1
|
Zhang T, Yang D, Tang L, Hu Y. Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 2024; 30:148. [PMID: 38940338 PMCID: PMC11228696 DOI: 10.3892/mmr.2024.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
The coronavirus disease 2019 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) seriously affected global public health security. Studies on vaccines, neutralizing antibodies (NAbs) and small molecule antiviral drugs are currently ongoing. In particular, NAbs have emerged as promising therapeutic agents due to their well‑defined mechanism, high specificity, superior safety profile, ease of large‑scale production and simultaneous application for both prevention and treatment of viral infection. Numerous NAb therapeutics have entered the clinical research stages, demonstrating promising therapeutic and preventive effects. These agents have been used for outbreak prevention and control under urgent authorization processes. The present review summarizes the molecular targets of SARS‑CoV‑2‑associated NAbs and screening and identification techniques for NAb development. Moreover, the current shortcomings and challenges that persist with the use of NAbs are discussed. The aim of the present review is to offer a reference for the development of NAbs for any future emergent infectious diseases, including SARS‑CoV‑2.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Di Yang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Tang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Hu
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
Alvarez-Arango S, Kumar M, Chow TG, Sabato V. Non-IgE-Mediated Immediate Drug-Induced Hypersensitivity Reactions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1109-1119. [PMID: 38423288 PMCID: PMC11081849 DOI: 10.1016/j.jaip.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Immediate drug-induced hypersensitivity reactions (IDHSRs) have conventionally been attributed to an immunoglobulin E (IgE)-mediated mechanism. Nevertheless, it has now been acknowledged that IDHSRs can also occur independently of IgE involvement. Non-IgE-mediated IDHSRs encompass the activation of effector cells, both mast cell-dependent and -independent and the initiation of inflammatory pathways through immunogenic and nonimmunogenic mechanisms. The IDHSRs involve inflammatory mediators beyond histamine, including the platelet-activating factor, which activates multiple cell types, including smooth muscle, endothelium, and MC, and evidence supports its importance in IgE-mediated reactions in humans. Clinically, distinguishing IgE from non-IgE mechanisms is crucial for future treatment strategies, including drug(s) restriction, readministration approaches, and pretreatment considerations. However, this presents significant challenges because certain drugs can trigger both mechanisms, and their presentations can appear similarly, ranging from mild to life-threatening symptoms. Thus, history alone is often inadequate for differentiation, and skin tests lack a standardized approach. Moreover, drug-specific IgE immunoassays have favorable specificity but low sensitivity, and the usefulness of the basophil activation test remains debatable. Lastly, no biomarker reliably differentiates between both mechanisms. Whereas non-IgE-mediated mechanisms likely predominate in IDHSRs, reclassifying most drug-related IDHSRs as non-IgE-mediated, with suggested prevention through dose administration adjustments, is premature and risky. Therefore, continued research and validated diagnostic tests are crucial to improving our capacity to distinguish between these mechanisms, ultimately enhancing patient care.
Collapse
Affiliation(s)
- Santiago Alvarez-Arango
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Mukesh Kumar
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR
| | - Timothy G Chow
- Division of Allergy and Immunology, Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vito Sabato
- Department of Immunology, Allergology and Rheumatology, Antwerp University Hospital, University Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Dey S, Mohapatra S, Khokhar M, Hassan S, Pandey RK. Extracellular Vesicles in Malaria: Shedding Light on Pathogenic Depths. ACS Infect Dis 2024; 10:827-844. [PMID: 38320272 PMCID: PMC10928723 DOI: 10.1021/acsinfecdis.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Malaria, a life-threatening infectious disease caused by Plasmodium falciparum, remains a significant global health challenge, particularly in tropical and subtropical regions. The epidemiological data for 2021 revealed a staggering toll, with 247 million reported cases and 619,000 fatalities attributed to the disease. This formidable global health challenge continues to perplex researchers seeking a comprehensive understanding of its pathogenesis. Recent investigations have unveiled the pivotal role of extracellular vesicles (EVs) in this intricate landscape. These tiny, membrane-bound vesicles, secreted by diverse cells, emerge as pivotal communicators in malaria's pathogenic orchestra. This Review delves into the multifaceted roles of EVs in malaria pathogenesis, elucidating their impact on disease progression and immune modulation. Insights into EV involvement offer potential therapeutic and diagnostic strategies. Integrating this information identifies targets to mitigate malaria's global impact. Moreover, this Review explores the potential of EVs as diagnostic biomarkers and therapeutic targets in malaria. By deciphering the intricate dialogue facilitated by these vesicles, new avenues for intervention and novel strategies for disease management may emerge.
Collapse
Affiliation(s)
- Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru 560066, Karnataka, India
| | - Salini Mohapatra
- Department
of Biotechnology, Chandigarh University, Punjab 140413, India
| | - Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences Jodhpur, Rajasthan 342005, India
| | - Sana Hassan
- Department
of Life Sciences, Manipal Academy of Higher
Education, Dubai 345050, United Arab Emirates
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
4
|
Ollo-Morales P, Gutierrez-Niso M, De-la-Viuda-Camino E, Ruiz-de-Galarreta-Beristain M, Osaba-Ruiz-de-Alegria I, Martel-Martin C. Drug-Induced Kounis Syndrome: Latest Novelties. CURRENT TREATMENT OPTIONS IN ALLERGY 2023:1-18. [PMID: 37361641 PMCID: PMC10227395 DOI: 10.1007/s40521-023-00342-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
Kounis syndrome (KS) is defined by an acute coronary syndrome associated with hypersensitivity reactions, an under-diagnosed life-threatening medical emergency. Although multiple causes have been described, drugs constitute the most frequent cause. The purpose of this review is to update knowledge about drug-induced KS, to give guidelines on the correct diagnosis and treatment. This article reviews the literature on drug-induced KS from the last 5 years. Antibiotics and NSAIDs are the most frequently implicated drugs. In addition, data on pathophysiology, clinical presentation, diagnosis, and management are reviewed in detail. Highlight that there is a great deal of variability in the diagnosis and especially in the treatment of KS. This review provides a valuable selection of practical resources for all stakeholders to support effective care for KS, from a cardiologic and allergologic point of view. Future research should focus on developing validated, evidence-based, and patient-centered tools to improve the management of KS.
Collapse
Affiliation(s)
- Paula Ollo-Morales
- Department of Allergy, Hospital Universitario Araba, Vitoria, Spain
- HUA Consultas Externas, Francisco Leandro de Viana Street, 01009 Vitoria, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Woźniak E, Owczarczyk-Saczonek A, Lange M, Czarny J, Wygonowska E, Placek W, Nedoszytko B. The Role of Mast Cells in the Induction and Maintenance of Inflammation in Selected Skin Diseases. Int J Mol Sci 2023; 24:ijms24087021. [PMID: 37108184 PMCID: PMC10139379 DOI: 10.3390/ijms24087021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Under physiological conditions, skin mast cells play an important role as guardians that quickly react to stimuli that disturb homeostasis. These cells efficiently support, fight infection, and heal the injured tissue. The substances secreted by mast cells allow for communication inside the body, including the immune, nervous, and blood systems. Pathologically non-cancerous mast cells participate in allergic processes but also may promote the development of autoinflammatory or neoplastic disease. In this article, we review the current literature regarding the role of mast cells in autoinflammatory, allergic, neoplastic skin disease, as well as the importance of these cells in systemic diseases with a pronounced course with skin symptoms.
Collapse
Affiliation(s)
- Ewelina Woźniak
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Justyna Czarny
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Ewa Wygonowska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
- Invicta Fertility and Reproductive Centre, Molecular Laboratory, 81-740 Sopot, Poland
| |
Collapse
|
6
|
Immunoproteomics of cow's milk allergy in Mexican pediatric patients. J Proteomics 2023; 273:104809. [PMID: 36587729 DOI: 10.1016/j.jprot.2022.104809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Immunological mechanisms of non-IgE-mediated cow's milk protein allergy (CMPA) are not well understood. Such a circumstance requires attention with the aim of discovering new biomarkers that could lead to better diagnostic assays for early treatment. Here, we sought both to investigate the mechanism that underlies non-IgE-mediated CMPA and to identify cow's milk immunoreactive proteins in a Mexican pediatric patient group (n = 34). Hence, we determined the IgE and IgG1-4 subclass antibody levels against cow's milk proteins (CMP) by ELISA. Then, we performed 2D-Immunoblots using as first antibody immunoglobulins in the patients'serum that bound specifically against CMP together with CMP enrichment by ion-exchange chromatography. Immunoreactive proteins were identified by mass spectrometry-based proteomics. The serological test confirmed absence of specific IgE in the CMPA patients but showed significant increase in antigen-specific IgG1. Additionally, we identified 11 proteins that specifically bound to IgG1. We conclude that the detection of specific IgG1 together with an immunoproteomics approach is highly relevant to the understanding of CMPA's physiopathology and as a possible aid in making a prognosis since current evidence indicates IgG1 occurrence as an early signal of potential risk toward development of IgE-mediated food allergy. SIGNIFICANCE: Allergies are one of the most studied topics in the field of public health and novel protein allergens are found each year. Discovery of new principal and regional allergens has remarkable repercussions in precise molecular diagnostics, prognostics, and more specific immunotherapies. In this context, specific IgE is widely known to mediate physiopathology; however, allergies whose mechanism does not involve this immunoglobulin are poorly understood although their incidence has increased. Therefore, accurate diagnosis and adequate treatment are delayed with significant consequences on the health of pediatric patients. The study of type and subtypes of immunoglobulins associated with the immunoreactivity of cow's milk proteins together with an immunoproteomics approach allows better comprehension of physiopathology, brings the opportunity to discover new potential cow's milk protein allergens and may help in prognosis prediction (IgG1 occurrence as an early signal of possible risk toward development of IgE-mediated food allergy).
