1
|
Ullah N, Wu Y. Regulation of Conformational Changes in C-reactive Protein Alters its Bioactivity. Cell Biochem Biophys 2022; 80:595-608. [PMID: 35997934 DOI: 10.1007/s12013-022-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/09/2022] [Indexed: 01/08/2023]
Abstract
The acute phase C-reactive protein (CRP) is mainly synthesized and secreted by the liver in a cytokine-mediated response to infection or inflammation and circulates as a pentamer (pCRP) in plasma. Recent studies indicate that CRP is not only a marker but is directly involved in inflammation. CRP has a vital role in host defense and inflammation, metabolic function and scavenging through its ability for calcium depended binding to exogenous and endogenous molecules having phosphocholine followed by activation of the classical complement pathway. Accumulating evidence indicates that pCRP dissociates into monomeric CRP (mCRP) and most proinflammatory actions of CRP are only expressed following dissociation of its native pentameric assembly into mCRP. The dissociation of CRP into mCRP altogether promotes the ligand-binding capability. mCRP emerges to be the main conformation of CRP that participates in the regulation of local inflammation, however, little is identified concerning what triggers the significantly enhanced actions of mCRP and their binding to diverse ligands. The separation of mCRP from pCRP may be a direct relationship between CRP and inflammation. Here we review the current literature on CRP dissociation and its interaction with different ligands. The possibility to avoid the generation of the proinflammatory potential of mCRP has driven therapeutic approaches by targeting the dissociation mechanism of pCRP or inhibition of mCRP itself during inflammation.
Collapse
Affiliation(s)
- Naeem Ullah
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, the Affiliated Children's Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Yasui Y, Ishii T, Tatebe J, Morita T. Comparative analysis on characteristics of two activated partial thromboplastin time reagents. J Clin Lab Anal 2022; 36:e24608. [PMID: 35853032 PMCID: PMC9459292 DOI: 10.1002/jcla.24608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Background For the lack of standardized activated partial thromboplastin time (APTT), it has been pointed out that there are differences in values among several reagents. Recently, we have performed a parallel measurement on two reagents, Thrombocheck APTT‐SLA and Coagpia APTT‐n, and resulted with some dissociated samples. The purpose of this study is to clarify the possible factors related to ΔAPTT, the difference in measured values between the two reagents. Materials and Methods In order to clarify the factors related to ΔAPTT, multiple regression analysis was performed on 8324 samples, using clinical laboratory data of all test items requested simultaneously with APTT. To confirm the items extracted from the multiple regression analysis, the target substance was spiked to pooled plasma and measured with two APTT reagents. Additionally, by spiking phospholipids, the effect on APTT measurement system was assessed. Result Multiple regression analysis detected albumin–globulin ratio (AGR), C‐reactive protein (CRP), hematocrit, and prothrombin time as factors related to ΔAPTT (p < 0.001). Results revealed no significant differences when albumin was added to change the AGR. Whereas with the addition of CRP, prolongation of APTT was observed in Coagpia APTT‐n compared to Thrombocheck APTT‐SLA (p < 0.001). This prolongation was canceled by the addition of phospholipids, suggesting the interaction of CRP with phospholipids leads to the pseudo‐prolongation. Conclusion It is considered that the pseudo‐prolongation of APTT is triggered by the interaction of CRP on the phospholipid in Coagpia APTT‐n, which contributed to the APTT dissociation.
