1
|
Interplay between Sulfur Assimilation and Biodesulfurization Activity in Rhodococcus qingshengii IGTS8: Insights into a Regulatory Role of the Reverse Transsulfuration Pathway. mBio 2022; 13:e0075422. [PMID: 35856606 PMCID: PMC9426449 DOI: 10.1128/mbio.00754-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodesulfurization is a process that selectively removes sulfur from dibenzothiophene and its derivatives. Several natural biocatalysts harboring the highly conserved desulfurization operon dszABC, which is significantly repressed by methionine, cysteine, and inorganic sulfate, have been isolated. However, the available information on the metabolic regulation of gene expression is still limited. In this study, scarless knockouts of the reverse transsulfuration pathway enzyme genes cbs and metB were constructed in the desulfurizing strain Rhodococcus sp. strain IGTS8. We provide sequence analyses and report the enzymes' involvement in the sulfate- and methionine-dependent repression of biodesulfurization activity. Sulfate addition in the bacterial culture did not repress the desulfurization activity of the Δcbs strain, whereas deletion of metB promoted a significant biodesulfurization activity for sulfate-based growth and an even higher desulfurization activity for methionine-grown cells. In contrast, growth on cysteine completely repressed the desulfurization activity of all strains. Transcript level comparison uncovered a positive effect of cbs and metB gene deletions on dsz gene expression in the presence of sulfate and methionine, but not cysteine, offering insights into a critical role of cystathionine β-synthase (CβS) and MetB in desulfurization activity regulation. IMPORTANCE Precise genome editing of the model biocatalyst Rhodococcus qingshengii IGTS8 was performed for the first time, more than 3 decades after its initial discovery. We thus gained insight into the regulation of dsz gene expression and biocatalyst activity, depending on the presence of two reverse transsulfuration enzymes, CβS and MetB. Moreover, we observed an enhancement of biodesulfurization capability in the presence of otherwise repressive sulfur sources, such as sulfate and l-methionine. The interconnection of cellular sulfur assimilation strategies was revealed and validated.
Collapse
|
2
|
Conter C, Fruncillo S, Fernández-Rodríguez C, Martínez-Cruz LA, Dominici P, Astegno A. Cystathionine β-synthase is involved in cysteine biosynthesis and H 2S generation in Toxoplasma gondii. Sci Rep 2020; 10:14657. [PMID: 32887901 PMCID: PMC7474069 DOI: 10.1038/s41598-020-71469-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022] Open
Abstract
Cystathionine β-synthase (CBS) catalyzes the condensation of serine and homocysteine to water and cystathionine, which is then hydrolyzed to cysteine, α-ketobutyrate and ammonia by cystathionine γ-lyase (CGL) in the reverse transsulfuration pathway. The protozoan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, includes both CBS and CGL enzymes. We have recently reported that the putative T. gondii CGL gene encodes a functional enzyme. Herein, we cloned and biochemically characterized cDNA encoding CBS from T. gondii (TgCBS), which represents a first example of protozoan CBS that does not bind heme but possesses two C-terminal CBS domains. We demonstrated that TgCBS can use both serine and O-acetylserine to produce cystathionine, converting these substrates to an aminoacrylate intermediate as part of a PLP-catalyzed β-replacement reaction. Besides a role in cysteine biosynthesis, TgCBS can also efficiently produce hydrogen sulfide, preferentially via condensation of cysteine and homocysteine. Unlike the human counterpart and similar to CBS enzymes from lower organisms, the TgCBS activity is not stimulated by S-adenosylmethionine. This study establishes the presence of an intact functional reverse transsulfuration pathway in T. gondii and demonstrates the crucial role of TgCBS in biogenesis of H2S.
