1
|
Gijs M, van de Sande N, Bonnet C, Schmeetz J, Fernandes R, Travé-Huarte S, Huertas-Bello M, Bo Chiang JC, Boychev N, Sharma S, Tear Research Network Scoping Review taskforce. A comprehensive scoping review of methodological approaches and clinical applications of tear fluid biomarkers. Prog Retin Eye Res 2025; 106:101338. [PMID: 39954936 DOI: 10.1016/j.preteyeres.2025.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Tear fluid is an emerging source of disease biomarkers, drawing attention due to its quick, inexpensive, and non-invasive collection. The advancements in detection techniques enable the measurement of ultra-low biomarker levels from small sample volumes typical of tear fluid. The lack of standardized protocols for collection, processing, and analysis of tear fluid remains a significant challenge. To address this, we convened the Tear Research Network Review Taskforce in 2022 to review protocols from the past three decades, providing a comprehensive overview of the methodologies used in tear fluid biomarker research. A total of 1484 articles published from January 1974 to May 2024 from two electronic databases, Embase and Ovid MEDLINE, were reviewed. An exponential increase in the number of articles on tear fluid biomarkers was observed from 2015 onwards. The two most commonly reported collection methods were; glass capillaries (45.2%), and Schirmer's strips (25%), with glass capillary tube collection remaining the most frequent method until 2019, when Schirmer's strips became the leading method. Most articles analyzed tear fluid proteins (65%) and focused on a single analyte (32.3%). In recent years, an increase was observed in the type and number of examined analytes. The differences in the reported methodologies and protocols underscore the need for standardization and harmonization within the field of tear fluid biomarkers to minimize methodological differences and reduce variability in clinical outcomes. Consistent and detailed reporting is essential for improving the reproducibility and validity of tear fluid studies, in order to advance their potential clinical applications.
Collapse
Affiliation(s)
- Marlies Gijs
- University Eye Clinic, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands.
| | - Nienke van de Sande
- University Eye Clinic, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Clémence Bonnet
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jente Schmeetz
- University Eye Clinic, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3004-561, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548, Coimbra, Portugal
| | - Sònia Travé-Huarte
- Optometry and Vision Science Research Group, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Marcela Huertas-Bello
- Bascon Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeremy Chung Bo Chiang
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK; School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Nikolay Boychev
- Department of Clinical Education and Clinical Sciences, New England College of Optometry, Boston, USA; Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Schepens Eye Research Institute, Boston, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA; Department of Ophthalmology, Augusta University, Augusta, GA, 30912, USA
| | | |
Collapse
Collaborators
Françoise Brignole-Baudouin, Karima Kessal, Paul Lingor, Maurice M T H Heunen, Xiangjun Chen, Ananya Datta, Li Liang, Carlos Cifuentes-González, William Rojas-Carabali, Rupesh Agrawal, Alejandra de-la-Torre, Germán Mejía-Salgado, Nikhil Sharma, Katharina Jüngert, Inmaculada Cuchillo-Ibáñez, Menglu Yang, Vincent Yeung, Veronica Ng, Davy Pot, Amalia Enríquez-de-Salamanca, Suzanne Hagan, Burak Mergen, Irem Onal, Necati Alp Kilicaslan, Emrullah Simsek, Tor P Utheim, Morten S Magno, Diego Ojeda Pedraza, Alfonso L Sabater, Penny Asbell, Imre Lengyel, Debarun Dutta, Malgorzata Mrugacz, Stephanie C Joachim,
Collapse
|
2
|
Lee J, Kim S, Choi WJ, Ryu JS, Yoon CH, Kim KH. Surface tracking integrated extended depth-of-field microscopy for rapid non-contact examination of conjunctival goblet cells in humans. Biosens Bioelectron 2025; 267:116681. [PMID: 39277921 DOI: 10.1016/j.bios.2024.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Conjunctival goblet cells (CGCs) are specialized epithelial cells playing key roles for ocular surface homeostasis, and their examination is important for diagnosing ocular surface diseases. Despite recent advancements in high-contrast CGC imaging for non-invasive examination, significant challenges remain for human applications. High-speed large-area imaging over the curved ocular surface is needed to assess statistically meaningful CGCs in the extensive human conjunctiva. To address this challenge, we developed a novel surface detection method and an integrated microscopy system for human use. With both a long detection range of 2 mm and a high update rate of 50 Hz, the surface detection method enabled real-time surface tracking during large-area imaging. The integrated microscopy could complete 5 × 2 patch imaging in approximately 10 s. CGC density analysis showed significantly reduced uncertainties with large-area imaging. This is the first demonstration of non-contact large-area cellular examination in humans, and this new development holds promise for non-invasive CGC examination and accurate diagnosis of ocular surface diseases.
Collapse
Affiliation(s)
- Jungbin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seonghan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Wan Jae Choi
- Department of Ophthalmology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jin Suk Ryu
- Department of Ophthalmology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea; Medical Science and Engineering Program, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Vereertbrugghen A, Pizzano M, Cernutto A, Sabbione F, Keitelman IA, Aguilar DV, Podhorzer A, Fuentes F, Corral-Vázquez C, Guzmán M, Giordano MN, Trevani A, de Paiva CS, Galletti JG. CD4 + T cells drive corneal nerve damage but not epitheliopathy in an acute aqueous-deficient dry eye model. Proc Natl Acad Sci U S A 2024; 121:e2407648121. [PMID: 39560641 PMCID: PMC11621630 DOI: 10.1073/pnas.2407648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Dry eye disease (DED) is characterized by a dysfunctional tear film in which the corneal epithelium and its abundant nerves are affected by ocular desiccation and inflammation. Although adaptive immunity and specifically CD4+ T cells play a role in DED pathogenesis, the exact contribution of these cells to corneal epithelial and neural damage remains undetermined. To address this, we explored the progression of a surgical DED model in wild-type (WT) and T cell-deficient mice. We observed that adaptive immune-deficient mice developed all aspects of DED comparably to WT mice except for the absence of functional and morphological corneal nerve changes, nerve damage-associated transcriptomic signature in the trigeminal ganglia, and sustained tear cytokine levels. Adoptive transfer of CD4+ T cells from WT DED mice to T cell-deficient mice reproduced corneal nerve damage but not epitheliopathy. Conversely, T cell-deficient mice reconstituted solely with naïve CD4+ T cells developed corneal nerve impairment and epitheliopathy upon DED induction, thus replicating the WT DED phenotype. Collectively, our data show that while corneal neuropathy is driven by CD4+ T cells in DED, corneal epithelial damage develops independently of the adaptive immune response. These findings have implications for T cell-targeting therapies currently in use for DED.
Collapse
Affiliation(s)
- Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Agostina Cernutto
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Irene A. Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Ariel Podhorzer
- Flow Cytometry Unit, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Celia Corral-Vázquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Mauricio Guzmán
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Mirta N. Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Analía Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | | | - Jeremías G. Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| |
Collapse
|
4
|
Yu M, Liu C, Mehta JS, Liu YC. A review of the application of in-vivo confocal microscopy on conjunctival diseases. EYE AND VISION (LONDON, ENGLAND) 2024; 11:43. [PMID: 39482793 PMCID: PMC11529254 DOI: 10.1186/s40662-024-00409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Over the past few decades, the expanded applications of in-vivo confocal microscopy (IVCM) have greatly enhanced the knowledge of a variety of conjunctival diseases. IVCM allows non-invasively detailed observation of tarsal, palpebral and bulbar conjunctiva, from the superficial to the substantia propria at the cellular level. IVCM has been shown as a powerful tool for the assessment of morphological changes in both physiological and pathological conditions. High-resolution images of different cellular phenotypes, together with quantifiable results, open new insights into understanding the mechanisms of conjunctival diseases, as well as provide valuable and longitudinal information for the diagnosis and therapeutic evaluation. This review aims to provide an overview of the current knowledge on the applications of IVCM on conjunctival disorders, including aging changes, dry eye-related morphological changes, glaucoma and glaucoma surgery-related morphological changes, conjunctival neoplasm, pterygium, allergic conjunctivitis, trachomatous scarring, and the conjunctiva-associated lymphoid tissue (CALT) changes. In this review, we highlight the key findings of previous studies and discusses the current limitations and challenges of IVCM in assessing the structural characteristics of the conjunctiva. Furthermore, we consider possible future directions for unlocking the full potential of IVCM applications. The insights presented here will contribute to a more comprehensive understanding of the applications of IVCM in conjunctival diseases.
Collapse
Affiliation(s)
- Mingyi Yu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Chang Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, The Academia, 20 College Road, Discovery Tower, Singapore, S169856, Singapore
- Duke-NUS Medical School, Ophthalmology and Visual Sciences Academic Clinical Program, Singapore, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, The Academia, 20 College Road, Discovery Tower, Singapore, S169856, Singapore.
- Duke-NUS Medical School, Ophthalmology and Visual Sciences Academic Clinical Program, Singapore, Singapore.
| |
Collapse
|
5
|
Ren Y, Wang Y, An N, Xiao X, Pan S, Wang B, Liu X, Wang Y. Periodontal Ligament Stem Cell-Derived Exosomes Regulate Muc5ac Expression in Rat Conjunctival Goblet Cells via Regulating Macrophages Toward an Anti-Inflammatory Phenotype. Ocul Immunol Inflamm 2024; 32:1990-1999. [PMID: 38363299 DOI: 10.1080/09273948.2024.2311981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Several studies have reported the protective effects of mesenchymal stem cell-derived exosomes (MSC-Exos) in reducing inflammation and decreasing conjunctival goblet cell (CGC) loss in dry eye disease. However, whether MSC-Exos provide anti-inflammatory profiles in macrophages, thus contributing to CGC protection, has remained elusive. METHODS Macrophages were incubated with PKH26-labeled periodontal ligament mesenchymal stem cell-derived exosomes (PDLSC-Exos) for 12 h, and uptake of PDLSC-Exos by macrophages was observed by a confocal fluorescence microscope. The mRNA expression of TNF-α, IL-10, and Arg1 was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of TNF-α and IL-10 were quantified using western blotting. Then, CGCs were exposed to different macrophage supernatants and qRT-PCR was used to detect the Muc5ac mRNA expression of CGCs in response to or absence of cholinergic stimulation. ELISA was used to determine the Muc5ac secretion of CGCs in response to cholinergic stimulation. RESULTS The uptake of PDLSC-Exos by M1 macrophages facilitates M2 macrophage polarization with the elevated expressions of IL-10 and Arg1. In macrophage supernatant-treated CGCs systems, PDLSC-Exo-treated M1 macrophage supernatant significantly enhanced the Muc5ac expression of CGCs in response to, or in the absence of, cholinergic stimulation, while the addition of PDLSC-Exos to the control macrophage supernatant did not generate a change in Muc5ac expression. Conversely, the addition of PDLSC-Exos to the diluted control macrophage supernatant induced a significant increase in Muc5ac expression. CONCLUSION PDLSC-Exos could protect CGCs against M1 macrophage-mediated inflammation, and the protective effects of PDLSC-Exos are partly attributable to their effects on M1 macrophages.