Collapse
Affiliation(s)
- Yutaro Yasui
- Department of Laboratory Medicine Toho University Graduate School of Medicine Tokyo Japan
- Department of Clinical Laboratory Toho University Omori Medical Center Tokyo Japan
| | - Toshiaki Ishii
- Department of Clinical Laboratory Toho University Omori Medical Center Tokyo Japan
| | - Junko Tatebe
- Department of Laboratory Medicine, Faculty of Medicine Toho University Tokyo Japan
| | - Toshisuke Morita
- Department of Clinical Laboratory Toho University Omori Medical Center Tokyo Japan
- Department of Laboratory Medicine, Faculty of Medicine Toho University Tokyo Japan
| |
Collapse
|
3
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
4
|
McFadyen JD, Zeller J, Potempa LA, Pietersz GA, Eisenhardt SU, Peter K. C-Reactive Protein and Its Structural Isoforms: An Evolutionary Conserved Marker and Central Player in Inflammatory Diseases and Beyond. Subcell Biochem 2020; 94:499-520. [PMID: 32189313 DOI: 10.1007/978-3-030-41769-7_20] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
C-reactive protein (CRP) is an evolutionary highly conserved member of the pentraxin superfamily of proteins. CRP is widely used as a marker of inflammation, infection and for risk stratification of cardiovascular events. However, there is now a large body of evidence, that continues to evolve, detailing that CRP directly mediates inflammatory reactions and the innate immune response in the context of localised tissue injury. These data support the concept that the pentameric conformation of CRP dissociates into pro-inflammatory CRP isoforms termed pCRP* and monomeric CRP. These pro-inflammatory CRP isoforms undergo conformational changes that facilitate complement binding and immune cell activation and therefore demonstrate the ability to trigger complement activation, activate platelets, monocytes and endothelial cells. The dissociation of pCRP occurs on the surface of necrotic, apoptotic, and ischaemic cells, regular β-sheet structures such as β-amyloid, the membranes of activated cells (e.g., platelets, monocytes, and endothelial cells), and/or the surface of microparticles, the latter by binding to phosphocholine. Therefore, the deposition and localisation of these pro-inflammatory isoforms of CRP have been demonstrated to amplify inflammation and tissue damage in a broad range of clinical conditions including ischaemia/reperfusion injury, Alzheimer's disease, age-related macular degeneration and immune thrombocytopaenia. Given the potentially broad relevance of CRP to disease pathology, the development of inhibitors of CRP remains an area of active investigation, which may pave the way for novel therapeutics for a diverse range of inflammatory diseases.
Collapse
Affiliation(s)
- James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Medicine, Monash University, Melbourne, VIC, Australia.
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia.
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre, Freiburg, Germany
| | | | - Geoffrey A Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre, Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Medicine, Monash University, Melbourne, VIC, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, Australia.
- Heart Centre, The Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Bello-Perez M, Falco A, Medina R, Encinar JA, Novoa B, Perez L, Estepa A, Coll J. Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 69:33-40. [PMID: 27965017 DOI: 10.1016/j.dci.2016.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Because of the recent discovery of multiple c-reactive protein (crp)-like genes in zebrafish (Danio rerio) with predicted heterogeneous phospholipid-binding amino acid sequences and heterogeneous transcript expression levels in viral survivors and adaptive-deficient mutants, zebrafish constitute an attractive new model for exploring the evolution of these protein's functions, including their possible participation in fish trained immunity. Circulating human CRP belongs to the short pentraxin family of oligomeric proteins that are characteristic of early acute-phase innate responses and is widely used as a clinical inflammation marker. In contrast to pentameric human CRP (pCRP), zebrafish CRPs are trimeric (tCRP); however monomeric CRP (mCRP) conformations may also be generated when associated with cellular membranes as occurs in humans. Compared to human CRP, zebrafish CRP-like proteins show homologous amino acid sequence stretches that are consistent with, although not yet demonstrated, cysteine-dependent redox switches, calcium-binding spots, phosphocholine-binding pockets, C1q-binding domains, regions interacting with immunoglobulin Fc receptors (FcR), unique mCRP epitopes, mCRP binding peptides to cholesterol-enriched rafts, protease target sites, and/or binding sites to monocyte, macrophage, neutrophils, platelets and/or endothelial cells. Amino acid variations among the zebrafish CRP-like multiprotein family and derived isoforms in these stretches suggest that functional heterogeneity best fits the wide variety of aquatic pathogens. As occurs in humans, phospholipid-tagged tCRP-like multiproteins might also influence local inflammation and induce innate immune responses; however, in addition, different zebrafish tCRP-like proteins and/or isoforms might fine tune new still unknown functions. The information reviewed here could be of value for future studies not only to comparative but also medical immunologists and/or fisheries sectors. This review also introduces some novel speculations for future studies.
Collapse
Affiliation(s)
| | - Alberto Falco
- Universidad Miguel Hernández, UMH-IBMC, Elche, Spain.
| | - Regla Medina
- Universidad Miguel Hernández, UMH-IBMC, Elche, Spain.
| | | | - Beatriz Novoa
- Instituto de Investigaciones Marinas, CSIC, Vigo, España.
| | - Luis Perez
- Universidad Miguel Hernández, UMH-IBMC, Elche, Spain.
| | - Amparo Estepa
- Universidad Miguel Hernández, UMH-IBMC, Elche, Spain.
| | - Julio Coll
- Instituto Nacional Investigación y Tecnología Agrarias y Alimentarias, Dpto. Biotecnología. INIA. Madrid, Spain.