Collapse
|
7
|
Fowler J, Lieberman P. Pathophysiology of Immunologic and Nonimmunologic Systemic Reactions Including Anaphylaxis. Immunol Allergy Clin North Am 2021; 42:27-43. [PMID: 34823749 DOI: 10.1016/j.iac.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is a myriad of immunologic and nonimmunologic pathways by which the clinical phenotype of anaphylaxis can be produced. An understanding of these pathways is essential for the prevention as well as the treatment of anaphylactic episodes.
Collapse
Affiliation(s)
- Joshua Fowler
- University of Tennessee College of Medicine, Memphis, TN, USA. %
| | - Phil Lieberman
- University of Tennessee College of Medicine, Memphis, TN, USA
| |
Collapse
|
8
|
Cianferoni A. Non-IgE-mediated anaphylaxis. J Allergy Clin Immunol 2021; 147:1123-1131. [PMID: 33832694 DOI: 10.1016/j.jaci.2021.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Anaphylaxis is a rapidly evolving, acute, life-threatening reaction that occurs rapidly on contact with a trigger. Anaphylaxis is classically defined as an allergen-driven process that induces specific IgE and the activation of mast cells and basophils through the cross-linking of IgE receptors. However, it is clear that non-IgE-mediated pathways can induce symptoms indistinguishable from those of classic anaphylaxis, and their activation could explain the severity of IgE-mediated anaphylaxis. Indeed, mast cells and basophils can be activated by antibodies against IgE or their receptors, by molecules such as anaphylatoxins, or through G-coupled receptors. Some other allergens can induce antibodies of class IgG that can activate neutrophils to produce a molecule similar to histamine to induce anaphylaxis. Finally, some inflammatory mediators such as bradykinin or prostaglandin can also modulate mast cell and basophil activation as well as directly cause vasodilation and bronchoconstriction, resulting in anaphylaxis-like reactions.
Collapse
Affiliation(s)
- Antonella Cianferoni
- Perelman School of Medicine, University of Pennsylvania, Allergy and Immunology Division, The Children's Hospital of Philadelphia, Philadelphia, Pa.
| |
Collapse
|
9
|
Ricke DO. Two Different Antibody-Dependent Enhancement (ADE) Risks for SARS-CoV-2 Antibodies. Front Immunol 2021; 12:640093. [PMID: 33717193 PMCID: PMC7943455 DOI: 10.3389/fimmu.2021.640093] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/03/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 (SARS-CoV-2) disease severity and stages varies from asymptomatic, mild flu-like symptoms, moderate, severe, critical, and chronic disease. COVID-19 disease progression include lymphopenia, elevated proinflammatory cytokines and chemokines, accumulation of macrophages and neutrophils in lungs, immune dysregulation, cytokine storms, acute respiratory distress syndrome (ARDS), etc. Development of vaccines to severe acute respiratory syndrome (SARS), Middle East Respiratory Syndrome coronavirus (MERS-CoV), and other coronavirus has been difficult to create due to vaccine induced enhanced disease responses in animal models. Multiple betacoronaviruses including SARS-CoV-2 and SARS-CoV-1 expand cellular tropism by infecting some phagocytic cells (immature macrophages and dendritic cells) via antibody bound Fc receptor uptake of virus. Antibody-dependent enhancement (ADE) may be involved in the clinical observation of increased severity of symptoms associated with early high levels of SARS-CoV-2 antibodies in patients. Infants with multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19 may also have ADE caused by maternally acquired SARS-CoV-2 antibodies bound to mast cells. ADE risks associated with SARS-CoV-2 has implications for COVID-19 and MIS-C treatments, B-cell vaccines, SARS-CoV-2 antibody therapy, and convalescent plasma therapy for patients. SARS-CoV-2 antibodies bound to mast cells may be involved in MIS-C and multisystem inflammatory syndrome in adults (MIS-A) following initial COVID-19 infection. SARS-CoV-2 antibodies bound to Fc receptors on macrophages and mast cells may represent two different mechanisms for ADE in patients. These two different ADE risks have possible implications for SARS-CoV-2 B-cell vaccines for subsets of populations based on age, cross-reactive antibodies, variabilities in antibody levels over time, and pregnancy. These models place increased emphasis on the importance of developing safe SARS-CoV-2 T cell vaccines that are not dependent upon antibodies.
Collapse
Affiliation(s)
- Darrell O. Ricke
- Biological and Chemical Technologies, Massachusetts Institute of Technology Lincoln Laboratory, Biotechnology and Human Systems, Lexington, MA, United States
| |
Collapse
|
10
|
Duguay BA, Lu L, Arizmendi N, Unsworth LD, Kulka M. The Possible Uses and Challenges of Nanomaterials in Mast Cell Research. THE JOURNAL OF IMMUNOLOGY 2020; 204:2021-2032. [PMID: 32253270 DOI: 10.4049/jimmunol.1800658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/19/2019] [Indexed: 11/19/2022]
Abstract
Mast cells are tissue-resident immune cells that are involved in inflammation and fibrosis but also serve beneficial roles, including tissue maintenance, angiogenesis, pathogen clearance, and immunoregulation. Their multifaceted response and the ability of their mediators to target multiple organs and tissues means that mast cells play important roles in numerous conditions, including asthma, atopic dermatitis, drug sensitivities, ischemic heart disease, Alzheimer disease, arthritis, irritable bowel syndrome, infections (parasites, bacteria and viruses), and cancer. As a result, mast cells have become an important target for drug discovery and diagnostic research. Recent work has focused on applying novel nanotechnologies to explore cell biology. In this brief review, we will highlight the use of nanomaterials to modify mast cell functions and will discuss the potential of these technologies as research tools for understanding mast cell biology.
Collapse
Affiliation(s)
- Brett A Duguay
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Lei Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; and
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
11
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double-Edged Sword in Immunity: Their Function in Health and Disease. First of Two Parts. Endocr Metab Immune Disord Drug Targets 2019; 20:654-669. [PMID: 31789135 DOI: 10.2174/1871530319666191202120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
Mast cells (MCs) have recently been re-interpreted in the context of the immune scenario in the sense that their pro-allergic role is no longer exclusive. In fact, MCs even in steady state conditions maintain homeostatic functions, producing mediators and intensively cross-talking with other immune cells. Here, emphasis will be placed on the array of receptors expressed by MCs and the variety of cytokines they produce. Then, the bulk of data discussed will provide readers with a wealth of information on the dual ability of MCs not only to defend but also to offend the host. This double attitude of MCs relies on many variables, such as their subsets, tissues of residency and type of stimuli ranging from microbes to allergens and food antigens. Finally, the relationship between MCs with basophils and eosinophils will be discussed.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
12
|
Kow ASF, Chik A, Soo KM, Khoo LW, Abas F, Tham CL. Identification of Soluble Mediators in IgG-Mediated Anaphylaxis via Fcγ Receptor: A Meta-Analysis. Front Immunol 2019; 10:190. [PMID: 30809224 PMCID: PMC6379333 DOI: 10.3389/fimmu.2019.00190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/22/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Anaphylaxis is an acute and life-threatening allergic response. Classically and most commonly, it can be mediated by the crosslinking of allergens to immunoglobulin E (IgE)- high affinity IgE receptor (FcεRI) complex found mostly on mast cells. However, there is another pathway of anaphylaxis that is less well-studied. This pathway known as the alternative pathway is mediated by IgG and its Fc gamma receptor (Fcγ). Though it was not documented in human anaphylaxis, a few studies have found that IgG-mediated anaphylaxis can happen as demonstrated in rodent models of anaphylaxis. In these studies, a variety of soluble mediators were being evaluated and they differ from each study which causes confusion in the suitability, and reliability of choice of soluble mediators to be analyzed for diagnosis or therapeutic purposes. Hence, the objective of this meta-analysis is to identify the potential soluble mediators that are involved in an IgG-mediated anaphylaxis reaction. Methods: Studies related to IgG-mediated anaphylaxis were sourced from five search engines namely PubMed, Scopus, Ovid, Cochrane Library, and Center for Agricultural Bioscience International (CABI) regardless of publication year. Relevant studies were then reviewed based on specific inclusion factors. The means and standard deviations of each soluble mediator studied were then extracted using ImageJ or Get Data Graph Digitiser software and the data were subjected to meta-analysis. Results: From our findings, we found that histamine, serotonin, platelet activating factor (PAF), β-hexosaminidase, leukotriene C4 (LTC4), mucosal mast cell protease-1 (MMCP-1), interleukins (IL)-4,−6, and−13; tumor necrosis factor alpha (TNF-α), and macrophage inflammatory protein-1α (MIP-1α) were often being analyzed. Out of these soluble mediators, histamine, PAF, β-hexosaminidase, IL-6, and−13, MIP-1α and TNF-α were more significant with positive effect size and p < 0.001. As study effect was relatively small, we performed publication bias and found that there was publication bias and this could be due to the small sample size studied. Conclusion: As such, we proposed that through meta-analysis, the potential soluble mediators involved in rodent IgG-mediated anaphylaxis to be histamine, PAF, β-hexosaminidase, IL-6 and−13 and MIP-1α, and TNF-α but will require further studies with larger sample size.