Collapse
Affiliation(s)
- Carolina Conter
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Silvia Fruncillo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Carmen Fernández-Rodríguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Luis Alfonso Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
3
|
Majtan T, Pey AL, Gimenez-Mascarell P, Martínez-Cruz LA, Szabo C, Kožich V, Kraus JP. Potential Pharmacological Chaperones for Cystathionine Beta-Synthase-Deficient Homocystinuria. Handb Exp Pharmacol 2018; 245:345-383. [PMID: 29119254 DOI: 10.1007/164_2017_72] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Classical homocystinuria (HCU) is the most common loss-of-function inborn error of sulfur amino acid metabolism. HCU is caused by a deficiency in enzymatic degradation of homocysteine, a toxic intermediate of methionine transformation to cysteine, chiefly due to missense mutations in the cystathionine beta-synthase (CBS) gene. As with many other inherited disorders, the pathogenic mutations do not target key catalytic residues, but rather introduce structural perturbations leading to an enhanced tendency of the mutant CBS to misfold and either to form nonfunctional aggregates or to undergo proteasome-dependent degradation. Correction of CBS misfolding would represent an alternative therapeutic approach for HCU. In this review, we summarize the complex nature of CBS, its multi-domain architecture, the interplay between the three cofactors required for CBS function [heme, pyridoxal-5'-phosphate (PLP), and S-adenosylmethionine (SAM)], as well as the intricate allosteric regulatory mechanism only recently understood, thanks to advances in CBS crystallography. While roughly half of the patients respond to treatment with a PLP precursor pyridoxine, many studies suggested usefulness of small chemicals, such as chemical and pharmacological chaperones or proteasome inhibitors, rescuing mutant CBS activity in cellular and animal models of HCU. Non-specific chemical chaperones and proteasome inhibitors assist in mutant CBS folding process and/or prevent its rapid degradation, thus resulting in increased steady-state levels of the enzyme and CBS activity. Recent interest in the field and available structural information will hopefully yield CBS-specific compounds, by using high-throughput screening and computational modeling of novel ligands, improving folding, stability, and activity of CBS mutants.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA.
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Paula Gimenez-Mascarell
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, Derio, Spain
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, Derio, Spain
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague 2, Czech Republic
| | - Jan P Kraus
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
4
|
Anashkin VA, Baykov AA, Lahti R. Enzymes Regulated via Cystathionine β-Synthase Domains. BIOCHEMISTRY (MOSCOW) 2017; 82:1079-1087. [PMID: 29037129 DOI: 10.1134/s0006297917100017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cystathionine β-synthase (CBS) domains discovered 20 years ago can bind different adenosine derivatives (AMP, ADP, ATP, S-adenosylmethionine, NAD, diadenosine polyphosphates) and thus regulate the activities of numerous proteins. Mutations in CBS domains of enzymes and membrane transporters are associated with several hereditary diseases. The regulatory unit is a quartet of CBS domains that belong to one or two polypeptides and usually form a conserved disk-like structure. CBS domains function as "internal inhibitors" in enzymes, and their bound ligands either amplify or attenuate the inhibitory effect. Recent studies have opened a way to understanding the structural basis of enzyme regulation via CBS domains and widened the list of their bound ligands.
Collapse
Affiliation(s)
- V A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | |
Collapse
|
5
|
A disrupted transsulphuration pathway results in accumulation of redox metabolites and induction of gametocytogenesis in malaria. Sci Rep 2017; 7:40213. [PMID: 28091526 PMCID: PMC5238400 DOI: 10.1038/srep40213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Intra-erythrocytic growth of malaria parasite is known to induce redox stress. In addition to haem degradation which generates reactive oxygen species (ROS), the parasite is also thought to efflux redox active homocysteine. To understand the basis underlying accumulation of homocysteine, we have examined the transsulphuration (TS) pathway in the parasite, which is known to convert homocysteine to cysteine in higher eukaryotes. Our bioinformatic analysis revealed absence of key enzymes in the biosynthesis of cysteine namely cystathionine-β-synthase and cystathionine-γ-lyase in the parasite. Using mass spectrometry, we confirmed the absence of cystathionine, which is formed by enzymatic conversion of homocysteine thereby confirming truncation of TS pathway. We also quantitated levels of glutathione and homocysteine in infected erythrocytes and its spent medium. Our results showed increase in levels of these metabolites intracellularly and in culture supernatants. Our results provide a mechanistic basis for the long-known occurrence of hyperhomocysteinemia in malaria. Most importantly we find that homocysteine induces the transcription factor implicated in gametocytogenesis namely AP2-G and consequently triggers sexual stage conversion. We confirmed this observation both in vitro using Plasmodium falciparum cultures, and in vivo in the mouse model of malaria. Our study implicates homocysteine as a potential physiological trigger of gametocytogenesis.