| |
Collapse
|
6
|
Roy N, Ohtani K, Matsuda Y, Mori K, Hwang I, Suzuki Y, Inoue N, Wakamiya N. Collectin CL-P1 utilizes C-reactive protein for complement activation. Biochim Biophys Acta Gen Subj 2016; 1860:1118-28. [PMID: 26922829 DOI: 10.1016/j.bbagen.2016.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/04/2016] [Accepted: 02/21/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND C-reactive protein (CRP) is a plasma pentraxin family protein that is massively induced as part of the innate immune response to infection and tissue injury. CRP and other pentraxin proteins can activate a complement pathway through C1q, collectins, or on microbe surfaces. It has been found that a lectin-like oxidized LDL receptor 1 (LOX-1), which is an endothelial scavenger receptor (SR) having a C-type lectin-like domain, interacts with CRP to activate the complement pathway using C1q. However it remains elusive whether other lectins or SRs are involved in CRP-mediated complement activation and the downstream effect of the complement activation is also unknown. METHODS We prepared CHO/ldlA7 cells expressing collectin placenta-1 (CL-P1) and studied the interaction of CRP with cells. We further used ELISA for testing binding between proteins. We tested for C3 fragment deposition and terminal complement complex (TCC) formation on HEK293 cells expressing CL-P1. RESULTS Here, we demonstrated that CL-P1 bound CRP in a charge dependent manner and the interaction of CRP with CL-P1 mediated a classical complement activation pathway through C1q and additionally drove an amplification pathway using properdin. However, CRP also recruits complement factor H (CFH) on CL-P1 expressing cell surfaces, to inhibit the formation of a terminal complement complex in normal complement serum conditions. GENERAL SIGNIFICANCE The interaction of collectin CL-P1 with CFH might be key for preventing attack on "self" as a result of complement activation induced by the CL-P1 and CRP interaction.
Collapse
Affiliation(s)
- Nitai Roy
- Department of Microbiology & Immunochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Katsuki Ohtani
- Department of Microbiology & Immunochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yasuyuki Matsuda
- Department of Microbiology & Immunochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Kenichiro Mori
- Department of Microbiology & Immunochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Insu Hwang
- Department of Microbiology & Immunochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yasuhiko Suzuki
- Department of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Norimitsu Inoue
- Department of Tumor Immunology, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 537-8511, Japan
| | - Nobutaka Wakamiya
- Department of Microbiology & Immunochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan.
| |
Collapse
|
7
|
Agassandian M, Shurin GV, Ma Y, Shurin MR. C-reactive protein and lung diseases. Int J Biochem Cell Biol 2014; 53:77-88. [PMID: 24853773 DOI: 10.1016/j.biocel.2014.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022]
Abstract
C-reactive protein (CRP), a member of the pentraxin family of plasma proteins, is one of the most distinctive acute phase reactants. In response to inflammation, cell damage or tissue injury, plasma level of CRP rapidly and dramatically increases up to 1000-fold, a phenomenon that has been used for years to monitor infections and many destructive/inflammatory conditions. The magnitude of CRP increase usually correlates with the severity of injury or inflammation and reflects an important physiological role of this interesting but still under-investigated protein. It is now generally accepted that CRP is involved in host defense and inflammation. However, the exact function of this protein in health and disease remains unclear. Many studies have demonstrated that in different pathophysiological conditions CRP might be involved in the regulation of lung function and may participate in the pathogenesis of various pulmonary disorders. The fluctuation of CRP concentrations in both alveolar fluid and serum associated with different pulmonary diseases suggests its important role in lung biology. Discussion of the still controversial functions of CRP in lung physiology and diseases is the main focus of this review.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yang Ma
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Animal models of C-reactive protein. Mediators Inflamm 2014; 2014:683598. [PMID: 24872599 PMCID: PMC4020216 DOI: 10.1155/2014/683598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 11/17/2022] Open
Abstract
As the main theme of this special issue, CRP not only is an inflammatory marker but also has diverse biological functions associated with different diseases. To investigate CRP's physiologies and their relationship with human pathological significance, it is essential to use appropriate animal models for translational research. The most popular models for the study of CRP are transgenic mice. However, researchers should be careful when extrapolating the findings derived from these animal models. This review will discuss the current concerns on CRP transgenic mice and rabbits.