Collapse
Affiliation(s)
- Audrey Siew Foong Kow
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azirah Chik
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kuan-Meng Soo
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Leng Wei Khoo
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
13
|
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2019; 282:121-150. [PMID: 29431212 DOI: 10.1111/imr.12634] [Citation(s) in RCA: 486] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells are hematopoietic cells that reside in virtually all vascularized tissues and that represent potential sources of a wide variety of biologically active secreted products, including diverse cytokines and growth factors. There is strong evidence for important non-redundant roles of mast cells in many types of innate or adaptive immune responses, including making important contributions to immediate and chronic IgE-associated allergic disorders and enhancing host resistance to certain venoms and parasites. However, mast cells have been proposed to influence many other biological processes, including responses to bacteria and virus, angiogenesis, wound healing, fibrosis, autoimmune and metabolic disorders, and cancer. The potential functions of mast cells in many of these settings is thought to reflect their ability to secrete, upon appropriate activation by a range of immune or non-immune stimuli, a broad spectrum of cytokines (including many chemokines) and growth factors, with potential autocrine, paracrine, local, and systemic effects. In this review, we summarize the evidence indicating which cytokines and growth factors can be produced by various populations of rodent and human mast cells in response to particular immune or non-immune stimuli, and comment on the proven or potential roles of such mast cell products in health and disease.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev 2019; 282:151-167. [PMID: 29431215 DOI: 10.1111/imr.12638] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the origin of the phrase "birds of a feather flock together" is unclear, it has been in use for centuries and is typically employed to describe the phenomenon that people with similar tastes or interests tend to seek each other out and congregate together. In this review, we have co-opted this phrase to compare innate immune cells of related origin, the eosinophil and mast cell, because they very often accumulate together in tissue sites under both homeostatic and inflammatory conditions. To highlight overlapping yet distinct features, their hematopoietic development, cell surface phenotype, mediator release profiles and roles in diseases have been compared and contrasted. What emerges is a sense that these two cell types often interact with each other and their tissue environment to provide synergistic contributions to a variety of normal and pathologic immune responses.
Collapse
Affiliation(s)
- Piper A Robida
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Khatami M. Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and 'Dark Energy': loss of biorhythms (Anabolism v. Catabolism). Clin Transl Med 2018; 7:20. [PMID: 29961900 PMCID: PMC6026585 DOI: 10.1186/s40169-018-0193-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health involves a synchronized network of catabolic and anabolic signals among organs/tissues/cells that requires differential bioenergetics from mitochondria and glycolysis (biological laws or biorhythms). We defined biological circadian rhythms as Yin (tumoricidal) and Yang (tumorigenic) arms of acute inflammation (effective immunity) involving immune and non-immune systems. Role of pathogens in altering immunity and inducing diseases and cancer has been documented for over a century. However, in 1955s decision makers in cancer/medical establishment allowed public (current baby boomers) to consume million doses of virus-contaminated polio vaccines. The risk of cancer incidence and mortality sharply rose from 5% (rate of hereditary/genetic or innate disease) in 1900s, to its current scary status of 33% or 50% among women and men, respectively. Despite better hygiene, modern detection technologies and discovery of antibiotics, baby boomers and subsequent 2–3 generations are sicker than previous generations at same age. American health status ranks last among other developed nations while America invests highest amount of resources for healthcare. In this perspective we present evidence that cancer is an induced disease of twentieth century, facilitated by a great deception of cancer/medical establishment for huge corporate profits. Unlike popularized opinions that cancer is 100, 200 or 1000 diseases, we demonstrate that cancer is only one disease; the severe disturbances in biorhythms (differential bioenergetics) or loss of balance in Yin and Yang of effective immunity. Cancer projects that are promoted and funded by decision makers are reductionist approaches, wrong and unethical and resulted in loss of millions of precious lives and financial toxicity to society. Public vaccination with pathogen-specific vaccines (e.g., flu, hepatitis, HPV, meningitis, measles) weakens, not promotes, immunity. Results of irresponsible projects on cancer sciences or vaccines are increased population of drug-dependent sick society. Outcome failure rates of claimed ‘targeted’ drugs, ‘precision’ or ‘personalized’ medicine are 90% (± 5) for solid tumors. We demonstrate that aging, frequent exposures to environmental hazards, infections and pathogen-specific vaccines and ingredients are ‘antigen overload’ for immune system, skewing the Yin and Yang response profiles and leading to induction of ‘mild’, ‘moderate’ or ‘severe’ immune disorders. Induction of decoy or pattern recognition receptors (e.g., PRRs), such as IRAK-M or IL-1dRs (‘designer’ molecules) and associated genomic instability and over-expression of growth promoting factors (e.g., pyruvate kinases, mTOR and PI3Ks, histamine, PGE2, VEGF) could lead to immune tolerance, facilitating cancer cells to hijack anabolic machinery of immunity (Yang) for their increased growth requirements. Expression of constituent embryonic factors would negatively regulate differentiation of tumor cells through epithelial–mesenchymal-transition and create “dual negative feedback loop” that influence tissue metabolism under hypoxic conditions. It is further hypothesized that induction of tolerance creates ‘dark energy’ and increased entropy and temperature in cancer microenvironment allowing disorderly cancer proliferation and mitosis along with increased glucose metabolism via Crabtree and Pasteur Effects, under mitophagy and ribophagy, conditions that are toxic to host survival. Effective translational medicine into treatment requires systematic and logical studies of complex interactions of tumor cells with host environment that dictate clinical outcomes. Promoting effective immunity (biological circadian rhythms) are fundamental steps in correcting host differential bioenergetics and controlling cancer growth, preventing or delaying onset of diseases and maintaining public health. The author urges independent professionals and policy makers to take a closer look at cancer dilemma and stop the ‘scientific/medical ponzi schemes’ of a powerful group that control a drug-dependent sick society before all hopes for promoting public health evaporate.
Collapse
Affiliation(s)
- Mahin Khatami
- Inflammation, Aging and Cancer, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
16
|
Genomic and transcriptomic comparison of allergen and silver nanoparticle-induced mast cell degranulation reveals novel non-immunoglobulin E mediated mechanisms. PLoS One 2018; 13:e0193499. [PMID: 29566008 PMCID: PMC5863960 DOI: 10.1371/journal.pone.0193499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.