Collapse
Affiliation(s)
- Yiqian Ren
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, Xi'an No.1 Hospital, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi Province, China
| | - Yani Wang
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, Xi'an No.1 Hospital, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi Province, China
| | - Na An
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, Xi'an No.1 Hospital, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi Province, China
| | - Xianghua Xiao
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, Xi'an No.1 Hospital, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi Province, China
| | - Shiyin Pan
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, Xi'an No.1 Hospital, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi Province, China
| | - Bei Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xianning Liu
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, Xi'an No.1 Hospital, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi Province, China
| | - Yao Wang
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, Xi'an No.1 Hospital, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi Province, China
| |
Collapse
|
6
|
Liu Y, Duan Z, Yuan J, Xiao P. Imaging assessment of conjunctival goblet cells in dry eye disease. Clin Exp Ophthalmol 2024; 52:576-588. [PMID: 38553944 DOI: 10.1111/ceo.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 07/03/2024]
Abstract
Dry eye disease (DED) is a widespread, multifactorial, and chronic disorder of the ocular surface with disruption of tear film homeostasis as its core trait. Conjunctival goblet cells (CGCs) are specialised secretory cells found in the conjunctival epithelium that participate in tear film formation by secreting mucin. Changes in both the structure and function of CGCs are hallmarks of DED, and imaging assessment of CGCs is important for the diagnosis, classification, and severity evaluation of DED. Existing imaging methods include conjunctival biopsy, conjunctival impression cytology and in vivo confocal microscopy, which can be used to assess the morphology, distribution, and density of the CGCs. Recently, moxifloxacin-based fluorescence microscopy has emerged as a novel technique that enables efficient, non-invasive and in vivo imaging of CGCs. This article presents a comprehensive overview of both the structure and function of CGCs and their alterations in the context of DED, as well as current methods of CGCs imaging assessment. Additionally, potential directions for the visual evaluation of CGCs are discussed.
Collapse
Affiliation(s)
- Yushuang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Zhengyu Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| |
Collapse
|
7
|
Lin N, Chen X, Liu H, Gao N, Liu Z, Li J, Pflugfelder SC, Li DQ. Ectoine Enhances Mucin Production Via Restoring IL-13/IFN-γ Balance in a Murine Dry Eye Model. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 38935032 PMCID: PMC11216279 DOI: 10.1167/iovs.65.6.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose This study aimed to explore protective effects and potential mechanism of ectoine, a natural osmoprotectant, on ocular surface mucin production in dry eye disease. Methods A dry eye model was established in C57BL/6 mice exposed to desiccating stress (DS) with untreated (UT) mice as controls. DS mice were topically treated with 2.0% ectoine or PBS vehicle. Corneal epithelial defects were assessed by Oregon Green Dextran (OGD) fluorescent staining. Conjunctival goblet cells, ocular mucins, and T help (Th) cytokines were evaluated by immunofluorescent staining or ELISA, and RT-qPCR. Results Compared with UT mice, corneal epithelial defects were detected as strong punctate OGD fluorescent staining in DS mice with vehicle, whereas ectoine treatment largely reduced OGD staining to near-normal levels. Conjunctival goblet cell density and cell size decreased markedly in DS mice, but was significantly recovered by ectoine treatment. The protein production and mRNA expression of two gel-forming secreted MUC5AC and MUC2, and 4 transmembrane mucins, MUC1, MUC4, MUC16, and MUC15, largely decreased in DS mice, but was restored by ectoine. Furthermore, Th2 cytokine IL-13 was inhibited, whereas Th1 cytokine IFN-γ was stimulated at protein and mRNA levels in conjunctiva and draining cervical lymph nodes (CLNs) of DS mice, leading to decreased IL-13/IFN-γ ratio. Interestingly, 2.0% ectoine reversed their alternations and restored IL-13/IFN-γ balance. Conclusions Our findings demonstrate that topical ectoine significantly reduces corneal damage, and enhances goblet cell density and mucin production through restoring imbalanced IL-13/IFN-γ signaling in murine dry eye model. This suggests therapeutic potential of natural osmoprotectant ectoine for dry eye disease.
Collapse
Affiliation(s)
- Na Lin
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xin Chen
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haixia Liu
- Allergan, an AbbVie company, Irvine, California, United States
| | - Ning Gao
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhao Liu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
8
|
He J, Xu M, Wu S. Rutin alleviates Sjogren's syndrome via CaR/NLRP3/NF-κB signal pathway. In Vitro Cell Dev Biol Anim 2024; 60:411-419. [PMID: 38587579 DOI: 10.1007/s11626-024-00893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
Sjogren's syndrome (SS) is an autoimmune disease. Its mechanism and treatment methods are unclear. The purpose of this study was to investigate the effects of rutin (Ru) on SS. Proteomics was used to detect differential proteins in the submandibular glands of normal mice and SS mice. Salivary secretion (SAS) and salivary gland index (SGI) were detected. Oxidative stress and inflammatory cytokine in submandibular glands were detected. The levels of NLRP3, ASC, Caspase-1, IL-1β, and p-NF-κBp65 in submandibular gland tissues and submandibular gland cells of overexpressed calcium-sensing receptor (over-CaR) mice and overexpressed CaR primary submandibular gland cells (over-CaR-PSGs) were detected. In total, 327 differential proteins were identified in the submandibular gland tissues of SS mice compared to control mice. CaR was one of the most differential proteins and significantly increased compared to control mice. Ru could significantly increase SGI and SGI, and inhibit oxidative stress and inflammatory cytokine in submandibular glands. In addition, Ru was shown to further improve SS via regulation of the CaR/NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/nuclear factor kappa-B (NF-κB) signal pathway. Overexpression of CaR counteracted partial activity of Ru. CaR may be an important target for the treatment of SS. In addition, Ru improved the SS via the CaR/NLRP3/NF-κB signal pathway. This study provides a basis for the treatments for SS.
Collapse
Affiliation(s)
- Jing He
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Meimei Xu
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Suling Wu
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Balint G, Watson Buchanan W, Kean CA, Kean W, Rainsford KD. Sjögren's syndrome. Inflammopharmacology 2024; 32:37-43. [PMID: 37195497 DOI: 10.1007/s10787-023-01222-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 05/18/2023]
Abstract
Sjögren's syndrome (SS) is characterised as keratoconjunctivitis sicca (dry eyes), xerostomia (dry mouth) commonly associated with salivary gland enlargement, and is referred to as Primary Sjögren's syndrome. It is known as Secondary Sjögren's syndrome when it occurs in patients, with connective tissue disease, such as rheumatoid arthritis, systemic lupus erythematosus, polyarthritis nodosa, polymyositis, and systemic sclerosis. SS has also been associated with chronic graft-versus-host disease after allogeneic bone marrow transplantation, human immunodeficiency syndrome (AIDS), hepatitis C infection (HCV), chronic biliary cirrhosis, neoplastic and myeloplastic syndromes, fibromyalgia, and chronic fatigue syndrome.
Collapse
Affiliation(s)
- Geza Balint
- 3rd Department of Rheumatology, National Institute of Rheumatology and Physiotherapy, Frankel Leó út 27-29, Budapest, 1023, Hungary
| | - W Watson Buchanan
- Department of Medicine, McMaster University, Hamilton, ON, L8P 1H6, Canada
| | - Colin A Kean
- Haldimand War Memorial Hospital, 400 Broad Street, Dunnville, ON, N1A 2P7, Canada
| | - Walter Kean
- Department of Medicine, McMaster University, Hamilton, ON, L8P 1H6, Canada.
- Haldimand War Memorial Hospital, 400 Broad Street, Dunnville, ON, N1A 2P7, Canada.
| | | |
Collapse
|
10
|
Jiao J, Liu L, Xiao K, Liu Q, Long Q. Atmospheric pollutant black carbon induces ocular surface damage in mice. Exp Eye Res 2024; 239:109755. [PMID: 38128749 DOI: 10.1016/j.exer.2023.109755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The threats of air pollution to human health have been gradually discovered, including its effects on eyes. The purpose of the study is to investigate the potential correlation between ocular surface exposure to black carbon and ocular surface structural damage as well as tear film dysfunction. To achieve this goal, 60 6-8-week-aged male BALB/C mice were randomly divided into 4 groups (n = 15). 0.5 mg/ml (group A), 1 mg/ml (group B), 5 mg/ml (group C) black carbon suspension droplets and PBS solution (group D) were used in the right eyes, 4 μl per time of three times per day. Tear break-up time, corneal fluorescein staining scores, and tear volume were assessed before treatment (day 0) and on days 4, 7, 10, and 14 after treatment. On day 14, the mice were sacrificed, and corneal and conjunctival tissues were collected for histological analysis. As the exposure time increased, there were no significant changes in the measured parameters from PBS-treated group of mice (P > 0.05). However, in the black carbon-treated group, there were significant decreases in tear film break-up time, significant increases in corneal fluorescein staining scores, and significant reductions in tear secretion (all P < 0.05). After 14 days, H&E staining of the corneal epithelium showed that in the PBS-treated group of mice, the corneal epithelial cells were neatly arranged, with no inflammatory cell infiltration, while in the black carbon-treated group, the corneal epithelium was significantly thickened, the basal cell arrangement was disrupted, the number of cell layers increased, and there was evidence of inflammatory cell infiltration. In the ultrastructure of the corneal epithelium, it could be observed that the black carbon-treated group had an increased amount of corneal epithelial cell detachment compared to the PBS-treated group, at the same time, the intercellular connections were looser, and there was a decrease in the number of microvilli and desmosomes in the black carbon-treated group. The results indicate that the ocular surface exposure to black carbon can result in a decrease in tear film stability and tear secretion in mice. Moreover, it can induce alterations in the corneal structure.