Collapse
|
9
|
Di Napoli M, Elkind MSV, Godoy DA, Singh P, Papa F, Popa-Wagner A. Role of C-reactive protein in cerebrovascular disease: a critical review. Expert Rev Cardiovasc Ther 2014; 9:1565-84. [DOI: 10.1586/erc.11.159] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Chakraborty C, Agrawal A. Computational analysis of C-reactive protein for assessment of molecular dynamics and interaction properties. Cell Biochem Biophys 2013; 67:645-56. [PMID: 23494263 PMCID: PMC3874389 DOI: 10.1007/s12013-013-9553-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Serum C-reactive protein (CRP) is used as a marker of inflammation in several diseases including autoimmune disease and cardiovascular disease. CRP, a member of the pentraxin family, is comprised of five identical subunits. CRP has diverse ligand-binding properties which depend upon different structural states of CRP. However, little is known about the molecular dynamics and interaction properties of CRP. In this study, we used SAPS, SCRATCH protein predictor, PDBsum, ConSurf, ProtScale, Drawhca, ASAView, SCide and SRide server and performed comprehensive analyses of molecular dynamics, protein-protein and residue-residue interactions of CRP. We used 1GNH.pdb file for the crystal structure of human CRP which generated two pentamers (ABCDE and FGHIJ). The number of residues involved in residue-residue interactions between A-B, B-C, C-D, D-E, F-G, G-H, H-I, I-J, A-E and F-J subunits were 12, 11, 10, 11, 12, 11, 10, 11, 10 and 10, respectively. Fifteen antiparallel β sheets were involved in β-sheet topology, and five β hairpins were involved in forming the secondary structure. Analysis of hydrophobic segment distribution revealed deviations in surface hydrophobicity at different cavities present in CRP. Approximately 33 % of all residues were involved in the stabilization centers. We show that the bioinformatics tools can provide a rapid method to predict molecular dynamics and interaction properties of CRP. Our prediction of molecular dynamics and interaction properties of CRP combined with the modeling data based on the known 3D structure of CRP is helpful in designing stable forms of CRP mutants for structure-function studies of CRP and may facilitate in silico drug design for therapeutic targeting of CRP.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bioinformatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, India,
| | | |
Collapse
|
11
|
Du Clos TW. Pentraxins: structure, function, and role in inflammation. ISRN INFLAMMATION 2013; 2013:379040. [PMID: 24167754 PMCID: PMC3791837 DOI: 10.1155/2013/379040] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/19/2013] [Indexed: 12/03/2022]
Abstract
The pentraxins are an ancient family of proteins with a unique architecture found as far back in evolution as the Horseshoe crab. In humans the two members of this family are C-reactive protein and serum amyloid P. Pentraxins are defined by their sequence homology, their pentameric structure and their calcium-dependent binding to their ligands. Pentraxins function as soluble pattern recognition molecules and one of the earliest and most important roles for these proteins is host defense primarily against pathogenic bacteria. They function as opsonins for pathogens through activation of the complement pathway and through binding to Fc gamma receptors. Pentraxins also recognize membrane phospholipids and nuclear components exposed on or released by damaged cells. CRP has a specific interaction with small nuclear ribonucleoproteins whereas SAP is a major recognition molecule for DNA, two nuclear autoantigens. Studies in autoimmune and inflammatory disease models suggest that pentraxins interact with macrophage Fc receptors to regulate the inflammatory response. Because CRP is a strong acute phase reactant it is widely used as a marker of inflammation and infection.
Collapse
Affiliation(s)
- Terry W. Du Clos
- The Department of Veterans Affairs Medical Center, Research Service 151, 1501 San Pedro SE, Albuquerque, NM 87108, USA
- Department of Internal Medicine, The University of New Mexico School of Medicine, Albuquerque, NM 87108, USA
| |
Collapse
|
12
|
Falco A, Cartwright JR, Wiegertjes GF, Hoole D. Molecular characterization and expression analysis of two new C-reactive protein genes from common carp (Cyprinus carpio). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:127-138. [PMID: 22079493 DOI: 10.1016/j.dci.2011.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/07/2011] [Accepted: 10/09/2011] [Indexed: 05/31/2023]
Abstract
C-Reactive protein (CRP) plays an important role in the acute phase response. Transcripts encoding two new CRP-like molecules (ccCRP1 and ccCRP2) from European common carp have been characterized which has enabled seven CRP-like genes to be identified in zebrafish. 79.3% (ccCRP1) and 74.5% (ccCRP2) identity to CRP from East-Asian common carp occurs and fish CRP genes form a distinct clade. ccCRP2 gene organization comprises four exons and three introns, in contrast to the two exons/one intron organization of mammalian CRP genes. Gene expression assays showed both ccCRP-like molecules are constitutively expressed in liver, skin, gill, gut, muscle, kidney, spleen and blood. Protein levels of ccCRP in serum and spleen were significantly different from other organs analyzed, and levels were greatest in the liver. It is proposed that the two carp CRP genes defined differ in their expression profiles which may suggest differences in their biological activities.