Collapse
|
17
|
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev 2018; 282:87-113. [DOI: 10.1111/imr.12629] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank A. Redegeld
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Yingxin Yu
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Nicolas Charles
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
| | - Ulrich Blank
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
- Inflamex Laboratory of Excellence; Paris France
| |
Collapse
|
18
|
González-de-Olano D, Álvarez-Twose I. Insights in Anaphylaxis and Clonal Mast Cell Disorders. Front Immunol 2017; 8:792. [PMID: 28740494 PMCID: PMC5502410 DOI: 10.3389/fimmu.2017.00792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/22/2017] [Indexed: 11/15/2022] Open
Abstract
The prevalence of anaphylaxis among patients with clonal mast cell disorders (MCD) is clearly higher comparing to the general population. Due to a lower frequency of symptoms outside of acute episodes, clonal MCD in the absence of skin lesions might sometimes be difficult to identify which may lead to underdiagnosis, and anaphylaxis is commonly the presenting symptom in these patients. Although the release of mast cell (MC) mediators upon MC activation might present with a wide variety of symptoms, particular clinical features typically characterize MC mediator release episodes in patients with clonal MCD without skin involvement. Final diagnosis requires a bone marrow study, and it is recommended that this should be done in reference centers. In this article, we address the main triggers for anaphylaxis, risk factors, clinical presentation, diagnosis, and management of patients with MC activation syndromes (MCASs), with special emphasis on clonal MCAS [systemic mastocytosis and mono(clonal) MC activations syndromes].
Collapse
Affiliation(s)
| | - Iván Álvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Hospital Virgen del Valle, Toledo, Spain
| |
Collapse
|
19
|
Johnson MM, Mendoza R, Raghavendra AJ, Podila R, Brown JM. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation. Sci Rep 2017; 7:43570. [PMID: 28262689 PMCID: PMC5337938 DOI: 10.1038/srep43570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcεRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.
Collapse
Affiliation(s)
- Monica M Johnson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Ryan Mendoza
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Achyut J Raghavendra
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.,Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, SC 296225, USA
| | - Ramakrishna Podila
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.,Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, SC 296225, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Khatami M. Is cancer a severe delayed hypersensitivity reaction and histamine a blueprint? Clin Transl Med 2016; 5:35. [PMID: 27558401 PMCID: PMC4996813 DOI: 10.1186/s40169-016-0108-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/04/2016] [Indexed: 02/08/2023] Open
Abstract
Longevity and accumulation of multiple context-dependent signaling pathways of long-standing inflammation (antigen-load or oxidative stress) are the results of decreased/altered regulation of immunity and loss of control switch mechanisms that we defined as Yin and Yang of acute inflammation or immune surveillance. Chronic inflammation is initiated by immune disruptors-induced progressive changes in physiology and function of susceptible host tissues that lead to increased immune suppression and multistep disease processes including carcinogenesis. The interrelated multiple hypotheses that are presented for the first time in this article are extension of author's earlier series of 'accidental' discoveries on the role of inflammation in developmental stages of immune dysfunction toward tumorigenesis and angiogenesis. Detailed analyses of data on chronic diseases suggest that nearly all age-associated illnesses, generally categorized as 'mild' (e.g., increased allergies), 'moderate' (e.g., hypertension, colitis, gastritis, pancreatitis, emphysema) or 'severe' (e.g., accelerated neurodegenerative and autoimmune diseases or site-specific cancers and metastasis) are variations of hypersensitivity responses of tissues that are manifested as different diseases in immune-responsive or immune-privileged tissues. Continuous release/presence of low level histamine (subclinical) in circulation could contribute to sustained oxidative stress and induction of 'mild' or 'moderate' or 'severe' (immune tsunami) immune disorders in susceptible tissues. Site-specific cancers are proposed to be 'severe' (irreversible) forms of cumulative delayed hypersensitivity responses that would induce immunological chaos in favor of tissue growth in target tissues. Shared or special features of growth from fetus development into adulthood and aging processes and carcinogenesis are briefly compared with regard to energy requirements of highly complex function of Yin and Yang. Features of Yang (growth-promoting) arm of acute inflammation during fetus and cancer growth will be compared for consuming low energy from glycolysis (Warburg effect). Growth of fetus and cancer cells under hypoxic conditions and impaired mitochondrial energy requirements of tissues including metabolism of essential branched amino acids (e.g., val, leu, isoleu) will be compared for proposing a working model for future systematic research on cancer biology, prevention and therapy. Presentation of a working model provides insightful clues into bioenergetics that are required for fetus growth (absence of external threat and lack of high energy-demands of Yin events and parasite-like survival in host), normal growth in adulthood (balance in Yin and Yang processes) or disease processes and carcinogenesis (loss of balance in Yin-Yang). Future studies require focusing on dynamics and promotion of natural/inherent balance between Yin (tumoricidal) and Yang (tumorigenic) of effective immunity that develop after birth. Lawless growth of cancerous cells and loss of cell contact inhibition could partially be due to impaired mitochondria (mitophagy) that influence metabolism of branched chain amino acids for biosynthesis of structural proteins. The author invites interested scientists with diverse expertise to provide comments, confirm, dispute and question and/or expand and collaborate on many components of the proposed working model with the goal to better understand cancer biology for future designs of cost-effective research and clinical trials and prevention of cancer. Initial events during oxidative stress-induced damages to DNA/RNA repair mechanisms and inappropriate expression of inflammatory mediators are potentially correctable, preventable or druggable, if future studies were to focus on systematic understanding of early altered immune response dynamics toward multistep chronic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Mahin Khatami
- National Cancer Institute (NCI), the National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
21
|
Sae-Wong C, Mizutani N, Kangsanant S, Yoshino S. Topical skin treatment with Fab fragments of an allergen-specific IgG1 monoclonal antibody suppresses allergen-induced atopic dermatitis-like skin lesions in mice. Eur J Pharmacol 2016; 779:131-7. [DOI: 10.1016/j.ejphar.2016.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 01/24/2023]
|
22
|
Azaña J, Torrelo A, Matito A. Update on Mastocytosis (Part 1): Pathophysiology, Clinical Features, and Diagnosis. ACTAS DERMO-SIFILIOGRAFICAS 2016. [DOI: 10.1016/j.adengl.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
23
|
Azaña JM, Torrelo A, Matito A. Update on Mastocytosis (Part 1): Pathophysiology, Clinical Features, and Diagnosis. ACTAS DERMO-SIFILIOGRAFICAS 2015; 107:5-14. [PMID: 26546030 DOI: 10.1016/j.ad.2015.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/25/2015] [Accepted: 09/12/2015] [Indexed: 12/20/2022] Open
Abstract
Mastocytosis is a term used to describe a heterogeneous group of disorders characterized by clonal proliferation of mast cells in various organs. The organ most often affected is the skin. Mastocytosis is a relatively rare disorder that affects both sexes equally. It can occur at any age, although it tends to appear in the first decade of life, or later, between the second and fifth decades. Our understanding of the pathophysiology of mastocytosis has improved greatly in recent years, with the discovery that somatic c-kit mutations and aberrant immunophenotypic features have an important role. The clinical manifestations of mastocytosis are diverse, and skin lesions are the key to diagnosis in most patients.
Collapse
Affiliation(s)
- J M Azaña
- Servicio de Dermatología, Complejo Hospitalario Universitario, Albacete, España.
| | - A Torrelo
- Servicio de Dermatología, Hospital del Niño Jesús, Madrid, España
| | - A Matito
- Instituto de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, España
| |
Collapse
|
24
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
25
|
Mizutani N, Nabe T, Yoshino S. IgE/antigen-mediated enhancement of IgE production is a mechanism underlying the exacerbation of airway inflammation and remodelling in mice. Immunology 2015; 144:107-15. [PMID: 24995892 DOI: 10.1111/imm.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022] Open
Abstract
IgE is known to enhance some antibody responses to specific antigens, but whether this contributes to allergic asthma remains unclear. We have previously found that repeated antigen challenges in mice sensitized with antigen-specific IgE monoclonal antibody (mAb) exacerbated airway inflammation and remodelling accompanied by increased levels of endogenous antigen-specific IgE and IgG1. Here, we investigated whether IgE/antigen-mediated enhancement of endogenous IgE production contributes to the exacerbation of airway inflammation and remodelling. BALB/c mice passively sensitized with ovalbumin (OVA) -specific IgE mAb were challenged with OVA intratracheally seven times; anti-IgE mAb was intraperitoneally administered 1 day before the fourth challenge. Treatment with anti-IgE mAb inhibited the increased level of endogenous OVA-specific IgE in serum, but not OVA-specific IgG1, and a biphasic increase in airway resistance at the fourth challenge. Furthermore, a biphasic increase in airway resistance, airway hyper-responsiveness to methacholine, OVA-specific IgE and IgG1 production, and infiltrations by neutrophils and eosinophils in the lungs at the seventh challenge were suppressed by treatment; airway remodelling, such as goblet cell hyperplasia and sub-epithelial fibrosis, was also reduced. In addition, the production of interleukin-17A, interleukin-33 and CXCL1 in the lungs related to these IgE-mediated responses was decreased by treatment. Collectively, we found that the mechanism leading to the exacerbation of allergic asthma is closely related to IgE/antigen-mediated enhancement of IgE production, suggesting that this may create a vicious circle leading to the chronic status in asthmatic patients having levels of antigen-specific IgE ready to form complexes with antigen.