Collapse
Affiliation(s)
- Jingyi Jiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Lin Liu
- State Key Laboratory of Environmental Chemistry & Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Kang Xiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry & Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
11
|
Nagstrup AH. The use of benzalkonium chloride in topical glaucoma treatment: An investigation of the efficacy and safety of benzalkonium chloride-preserved intraocular pressure-lowering eye drops and their effect on conjunctival goblet cells. Acta Ophthalmol 2023; 101 Suppl 278:3-21. [PMID: 38037546 DOI: 10.1111/aos.15808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
ENGLISH SUMMARY Glaucoma is a leading cause of the global prevalence of irreversible blindness. The pathogenesis of glaucoma is not entirely known, but the major risk factors include advancing age, genetic predisposition, and increased intraocular pressure (IOP). The only evidence-based treatment is a lowering of IOP through the use of eye drops, laser procedures, or surgical interventions. Although laser treatment is gaining recognition as a first-choice treatment option, the most common approach for managing glaucoma is IOP-lowering eye drops. A major challenge in the treatment is the occurrence of adverse events and poor adherence. In this context, the ocular surface is an area of great concern, as most glaucoma patients have dry eye disease (DED), which is largely caused by eye drops. Preservation with benzalkonium chloride (BAK) is a controversial topic due to its potential role as a significant cause of DED. A systematic review and meta-analyses investigate potential differences in efficacy and safety between BAK-preserved and BAK-free anti-glaucomatous eye drops (I). Many of the included studies report on ocular surface damage caused by the application of BAK-preserved eye drops. However, the meta-analyses addressing hyperemia, number of ocular adverse events, and tear break-up time did not identify any significant differences. The latter is likely due to varying measurement methods, different endpoints, and study durations. It is, therefore, possible that the large variations between the studies conceal differences in the safety profiles. The efficacy meta-analysis finds that there are no differences in the IOP-lowering effect between BAK-preserved and BAK-free eye drops, indicating that BAK is not necessary for the effectiveness of eye drops. To promote more homogeneous choices of endpoints and methods when evaluating BAK-preserved and BAK-free glaucoma treatments, a Delphi consensus statement was performed. In this study, glaucoma experts and ocular surface disease experts reached consensus on the key factors to consider when designing such studies (II). The hope is to have more studies with comparable endpoints that can systematically show the potentially adverse effects of BAK. The preclinical studies in the current Ph.D. research focus on conjunctival goblet cells (GCs). GCs are important for the ocular surface because they release the mucin MUC5AC, which is an essential component of the inner layer of the tear film. BAK preservation may damage the GCs and result in a low GC density, leading to an unstable tear film and DED. The most commonly used IOP-lowering drugs are prostaglandin analogs (PGAs). Thus, the conducted studies investigate the effect of PGAs preserved in different ways on GCs. BAK-preserved latanoprost is cytotoxic to primary cultured human conjunctival GCs and results in a scattered expression of MUC5AC, in contrast to negative controls, where MUC5AC is localized around the cell nucleus (III). Preservative-free (PF) latanoprost is not cytotoxic and does not affect the MUC5AC expression pattern. Furthermore, BAK-preserved travoprost is found to be cytotoxic in a time-dependent manner, while Polyquad®-preserved travoprost does not affect GC survival at any measured time point (IV). Both Polyquad and BAK induce scattered expression of MUC5AC. The cytotoxicity of BAK-preserved PGA eye drops is higher compared to the safer profile of PF and Polyquad-preserved PGA eye drops (V). Additionally, PF latanoprost does not increase the release of the inflammatory markers interleukin (IL)-6 and IL-8, unlike BAK-preserved latanoprost. A review highlights the active and inactive components of IOP-lowering eye drops (VI). Several preclinical and clinical studies have identified adverse effects of BAK. Although other components, such as the active drug and phosphates, can also cause adverse events, the review clearly states that BAK alone is a major source of decreased tolerability. The conclusion of this thesis is that BAK preservation is unnecessary and harmful to the ocular surface. The preclinical studies demonstrate that GCs die when exposed to BAK. Furthermore, they find that BAK induces a pro-inflammatory response. The review included in the thesis concludes that BAK should be phased out of eye drops for chronic use. Overall, the inclusion of BAK poses a risk of developing DED and poor adherence, which can ultimately lead to disease progression and blindness.
Collapse
Affiliation(s)
- Anne Hedengran Nagstrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
You Y, Chen J, Chen H, Wang J, Xie H, Pi X, Wang X, Jiang F. Investigation of Conjunctival Goblet Cell and Tear MUC5AC Protein in Patients With Graves' Ophthalmopathy. Transl Vis Sci Technol 2023; 12:19. [PMID: 37889503 PMCID: PMC10617636 DOI: 10.1167/tvst.12.10.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Purpose The aim of this study was to investigate conjunctival goblet cell density (GCD) and tear mucin-5AC (MUC5AC) protein levels in patients with Graves' ophthalmopathy (GO) and their association with dry eye indicators. Methods A total of 99 patients with GO (54 active, 45 inactive) and 40 healthy controls were recruited. Comprehensive ophthalmic examinations, including the external eye, ocular surface, GCD, and tear MUC5AC ELISA, were performed. The GCD examination was performed in temporal bulbar conjunctiva, including IVCM GCD by in vivo confocal microscopy (IVCM) and filled GCD of cytokeratin-7 and MUC5AC-positive co-immunomarkers by impression cytology. Tear MUC5AC protein was detected using samples extracted from Schirmer strips. Results The GO group showed a significant decrease in IVCM GCD, filled GCD, and normalized tear MUC5AC protein compared to controls, with the active GO group showing the greatest decrease (all P < 0.05). Tear MUC5AC protein levels in GO correlated with those of IVCM GCD (r = 0.40, P < 0.001) and filled GCD (r = 0.54, P < 0.001, respectively). Higher ocular surface disease index (r = -0.22, P < 0.05; r = -0.20, P < 0.05; r = -0.21, P < 0.05) and lisamine green staining (r = -0.23, P < 0.05; r = -0.38, P < 0.001; r = -0.42, P < 0.001) were associated with lower tear MUC5AC protein levels, IVCM GCD, and filled GCD, respectively, which decreased with increasing clinical activity score (r = -0.24, P < 0.05; r = -0.28, P < 0.01; r = -0.27, P < 0.01) and conjunctival congestion score (r = -0.27, P < 0.01; r = -0.33, P < 0.001; r = -0.42, P < 0.001). Conclusions The goblet cell count and tear MUC5AC protein in GO eyes were decreased, possibly due to ocular surface inflammation. Translational Relevance This study observed the change of tear film mucin in GO patients.
Collapse
Affiliation(s)
- Yayan You
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Chen
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Chen
- Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Jiasong Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huatao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohuan Pi
- Department of Ophthalmology, The Sixth Hospital of Wuhan, Jianghan University, Wuhan, China
| | - Xinghua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Patel S, Mittal R, Kumar N, Galor A. The environment and dry eye-manifestations, mechanisms, and more. FRONTIERS IN TOXICOLOGY 2023; 5:1173683. [PMID: 37681211 PMCID: PMC10482047 DOI: 10.3389/ftox.2023.1173683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial condition that often presents with chronic symptoms of pain (that can be characterized as "dryness," "burning," and "irritation," to name a few) and/or fluctuating or poor-quality vision. Given its multifactorial nature, several pathophysiologic mechanisms have been identified that can underlie symptoms, including tear film, ocular surface, and/or corneal somatosensory nerve abnormalities. Research has focused on understanding how environmental exposures can increase the risk for DED flares and negatively impact the tear film, the ocular surface, and/or nerve health. Given that DED is a common condition that negatively impacts physical and mental functioning, managing DED requires multiple strategies. These can include both medical approaches and modulating adverse environmental conditions, the latter of which may be a cost-effective way to avoid DED flares. Thus, an understanding of how environmental exposures relate to disease is important. This Review summarizes research on the relationships between environmental exposures and DED, in the hope that this information will engage healthcare professionals and patients to consider environmental manipulations in their management of DED.
Collapse
Affiliation(s)
- Sneh Patel
- Division of Physical Medicine and Rehabilitation, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Rhiya Mittal
- University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Naresh Kumar
- Department of Public Health Sciences, University of Miami, Miami, FL, United States
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
- Ophthalmology and Research Services, Miami VA Medical Center, Miami, FL, United States
| |
Collapse
|
14
|
Chester T, Garg S(S, Johnston J, Ayers B, Gupta P. How Can We Best Diagnose Severity Levels of Dry Eye Disease: Current Perspectives. Clin Ophthalmol 2023; 17:1587-1604. [PMID: 37304329 PMCID: PMC10254642 DOI: 10.2147/opth.s388289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Dry eye disease (DED) is a common ocular condition, but the diagnosis relative to other ocular conditions and the evaluation of severity of the condition has often been difficult. This challenge can be due to clinical signs and symptoms not always correlating with each other. An understanding of the various components which create the condition, as well as the diagnostic measures used to evaluate these components, is useful to the clinician working with DED patients. This review paper will discuss traditional diagnostic options, diagnostic imaging, and Advanced Point of Care testing capabilities to determine the severity level of dry eye disease more adequately.
Collapse
Affiliation(s)
| | - Sumit (Sam) Garg
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California-Irvine, Irvine, CA, USA
| | - Josh Johnston
- Georgia Eye Partners, Atlanta, GA, USA
- Southern College of Optometry, Memphis, TN, USA
| | - Brandon Ayers
- Ophthalmic Partners PC, Cornea Service, Wills Eye Hospital, Philadelphia, PA, USA
| | - Preeya Gupta
- Triangle Eye Consultants, Raleigh, NC, USA
- Department of Ophthalmology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
15
|
Duan H, Yang T, Zhou Y, Ma B, Zhao L, Chen J, Qi H. Comparison of mucin levels at the ocular surface of visual display terminal users with and without dry eye disease. BMC Ophthalmol 2023; 23:189. [PMID: 37106448 PMCID: PMC10139827 DOI: 10.1186/s12886-023-02931-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The long-term use of visual display terminals (VDT) is linked to an increased risk of dry eye disease (DED). Numerous studies have indicated that ocular mucins play a vital role in the pathogenesis of DED. Therefore, we aimed to evaluate (1) whether mRNA levels of membrane-associated mucins (MAMs), including MUC1, MUC4, MUC16, and MUC20, as well as MUC5AC are altered in conjunctival cells of VDT users with and without DED and (2) the relationship between mucin levels and subjective and objective tests of DED in VDT users. METHODS Seventy-nine VDT users were enrolled and divided into DED (n = 53) and control (n = 26) groups. All participants were evaluated for parameters of DED using the Ocular Surface Disease Index (OSDI) questionnaire, tear breakup time (TBUT), corneal fluorescein staining (CFS), lissamine green (LG) staining, and tear meniscus height (TMH). Based on the conjunctival impression cytology (CIC) method, differences in MUC1, MUC4, MUC16, MUC20, and MUC5AC mRNA expression levels were observed between the DED and control groups, and between symptomatic and asymptomatic participants. RESULTS The DED group showed significantly decreased MUC1, MUC16, and MUC20 expressions (all P < 0.05) compared to the control group. In addition, these mucin levels were lower in subjects with frequent ocular symptoms (foreign body sensation, blurred vision and painful or sore eyes) than in asymptomatic participants (all P < 0.05). Correlation analysis revealed that MUC1, MUC16, and MUC20 levels in VDT users were positively correlated with TBUT or TMH, or both. However, no significant relationship was found between MUC4 and MUC5AC levels and the DED parameters. CONCLUSION VDT users with an increased frequency of ocular discomfort or a diagnosis of DED had a decreased MUC1, MUC16 and MUC20 mRNA expression in their conjunctival cells. MAMs deficiency in the conjunctival epithelium may be one of the mechanisms leading to tear film instability and DED in VDT users.