Collapse
Affiliation(s)
- Alberto Falco
- School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | | | | | | |
Collapse
|
13
|
Sundgren NC, Zhu W, Yuhanna IS, Chambliss KL, Ahmed M, Tanigaki K, Umetani M, Mineo C, Shaul PW. Coupling of Fcγ receptor I to Fcγ receptor IIb by SRC kinase mediates C-reactive protein impairment of endothelial function. Circ Res 2011; 109:1132-40. [PMID: 21940940 DOI: 10.1161/circresaha.111.254573] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Elevations in C-reactive protein (CRP) are associated with increased cardiovascular disease risk and endothelial dysfunction. CRP antagonizes endothelial nitric oxide synthase (eNOS) through processes mediated by the IgG receptor Fcγ receptor IIB (FcγRIIB), its immunoreceptor tyrosine-based inhibitory motif, and SH2 domain-containing inositol 5'-phosphatase 1. In mice, CRP actions on eNOS blunt carotid artery re-endothelialization. OBJECTIVE How CRP activates FcγRIIB in endothelium is not known. We determined the role of Fcγ receptor I (FcγRI) and the basis for coupling of FcγRI to FcγRIIB in endothelium. METHODS AND RESULTS In cultured endothelial cells, FcγRI-blocking antibodies prevented CRP antagonism of eNOS, and CRP activated Src via FcγRI. CRP-induced increases in FcγRIIB immunoreceptor tyrosine-based inhibitory motif phosphorylation and SH2 domain-containing inositol 5'-phosphatase 1 activation were Src-dependent, and Src inhibition prevented eNOS antagonism by CRP. Similar processes mediated eNOS antagonism by aggregated IgG used to mimic immune complex. Carotid artery re-endothelialization was evaluated in offspring from crosses of CRP transgenic mice (TG-CRP) with either mice lacking the γ subunit of FcγRI (FcRγ(-/-)) or FcγRIIB(-/-) mice. Whereas re-endothelialization was impaired in TG-CRP vs wild-type, it was normal in both FcRγ(-/-); TG-CRP and FcγRIIB(-/-); TG-CRP mice. CONCLUSIONS CRP antagonism of eNOS is mediated by the coupling of FcγRI to FcγRIIB by Src kinase and resulting activation of SH2 domain-containing inositol 5'-phosphatase 1, and consistent with this mechanism, both FcγRI and FcγRIIB are required for CRP to blunt endothelial repair in vivo. Similar mechanisms underlie eNOS antagonism by immune complex. FcγRI and FcγRIIB may be novel therapeutic targets for preventing endothelial dysfunction in inflammatory or immune complex-mediated conditions.
Collapse
Affiliation(s)
- Nathan C Sundgren
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kumar SV, Ravunny RK, Chakraborty C. Conserved Domains, Conserved Residues, and Surface Cavities of C-reactive Protein (CRP). Appl Biochem Biotechnol 2011; 165:497-505. [DOI: 10.1007/s12010-011-9270-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 04/18/2011] [Indexed: 01/11/2023]
|
15
|
Vongpatanasin W, Thomas GD, Schwartz R, Cassis LA, Osborne-Lawrence S, Hahner L, Gibson LL, Black S, Samols D, Shaul PW. C-reactive protein causes downregulation of vascular angiotensin subtype 2 receptors and systolic hypertension in mice. Circulation 2007; 115:1020-8. [PMID: 17283257 DOI: 10.1161/circulationaha.106.664854] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic elevations in circulating C-reactive protein (CRP) are associated with a greater risk of hypertension. Whether elevations in CRP cause hypertension is unknown. METHODS AND RESULTS Chronic, conscious blood pressure (BP) measurements were performed by radiotelemetry in wild-type CF1 control and CF1 transgenic mice expressing rabbit CRP (CF1-CRP) under the regulation of the phosphoenolpyruvate carboxykinase promoter. Compared with controls, CF1-CRP mice had hypertension that was predominantly systolic, and the severity of hypertension varied in parallel with changes in CRP levels modulated by dietary manipulation. Mice that were hemizygous for the transgene with CRP levels of 9 microg/mL were also hypertensive, indicating that modest elevations in CRP are sufficient to alter BP. CRP transgenic mice had exaggerated BP elevation in response to angiotensin II and a reduction in vascular angiotensin receptor subtype 2 (AT2) expression. In contrast, the decline in BP with angiotensin receptor subtype 1 (AT1) antagonism and vascular AT1 abundance were unaltered, which indicates a selective effect of CRP on AT2. Ex vivo experiments further showed that the CRP-induced decrease in AT2 is a direct effect on the vascular wall, not requiring systemic responses, and that it is reversed by an NO donor, which indicates a role for NO deficiency in the process. In parallel, the chronic inhibition of NO synthase in wild-type mice attenuated vascular AT2 expression without affecting AT1. CONCLUSIONS These findings provide direct evidence for CRP-induced hypertension, and they further identify a novel underlying mechanism involving downregulation of AT2 related to NO deficiency.