Collapse
|
6
|
Smith AT, Pazicni S, Marvin KA, Stevens DJ, Paulsen KM, Burstyn JN. Functional divergence of heme-thiolate proteins: a classification based on spectroscopic attributes. Chem Rev 2015; 115:2532-58. [PMID: 25763468 DOI: 10.1021/cr500056m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T Smith
- †Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
| | - Samuel Pazicni
- ‡Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Katherine A Marvin
- §Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Daniel J Stevens
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Katherine M Paulsen
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Majtan T, Pey AL, Fernández R, Fernández JA, Martínez-Cruz LA, Kraus JP. Domain organization, catalysis and regulation of eukaryotic cystathionine beta-synthases. PLoS One 2014; 9:e105290. [PMID: 25122507 PMCID: PMC4133348 DOI: 10.1371/journal.pone.0105290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023] Open
Abstract
Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme’s catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme’s catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Angel L. Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
8
|
Ereño-Orbea J, Majtan T, Oyenarte I, Kraus JP, Martínez-Cruz LA. Purification, crystallization and preliminary crystallographic analysis of the catalytic core of cystathionine β-synthase from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2014; 70:320-5. [PMID: 24598918 PMCID: PMC3944693 DOI: 10.1107/s2053230x14001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 01/21/2014] [Indexed: 11/10/2022] Open
Abstract
Cystathionine β-synthase (CBS; EC 4.2.1.22) catalyzes the condensation of homocysteine and serine to form cystathionine, with the release of water. In humans, deficiency in CBS activity is the most common cause of hyperhomocysteinaemia and homocystinuria. More than 160 pathogenic mutations in the human CBS gene have been described to date. Here, the purification and preliminary crystallographic analysis of the catalytic core of CBS from Saccharomyces cerevisiae (ScCBS) is described which, in contrast to other eukaryotic CBSs, lacks the N-terminal haem-binding domain and is considered to be a useful model for investigation of the pyridoxal-5'-phosphate-mediated reactions of human CBS (hCBS). The purified protein yielded two different crystal forms belonging to space groups P41212 and P212121, with unit-cell parameters a = b = 72.390, c = 386.794 Å and a = 58.156, b = 89.988, c = 121.687 Å, respectively. Diffraction data were collected to 2.7 and 3.1 Å resolution, respectively, using synchrotron radiation. Preliminary analysis of the X-ray data suggests the presence of ScCBS homodimers in both types of crystals.
Collapse
Affiliation(s)
- June Ereño-Orbea
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia , Spain
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Iker Oyenarte
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia , Spain
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia , Spain
| |
Collapse
|
9
|
Structural basis of regulation and oligomerization of human cystathionine β-synthase, the central enzyme of transsulfuration. Proc Natl Acad Sci U S A 2013; 110:E3790-9. [PMID: 24043838 DOI: 10.1073/pnas.1313683110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cystathionine β-synthase (CBS) controls the flux of sulfur from methionine to cysteine, a precursor of glutathione, taurine, and H2S. CBS condenses serine and homocysteine to cystathionine with the help of three cofactors, heme, pyridoxal-5'-phosphate, and S-adenosyl-l-methionine. Inherited deficiency of CBS activity causes homocystinuria, the most frequent disorder of sulfur metabolism. We present the structure of the human enzyme, discuss the unique arrangement of the CBS domains in the C-terminal region, and propose how they interact with the catalytic core of the complementary subunit to regulate access to the catalytic site. This arrangement clearly contrasts with other proteins containing the CBS domain including the recent Drosophila melanogaster CBS structure. The absence of large conformational changes and the crystal structure of the partially activated pathogenic D444N mutant suggest that the rotation of CBS motifs and relaxation of loops delineating the entrance to the catalytic site represent the most likely molecular mechanism of CBS activation by S-adenosyl-l-methionine. Moreover, our data suggest how tetramers, the native quaternary structure of the mammalian CBS enzymes, are formed. Because of its central role in transsulfuration, redox status, and H2S biogenesis, CBS represents a very attractive therapeutic target. The availability of the structure will help us understand the pathogenicity of the numerous missense mutations causing inherited homocystinuria and will allow the rational design of compounds modulating CBS activity.