Collapse
Affiliation(s)
- Hongyu Duan
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Tingting Yang
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yifan Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Baikai Ma
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Lu Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Jiawei Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hong Qi
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
16
|
Ali M, Shah D, Coursey TG, Lee SM, Balasubramaniam A, Yadavalli T, Edward D, Son KN, Shukla D, Aakalu VK. Modulation of ocular surface desiccation in a murine model by histatin-5 application. Ocul Surf 2023; 27:30-37. [PMID: 36513277 PMCID: PMC10355159 DOI: 10.1016/j.jtos.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine the efficacy of Histatin-5 (Hst5) peptide treatment in ameliorating dry eye disease (DED) phenotype in an in-vivo mouse model of scopolamine and desiccating stress (SDS) dry eye. METHODS SDS was induced in female C57BL/6 mice by subcutaneous injections of scopolamine hydrobromide and exposure to low relative humidity and forced air draft for five days. Mouse eyes were topically treated with synthetic Hst5 peptide or balanced salt solution (BSS) twice a day for four days. Control mice were not exposed to SDS induction and did not receive any treatments. Oregon green dextran (OGD) staining was used to evaluate corneal permeability. Histologically, staining with periodic acid schiff (PAS), immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), were used to quantify the number of goblet cells (GC), CD45+ immune cells and apoptotic cells respectively in formalin fixed paraffin embedded (FFPE) mouse whole eye sections. RESULTS Compared to treatment with BSS, Hst5 treatment significantly lowered corneal epithelial permeability, prevented conjunctival epithelial GC loss, decreased conjunctival CD45+ immune cell infiltration and reduced conjunctival epithelial cell apoptosis. CONCLUSIONS Hst5 peptide topical treatment significantly improves the clinical parameters observed in SDS experimental model of DED. This is the first report of the efficacy of Hst5 treatment of dry eye phenotype, and potential novel treatment for DED in the clinic. Hst5 represents a new class of efficacious therapeutic agents, demonstrating pro-epithelial and anti-inflammatory activities at the ocular surface.
Collapse
Affiliation(s)
- Marwan Ali
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Dhara Shah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | | | - Sang Min Lee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Arun Balasubramaniam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Deepak Edward
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Kyung-No Son
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Lee J, Kim S, Kim J, Son BJ, Yoon CH, Kim HK, Kim KH. Moxifloxacin-Based Extended Depth-of-Field Fluorescence Microscopy for Real-Time Conjunctival Goblet Cell Examination. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2004-2008. [PMID: 35167445 DOI: 10.1109/tmi.2022.3151944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conjunctival goblet cells (CGCs) are mucin-secreting cells in the eye and play essential roles for ocular surface homeostasis. Since various ocular surface pathologies are related to CGC dysfunction, CGC examination is important for the evaluation of ocular surface conditions. Recently we introduced moxifloxacin-based fluorescence microscopy (MBFM) for non-invasive CGC imaging. However, the imaging speed was up to 1 frame per second (fps) and needed to be improved for clinical applications. In this study, we developed a high-speed moxifloxacin-based, extended depth-of-field (EDOF) microscopy system that operates at a maximum imaging speed of 15 fps. The system used a deformable mirror for the high-speed axial sweeping of focal plane during single-frame acquisitions. The acquired images contained both in-focus and out-of-focus information, and deconvolution was used to filter the in-focus information. The system had a DOF of 800 [Formula: see text], field-of-view of 1.2 mm ×1.2 mm, and resolution of [Formula: see text]. Its performance was demonstrated by real-time, breathing-motion-insensitive CGC imaging of mouse and rabbit models, in vivo. High-speed EDOF microscopy has potentials for non-invasive, real-time CGC examinations of human subjects.
Collapse
|
18
|
Masli S, Akpek EK. Reduced Tear Thrombospondin-1/Matrix Metalloproteinase-9 Ratio Can Aid in Detecting Sjögren's Syndrome Etiology in Patients with Dry Eye. Clin Transl Sci 2022; 15:1999-2009. [PMID: 35610740 PMCID: PMC9372415 DOI: 10.1111/cts.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Differentiating patients with Sjögren's syndrome (SS)‐associated dry eye from non‐SS dry eye is critical for monitoring and appropriate management of possible sight‐ or life‐threatening extraglandular complications associated with SS. We tested whether reduced tear levels of immunoregulatory thrombospondin (TSP)‐1, which also inhibits matrix metalloproteinase (MMP)‐9, would reflect SS pathogenesis aiding the identification of patients with SS‐dry eye. Total of 61 participants, including healthy controls (n = 20), patients with non‐SS dry eye (n = 20) and SS‐dry eye (n = 21) were enrolled prospectively. Tear TSP‐1 and MMP‐9 levels were measured using a custom magnetic bead‐based multi‐plex assay in a masked manner. Analyte concentrations were assessed further according to ocular surface and tear film parameters. Relative to median tear TSP‐1 (308 ng/ml) and MMP‐9 (1.9 ng/ml) levels in the control group, significantly higher proportion of patients with SS‐dry eye than non‐SS had lower tear TSP‐1 levels (55% vs. 29%, odds ratio [OR] = 3, 95% confidence interval [CI] = 1.64 to 5.35, p < 0.05) and higher tear MMP‐9 levels (65% vs. 24%, OR = 5.8, 95% CI = 4.46 to 19.81, p < 0.05), respectively. The tear TSP‐1/MMP‐9 ratio was significantly reduced in patients with SS‐dry eye compared to non‐SS (B = −2.36, 95% CI = −3.94 to −0.0.79, p < 0.05), regardless of tear MMP‐9 levels. Patients with a lower ratio were 2.3 times more likely to have SS (OR = 0.28, 95% CI = 0.1 to 0.75, p < 0.05). This ratio showed significant inverse correlations with clinical parameters (conjunctival and corneal staining scores). Our results denote that tear TSP‐1/MMP‐9 ratio can be useful in identifying patients with dry eye with underlying SS and used as a screening test.
Collapse
Affiliation(s)
- Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Esen K Akpek
- Ocular Surface Diseases and Dry Eye Clinic, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Di Zazzo A, Coassin M, Surico PL, Bonini S. Age-related ocular surface failure: A narrative review. Exp Eye Res 2022; 219:109035. [DOI: 10.1016/j.exer.2022.109035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
|
20
|
Woltsche N, Boldin I, Horwath-Winter J. Allergie und Trockenes Auge. SPEKTRUM DER AUGENHEILKUNDE 2021. [DOI: 10.1007/s00717-021-00506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungAllergische Erkrankungen der Augenoberfläche (okuläre Allergie, OA) und Trockene Augen (Keratokonjunktivitis sicca, KCS) sind zwei häufige klinische Entitäten, die oft konkomitant auftreten und sich vice versa gegenseitig bedingen. Dieser Artikel fasst die Assoziationen zwischen OA und KCS in Pathophysiologie, Diagnostik und Therapie zusammen und wird aufzeigen, dass das Kardinalsymptom des Juckreizes kein allgemeingültiges Dogma darstellen muss, anhand dessen diese 2 Entitäten korrekt voneinander differenziert werden können. Es folgt weiters ein Überblick über Überempfindlichkeits-Reaktionen der Augenoberfläche, welche sich häufig als KCS äußern, sowie über KCS als okuläre Nebenwirkung von systemischen anti-allergischen Medikamenten.
Collapse
|
21
|
Ocular surface disorders associated with the use of dupilumab based on WHO VigiBase. Sci Rep 2021; 11:14293. [PMID: 34253801 PMCID: PMC8275737 DOI: 10.1038/s41598-021-93750-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
Dupilumab is a dual inhibitor of interleukin-4 and interleukin-13 and is mainly used to treat moderate-to-severe atopic dermatitis. Post-marketing safety data related to dupilumab have been accumulated, and it has been found that ocular surface diseases are closely associated with dupilumab treatment. The aim of this study was to detect dupilumab-related signals and to determine the safety characteristics of dupilumab with respect to eye disorders using real-world big data. Data on dupilumab use until December 29, 2019 were collected. The data were mined by calculating three indices: proportional reporting ratios, reporting odds ratios, and information components. The detected signals were classified using the primary system organ class in MedDRA terminology. Among 21,161,249 reports for all drugs, 20,548 reports were recorded for dupilumab. A total of 246 signals in the preferred terms were detected for dupilumab. Among the 246 positive signals obtained, 61 signals were related to eye disorders, which accounted for the largest percentage (24.8%), and 38 signals were anatomically related to the ocular surface. Dupilumab may cause extensive eye disorders; however, the underlying mechanisms and risk factors remain unclear. Our findings may facilitate broad safety screening of dupilumab-related eye disorders using real-world big data.