Collapse
Affiliation(s)
- Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jiang S, Xia D, Samols D. Expression of rabbit C-reactive protein in transgenic mice inhibits development of antigen-induced arthritis. Scand J Rheumatol 2006; 35:351-5. [PMID: 17062433 DOI: 10.1080/03009740600757963] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE C-reactive protein (CRP) is a plasma protein of hepatic origin thought to play an important role in host defences. We used transgenic mice, capable of expressing high levels of rabbit CRP (serum concentration>50 microg/mL) in response to dietary manipulation, to determine whether high levels of this acute-phase reactant can alter the course of experimentally induced monoarticular arthritis. METHOD Arthritis was induced by a single injection of methylated bovine serum albumin (mBSA) on day 0 followed by injections of interleukin (IL)-1beta. RESULTS In transgenic animals in which CRP expression had been suppressed (serum concentration<10 microg/mL), inflammatory arthritis began to develop by day 4 and was fully developed by 7 days after the mBSA challenge. This arthritis was characterized by marked inflammatory cell infiltrates in soft tissues, synovitis, pannus, cartilage loss, and bone erosion. By contrast, when CRP expression was induced, resulting in serum concentrations>50 microg/mL on the day of mBSA and IL-1beta injections, the inflammatory response was dramatically reduced at day 7. These mice manifested little to no evidence of joint inflammation. This anti-inflammatory effect of CRP was seen in animals with high CRP levels on days 0-1 following immunization and did not require elevated CRP levels during the period of rapid inflammatory progression, 4-7 days after challenge. CONCLUSION CRP, expressed at the time of antigenic stimulation, effectively blocked the subsequent development of inflammatory arthritis in this model by altering the immune or inflammatory responses.
Collapse
Affiliation(s)
- S Jiang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
17
|
Aguiar M, Masse R, Gibbs BF. Mass spectrometric quantitation of C-reactive protein using labeled tryptic peptides. Anal Biochem 2006; 354:175-81. [PMID: 16723111 DOI: 10.1016/j.ab.2006.03.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/28/2006] [Accepted: 03/22/2006] [Indexed: 11/26/2022]
Abstract
Given the extensive efforts applied toward proteomics and research in biomarkers, methods for the simultaneous measurement of proteins, peptides, metabolic intermediates, hormones, etc. in a complex sample may be required in the foreseeable future. Assays based on mass spectrometric detection may be suitable for meeting the demands of such complex samples with sensitivity and specificity. An analytical method for the quantitation of C-reactive protein (CRP), a well-known marker of inflammation, is described. Exact quantities of two synthetic (13)C-labeled CRP tryptic peptides were added as internal standards directly to the sample prior to chemical treatment, trypsinization, and liquid chromatography/mass spectrometry quantitation. C-reactive protein levels based on isotopic response ratios were measured. Intact C-reactive protein was spiked into blank rat urine for chemical and enzymatic treatment, producing linear response ratios of labeled to unlabeled peptides. For rigorous quantitation, standard curves, and quality control samples were prepared in rat urine with highly purified labeled and unlabeled peptides over the 50 pg-5 ng/muL concentration range. Using the same chemical and enzymatic treatment used for digestion of intact CRP, data from these samples demonstrated excellent analytical performance. The method was successfully applied toward the quantitation of urinary C-reactive protein from a study of drug-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mike Aguiar
- McGill University Health Center, 687 Pine Avenue West, Rm. L 2.05, Montreal, Que., Canada H3A 1A1
| | | | | |
Collapse
|
18
|