Collapse
Affiliation(s)
- Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | | | | |
Collapse
|
26
|
Sellge G, Barkowsky M, Kramer S, Gebhardt T, Sander LE, Lorentz A, Bischoff SC. Interferon-γ regulates growth and controls Fcγ receptor expression and activation in human intestinal mast cells. BMC Immunol 2014; 15:27. [PMID: 24996251 PMCID: PMC4227132 DOI: 10.1186/1471-2172-15-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/20/2014] [Indexed: 01/05/2023] Open
Abstract
Background Development and function of tissue resident mast cells (MCs) is tightly controlled by various cytokines, most of which belong to the typical T helper (Th) 2-type cytokines such as IL-3 and IL-4. The effects of the Th1-type cytokine IFN-γ on human MCs is less clear. Results Here, we analyzed the effects of IFN-γ on tissue-derived, mature human MCs. We found that INF-γ decreases proliferation, without affecting apoptosis in human intestinal MCs cultured in the presence of optimal concentrations of stem cell factor (SCF) or SCF and IL-4. However, in the absence of growth factors or at suboptimal concentrations of SCF, INF-γ promotes survival through inhibition of MC apoptosis. Interestingly, we found that INF-γ has no effect on FcϵRI expression and FcϵRI-mediated release of histamine and leukotriene (LT)C4, while it has profound effects on FcγR expression and activation. We show that intestinal MCs express FcγRI, FcγRIIa, and FcγRIIc, whereas FcγRIIb expression was found in only 40% of the isolates and FcγRIII was never detectable. INF-γ strongly increases FcγRI and decreases FcγRIIa expression. INF-γ-naïve MCs produce LTC4 but fail to degranulate upon crosslinking of surface-bound monomeric IgG. In contrast, INF-γ-treated MCs rapidly release granule-stored histamine in addition to de novo-synthesized LTC4. Conclusion In summary, we identify INF-γ as an important regulator of tissue-resident human MCs. IFN-γ displays a dual function by blocking extensive MC proliferation, while decreasing apoptosis in starving MCs and enhancing FcγRI expression and activation. These results emphasize the involvement of mucosal MCs in Th1-mediated disorders.
Collapse
Affiliation(s)
- Gernot Sellge
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Matsuoka D, Mizutani N, Sae-Wong C, Yoshino S. Allergen-specific regulation of allergic rhinitis in mice by intranasal exposure to IgG1 monoclonal antibody Fab fragments against pathogenic allergen. Immunol Lett 2014; 161:149-56. [PMID: 24954639 DOI: 10.1016/j.imlet.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/23/2014] [Accepted: 06/12/2014] [Indexed: 12/27/2022]
Abstract
Fab fragments (Fabs) have the ability to bind to specific antigens but lack the Fc portion for binding to receptors on immune and inflammatory cells that play a critical role in allergic diseases. In the present study, we investigated whether Fabs of an allergen-specific IgG1 monoclonal antibody (mAb) inhibited allergic rhinitis in mice. BALB/c mice sensitized by intraperitoneal injections of ovalbumin (OVA) plus alum on days 0 and 14 were intranasally challenged with OVA on days 28-30, and 35. Fabs prepared by the digestion of an anti-OVA IgG1 mAb (O1-10) with papain were also intranasally administered 15min before each OVA challenge. The results showed that treatment with O1-10 Fabs significantly suppressed the sneezing frequency, associated with decrease of OVA-specific IgE in the serum and infiltration by mast cells in the nasal mucosa seen following the fourth antigenic challenge; additionally, the level of mouse mast cell protease-1, a marker of mast cell activation, in serum was decreased. Furthermore, infiltration of eosinophils and goblet cell hyperplasia in the nasal mucosa at the fourth challenge were inhibited by treatment with O1-10 Fabs. In conclusion, these results suggest that intranasal exposure to Fabs of a pathogenic antigen-specific IgG1 mAb may be effective in regulating allergic rhinitis through allergen capture by Fabs in the nasal mucosa before the interaction of the intact antibody and allergen.
Collapse
Affiliation(s)
- Daiko Matsuoka
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Chutha Sae-Wong
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Shin Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
| |
Collapse
|
28
|
Yoshino S, Mizutani N, Matsuoka D, Sae-Wong C. Intratracheal exposure to Fab fragments of an allergen-specific monoclonal antibody regulates asthmatic responses in mice. Immunology 2014; 141:617-27. [PMID: 24303921 DOI: 10.1111/imm.12225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 11/08/2013] [Accepted: 11/24/2013] [Indexed: 12/20/2022] Open
Abstract
Fab fragments (Fabs) maintain the ability to bind to specific antigens but lack effector functions due to the absence of the Fc portion. In the present study, we tested whether Fabs of an allergen-specific monoclonal antibody (mAb) were able to regulate asthmatic responses in mice. Asthmatic responses were induced in BALB/c mice by passive sensitization with anti-ovalbumin (OVA) polyclonal antibodies (pAbs) (day 0) and by active sensitization with OVA (days 0 and 14), followed by intratracheal (i.t.) challenge with OVA on day 1 and days 28, 29, 30 and 35. Fabs prepared by the digestion of an anti-OVA IgG1 (O1-10) mAb with papain were i.t. administered only once 30 min before antigenic challenge on day 1 or day 35. The results showed that i.t. administration of O1-10 Fabs with OVA markedly suppressed the early and/or late phases of asthmatic responses caused by passive and active sensitization. Similar results were obtained when Fabs of anti-OVA IgG2b mAb (O2B-3) were i.t. administered. In contrast, neither i.t. injection of intact 01-10/O2B-3 nor systemic injection of O1-10 Fabs suppressed the asthmatic responses. In vitro studies revealed that the capture of OVA by O1-10 Fabs prevented the subsequent binding of intact anti-OVA pAbs to the captured OVA. These results suggest that asthmatic responses may be down-regulated by the i.t. exposure to Fabs of an allergen-specific mAb via a mechanism involving the capture of allergen by Fabs in the respiratory tract before the interaction of intact antibody and allergen essential for the induction of asthmatic responses.
Collapse
Affiliation(s)
- Shin Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | | | | | | |
Collapse
|
29
|
Lee H, Kashiwakura JI, Matsuda A, Watanabe Y, Sakamoto-Sasaki T, Matsumoto K, Hashimoto N, Saito S, Ohmori K, Nagaoka M, Tokuhashi Y, Ra C, Okayama Y. Activation of human synovial mast cells from rheumatoid arthritis or osteoarthritis patients in response to aggregated IgG through Fcγ receptor I and Fcγ receptor II. ACTA ACUST UNITED AC 2013; 65:109-19. [PMID: 23055095 DOI: 10.1002/art.37741] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 10/04/2012] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Substantial evidence suggests that human synovial mast cells (MCs) are involved in the pathogenesis of rheumatoid arthritis (RA). A plausible pathway for the activation of synovial MCs is through IgG receptors, given the prevalence of circulating IgG isotype autoantibodies and synovial immune complexes in patients with RA. However, IgG receptor expression on human synovial MCs remains uncharacterized. The aim of this study was to identify which IgG receptor(s) on synovial MCs are responsible for MC activation in immune complexes. METHODS Synovial tissue specimens were obtained from patients with RA or patients with osteoarthritis (OA) who were undergoing joint replacement surgery, and synovial MCs were enzymatically dispersed. Cultured synovium-derived MCs were generated by culturing synovial cells with stem cell factor, and receptor expression was analyzed using fluorescence-activated cell sorting. Mediators released from MCs were measured using enzyme immunoassays or enzyme-linked immunosorbent assays. RESULTS Primary synovial MCs and cultured synovium-derived MCs obtained from both patients with RA and patients with OA expressed Fcε receptor I (FcεRI), FcγRI, and FcγRII but not FcγRIII. Cultured synovium-derived MCs induced degranulation and the production of prostaglandin D2 and tumor necrosis factor α (TNFα) through FcγRI. The aggregation of FcγRII caused histamine release from cultured MCs but not from primary MCs. Histamine release induced by aggregated IgG was significantly inhibited by neutralizing anti-FcγRI monoclonal antibody and anti-FcγRII monoclonal antibody. CONCLUSION With regard to the FcR expression profile, synovial MCs from patients with RA and patients with OA were similar. FcγRI was responsible for producing abundant TNFα from synovial MCs in response to aggregated IgG. Immune complexes may activate synovial MCs through FcγRI and FcγRII.