Collapse
|
22
|
Abstract
ABSTRACT Sjögren syndrome (SS) is a chronic inflammatory autoimmune disease of the lacrimal and salivary glands. Salivary gland biopsy is still one of the most valuable and acceptable diagnostic tests for SS, which however, is an invasive test. Therefore, noninvasive diagnostic biomarkers with high specificity and sensitivity are required for the diagnosis and assessment of SS. Because ophthalmological testing constitutes to an important part for the diagnosis of SS. Tears harbor biomarkers with a high potential to be used for differential diagnosis and assessment of treatment in many systemic disorders, including SS. This review aims to summarize recent advances in the identification of tear biomarkers of SS, trying to identify reliable, sensitive, and specific biomarkers that can be used to guide treatment decisions.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Ophthalmology (C.S.), Mugla Sitki Kocman University School of Medicine, Mugla, Turkey ; and Department of Ophthalmology (M.D.), Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
23
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Puro DG. Bioelectric Responses of Conjunctival Goblet Cells to Dry Eye: Impact of Ion Channels on Exocytotic Function and Viability. Int J Mol Sci 2020; 21:ijms21249415. [PMID: 33321932 PMCID: PMC7763144 DOI: 10.3390/ijms21249415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
How ion channels impact the response of the ocular surface to dry eye is only beginning to be explored. Here, we review recent progress and provide new experimental data clarifying the exocytosis-altering actions of ion channels in conjunctival goblet cells whose release of tear-stabilizing mucin is a key adaptive response to the pre-ocular hyperosmolarity that characterizes dry eye. Patch-clamp recordings of goblet cells located in freshly excised rat conjunctiva reveal that these mucin-releasing cells respond to sustained hyperosmolarity by sequentially activating their ATP-sensitive potassium (KATP), nonspecific cation (NSC), voltage-gated calcium (VGCC), and P2X7 channels; each of which modulates exocytosis. Based on these and other new findings, we now identify four stages in the bioelectric response of conjunctival goblet cells to extracellular hyperosmolarity. To better characterize these stages, we report that high-resolution membrane capacitance (Cm) measurements of the exocytotic activity of single goblet cells demonstrate that the replenishment of mucin-filled granules after neural-evoked exocytosis is a multi-hour process, which VGCCs markedly accelerate. Yet, we also discovered that VGCC activation is high-risk since hyperosmotic-induced goblet cell death is boosted. With dry eye treatments being far from optimal, elucidating the physiologic and pathobiologic impact of the KATP/NSC/VGCC/P2X7 pathway provides a new opportunity to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Donald G. Puro
- Department of Ophthalmology & Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA;
- Department of Molecular & Integrative Physiology, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
| |
Collapse
|
25
|
Tsubota K, Pflugfelder SC, Liu Z, Baudouin C, Kim HM, Messmer EM, Kruse F, Liang L, Carreno-Galeano JT, Rolando M, Yokoi N, Kinoshita S, Dana R. Defining Dry Eye from a Clinical Perspective. Int J Mol Sci 2020; 21:ijms21239271. [PMID: 33291796 PMCID: PMC7730816 DOI: 10.3390/ijms21239271] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, the number of patients with dry eye disease (DED) has increased dramatically. The incidence of DED is higher in Asia than in Europe and North America, suggesting the involvement of cultural or racial factors in DED etiology. Although many definitions of DED have been used, discrepancies exist between the various definitions of dry eye disease (DED) used across the globe. This article presents a clinical consensus on the definition of DED, as formulated in four meetings with global DED experts. The proposed new definition is as follows: “Dry eye is a multifactorial disease characterized by a persistently unstable and/or deficient tear film (TF) causing discomfort and/or visual impairment, accompanied by variable degrees of ocular surface epitheliopathy, inflammation and neurosensory abnormalities.” The key criteria for the diagnosis of DED are unstable TF, inflammation, ocular discomfort and visual impairment. This definition also recommends the assessment of ocular surface epitheliopathy and neurosensory abnormalities in each patient with suspected DED. It is easily applicable in clinical practice and should help practitioners diagnose DED consistently. This consensus definition of DED should also help to guide research and clinical trials that, to date, have been hampered by the lack of an established surrogate endpoint.
Collapse
Affiliation(s)
- Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-3-5363-3219
| | | | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen 361102, China;
| | | | - Hyo Myung Kim
- Korea University Medical Center, Anam Hospital, Seoul 02841, Korea;
| | - Elisabeth M. Messmer
- Department of Ophthalmology, Ludwig Maximilian University, 80539 Munich, Germany;
| | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Lingyi Liang
- Zhongshan Ophthalmic Center, Guangzhou 510060, China;
| | | | - Maurizio Rolando
- ISPRE OPHTHALMICS (Instituto di Medicina Oftalmica), 16129 Genoa, Italy;
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Reza Dana
- Cornea & Refractive Surgery, Massachusetts Eye & Ear, Boston, MA 02114, USA; (J.T.C.-G.); (R.D.)
| |
Collapse
|
26
|
Masli S, Dartt DA. Mouse Models of Sjögren's Syndrome with Ocular Surface Disease. Int J Mol Sci 2020; 21:ijms21239112. [PMID: 33266081 PMCID: PMC7730359 DOI: 10.3390/ijms21239112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sjögren’s syndrome (SS) is a systemic rheumatic disease that predominantly affects salivary and lacrimal glands resulting in oral and ocular dryness, respectively, referred to as sicca symptoms. The clinical presentation of ocular dryness includes keratoconjunctivitis sicca (KCS), resulting from the inflammatory damage to the ocular surface tissues of cornea and conjunctiva. The diagnostic evaluation of KCS is a critical component of the classification criteria used by clinicians worldwide to confirm SS diagnosis. Therapeutic management of SS requires both topical and systemic treatments. Several mouse models of SS have contributed to our current understanding of immunopathologic mechanisms underlying the disease. This information also helps develop novel therapeutic interventions. Although these models address glandular aspects of SS pathology, their impact on ocular surface tissues is addressed only in a few models such as thrombospondin (TSP)-1 deficient, C57BL/6.NOD.Aec1Aec2, NOD.H2b, NOD.Aire KO, and IL-2Rα (CD25) KO mice. While corneal and/or conjunctival damage is reported in most of these models, the characteristic SS specific autoantibodies are only reported in the TSP-1 deficient mouse model, which is also validated as a preclinical model. This review summarizes valuable insights provided by investigations on the ocular spectrum of the SS pathology in these models.
Collapse
Affiliation(s)
- Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: (S.M.); (D.A.D.); Tel.: +1-617-358-2195 (S.M.); +1-617-912-0272 (D.A.D.)
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (S.M.); (D.A.D.); Tel.: +1-617-358-2195 (S.M.); +1-617-912-0272 (D.A.D.)
| |
Collapse
|
27
|
Aragona P, Benítez-Del-Castillo JM, Coroneo MT, Mukherji S, Tan J, Vandewalle E, Vingrys A, Liu H, Carlisle-Wilcox C, Vehige J, Simmons PA. Safety and Efficacy of a Preservative-Free Artificial Tear Containing Carboxymethylcellulose and Hyaluronic Acid for Dry Eye Disease: A Randomized, Controlled, Multicenter 3-Month Study. Clin Ophthalmol 2020; 14:2951-2963. [PMID: 33061281 PMCID: PMC7534849 DOI: 10.2147/opth.s256480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/01/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose To compare the efficacy and safety of an artificial tear combining the polymers carboxymethylcellulose (CMC) and hyaluronic acid (HA), to a formulation of CMC alone in subjects with dry eye. Methods A preservative-free artificial tear (CMC-HA) was compared with an existing artificial tear (CMC). Subjects with mild-to-severe signs and symptoms of dry eye were enrolled in this double-masked, randomized, multicenter trial, and dosed at least twice daily for 90 days, with follow-up visits at Days 7, 30, 60, and 90. Ocular Surface Disease Index (OSDI) was the primary outcome measure. Secondary outcome measures were tear break-up time (TBUT), ocular surface staining, Schirmer test with anesthesia, and visual analog scale (VAS) scores of dry eye symptom severity and formulation acceptability. Safety measures included adverse events, biomicroscopy, and visual acuity. Results A total of 460 subjects were enrolled across 45 sites (38 in Europe; 7 in Australia), of whom 454 were randomized to receive treatment. The per-protocol (PP) population consisted of 394 subjects, 364 (92.4%) of whom completed the study. In the PP population, the mean ± SD change from baseline in OSDI score at the primary timepoint, Day 90, was −16.9±17.5 for CMC-HA and −16.0±16.1 for CMC. CMC-HA was non-inferior to CMC based upon a confidence interval method. Both treatments significantly improved (P<0.001) OSDI, symptom VAS scores, TBUT, and ocular surface staining from baseline at all follow-up visits, with minimal differences between groups. Greater reduction of overall ocular pain/discomfort was reported in subjects using CMC-HA versus CMC (P=0.048). Approximately 10% of subjects in each group reported treatment-related adverse events of generally mild to moderate severity. Conclusion The new CMC-HA formulation was effective and well tolerated, and demonstrates a greater potential for symptom relief compared with CMC. These data support implementation of this formula for the management of dry eye patients.
Collapse
Affiliation(s)
- Pasquale Aragona
- Department of Biomedical Sciences, Università di Messina, Messina, Italy
| | | | | | - Subhanjan Mukherji
- Department of Ophthalmology, James Paget University Hospital, Great Yarmouth, UK
| | - Jacqueline Tan
- Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| | - Evelien Vandewalle
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
| | - Algis Vingrys
- University of Melbourne EyeCare Clinic, Carlton, VIC, Australia
| | - Haixia Liu
- Allergan, an AbbVie company, Irvine, CA, USA
| | | | | | - Peter A Simmons
- Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia.,Allergan, an AbbVie company, Irvine, CA, USA
| |
Collapse
|
28
|
Goblet cells promote tolerance induction in the conjunctiva. Mucosal Immunol 2020; 13:717-718. [PMID: 32616838 PMCID: PMC7888209 DOI: 10.1038/s41385-020-0319-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/21/2020] [Indexed: 02/04/2023]
|
29
|
Lee J, Kim S, Yoon CH, Kim MJ, Kim KH. Moxifloxacin based axially swept wide-field fluorescence microscopy for high-speed imaging of conjunctival goblet cells. BIOMEDICAL OPTICS EXPRESS 2020; 11:4890-4900. [PMID: 33014588 PMCID: PMC7510874 DOI: 10.1364/boe.401896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 05/04/2023]
Abstract
Goblet cells (GCs) in the conjunctiva are specialized epithelial cells producing mucins on the ocular surface. GCs play important roles in maintaining homeostasis of the ocular surface, and GC dysfunction is associated with various complications including dry eye diseases. Current GC examination methods, which are conjunctival impression cytology and confocal reflection microscopy, have limitations for routine examination. Fluorescence microscopy using moxifloxacin was recently introduced as a non-invasive and high-contrast imaging method, but further development is needed to be used for GC examination. Here we developed a non-invasive high-speed high-contrast GC imaging method, called moxifloxacin based axially swept wide-field fluorescence microscopy (MBAS-WFFM). This method acquired multiple fluorescence images with the axial sweeping of the focal plane to capture moxifloxacin labeled GCs on the tilted conjunctival surface in focus and generated all-in-focus images by combining the acquired images. The imaging field of view and imaging speed were increased to 1.6 mm × 1.6 mm and 30 fps. An image processing method was developed for the analysis of GC density. MBAS-WFFM was applied to alkali burn mouse models and detected GC damage and recovery via longitudinal imaging. MBAS-WFFM could assess the status of GCs rapidly and non-invasively. We anticipate MBAS-WFFM to be a starting point for non-invasive GC examination and the diagnosis of GC associated diseases. For example, MBAS-WFFM could be used to classify dry eye diseases into detail categories for effective treatment.
