the distribution of multiple cell membrane constituents from pair-wise data sets. MRFs are a powerful mathematical formalism for modeling correlations between states associated with neighboring sites in spatial lattices. The presence or absence of a protein of a specific type at a point on the cell membrane is a state. Since only two protein types can be observed, i.e., those bound to particles, and the rest cannot be observed, the problem is one of deducing the conditional distribution of a MRF with unobservable (hidden) states. Here, we develop a multiscale MRF model and use mathematical programming techniques to infer the conditional distribution of a MRF for proteins of three types from observations showing the spatial relationships between only two types. Application to synthesized data shows that the spatial distributions of three proteins can be reliably estimated. Application to experimental data provides the first maps of the spatial relationship between groups of three different signaling molecules. The work is an important step toward a more complete understanding of membrane spatial organization and dynamics during signaling.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
40
|
Kusel JR, Al-Adhami BH, Doenhoff MJ. The schistosome in the mammalian host: understanding the mechanisms of adaptation. Parasitology 2007; 134:1477-526. [PMID: 17572930 DOI: 10.1017/s0031182007002971] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SUMMARYIn this review, we envisage the host environment, not as a hostile one, since the schistosome thrives there, but as one in which the relationship between the two organisms consists of constant communication, through signalling mechanisms involving sense organs, surface glycocalyx, surface membrane and internal organs of the parasite, with host fluids and cells. The surface and secretions of the schistosome egg have very different properties from those of other parasite stages, but adapted for the dispersal of the eggs and for the preservation of host liver function. We draw from studies of mammalian cells and other organisms to indicate how further work might be carried out on the signalling function of the surface glycocalyx, the raft structure of the surface and existence of pores in the surface membrane, the repair of the surface membrane, the role of the membrane structure in ion channel function (including recent work on the actin cytoskeleton and calcium channels) and the possible role of P-glycoproteins in the adaptation of the parasite to its environment. We are speculative in some areas, such as the suggestions that variability in surface properties of schistosomes may relate to the existence of membrane rafts and that parasite communities may exhibit quorum sensing. This speculative approach is adopted with the hope that future work on the whole organisms and their interactions will be encouraged.
Collapse
Affiliation(s)
- J R Kusel
- Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | |
Collapse
|
41
|
Abstract
Mast cells possess an array of potent inflammatory mediators capable of inducing acute symptoms after cell activation, including urticaria, angioedema, bronchoconstriction, diarrhea, vomiting, hypotension, cardiovascular collapse, and death in few minutes. In contrast, mast cells can provide an array of beneficial mediators in the setting of acute infections, cardiovascular diseases, and cancer. The balance between the detrimental and beneficial roles of mast cells is not completely understood. Although the symptoms of acute mast cell mediator release can be reversed with epinephrine, adrenergic agonists, and mediator blockers, the continued release of histamine, proteases, prostaglandins, leukotrienes, cytokines, and chemokines leads to chronic and debilitating disease, such as mastocytosis. Identification of the molecular factors and mechanisms that control the synthesis and release of mast cell mediators should benefit all patients with mast cell activation syndromes and mastocytosis.
Collapse
Affiliation(s)
- Mariana Castells
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Okkenhaug K, Ali K, Vanhaesebroeck B. Antigen receptor signalling: a distinctive role for the p110delta isoform of PI3K. Trends Immunol 2007; 28:80-7. [PMID: 17208518 PMCID: PMC2358943 DOI: 10.1016/j.it.2006.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 11/24/2006] [Accepted: 12/18/2006] [Indexed: 11/24/2022]
Abstract
The activation of antigen receptors triggers two important signalling pathways originating from phosphatidylinositol(4,5)-bisphosphate [PtdIns(4,5)P2]. The first is phospholipase Cγ (PLCγ)-mediated hydrolysis of PtdIns(4,5)P2, resulting in the activation of Ras, protein kinase C and Ca2+ flux. This culminates in profound alterations in gene expression and effector-cell responses, including secretory granule exocytosis and cytokine production. By contrast, phosphoinositide 3-kinases (PI3Ks) phosphorylate PtdIns(4,5)P2 to yield phosphatidylinositol(3,4,5)-trisphosphate, activating signalling pathways that overlap with PLCγ or are PI3K-specific. Pathways that are PI3K-specific include Akt-mediated inactivation of Foxo transcription factors and transcription-independent regulation of glucose uptake and metabolism. The p110δ isoform of PI3K is the main source of PI3K activity following antigen recognition by B cells, T cells and mast cells. Here, we review the roles of p110δ in regulating antigen-dependent responses in these cell types.