Collapse
Affiliation(s)
- Hyunho Lee
- Department of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu Z, MacNeil AJ, Berman JN, Lin TJ. Syntaxin binding protein 1 is not required for allergic inflammation via IgE-mediated mast cell activation. PLoS One 2013; 8:e58560. [PMID: 23484036 PMCID: PMC3590206 DOI: 10.1371/journal.pone.0058560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
Mast cells play a central role in both innate and acquired immunity. When activated by IgE-dependent FcεRI cross-linking, mast cells rapidly initiate a signaling cascade and undergo an extensive release of their granule contents, including inflammatory mediators. Some SNARE (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor) proteins and SM (Sec1/Munc18) family proteins are involved in mast cell degranulation. However, the function of syntaxin binding protein 1 (STXBP1), a member of SM family, in mast cell degranulation is currently unknown. In this study, we examined the role of STXBP1 in IgE-dependent mast cell activation. Liver-derived mast cells (LMCs) from wild-type and STXBP1-deficient mice were cultured in vitro for the study of mast cell maturation, degranulation, cytokine and chemokine production, as well as MAPK, IκB-NFκB, and NFAT signaling pathways. In addition, in vivo models of passive cutaneous anaphylaxis and late-phase IgE-dependent inflammation were conducted in mast cell deficient W(sh) mice that had been reconstituted with wild-type or STXBP1-deficient mast cells. Our findings indicate that STXBP1 is not required for any of these important functional mechanisms in mast cells both in vitro and in vivo. Our results demonstrate that STXBP1 is dispensable during IgE-mediated mast cell activation and in IgE-dependent allergic inflammatory reactions.
Collapse
Affiliation(s)
- Zhengli Wu
- Department of Microbiology and Immunology and Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Adam J. MacNeil
- Department of Microbiology and Immunology and Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Jason N. Berman
- Department of Microbiology and Immunology and Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Microbiology and Immunology and Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia, Canada
| |
Collapse
|
31
|
Reyes Martín E, Prieto Martín A, Díaz Martín D, Álvarez-Mon Soto M. Inmunidad innata e inmunidad adaptativa. MEDICINE - PROGRAMA DE FORMACIÓN MÉDICA CONTINUADA ACREDITADO 2013; 11:1760-1767. [DOI: 10.1016/s0304-5412(13)70553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Schmied J, Hamilton K, Rupa P, Oh SY, Wilkie B. Immune response phenotype induced by controlled immunization of neonatal pigs varies in type 1:type 2 bias. Vet Immunol Immunopathol 2012; 149:11-9. [DOI: 10.1016/j.vetimm.2012.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/29/2012] [Accepted: 05/22/2012] [Indexed: 12/31/2022]
|
33
|
Ekoff M, Lyberg K, Krajewska M, Arvidsson M, Rak S, Reed JC, Harvima I, Nilsson G. Anti-apoptotic BFL-1 is the major effector in activation-induced human mast cell survival. PLoS One 2012; 7:e39117. [PMID: 22720045 PMCID: PMC3376125 DOI: 10.1371/journal.pone.0039117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 05/16/2012] [Indexed: 11/18/2022] Open
Abstract
Mast cells are best known for their role in allergic reactions, where aggregation of FcεRI leads to the release of mast cell mediators causing allergic symptoms. The activation also induces a survival program in the cells, i.e., activation-induced mast cell survival. The aim of the present study was to investigate how the activation-induced survival is mediated. Cord blood-derived mast cells and the mast cell line LAD-2 were activated through FcεRI crosslinking, with or without addition of chemicals that inhibit the activity or expression of selected Bcl-2 family members (ABT-737; roscovitine). Cell viability was assessed using staining and flow cytometry. The expression and function of Bcl-2 family members BFL-1 and MCL-1 were investigated using real-time quantitative PCR and siRNA treatment. The mast cell expression of Bfl-1 was investigated in skin biopsies. FcεRI crosslinking promotes activation-induced survival of human mast cells and this is associated with an upregulation of the anti-apoptotic Bcl-2 family member Bfl-1. ABT-737 alone or in combination with roscovitine decreases viability of human mast cells although activation-induced survival is sustained, indicating a minor role for Bcl-X(L), Bcl-2, Bcl-w and Mcl-1. Reducing BFL-1 but not MCL-1 levels by siRNA inhibited activation-induced mast cell survival. We also demonstrate that mast cell expression of Bfl-1 is elevated in birch-pollen-provocated skin and in lesions of atopic dermatitis and psoriasis patients. Taken together, our results highlight Bfl-1 as a major effector in activation-induced human mast cell survival.
Collapse
Affiliation(s)
- Maria Ekoff
- Department of Medicine, Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Classically, allergy depends on IgE antibodies and on high-affinity IgE receptors expressed by mast cells and basophils. This long accepted IgE/FcεRI/mast cell paradigm, on which the definition of immediate hypersensitivity was based in the Gell and Coomb's classification, appears too reductionist. Recently accumulated evidence indeed requires that not only IgE but also IgG antibodies, that not only FcεRI but also FcγR of the different types, that not only mast cells and basophils but also neutrophils, monocytes, macrophages, eosinophils, and other myeloid cells be considered as important players in allergy. This view markedly changes our understanding of allergic diseases and, possibly, their treatment.
Collapse
Affiliation(s)
- Friederike Jönsson
- Institut Pasteur, Département d’Immunologie, Unité d’Allergologie Moléculaire et CellulaireParis, France
- Inserm, Unité 760Paris, France
| | - Marc Daëron
- Institut Pasteur, Département d’Immunologie, Unité d’Allergologie Moléculaire et CellulaireParis, France
- Inserm, Unité 760Paris, France
| |
Collapse
|
35
|
Abstract
Mast cells are multifunctional cells that initiate not only IgE-dependent allergic diseases but also play a fundamental role in innate and adaptive immune responses to microbial infection. They are also thought to play a role in angiogenesis, tissue remodeling, wound healing, and tumor repression or growth. The broad scope of these physiologic and pathologic roles illustrates the flexible nature of mast cells, which is enabled in part by their phenotypic adaptability to different tissue microenvironments and their ability to generate and release a diverse array of bioactive mediators in response to multiple types of cell-surface and cytosolic receptors. There is increasing evidence from studies in cell cultures that release of these mediators can be selectively modulated depending on the types or groups of receptors activated. The intent of this review is to foster interest in the interplay among mast cell receptors to help understand the underlying mechanisms for each of the immunological and non-immunological functions attributed to mast cells. The second intent of this review is to assess the pathophysiologic roles of mast cells and their products in health and disease. Although mast cells have a sufficient repertoire of bioactive mediators to mount effective innate and adaptive defense mechanisms against invading microorganisms, these same mediators can adversely affect surrounding tissues in the host, resulting in autoimmune disease as well as allergic disorders.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| | | |
Collapse
|
36
|
Xia YC, Schuliga M, Shepherd M, Powell M, Harris T, Langenbach SY, Tan PS, Gerthoffer WT, Hogarth PM, Stewart AG, Mackay GA. Functional expression of IgG-Fc receptors in human airway smooth muscle cells. Am J Respir Cell Mol Biol 2010; 44:665-72. [PMID: 20595464 DOI: 10.1165/rcmb.2009-0371oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IgE-Fc receptors and IgG-Fc receptors are expressed on hematopoietic cells, but some evidence suggests that these receptors are also found on nonhematopoietic cells, including human airway smooth muscle (hASM) cells. Our study characterizes the expression of IgE-Fc receptors (FcεRI/CD23) and IgG-Fc receptors (FcγRs-I, -II, and -III) in cultured hASM cells by flow cytometry and Western blotting, and the functional activity of receptors was determined through quantification of cell proliferation and released cytokines. Expression of Fc receptor-linked intracellular signaling proteins and phosphorylation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1/2 and p38(MAPK) in hASM cells was examined by Western blotting. Expression of FcεRI and CD23 was not detectable in hASM cells. However, FcγRI and FcγRII were shown to be expressed on these cells. Specific antibodies, validated using transfected cell lines, revealed that the inhibitory IgG receptor, FcγRIIb, was the most abundant Fc receptor subtype expressed. Although cross-linking FcγR with heat-aggregated γ globulin (HAGG) did not induce detectable cell stimulation, pretreating hASM cells with HAGG significantly inhibited IL-1α-induced increases in cytokine levels and basic fibroblast growth factor-induced cell proliferation. This inhibitory effect of HAGG was abrogated by preincubation of cells with an anti-FcγRIIb antigen-binding fragment (Fab). Expression of proteins involved in the canonical FcγRIIb inhibitory signaling pathway was established in hASM cells. Pretreatment of hASM cells with HAGG significantly inhibited IL-1α- and basic fibroblast growth factor-induced extracellular signal-regulated kinase 1/2 and p38(MAPK) phosphorylation. This study identifies functional expression of FcγRIIb in hASM cells, with the potential to suppress their remodeling and immunomodulatory roles.