Collapse
Affiliation(s)
- Jungbin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
- These authors contributed equally
| | - Seonghan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
- These authors contributed equally
| | - Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Myoung Joon Kim
- Renew Seoul Eye Center, 528 Teheran-ro, Gangnam-gu, Seoul 06181, South Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
30
|
Kao WWY. Keratin expression by corneal and limbal stem cells during development. Exp Eye Res 2020; 200:108206. [PMID: 32882212 DOI: 10.1016/j.exer.2020.108206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Keratins are the forming units of intermediate filaments (IF) that provide mechanical support, and formation of desmosomes between cells and hemi desmosomes with basement membranes for epithelium integrity. Keratin IF are polymers of obligate heterodimer consisting one type I keratin and one type II keratin molecules. There are 54 functional keratin genes in human genome, which are classified into three major groups, i.e., epithelial keratins, hair follicle cell-specific epithelial keratins and hair keratins. Their expression is cell type-specific and developmentally regulated. Corneal epithelium expresses a subgroup of keratins similar to those of epidermal epithelium. Limbal basal stem cells express K5/K14, and K8/K18 and K8/K19 IF suggesting that there probably are two populations of limbal stem cells (LSCs). In human, LSCs at limbal basal layer can directly stratify and differentiate to limbal suprabasal cells that express K3/K12 IF, or centripetally migrate then differentiate to corneal basal transient amplifying cells (TAC) that co-express both K3/K12 and K5/K14 prior to moving upward and assuming suprabasal cells phenotype of only K3/K12 expression that signifies corneal type epithelium differentiation. In rodent, the differentiated cornea epithelial cells express K5/K12 in lieu of K3/K12, because K3 allele exists as a pseudogene and does not encode a functional K3 protein. The basal corneal cells of new-born mice originate from surface ectoderm during embryonic development slowly commit to differentiation of becoming TAC co-expressing K5/K12 and K5/K14 IF. However, the centripetal migration may still occur at a slower rate in young mice, which is accelerated during wound healing. In this review, we will discuss and compare the cornea-specific keratins expression patterns between corneal and epidermal epithelial cells during mouse development, and between human and mouse during development and homeostasis in adult, and pathology caused by a mutation of keratins.
Collapse
Affiliation(s)
- Winston W-Y Kao
- Departments of Ophthalmology, University of Cincinnati, Cincinnati, OH, 45267-0838, USA.
| |
Collapse
|
31
|
Usuba FS, de Medeiros-Ribeiro AC, Novaes P, Aikawa NE, Bonfiglioli K, Santo RM, Bonfá E, Alves MR. Dry eye in rheumatoid arthritis patients under TNF-inhibitors: conjunctival goblet cell as an early ocular biomarker. Sci Rep 2020; 10:14054. [PMID: 32820183 PMCID: PMC7441175 DOI: 10.1038/s41598-020-70944-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/06/2020] [Indexed: 11/08/2022] Open
Abstract
Dry eye disease (DED) is common in Rheumatoid Arthritis (RA) patients. The application of conjunctival goblet cell count as a clinical biomarker to diagnose and respond to treatment can take place in rheumatoid arthritis patients under TNF-inhibitors (TNFi) therapy. This study aimed to investigate the ocular surface parameters and the long-term effects of TNFi therapy on ocular surface features and goblet cell count of rheumatoid arthritis patients. At baseline, rheumatoid arthritis patients eligible to TNFi were compared to healthy controls (similar age/gender), regarding Ocular Surface Disease Index (OSDI) questionnaire, Schirmer I test, tear break-up time test, vital dye staining of the ocular surface, and conjunctival impression cytology. DED severity grade, impression cytology score, and goblet cell count were analyzed. Rheumatoid arthritis patients were followed after three (3 M) and 12 months (12 M), during TNFi treatment. Sixteen rheumatoid arthritis patients and 24 controls were compared: a higher frequency of abnormal OSDI (68.8% vs. 16.7%, p = 0.002), Schirmer's test < 10 mm (37.5% vs. 8.3%, p = 0.042), meibomian gland dysfunction (50% vs. 8.3%, p = 0.007), abnormal impression cytology (75% vs. 8.3%, p < 0.001), and mild to moderate DED (81.3% vs. 4.2%, p < 0.001) were observed in rheumatoid arthritis patients, who also had lower goblet cell count [325 (274-707) cells/mm2 vs. 742 (562-863) cells/mm2, p = 0.004]. The presence of Meibomian gland dysfunction was associated with higher disease activity scores (p < 0.05). The prospective early observation of these patients at 3 M showed an increase improvement in tear production by Schirmer's test [13 (7.5-17.5) vs. 23.5 (16-35); p = 0.001], and an improvement in impression cytology score [1 (0.5-2) vs. 1 (0-1), p = 0.031] and in goblet cell count [325 (274-707) vs. 931 (656-1,244), p < 0.001]. Eight RA responders to TNFi were also re-evaluated at 12 M with further improvement in goblet cell count [393 (275-827) vs. 872 (502-1,185) vs. 1,079 (867-1,244), p = 0.047]. Multifactorial DED is frequent in RA patients, comprising aqueous, lipid, and mucin components. TNFi prompt improves tear production and recovers the goblet cells, which can be a biomarker of the pathological process and response to therapy in this population.
Collapse
Affiliation(s)
- Fany Solange Usuba
- Department of Ophthalmology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | | | - Priscila Novaes
- Department of Ophthalmology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Nadia Emi Aikawa
- Rheumatology Division, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Karina Bonfiglioli
- Rheumatology Division, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ruth Miyuki Santo
- Department of Ophthalmology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Eloisa Bonfá
- Rheumatology Division, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Milton Ruiz Alves
- Department of Ophthalmology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
32
|
Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res 2020; 197:108115. [PMID: 32561483 DOI: 10.1016/j.exer.2020.108115] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Tears have a vital function to protect and lubricate the ocular surface. Tear production, distribution and clearance is tightly regulated by the lacrimal functional unit (LFU) to meet ocular surface demands. The tear film consists of an aqueous-mucin layer, containing fluid and soluble factors produced by the lacrimal glands and mucin secreted by the goblet cells, that is covered by a lipid layer. The array of proteins, glycoproteins and lipids in tears function to maintain a stable, well-lubricated and smooth optical surface. Tear factors also promote wound healing, suppress inflammation, scavenge free radicals, and defend against microbial infection. Disease and dysfunction of the LFU leads to tear instability, increased evaporation, inflammation, and blurred and fluctuating vision. The function of tear components and the consequences of tear deficiency on the ocular surface are reviewed.
Collapse
Affiliation(s)
- Stephen C Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
| | - Michael E Stern
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States; ImmunEyez, Mission Viejo, CA, United States.
| |
Collapse
|
33
|
Na YJ, Choi KJ, Jung WH, Park SB, Kang S, Ahn JH, Kim KY. A Novel Selective 11β-HSD1 Inhibitor, (E)-4-(2-(6-(2,6-Dichloro-4-(Trifluoromethyl)Phenyl)-4-Methyl-1,1-Dioxido-1,2,6-Thiadiazinan-2-yl)Acetamido)Adamantan-1-Carboxamide (KR-67607), Prevents BAC-Induced Dry Eye Syndrome. Int J Mol Sci 2020; 21:ijms21103729. [PMID: 32466320 PMCID: PMC7279275 DOI: 10.3390/ijms21103729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/12/2023] Open
Abstract
Dry eye syndrome is the most common eye disease and it is caused by various reasons. As the balance of the tear film that protects the eyes is broken due to various causes, it becomes impossible to properly protect the eyes. In this study, the protective effects and underlying mechanisms of topical (E)-4-(2-(6-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-methyl-1,1-dioxido-1,2,6-thiadiazinan-2-yl)acetamido)adamantan-1-carboxamide (KR-67607), a novel selective 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitor, were investigated in benzalkonium chloride (BAC)-induced dry eye syndrome. BAC-treated rat eyes induced significant increases in ocular surface damage, decreased corneal thickness, corneal basement membrane destruction in the conjunctival epithelium, and expression of pro-inflammatory cytokines tumor necrosis factor-α and 11β-HSD1. These effects of BAC were reversed by topical KR-67607 treatment. Furthermore, KR-67607 decreased 4-hydroxynonenal expression and increased antioxidant and mucus secretion in BAC-treated rat eyes. Taken together, a novel selective 11β-HSD1 inhibitor can prevent BAC-induced dry eye syndrome by inhibiting pro-inflammatory cytokine and reactive oxygen species expression via the inhibition of both 11β-HSD1 activity and expression.
Collapse
Affiliation(s)
- Yoon-Ju Na
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
- Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Kyoung Jin Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
| | - Won Hoon Jung
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
| | - Sung Bum Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
| | - Sein Kang
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Ki Young Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
- Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-860-7471
| |
Collapse
|
34
|
Regional Comparison of Goblet Cell Number and Area in Exposed and Covered Dry Eyes and Their Correlation with Tear MUC5AC. Sci Rep 2020; 10:2933. [PMID: 32076085 PMCID: PMC7031519 DOI: 10.1038/s41598-020-59956-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
To compare goblet cell (GC) number and area in the covered superior (SB) versus exposed temporal (TB) bulbar conjunctiva in control versus aqueous tear deficient eyes (ATD) and evaluate correlation with tear MUC5AC protein. SB and TB impression cytology performed on control eyes, Sjögren syndrome (SS) ATD, and non-SS ATD was stained with period acid Schiff. GC number and area were measured with image analysis software. Protein-normalized MUC5AC level was measured in Schirmer strip-collected tears. Compared to control conjunctiva, GC number and area were significantly lower in SS, non-SS, and combined ATD groups in exposed TB, and were also significantly lower in SS and combined ATD groups in covered SB. In all ATD, GC number and area were significantly correlated, but differences between SB and TB were non-significant. Normalized tear MUC5AC protein was lower in all ATD groups versus control eyes, and correlated only with GC area. GCs are significantly decreased in the covered and exposed conjunctiva in SS. GC area may be a better disease measure than number for ATD. Correlation between tear MUC5AC concentration and GC area suggests tear MUC5AC mucin can be used as a disease-relevant biomarker for conjunctiva GC health.