Collapse
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK, CB2 4AT
| | - Khaled Ali
- Ludwig Institute for Cancer Research, London, UK, W1W 7BS
- Department of Biochemistry and Molecular Biology, University College London, London, UK, WC1E 6BT
| | - Bart Vanhaesebroeck
- Ludwig Institute for Cancer Research, London, UK, W1W 7BS
- Department of Biochemistry and Molecular Biology, University College London, London, UK, WC1E 6BT
| |
Collapse
|
43
|
Fattakhova G, Masilamani M, Borrego F, Gilfillan AM, Metcalfe DD, Coligan JE. The high-affinity immunoglobulin-E receptor (FcepsilonRI) is endocytosed by an AP-2/clathrin-independent, dynamin-dependent mechanism. Traffic 2006; 7:673-85. [PMID: 16637889 DOI: 10.1111/j.1600-0854.2006.00423.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aggregation of the high-affinity immunoglobulin E (IgE) receptor (FcepsilonRI), expressed on mast cells and basophils, initiates the immediate hypersensitivity reaction. Aggregated FcepsilonRI has been reported to rapidly migrate to lipid rafts in RBL-2H3 cells. We confirmed that aggregated FcepsilonRI is found in the lipid raft fractions of cellular lysates. Furthermore, we show that the cross-linked FcepsilonRI remains associated with detergent-resistant structures upon internalization. Previous morphological studies have reported that aggregated FepsiloncRI is endocytosed via clathrin-coated pits, which in general are not lipid raft associated. To address this apparent discrepancy, we employed siRNA to suppress expression of components of the clathrin-mediated internalization machinery, namely, clathrin heavy chain, and the AP-2 (alpha-adaptin or mu2-subunit). Transferrin receptor (TfR) is endocytosed by a clathrin-mediated process and, as expected, each transfected siRNA caused a two to threefold elevation of TfR surface expression and almost completely inhibited its endocytosis. In contrast, there was no effect on surface expression levels of FcepsilonRI nor on the endocytosis of the dinitrophenyl-human serum albumin (DNP-HSA)/IgE/FcepsilonRI complex. On the contrary, internalization of DNP-HSA/IgE/FcepsilonRI was inhibited by overexpression of a dominant-negative dynamin mutant. We conclude that internalization of cross-linked FcRI does not require the AP-2/clathrin complex but is dynamin-dependent and may be lipid raft mediated.
Collapse
Affiliation(s)
- Gul'nar Fattakhova
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
44
|
Silverman MA, Shoag J, Wu J, Koretzky GA. Disruption of SLP-76 interaction with Gads inhibits dynamic clustering of SLP-76 and FcepsilonRI signaling in mast cells. Mol Cell Biol 2006; 26:1826-38. [PMID: 16479002 PMCID: PMC1430252 DOI: 10.1128/mcb.26.5.1826-1838.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We developed a confocal real-time imaging approach that allows direct observation of the subcellular localization pattern of proteins involved in proximal FcepsilonRI signaling in RBL cells and primary bone marrow-derived mast cells. The adaptor protein Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is critical for FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. In this study, we imaged SLP-76 and found it in the cytosol of unstimulated cells. Upon FcepsilonRI cross-linking, SLP-76 translocates to the cell membrane, forming clusters that colocalize with the FcepsilonRI, the tyrosine kinase Syk, the adaptor LAT, and phosphotyrosine. The disruption of the SLP-76 interaction with its constitutive binding partner, Gads, through the mutation of SLP-76 or the expression of the Gads-binding region of SLP-76, inhibits the translocation and clustering of SLP-76, suggesting that the interaction of SLP-76 with Gads is critical for appropriate subcellular localization of SLP-76. We further demonstrated that the expression of the Gads-binding region of SLP-76 in bone marrow-derived mast cells inhibits FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. These studies revealed, for the first time, that SLP-76 forms signaling clusters following FcepsilonRI stimulation and demonstrated that the Gads-binding region of SLP-76 regulates clustering of SLP-76 and FcepsilonRI-induced mast cell responses.