Ji SR, Wu Y, Potempa LA, Liang YH, Zhao J. Effect of Modified C-Reactive Protein on Complement Activation. Arterioscler Thromb Vasc Biol 2006; 26:935-41. [PMID: 16456095 DOI: 10.1161/01.atv.0000206211.21895.73] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The capacity of human C-reactive protein (CRP) to activate/regulate complement may be an important characteristic that links CRP and inflammation with atherosclerosis. Recent advances suggest that in addition to classical pentameric CRP, a conformationally distinct isoform of CRP, termed modified or monomeric CRP (mCRP), may also play an active role in atherosclerosis. Although the complement activation behavior of CRP has been well established, the capacity of mCRP to interact with and activate the complement cascade is unknown. METHODS AND RESULTS mCRP bound avidly to purified C1q, and this binding occurred primarily through collagen-like region of C1q. Fluid phase mCRP inhibited the activation of complement cascade via engaging C1q from binding with other complement activators. In contrast, when immobilized or bound to oxidized or enzymatically modified low-density lipoprotein, mCRP could activate classical complement pathway. Low-level generation of sC5b-9 indicated that the activation largely bypassed the terminal sequence of complement, which appears to involve recruitment of Factor H. CONCLUSIONS These results indicate that mCRP can both inhibit and activate the classical complement pathway by binding C1q, depending on whether it is in fluid phase or surface-bound state.
Collapse
Affiliation(s)
- Shang-Rong Ji
- Institute of Biophysics, Lanzhou University, Lanzhou 730000, P. R. China
| | | | | | | | | |
Collapse
|
19
|
Black S, Wilson A, Samols D. An intact phosphocholine binding site is necessary for transgenic rabbit C-reactive protein to protect mice against challenge with platelet-activating factor. THE JOURNAL OF IMMUNOLOGY 2005; 175:1192-6. [PMID: 16002722 DOI: 10.4049/jimmunol.175.2.1192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C-reactive protein (CRP), an acute phase protein in humans and rabbits, is part of the innate immune system. The role of CRP in host defense has been thought to be largely due to its ability to bind phosphocholine, activate complement, and interact with IgGRs (FcgammaRs). We have shown previously that transgenic rabbit CRP (rbCRP) protects mice from lethal challenges with platelet-activating factor (PAF). To investigate the mechanism of this protection, we created additional lines of transgenic mice that express either wild-type rbCRP, a variant of rbCRP with altered complement activation activity (Y175A), or a variant of rbCRP unable to bind phosphocholine (F66Y/E81K). In the current study, these lines were challenged with a single injection of PAF and their survival monitored. Mice expressing wild-type and Y175A rbCRP were protected against challenge by PAF whereas mice expressing F66Y/E81K rbCRP were not. Treatment with cobra venom factor did not affect survival, confirming the results with the Y175A rbCRP variant and indicating that complement activation was not required to mediate protection. Both wild-type rbCRP and Y175A rbCRP were capable of binding PAF in vitro whereas F66Y/E81K rbCRP was not. Although other interpretations are possible, our results suggest that the protective effect of rbCRP against PAF is due to sequestration of PAF.
Collapse
Affiliation(s)
- Steven Black
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
20
|
Reifenberg K, Lehr HA, Baskal D, Wiese E, Schaefer SC, Black S, Samols D, Torzewski M, Lackner KJ, Husmann M, Blettner M, Bhakdi S. Role of C-Reactive Protein in Atherogenesis. Arterioscler Thromb Vasc Biol 2005; 25:1641-6. [PMID: 15920030 DOI: 10.1161/01.atv.0000171983.95612.90] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Human C-reactive protein (CRP) was reported to accelerate atherosclerotic lesion development in male but not in female apolipoprotein E (apoE) knockout mice. Here, mice expressing rabbit CRP (rbCRP) were crossbred onto apoE knockout animals, and the effect on atherogenesis was studied. METHODS AND RESULTS Hemolytic complement activity could not be detected in apoE knockout mice. Furthermore, in contrast to human complement, neither rabbit nor human CRP complexed to modified low-density lipoprotein-activated murine complement. At 52 weeks, rbCRP levels were similar in male and female transgenic animals. Serum cholesterol levels were equivalent in female animals irrespective of rbCRP expression, whereas rbCRP-positive males had significantly higher serum cholesterol levels than the rbCRP-negative counterparts. All mice exhibited extensive atherosclerotic lesions, as studied en face, and no differences were noted between rbCRP-negative and rbCRP-positive animals. Atherosclerotic luminal obstruction of aortic arch and first-order neck branches did not differ significantly between rbCRP-positive and rbCRP-negative mice. There was no correlation between rbCRP levels and atherosclerotic lesion formation. CONCLUSIONS No marked effect of rbCRP on the formation of moderately advanced atherosclerotic lesions could be discerned in the apoE knockout mouse. Because of the oddities of the mouse complement system, however, this may not be a good model to investigate the role of CRP in human atherosclerosis.