Collapse
|
35
|
Usuba FS, Saad CGS, Aikawa NE, Novaes P, Moraes JCB, Santo RM, Carvalho JF, Bonfá E, Alves MR. Improvement of conjunctival cytological grade and tear production in Ankylosing Spondylitis patients under TNF inhibitors: a long-term follow-up. Sci Rep 2020; 10:334. [PMID: 31942038 PMCID: PMC6962203 DOI: 10.1038/s41598-019-57266-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/26/2019] [Indexed: 01/12/2023] Open
Abstract
Dry eye disease can compromise the patient’s quality of life. Few studies assessed the ocular surface (OS) in Ankylosing Spondylitis (AS) patients. This study aimed to evaluate the clinical and cytological findings of the OS in patients with AS, classify dry eye disease (DED) severity grade and conjunctival impression cytology (IC), and the effects of TNF inhibitors (TNFi) in a one-year follow-up. A baseline (BL) evaluation included 36 AS patients and 39 healthy controls. They fulfilled the Ocular Surface Index Disease questionnaire and underwent the Schirmer I test, break-up time, vital staining, and conjunctival IC. A DED severity grade, as well as IC rating, was applied. Fourteen of these patients received TNFi and analysis of ocular and systemic AS disease parameters occurred at BL and three months (3 M), and 12 months (12 M) after treatment. The AS patients presented a higher frequency of DED (p = 0.01), a worse score of severity (p = 0.001), and a higher frequency of altered IC (p = 0.007) when compared to controls. The 14 patients under TNFi presented an improvement in all the clinical disease activity parameters throughout the one-year treatment (p < 0.05) even as a concomitant increase in the Schirmer test (p = 0.04), and a significant amelioration in the altered IC to a normal IC (p = 0.006). DED is a frequent and under-diagnosed ocular disease in AS patients. The long-term parallel improvement of disease activity and OS parameters in AS patients receiving TNFi suggests that the OS can be an additional target of systemic inflammation in AS.
Collapse
Affiliation(s)
- Fany Solange Usuba
- Ophthalmology Department, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - Carla Gonçalves Schahin Saad
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Emi Aikawa
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Priscila Novaes
- Ophthalmology Department, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Julio Cesar Bertacini Moraes
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ruth Miyuki Santo
- Ophthalmology Department, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jozelio Freire Carvalho
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eloisa Bonfá
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Milton Ruiz Alves
- Ophthalmology Department, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Alam J, de Paiva CS, Pflugfelder SC. Immune - Goblet cell interaction in the conjunctiva. Ocul Surf 2020; 18:326-334. [PMID: 31953222 DOI: 10.1016/j.jtos.2019.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/24/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
The conjunctiva is a goblet cell rich mucosal tissue. Goblet cells are supported by tear growth factors and IL-13 produced by resident immune cells. Goblet cell secretions are essential for maintaining tear stability and ocular surface homeostasis. In addition to producing tear stabilizing mucins, they also produce cytokines and retinoic acid that condition monocyte-derived phagocytic cells in the conjunctiva. Aqueous tear deficiency from lacrimal gland disease and systemic inflammatory conditions results in goblet cell loss that amplifies dry eye severity. Reduced goblet cell density is correlated with more severe conjunctival disease, increased IFN-γ expression and antigen presenting cell maturation. Sterile Alpha Motif (SAM) pointed domain epithelial specific transcription factor (Spdef) gene deficient mice that lack goblet cells have increased infiltration of monocytes and dendritic cells with greater IL-12 expression in the conjunctiva. Similar findings were observed in the conjunctiva of aged mice. Reduced retinoic acid receptor (RXRα) signaling also increases conjunctival monocyte infiltration, IFN-γ expression and goblet cell loss. Evidence suggests that dry eye therapies that suppress IFN-γ expression preserve conjunctival goblet cell number and function and should be considered in aqueous deficiency.
Collapse
Affiliation(s)
- Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
37
|
Kim S, Lee S, Chang H, Kim M, Kim MJ, Kim KH. In vivo fluorescence imaging of conjunctival goblet cells. Sci Rep 2019; 9:15457. [PMID: 31664078 PMCID: PMC6820527 DOI: 10.1038/s41598-019-51893-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023] Open
Abstract
Conjunctival goblet cells (GCs) are specialized epithelial cells that secrete mucins onto the ocular surface to maintain the wet environment. Assessment of GCs is important because various ocular surface diseases are associated with their loss. Although there are GC assessment methods available, the current methods are either invasive or difficult to use. In this report, we developed a simple and non-invasive GC assessment method based on fluorescence imaging. Moxifloxacin ophthalmic solution was used to label GCs via topical administration, and then various fluorescence microscopies could image GCs in high contrasts. Fluorescence imaging of GCs in the mouse conjunctiva was confirmed by both confocal reflection microscopy and histology with Periodic acid-Schiff (PAS) labeling. Real-time in-vivo conjunctival GC imaging was demonstrated in a rat model by using both confocal fluorescence microscopy and simple wide-field fluorescence microscopy. Different GC densities were observed in the forniceal and bulbar conjunctivas of the rat eye. Moxifloxacin based fluorescence imaging provides high-contrast images of conjunctival GCs non-invasively and could be useful for the study or diagnosis of GC related ocular surface diseases.
Collapse
Affiliation(s)
- Seonghan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Seunghun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Hoonchul Chang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Moses Kim
- Department of Ophthalmology, Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Myoung Joon Kim
- Department of Ophthalmology, Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Renew Seoul Eye Center, 528 Teheran-ro, 4th Floor, Gangnam-gu, Seoul, 16181, Republic of Korea.
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea.
| |
Collapse
|
38
|
Xiao Y, de Paiva CS, Yu Z, de Souza RG, Li DQ, Pflugfelder SC. Goblet cell-produced retinoic acid suppresses CD86 expression and IL-12 production in bone marrow-derived cells. Int Immunol 2019; 30:457-470. [PMID: 30010888 DOI: 10.1093/intimm/dxy045] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
Conjunctival goblet cell loss in ocular surface diseases is accompanied by increased number of interleukin-12 (IL-12)-producing antigen-presenting cells (APCs) and increased interferon-γ (IFN-γ) expression. This study tested the hypothesis that mouse conjunctival goblet cells produce biologically active retinoic acid (RA) that suppresses CD86 expression and IL-12 production by myeloid cells. We found that conditioned media from cultured conjunctival goblet cells (CjCM) suppressed stimulated CD86 expression, NF-κB p65 activation and IL-12 and IFN-γ production in unstimulated and lipopolysaccharide-stimulated cultured bone marrow-derived cells (BMDCs) containing a mixed population of APCs. Goblet cell-conditioned, ovalbumin-loaded APCs suppressed IFN-γ production and increased IL-13 production in co-cultured OTII cells. The goblet cell suppressive activity is due in part to their ability to synthesize RA from retinol. Conjunctival goblet cells had greater expression of aldehyde dehydrogenases Aldh1a1 and a3 and ALDEFLUOR activity than cornea epithelium lacking goblet cells. The conditioning activity was lost in goblet cells treated with an ALDH inhibitor, and a retinoid receptor alpha antagonist blocked the suppressive effects of CjCM on IL-12 production. Similar to RA, CjCM increased expression of suppressor of cytokine signaling 3 (SOCS3) in BMDCs. SOCS3 silencing reversed the IL-12-suppressive effects of CjCM. Our findings indicate that conjunctival goblet cells are capable of synthesizing RA from retinol secreted by the lacrimal gland into tears that can condition APCs. Evidence suggests goblet cell RA may function in maintaining conjunctival immune tolerance and loss of conjunctival goblet cells may contribute to increased Th1 priming in dry eye.
Collapse
Affiliation(s)
- Yangyan Xiao
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Cintia S de Paiva
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Rodrigo G de Souza
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - De-Quan Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen C Pflugfelder
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Li X, Kang B, Eom Y, Lee HK, Kim HM, Song JS. The Protective Effect of a Topical Mucin Secretagogue on Ocular Surface Damage Induced by Airborne Carbon Black Exposure. Invest Ophthalmol Vis Sci 2019; 60:255-264. [PMID: 30649152 DOI: 10.1167/iovs.18-25964] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Exposure to airborne particulate matter can induce ocular surface damage and inflammation. We evaluated the effects of a topical mucin secretagogue on the mitigation of ocular surface damage induced by exposure to airborne carbon black (CB). Methods Sprague-Dawley rats were exposed to ambient CB for 2 hours twice daily for 5 days. Corneal staining score and tear lactic dehydrogenase (LDH) activity were measured to evaluate ocular surface damage. Serum immunoglobulin (Ig) G and IgE levels and the sizes of cervical lymph nodes were also measured. The expressions of interleukin (IL)-4, IL-17, and interferon (IFN)-γ were measured by Western blot analysis. Diquafosol tetrasodium was instilled six times a day for 5 days, and the extent of ocular surface damage was evaluated. Results After exposure to airborne CB, the median corneal staining score and LDH activity were significantly increased. Serum IgG and IgE levels and the sizes of cervical lymph nodes were also significantly increased. Additionally, the expression of IL-4 and IFN-γ was elevated in the anterior segment of the eyeball. Furthermore, the expression of IL-4, IL-17, and IFN-γ was elevated in the cervical lymph nodes. When exposed to airborne black carbon, topical diquafosol tetrasodium significantly increased tear MUC5AC concentration and decreased tear LDH activity. Conclusions Exposure to airborne CB induced ocular surface damage and increased proinflammatory cytokines in the eyes and cervical lymph nodes. Topical mucin secretagogues seem to have a protective effect on the ocular surface against exposure to airborne particulate matters.
Collapse
Affiliation(s)
- Xiangzhe Li
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Boram Kang
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Youngsub Eom
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Myung Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
40
|
Uchino Y. The Ocular Surface Glycocalyx and its Alteration in Dry Eye Disease: A Review. Invest Ophthalmol Vis Sci 2019; 59:DES157-DES162. [PMID: 30481821 DOI: 10.1167/iovs.17-23756] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many studies have revealed that transmembrane mucins, large glycoproteins with heavily glycosylated glycans, are essential for maintaining ocular surface epithelium lubrication and wettability. Recent reports indicate that transmembrane mucins and galectin-3, a chimera type of galectin that binds β-galactoside in the glycan, play a crucial role in maintaining the epithelial glycocalyx barrier. This review summarizes current evidence regarding the role of galectin-3, the role of the three major transmembrane mucins (i.e., MUC1, MUC4, and MUC16), in the maintenance of ocular surface wettability and transcellular barrier. Pathological mechanisms of glycocalyx barrier disruption and epithelial surface wettability decreases in dry eye disease are also summarized. Lastly, new ophthalmic drugs that target transmembrane mucin are described.