Collapse
Affiliation(s)
- Michael A Silverman
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
45
|
Xia Q, Zhou WM, Yang S, Zhang SQ, Chen B, Wang DB, Wang Y, Zhang XJ. Influence of mizolastine on antigen-induced activation of signalling pathways in murine mast cells. Clin Exp Dermatol 2006; 31:260-5. [PMID: 16487106 DOI: 10.1111/j.1365-2230.2006.02050.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is accumulating evidence that some antihistamines can interrupt intermediate signalling events that regulate cell function. The effect of mizolastine on both the generation and release process of many cytokines in mast cells further implies that the inhibition by mizolastine may target signalling pathways. AIM To observe the influence of mizolastine on antigen-induced activation of signalling pathways in murine mast cells. METHODS Western blot analysis and enzyme assay were performed. Immunoblots were prepared from whole cell lysates and probed with antibodies against Fyn, Akt, ERK, p38, phospho-Fyn, phospho-Akt, phospho-ERK and phospho-p38, respectively. RESULTS Our study showed that signalling molecules such as IP3, Fyn, p38 and ERK were enhanced when mast cells were stimulated by antigen, and that this was not inhibited by treatment with mizolastine. Mizolastine at concentrations from 10(-9) to 10(-5) mol/L could inhibit activation of the PI3K kinase downstream signalling molecule Akt to antigen stimulation. The study also demonstrated that mizolastine exerted inhibitory ability on protein kinase C (PKC) activation in a dose-dependent manner. CONCLUSION PKC-mediated phosphorylation of Akt can be blocked by mizolastine. There may be a PKC-independent pathway effectively activating MAPK pathways in mast cells in response to antigen induction, which cannot be affected by mizolastine.
Collapse
Affiliation(s)
- Q Xia
- Department of Biochemistry, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang J, Leiderman K, Pfeiffer JR, Wilson BS, Oliver JM, Steinberg SL. Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron 2006; 37:14-34. [PMID: 16081296 DOI: 10.1016/j.micron.2005.03.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 03/01/2005] [Accepted: 03/02/2005] [Indexed: 11/16/2022]
Abstract
The flow of information through a cell requires the constant remodeling of cell signaling networks. Thus, spatially and temporally resolved microscopy of signaling components is needed to understand the behavior of normal cells as well as to uncover abnormal behavior leading to human disease. Nanoprobe labeling and transmission electron microscopy of cytoplasmic face-up sheets of cell membrane have been developed as a high-resolution approach to map the interactions of proteins and lipid during cell signaling. Membrane sheets are labeled with 3-15 nm electron-dense probes for receptors, signaling proteins and lipids and micrographs record the distributions of the probes relative to each other and to surface features. Here, we establish computational methods to extract spatial coordinates of probes from micrographs, to analyze and statistically validate the clustering and co-clustering of these probes and to integrate results between experiments in order to establish the relative spatial distributions of single and multiple probes. Our analyses, and the resulting programs for automating data collection and for carrying out statistical and clustering analyses provide toolboxes specialized for the spatiotemporal analysis and modeling of signal transduction pathways.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87110, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Toomre D. Spying on IgE receptor signaling: simply complex, or not? J Cell Biol 2005; 171:415-7. [PMID: 16275748 PMCID: PMC2171246 DOI: 10.1083/jcb.200510105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasma membrane organization and the potential role, or not, of lipid raft microdomains in signal transduction is a controversial topic. Cross-correlation fluorescent correlation spectroscopy (CC-FCS) shows promise as a new approach to rapidly probe protein–protein interactions in living cells during signal transduction. CC-FCS data from studies of IgE receptor signaling challenge models of large stable lipid raft signaling domains and reveal a new complexity in the dynamic (re)organization of signaling complexes.