Collapse
Affiliation(s)
- YuXiu C Xia
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chigbu DI. The management of allergic eye diseases in primary eye care. Cont Lens Anterior Eye 2009; 32:260-72. [DOI: 10.1016/j.clae.2009.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 07/17/2009] [Accepted: 08/05/2009] [Indexed: 11/29/2022]
|
38
|
Harvima IT, Nilsson G, Suttle MM, Naukkarinen A. Is there a role for mast cells in psoriasis? Arch Dermatol Res 2008; 300:461-78. [PMID: 18719932 DOI: 10.1007/s00403-008-0874-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 06/17/2008] [Accepted: 06/20/2008] [Indexed: 12/19/2022]
Abstract
Mast cells have traditionally been considered as effector cells in allergy but during the last decade it has been realized that mast cells are essentially involved in the mechanisms of innate and acquired immunity. Upon activation by anaphylactic, piecemeal degranulation or degranulation-independent mechanisms mast cells can secrete rapidly or slowly a number of soluble mediators, such as serine proteinases, histamine, lipid-derived mediators, cytokines, chemokines and growth factors. Mast cells can express cell surface co-stimulatory receptors and ligands, and they can express MHC class II molecules and thereby present antigens. These soluble factors and cell surface molecules can interact with other cells, such as endothelial cells, keratinocytes, sensory nerves, neutrophils, T cell subsets and antigen presenting cells which are essential effectors in the development of skin inflammation. Besides promoting inflammation, mast cells may attempt in some circumstances to suppress the inflammation and epidermal growth but the regulation between suppressive and proinflammatory mechanisms is unclear. Psoriasis is characterized by epidermal hyperplasia and chronic inflammation where tryptase- and chymase-positive MC(TC) mast cells are activated early in the developing lesion and later the cells increase in number in the upper dermis with concomitant expression of cytokines and TNF superfamily ligands as well as increased contacts with neuropeptide-containing sensory nerves. Due to the intimate involvement of mast cells in immunity and chronic inflammation the role of mast cells in psoriasis is discussed in this review.
Collapse
Affiliation(s)
- Ilkka T Harvima
- Department of Dermatology, Kuopio University Hospital and University of Kuopio, P O. Box 1777, 70211, Kuopio, Finland.
| | | | | | | |
Collapse
|
39
|
Karlberg M, Xiang Z, Nilsson G. FcγRI-Mediated Activation of Human Mast Cells Promotes Survival and Induction of the Pro-survival Gene Bfl-1. J Clin Immunol 2007; 28:250-5. [DOI: 10.1007/s10875-007-9153-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
|
40
|
Brown JM, Wilson TM, Metcalfe DD. The mast cell and allergic diseases: role in pathogenesis and implications for therapy. Clin Exp Allergy 2007; 38:4-18. [PMID: 18031566 DOI: 10.1111/j.1365-2222.2007.02886.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mast cells have long been recognized for their role in the genesis of allergic inflammation; and more recently for their participation in innate and acquired immune responses. Mast cells reside within tissues including the skin and mucosal membranes, which interface with the external environment; as well as being found within vascularized tissues next to nerves, blood vessels and glandular structures. Mast cells have the capability of reacting both within minutes and over hours to specific stimuli, with local and systemic effects. Mast cells express the high affinity IgE receptor (FcepsilonRI) and upon aggregation of FcepsilonRI by allergen-specific IgE, mast cells release and generate biologically active preformed and newly synthesized mediators which are involved in many aspects of allergic inflammation. While mast cells have been well documented to be essential for acute allergic reactions, more recently the importance of mast cells in reacting through pattern recognition receptors in innate immune responses has become recognized. Moreover, as our molecular understanding of the mast cell has evolved, novel targets for modulation have been identified with promising therapeutic potential.
Collapse
Affiliation(s)
- J M Brown
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
41
|
González de Olano D, de la Hoz Caballer B, Núñez López R, Sánchez Muñoz L, Cuevas Agustín M, Diéguez MC, Alvarez Twose I, Castells MC, Escribano Mora L. Prevalence of allergy and anaphylactic symptoms in 210 adult and pediatric patients with mastocytosis in Spain: a study of the Spanish network on mastocytosis (REMA). Clin Exp Allergy 2007; 37:1547-55. [PMID: 17883734 DOI: 10.1111/j.1365-2222.2007.02804.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mast cells (MCs) play a key role in allergic diseases through the release of inflammatory mediators, which are responsible of allergic symptoms. Mastocytosis is characterized by an abnormal proliferation and accumulation of mast cells, in which mediators are released intermittingly or continuously. Despite these clinical similarities, few studies have addressed the presence of allergic symptoms in mastocytosis patients, including anaphylaxis. OBJECTIVE A prospective evaluation was carried out to study the prevalence of allergic diseases in patients with mastocytosis and their impact on the natural history of mastocytosis. METHODS A questionnaire was given to 210 patients with mastocytosis to evaluate the history of asthma, rhinitis, conjunctivitis, atopic dermatitis, urticaria and anaphylaxis. Patients underwent total IgE, Phadiatop infant (aeroallergens and food allergens), specific IgE to latex and to Anisakis simplex determinations. Skin tests were done to 72 patients. RESULTS The prevalence of allergy, as defined by clinical symptoms associated to specific IgE, was 23.9%. Total IgE level was significantly higher in patients with allergy as compared with patients without allergy (median 58 vs. 16.5 kU/L, P<0.0001). Anaphylactic symptoms were present in 36 patients (22%), in nine the allergen was identified. Males had more allergy and anaphylactic symptoms than females (61.5% vs. 38.5% and 72% vs. 28%, respectively). CONCLUSIONS Allergic diseases coexist in patients with mastocytosis with similar frequency as compared with the general population. Anaphylactic symptoms are more prevalent in males with mastocytosis and in patients with elevated IgE. CAPSULE SUMMARY The prevalence of allergy in mastocytosis is similar to the general population. Anaphylactic symptoms are more prevalent in males and in patients with elevated IgE. The coexistence of atopy does not influence mastocytosis-associated symptoms.
Collapse
|
42
|
Kobayashi R, Okamura S, Ohno T, Saito H, Mori M, Ra C, Okayama Y. Hyperexpression of FcgammaRI and Toll-like receptor 4 in the intestinal mast cells of Crohn's disease patients. Clin Immunol 2007; 125:149-58. [PMID: 17827066 DOI: 10.1016/j.clim.2007.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 07/10/2007] [Accepted: 07/15/2007] [Indexed: 01/09/2023]
Abstract
We previously reported that human mast cells (MCs) express high affinity IgG receptor (FcgammaRI) and Toll-like receptor 4 (TLR4) in response to interferon (IFN)-gamma in vitro. The number of MCs is known to increase in Crohn's disease (CD) and ulcerative colitis (UC). We aimed to examine the expression and function of the receptors in these diseases by immunohistochemistry of the colonic mucosae and by in vitro experiments. The density of MCs expressing FcgammaRI, TLR4, or both proteins was significantly higher in CD than in UC or control samples. The density of TNF-alpha(+) MCs expressing FcgammaRI or TLR4 was significantly higher in CD than in control samples. LPS and IgG1 cross-linking synergistically induced a high level of TNF-alpha production in IFN-gamma-treated human MCs. Hyperexpression of FcgammaRI and TLR4 on MCs was related to the high frequency of TNF-alpha expression in CD, suggesting the activation of MCs via these receptors in vivo.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Mast cells reside in the normal synovium and increase strikingly in number in rheumatoid arthritis and other joint diseases. Given the broad spectrum of activity of this lineage, it has for decades been considered probable that mast cells are involved in the pathophysiology of synovitis. Recent work in murine arthritis has substantiated this suspicion, showing that mast cells can contribute importantly to the initiation of inflammatory arthritis. However, the role of the greatly expanded population of synovial mast cells in established arthritis remains unknown. Here we review the current understanding of mast cell function in acute arthritis and consider the potentially important influence of this cell on key processes within the chronically inflamed synovium, including leukocyte recruitment and activation, fibroblast proliferation, angiogenesis, matrix remodeling, and injury to collagen and bone. We also consider recent evidence supporting an immunomodulatory or anti-inflammatory role for mast cells as well as pharmacologic approaches to the mast cell as a therapeutic target in inflammatory arthritis.