Collapse
Affiliation(s)
- Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|
42
|
Haji-Ali-Nili N, Khoshzaban F, Karimi M, Rahimi R, Ashrafi E, Ghaffari R, Ghobadi A, Jabarvand Behrouz M. Effect of a Natural Eye Drop, Made of Plantago Ovata Mucilage on Improvement of Dry Eye Symptoms: A Randomized, Double-blind Clinical Trial. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:1602-1611. [PMID: 32641967 PMCID: PMC6934964 DOI: 10.22037/ijpr.2019.1100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dry eye disease is a relatively common eye disorder associated with decrease in quality of life. In this study, efficacy of an eye drop of Plantago ovata mucilage on symptoms of dry eye disease was evaluated. In a randomized, double-blind, placebo-controlled clinical trial, sixty dry eye patients with ocular symptoms and total Ocular Surface Disease Index (OSDI) score of ≥12 were randomly assigned to receive either a natural ophthalmic drop, made of Plantago ovata mucilage or placebo 4 times a day for 6 weeks. The patients were evaluated at pretreatment (baseline), weeks 4 and 6 post-treatment. The evaluation of the efficacy and safety were conducted based on the OSDI questionnaire, the noninvasive tear film break-up time (NI-BUT) with keratograph, the Schirmer test without anesthesia, and the osmolarity test, as well as by monitoring possible adverse events. After 6 weeks, within group analysis showed a significant improvement in total OSDI score (p < 0.001). In addition, between group comparison revealed a significant improvement in the OSDI score of the intervention group (p < 0.001). Although, NI-BUT was significantly improved in the Plantago ovata group (p = 0.004), however no statistically significant difference was observed in between group analysis. There were no significant differences between two groups, or significant changes within the groups in the Schirmer test without anesthesia and the osmolarity test. No serious adverse events were reported. In conclusion, P. ovata mucilage is a natural, inexpensiveness, and safe lubricant polymer that could have beneficial ocular effects on subjective symptoms of the patients with dry eye disease.
Collapse
Affiliation(s)
- Neda Haji-Ali-Nili
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran.
| | - Fariba Khoshzaban
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran.
| | - Mehrdad Karimi
- Department of Iranian Traditional Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Ashrafi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Ghaffari
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Ghobadi
- Department of Traditional Pharmacy, School of Traditional Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
43
|
Dry Eye Syndrome Preferred Practice Pattern®. Ophthalmology 2019; 126:P286-P334. [DOI: 10.1016/j.ophtha.2018.10.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
|
44
|
Baudouin C, Rolando M, Benitez Del Castillo JM, Messmer EM, Figueiredo FC, Irkec M, Van Setten G, Labetoulle M. Reconsidering the central role of mucins in dry eye and ocular surface diseases. Prog Retin Eye Res 2018; 71:68-87. [PMID: 30471351 DOI: 10.1016/j.preteyeres.2018.11.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 01/16/2023]
Abstract
Mucins are key actors in tear film quality and tear film stability. Alteration of membrane-bound mucin expression on corneal and conjunctival epithelial cells and/or gel-forming mucin secretion by goblet cells (GCs) promotes in ocular surface diseases and dry eye disease (DED). Changes in the mucin layer may lead to enhanced tear evaporation eventually contributing to tear hyperosmolarity which has been associated with ocular surface inflammation. Inflammatory mediators in turn may have a negative impact on GCs differentiation, proliferation, and mucin secretion. This sheds new light on the position of GCs in the vicious circle of DED. As contributor to ocular surface immune homeostasis, GC loss may contribute to impaired ocular surface immune tolerance observed in DED. In spite of this, there are no tools in routine clinical practice for exploring ocular surface mucin deficiency/dysregulation. Therefore, when selecting the most appropriate treatment options, there is a clear unmet need for a better understanding of the importance of mucins and options for their replacement. Here, we comprehensively revisited the current knowledge on ocular surface mucin biology, including functions, synthesis, and secretion as well as the available diagnostic tools and treatment options to improve mucin-associated homeostasis. In particular, we detailed the potential link between mucin dysfunction and inflammation as part of the uncontrolled chronic inflammation which perpetuates the vicious circle in DED.
Collapse
Affiliation(s)
- Christophe Baudouin
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, University Versailles Saint Quentin en Yvelines, Paris, France.
| | - Maurizio Rolando
- Ocular Surface & Dry Eye Center, ISPRE Ophthalmics, Genoa, Italy
| | | | | | - Francisco C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary and Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Murat Irkec
- Department of Ophthalmology, Hacettepe Faculty of Medicine, Ankara, Turkey
| | | | - Marc Labetoulle
- Hôpital Bicêtre, APHP, South Paris University, Ophthalmology, Le Kremlin-Bicêtre, France
| |
Collapse
|
45
|
Goblet cell response after photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg 2018; 42:1181-9. [PMID: 27531295 DOI: 10.1016/j.jcrs.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 11/21/2022]
Abstract
PURPOSE To determine whether patients without dry eye preoperatively have an altered conjunctival goblet cell density and mucin secretion postoperatively and to explore what factors affect changes in goblet cell density and mucin secretion. SETTING The former Walter Reed Army Medical Center, Washington, DC, USA. DESIGN Prospective nonrandomized clinical study. METHODS Impression cytology was used to determine conjunctival goblet cell density before and 1 week, 1 month, and 3 months after photorefractive keratectomy (PRK) or laser in situ keratomileusis (LASIK). The McMonnies questionnaire, Schirmer test, tear breakup time, corneal sensitivity, rose bengal staining, and computerized videokeratoscopy were also performed to assess tear-film and ocular-surface health. RESULTS The ratio of goblet cell to total cells changed postoperatively from baseline in both groups (P < .001). The most significant change was a median 29% decrease 1 month postoperatively. However, there were no significant differences between groups over time (P = .772). The ratio of filled goblet cell to total goblet cell did not change significantly over the same time period (P = .128), and there were no significant differences between the PRK group and the LASIK group over time (P = .282). CONCLUSIONS Patients without apparent dry eye had an altered conjunctival goblet cell population after PRK or LASIK. The conjunctival goblet cell population tended to decrease in the early postoperative period after either surgery and was most affected by preoperative goblet cell density. The changes in the tear film and ocular surface did not seem to affect goblet cell mucin secretion after either procedure. FINANCIAL DISCLOSURE None of the authors has a financial or proprietary interest in any material or method mentioned.
Collapse
|
46
|
Severity of Sjögren's Syndrome Keratoconjunctivitis Sicca Increases with Increased Percentage of Conjunctival Antigen-Presenting Cells. Int J Mol Sci 2018; 19:ijms19092760. [PMID: 30223431 PMCID: PMC6165102 DOI: 10.3390/ijms19092760] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
This study investigated the relationship between clinical severity and percentage of conjunctival antigen-presenting cells (APCs) in Sjögren’s syndrome (SS)-associated keratoconjunctivitis sicca (KCS). KCS clinical severity was based on symptom severity, tear volume, tear break-up time, and ocular surface dye staining. Conjunctival goblet cell density (GCD) was measured in periodic acid Schiff (PAS)-stained membranes. Conjunctival cells obtained by impression cytology were used for flow cytometry to measure percentages of CD45+HLA-DR+ APCs and mature CD11c+CD86+ dendritic cells (DCs). Compared to normal conjunctiva, the percentages of HLA-DR+ and CD11c+CD86+ cells were higher in the conjunctiva of the KCS group (p < 0.05). The percentage of CD45+HLA-DR+ cells positively correlated with clinical severity (r = 0.71, p < 0.05) and negatively correlated with GCD (r = −0.61, p < 0.05). Clinical severity also negatively correlated with GCD (r = −0.54, p < 0.05). These findings indicate that a higher percentage of APCs and mature DCs in the conjunctiva is associated with more severe KCS in SS. These APCs may contribute to the generation of the pathogenic Th1 cells that cause goblet cell loss in KCS.
Collapse
|
47
|
|
48
|
|
49
|
|
50
|
García Tirado A, Boto de Los Bueis A, Rivas Jara L. Ocular surface changes in recurrent pterygium cases post-operatively treated with 5-fluorouracil subconjunctival injections. Eur J Ophthalmol 2018; 29:9-14. [PMID: 29580102 DOI: 10.1177/1120672118757428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION: To investigate the ocular surface changes occurring in eyes with recurrent pterygium post-operatively treated with 5-fluorouracil intralesional injections. METHODS: Retrospective observational study of recurrent pterygium cases treated with weekly intralesional injections of 0.1 mL (5 mg) of 5-fluorouracil (10 injections). Impression cytology samples taken from the lesion, the healthy conjunctivae (inferior, superior, and contralateral to injury), and the cornea before and after treatment were analyzed. Clinical ocular characteristics (including Schirmer's test and break-up time) were evaluated during treatment. RESULTS: A total of 15 eyes were treated, with the mean follow-up of 27 ± 8.7 months (mean ± standard deviation). Prior to treatment initiation, the ocular surface citology over the pterygium was found to be abnormal. No epithelial cells (27%) and a lower goblet cell density (73%) compared to the healthy conjunctivae (p < 0.01) were found. Squamous metaplasia was observed to some degree in the cornea (100%), pterygium (81%) and healthy conjunctivae (73%). Following treatment, pterygium composition had changed: epithelial cell number (100%) and goblet cell density (47%) had increased (p < 0.05). Goblet cell density was also increased in healthy conjunctivae (67%; p < 0.05). The degree of squamous metaplasia decreased in the cornea (67%), pterygium (45%), and healthy conjunctivae (60%; p < 0.05). No adverse effects were reported, recurrence progression was arrested, and conjunctival redness and dry-eye severity level were decreased in all cases (p < 0.01). DISCUSSION: The cytology of ocular surface in recurrent pterygium is abnormal. After weekly intralesional 5-fluorouracil injections, it tends to normalize. The 5-fluorouracil compound is a safe and effective treatment to prevent pterygium recurrence.
Collapse
Affiliation(s)
- Amanda García Tirado
- 1 Department of Ophthalmology, IdiPaz Research Institute, La Paz University Hospital, Madrid, Spain
| | - Ana Boto de Los Bueis
- 1 Department of Ophthalmology, IdiPaz Research Institute, La Paz University Hospital, Madrid, Spain
| | - Luis Rivas Jara
- 2 Department of Ophthalmology, Ramón y Cajal University Hospital, Madrid, Spain
| |
Collapse
|