Collapse
Affiliation(s)
- Kurt Reifenberg
- Central Laboratory Animal Facility, Johannes Gutenberg University Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Suresh MV, Singh SK, Agrawal A. Interaction of calcium-bound C-reactive protein with fibronectin is controlled by pH: in vivo implications. J Biol Chem 2004; 279:52552-7. [PMID: 15456743 PMCID: PMC3819716 DOI: 10.1074/jbc.m409054200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C-reactive protein (CRP) binds with high affinity to fibronectin (Fn), a major component of the extracellular matrix (ECM), but at physiological pH the binding is inhibited by calcium ions (Ca2+). Because CRP circulates in the blood in Ca2+ -bound form, the occurrence of CRP-Fn interactions in vivo has been doubtful. To define the basis of inhibition of CRP-Fn interaction by Ca2+ at pH 7.0, we hypothesized that Fn-binding site on CRP consisted of amino acids co-ordinating Ca2+. Site-directed mutagenesis of amino acids co-ordinating Ca2+ drastically decreased the binding of CRP to Fn, indicating that the Ca2+ -binding site indeed formed the Fn-binding site. To determine the requirements for possible interaction between Ca2+ -bound CRP and Fn, we investigated inhibition of CRP-Fn interaction by Ca2+ as a function of pH. Ca2+ did not inhibit binding of CRP to Fn at pH 6.5 and lower. The contrasting Fn binding properties of CRP at physiological and mildly acidic pH indicated that the interaction of Ca2+ -bound CRP with Fn was controlled by pH. We conclude that the inhibition of binding of CRP to Fn by Ca2+ at pH 7.0 is a mechanism to prevent CRP-Fn interactions under normal conditions. CRP, in its Ca2+ -bound state, is capable of binding Fn but only at the inflammatory sites and tumors with low pH. CRP, Fn, and the ECM all have been implicated in cancer. Taken together our data raise the possibility that CRP-Fn interactions may change the architecture of ECM to modify the development of tumors.
Collapse
Affiliation(s)
- Madathilparambil V. Suresh
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Sanjay K. Singh
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Alok Agrawal
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| |
Collapse
|
22
|
Abstract
C-reactive protein (CRP) that has been conserved throughout evolution is a host-defense molecule. Its attraction towards phosphocholine-ligands, such as modified low-density lipoprotein, and apoptotic cells leads to the "masking" of these substances that have the capabilities to otherwise engage in deleterious activities. Complement activation by CRP complexes and the modulation by CRP of complement activation by its ligands add up to its beneficial effects. In the presence of CRP, production of membrane-damaging last product of the complement pathway is arrested. CRP is currently serving as an indicator of cardiovascular diseases, but to pinpoint the role of CRP in atherosclerosis, a drug that can lower cholesterol levels, but not the CRP levels, is needed for experimentation.
Collapse
Affiliation(s)
- Alok Agrawal
- Department of Pharmacology, East Tennessee State University, P.O. Box 70577, Johnson City, TN 37614, USA.
| |
Collapse
|
23
|
Abstract
C-reactive protein (CRP) is a phylogenetically highly conserved plasma protein, with homologs in vertebrates and many invertebrates, that participates in the systemic response to inflammation. Its plasma concentration increases during inflammatory states, a characteristic that has long been employed for clinical purposes. CRP is a pattern recognition molecule, binding to specific molecular configurations that are typically exposed during cell death or found on the surfaces of pathogens. Its rapid increase in synthesis within hours after tissue injury or infection suggests that it contributes to host defense and that it is part of the innate immune response. Recently, an association between minor CRP elevation and future major cardiovascular events has been recognized, leading to the recommendation by the Centers for Disease Control and the American Heart Association that patients at intermediate risk of coronary heart disease might benefit from measurement of CRP. This review will largely focus on our current understanding of the structure of CRP, its ligands, the effector molecules with which it interacts, and its apparent functions.
Collapse
Affiliation(s)
- Steven Black
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|