Collapse
Affiliation(s)
- Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
44
|
Abstract
Systemic mastocytosis is a fascinating disease with diverse clinical features. There have been numerous advances in understanding the basis of clinical manifestations of this disease and of its molecular pathogenesis in the last several decades. The development of methods to study mast cell biology using cell culture and murine models has proven invaluable in this regard. Clarification of the roles of mast cells in various biological processes has expanded our understanding of their importance in innate immunity, as well as allergy. New diagnostic methods have allowed the design of detailed criteria to assist in distinguishing reactive mast cell hyperplasia from systemic mastocytosis. Variants and subvariants of systemic mastocytosis have been defined to assist in determining prognosis and in management of the disease. Elucidation of the roles of the Kit receptor tyrosine kinase and signal transduction pathway activation has contributed to development of potential targeted therapeutic approaches that may prove useful in the future.
Collapse
Affiliation(s)
- Jamie Robyn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
45
|
Kristjansson G, Serra J, Lööf L, Venge P, Hällgren R. Kinetics of mucosal granulocyte activation after gluten challenge in coeliac disease. Scand J Gastroenterol 2005; 40:662-9. [PMID: 16036526 DOI: 10.1080/00365520510015566] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To elucidate the dynamics of the rectal inflammatory response to rectal gluten challenge in coeliac disease by measuring inflammatory mediators released by activated neutrophils, eosinophils and mast cells/basophils. MATERIAL AND METHODS The release of myeloperoxidase (MPO), eosinophilic cationic protein (ECP) and histamine was measured continuously during the early challenge period (3-6 h after gluten challenge) in coeliac patients (n = 9) and healthy controls (n = 5). A segmental perfusion technique was used to carry out this part of the study. Another method, the mucosal patch technique, was used to enable studies of the late challenge period (5-48 h after gluten challenge) in coeliac patients (n = 10) and healthy controls (n = 15). RESULTS During the early challenge period the MPO levels began to increase as early as 3 h after challenge and increased progressively (p < 0.001) during the next 3 h. A decline in MPO levels was seen 15 h after challenge and another phase of increasing levels at 24 h. The MPO values declined 48 h after challenge but still remained significantly increased (p < 0.05). The ECP levels started to increase 4 h after challenge and increased progressively during the next 2 h (p < 0.05). The ECP kinetics during the late challenge period was similar as for MPO but the relative increase in ECP was more modest. No increase in histamine was found except in one patient who had a transient, early increase of histamine (3-5 h after challenge). No signs of inflammatory reaction to gluten were seen in the controls. CONCLUSIONS There is a pronounced neutrophil activation in coeliac patients after rectal gluten challenge. This activation is apparent 4 h after challenge and remains for at least 48 h. A more modest eosinophil activation defined by ECP levels starts 1-2 h later and also remains for at least 48 h. The biphasic pattern of MPO and ECP after challenge suggests a biphasic inflammatory reaction.
Collapse
Affiliation(s)
- Gudjon Kristjansson
- Department of Gastroenterology, Hospital General Vall d'Hebron, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
46
|
Tkaczyk C, Okayama Y, Metcalfe DD, Gilfillan AM. Fcgamma receptors on mast cells: activatory and inhibitory regulation of mediator release. Int Arch Allergy Immunol 2004; 133:305-15. [PMID: 15017113 DOI: 10.1159/000077213] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mast cell activation and subsequent release of proinflammatory mediators are primarily a consequence of aggregation of the high affinity receptors for IgE (FcepsilonRI) on the mast cell surface following antigen-dependent ligation of FcepsilonRI-bound IgE. However, data obtained from rodent and human mast cells have revealed that IgG receptors (FcgammaR) can both promote and inhibit mast cell activation. These responses appear to be species and/or mast cell phenotype dependent. In CD34+-derived human mast cells exposed to interferon-gamma, FcgammaRI is upregulated, FcgammaRII is expressed but not upregulated, and FcgammaRIII is not expressed. In contrast, in mouse mast cells, FcgammaRII and FcgammaRIII receptors are expressed, whereas FcgammaRI is not. Aggregation of FcgammaRI on human mast cells promotes mediator release in a manner generally similar to that observed following FcepsilonRI aggregation. Aggregation of FcgammaRIIb in mouse mast cells fails to influence cellular processes; however, when coligated with FcepsilonRI, signaling events thus activated downregulate antigen-dependent mediator release. These divergent responses are a consequence of different motifs contained within the cytosolic tails of the signaling subunits of these receptors and the specific signaling molecules recruited by these receptors following ligation. The studies described imply that data obtained in rodent models regarding the influence of FcgammaRs on mast cells may not be directly translatable to the human. The exploitation of FcgammaRs for a potential therapy for the treatment of allergic disorders is discussed in this context.
Collapse
Affiliation(s)
- Christine Tkaczyk
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA
| | | | | | | |
Collapse
|
47
|
Naesse EP, Schreurs O, Helgeland K, Schenck K, Steinsvoll S. Matrix metalloproteinases and their inhibitors in gingival mast cells in persons with and without human immunodeficiency virus infection. J Periodontal Res 2004; 38:575-82. [PMID: 14632920 DOI: 10.1034/j.1600-0765.2003.00687.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Mast cells are a prominent cell type in the gingival infiltrate in periodontitis. In this study we examined the expression by gingival mast cells of matrix metalloproteinases, MMP-1, MMP-2, MMP-8 and the tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-2. METHODS Gingival specimens from 12 human immunodeficiency virus-negative (HIV-) and 15 HIV-positive (HIV+) patients with chronic marginal periodontitis (CMP), and from 10 HIV- and four HIV+ controls with clinically healthy gingiva (HG) were examined after double immunofluorescence staining for mast cell tryptase, combined with antibodies for MMP-1, MMP-2, MMP-8 or their inhibitors TIMP-1 and TIMP-2. RESULTS In the HIV+CMP, HIV+HG and HIV-CMP groups, all mast cells expressed MMP-1 and MMP-8, whereas a smaller proportion (40-60%) in the HIV-HG controls displayed such staining. The former groups also displayed a significantly higher proportion (39-64%) of mast cells expressing MMP-2 as compared with the HIV-HG group (21-31%). All groups displayed similar proportions of TIMP-1 expressing mast cells (86-100%), whereas significantly increased proportions of TIMP-2+ mast cells were seen in the HIV+CMP, HIV+HG and HIV-CMP groups (18-25%) as compared with the HIV-HG group (8-13%). Mast cells were the cell type that most prominently expressed MMP-1 and MMP-8. MMP-2 expression was also strong in mast cells, but was also similarly expressed in other cell types. CONCLUSION The chronically inflamed periodontal lesions in the present study appeared with little evidence of mast cell degranulation. The results show, however, that mast cells in inflamed gingiva have the potential to degrade extracellular matrix if appropriately triggered.
Collapse
Affiliation(s)
- E P Naesse
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
48
|
Frossi B, De Carli M, Pucillo C. The mast cell: an antenna of the microenvironment that directs the immune response. J Leukoc Biol 2004; 75:579-85. [PMID: 14726495 DOI: 10.1189/jlb.0603275] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mast cells (MCs) have long been considered as critical effector cells during immunoglobulin (Ig)E-mediated allergic disease and immune response to parasites. Recent studies, however, suggest that this understanding of MC function is incomplete and does not consider the complex roles that MCs play in adaptive and innate immunity. The added function gives an innovative vision of regulation of immune responses and the development of autoimmune diseases. It had been assumed that the aggregation of Fc epsilon receptor I with IgE and specific antigen is the main stimulus able to induce the MC activation, degranulation, release, and generation of mediators of the allergic reaction. However, MCs exhibit an array of molecules involved in cell-cell and cell-extracellular matrix adhesion, mediating delivery of costimulatory signals that empower those cells with an ability to react to multiple nonspecific and specific stimuli. Their tissue distribution and their capability to release many cytokines after stimulation indicate MCs as potential regulatory linkers between innate and acquired immunity. In this review, we will summarize some findings on the roles of MCs in innate and acquired immunity, on the molecular mechanism and signaling pathways, and on selective signals that induce discrete MC response and its ability to polarize adaptive-immune response.
Collapse
Affiliation(s)
- Barbara Frossi
- Dipartimento di Scienze e Tecnologie Biomediche, Università delgi Studi di Udine, Italy
| | | | | |
Collapse
|
49
|
Abstract
IgE, mast cells, basophils, and eosinophils constitute essential elements in allergic inflammation. Allergen-specific IgE, synthesized in response to allergens in the environment and in susceptible individuals, becomes fixed to high-affinity receptors on cellular membranes, especially of mast cells and basophils. If these receptor-bound IgE molecules are aggregated on reexposure to specific allergen, these mast cells and basophils produce mediators that result in the allergic response. Principal among the cells drawn to sites of mediator release is the eosinophil.
Collapse
Affiliation(s)
- Calman Prussin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/NIH, Building 10, Room 11C205, 10 Center Drive, Bethesda, MD 20892-1881, USA
| | | |
Collapse
|