Collapse
Affiliation(s)
- Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
48
|
Hess ST, Kumar M, Verma A, Farrington J, Kenworthy A, Zimmerberg J. Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin. ACTA ACUST UNITED AC 2005; 169:965-76. [PMID: 15967815 PMCID: PMC2171648 DOI: 10.1083/jcb.200412058] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although lipid-dependent protein clustering in biomembranes mediates numerous functions, there is little consensus among membrane models on cluster organization or size. Here, we use influenza viral envelope protein hemagglutinin (HA(0)) to test the hypothesis that clustering results from proteins partitioning into preexisting, fluid-ordered "raft" domains, wherein they have a random distribution. Japan HA(0) expressed in fibroblasts was visualized by electron microscopy using immunogold labeling and probed by fluorescence resonance energy transfer (FRET). Labeled HA coincided with electron-dense, often noncircular membrane patches. Poisson and K-test (Ripley, B.D. 1977. J. R. Stat. Soc. Ser. B. 39:172-212) analyses reveal clustering on accessible length scales (20-900 nm). Membrane treatments with methyl-beta-cyclodextrin and glycosphingolipid synthesis inhibitors did not abolish clusters but did alter their pattern, especially at the shortest lengths, as was corroborated by changes in FRET efficiency. The magnitude and density dependence of the measured FRET efficiency also indicated a nonrandom distribution on molecular length scales (approximately 6-7 nm). This work rules out the tested hypothesis for HA over the accessible length scales, yet shows clearly how the spatial distribution of HA depends on lipid composition.
Collapse
Affiliation(s)
- Samuel T Hess
- Laboratory for Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
49
|
Nakamura A, Akiyama K, Takai T. Fc receptor targeting in the treatment of allergy, autoimmune diseases and cancer. Expert Opin Ther Targets 2005; 9:169-90. [PMID: 15757489 DOI: 10.1517/14728222.9.1.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immune activation and inhibitory receptors play an important role in the maintenance of an adequate activation threshold of various cells in our immune system. Analyses of murine models show that the inhibitory Fcreceptor, FcgammaRIIB plays an indispensable role in the suppression of anti-body-mediated allergy and autoimmunity. In contrast, the activating-type Fcreceptors (FcRs) are essential for the development of these diseases, suggesting that regulation of inhibitory or activating FcR is an ideal target as a therapeutic agent. In addition, recent crystal structural analyses of FcR-Ig-Fc fragment complexes provide an effective approach for developing FcR-targeting drugs. This review summarises recent advances of FcR, which were mainly obtained by murine studies, and highlights novel antibodies as possible FcR-targeting therapies for allergy, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Akira Nakamura
- Tohoku University, Department of Experimental Immunology and CREST programme of Japan Science and Technology Agency, Institute of Development, ageing and Cancer, Seiryo 4-1, Sendai 980-8575, Japan.
| | | | | |
Collapse
|
50
|
Sasaki J, Sasaki T, Yamazaki M, Matsuoka K, Taya C, Shitara H, Takasuga S, Nishio M, Mizuno K, Wada T, Miyazaki H, Watanabe H, Iizuka R, Kubo S, Murata S, Chiba T, Maehama T, Hamada K, Kishimoto H, Frohman MA, Tanaka K, Penninger JM, Yonekawa H, Suzuki A, Kanaho Y. Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type I {alpha}. ACTA ACUST UNITED AC 2005; 201:859-70. [PMID: 15767368 PMCID: PMC2213097 DOI: 10.1084/jem.20041891] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The membrane phospholipid phosphatidylinositol 4, 5-bisphosphate [PI(4,5)P2] is a critical signal transducer in eukaryotic cells. However, the physiological roles of the type I phosphatidylinositol phosphate kinases (PIPKIs) that synthesize PI(4,5)P2 are largely unknown. Here, we show that the α isozyme of PIPKI (PIPKIα) negatively regulates mast cell functions and anaphylactic responses. In vitro, PIPKIα-deficient mast cells exhibited increased degranulation and cytokine production after Fcɛ receptor-I cross-linking. In vivo, PIPKIα−/− mice displayed enhanced passive cutaneous and systemic anaphylaxis. Filamentous actin was diminished in PIPKIα−/− mast cells, and enhanced degranulation observed in the absence of PIPKIα was also seen in wild-type mast cells treated with latrunculin, a pharmacological inhibitor of actin polymerization. Moreover, the association of FcɛRI with lipid rafts and FcɛRI-mediated activation of signaling proteins was augmented in PIPKIα−/− mast cells. Thus, PIPKIα is a negative regulator of FcɛRI-mediated cellular responses and anaphylaxis, which functions by controlling the actin cytoskeleton and dynamics of FcɛRI signaling. Our results indicate that the different PIPKI isoforms might be functionally specialized.
Collapse
Affiliation(s)
- Junko Sasaki
- Department of Pharmacology, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|