Collapse
|
10
|
Su Y, Majtan T, Freeman KM, Linck R, Ponter S, Kraus JP, Burstyn JN. Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine β-synthases. Biochemistry 2013; 52:741-51. [PMID: 23002992 PMCID: PMC3751582 DOI: 10.1021/bi300615c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway, which is critical for the synthesis of cysteine from methionine in eukaryotes. CBS uses coenzyme pyridoxal 5'-phosphate (PLP) for catalysis, and S-adenosylmethionine regulates the activity of human CBS, but not yeast CBS. Human and fruit fly CBS contain heme; however, the role for heme is not clear. This paper reports biochemical and spectroscopic characterization of CBS from fruit fly Drosophila melanogaster (DmCBS) and the CO/NO gas binding reactions of DmCBS and human CBS. Like CBS enzymes from lower organisms (e.g., yeast), DmCBS is intrinsically highly active and is not regulated by AdoMet. The DmCBS heme coordination environment, the reactivity, and the accompanying effects on enzyme activity are similar to those of human CBS. The DmCBS heme bears histidine and cysteine axial ligands, and the enzyme becomes inactive when the cysteine ligand is replaced. The Fe(II) heme in DmCBS is less stable than that in human CBS, undergoing more facile reoxidation and ligand exchange. In both CBS proteins, the overall stability of the protein is correlated with the heme oxidation state. Human and DmCBS Fe(II) hemes react relatively slowly with CO and NO, and the rate of the CO binding reaction is faster at low pH than at high pH. Together, the results suggest that heme incorporation and AdoMet regulation in CBS are not correlated, possibly providing two independent means for regulating the enzyme.
Collapse
Affiliation(s)
- Yang Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045
- Department of Genomics & Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Katherine M. Freeman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Rachel Linck
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Sarah Ponter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| |
Collapse
|
11
|
Oyenarte I, Majtan T, Ereño J, Corral-Rodríguez MA, Kraus JP, Martínez-Cruz LA. Purification, crystallization and preliminary crystallographic analysis of human cystathionine β-synthase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1318-22. [PMID: 23143240 PMCID: PMC3515372 DOI: 10.1107/s1744309112037219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Human cystathionine β-synthase (CBS) is a pyridoxal-5'-phosphate-dependent hemeprotein, whose catalytic activity is regulated by S-adenosylmethionine. CBS catalyzes the β-replacement reaction of homocysteine (Hcy) with serine to yield cystathionine. CBS is a key regulator of plasma levels of the thrombogenic Hcy and deficiency in CBS is the single most common cause of homocystinuria, an inherited metabolic disorder of sulfur amino acids. The properties of CBS enzymes, such as domain organization, oligomerization degree or regulatory mechanisms, are not conserved across the eukaryotes. The current body of knowledge is insufficient to understand these differences and their impact on CBS function and physiology. To overcome this deficiency, we have addressed the crystallization and preliminary crystallographic analysis of a protein construct (hCBS516-525) that contains the full-length CBS from Homo sapiens (hCBS) and just lacks amino-acid residues 516-525, which are located in a disordered loop. The human enzyme yielded crystals belonging to space group I222, with unit-cell parameters a=124.98, b=136.33, c=169.83 Å and diffracting X-rays to a resolution of 3.0 Å. The crystal structure appears to contain two molecules in the asymmetric unit which presumably correspond to a dimeric form of the enzyme.
Collapse
Affiliation(s)
- Iker Oyenarte
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, Derio, Bizkaia 48160, Spain
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - June Ereño
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, Derio, Bizkaia 48160, Spain
| | | | - Jan P. Kraus
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, Derio, Bizkaia 48160, Spain
| |
Collapse
|
12
|
Smith AT, Majtan T, Freeman KM, Su Y, Kraus JP, Burstyn JN. Cobalt cystathionine β-synthase: a cobalt-substituted heme protein with a unique thiolate ligation motif. Inorg Chem 2011; 50:4417-27. [PMID: 21480614 PMCID: PMC3350334 DOI: 10.1021/ic102586b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human cystathionine β-synthase (hCBS), a key enzyme in the trans-sulfuration pathway, catalyzes the condensation of serine with homocysteine to produce cystathionine. CBS from higher organisms is the only known protein that binds pyridoxal-5'-phosphate (PLP) and heme. Intriguingly, the function of the heme in hCBS has yet to be elucidated. Herein, we describe the characterization of a cobalt-substituted variant of hCBS (Co hCBS) in which CoPPIX replaces FePPIX (heme). Co(III) hCBS is a unique Co-substituted heme protein: the Co(III) ion is 6-coordinate, low-spin, diamagnetic, and bears a cysteine(thiolate) as one of its axial ligands. The peak positions and intensities of the electronic absorption and MCD spectra of Co(III) hCBS are distinct from those of previously Co-substituted heme proteins; TD-DFT calculations reveal that the unique features arise from the 6-coordinate Co bound axially by cysteine(thiolate) and a neutral donor, presumably histidine. Reactivity of Co(III) hCBS with HgCl(2) is consistent with a loss of the cysteine(thiolate) ligand. Co(III) hCBS is slowly reduced to Co(II) hCBS, which contains a 5-coordinate, low-spin, S = 1/2 Co-porphyrin that does not retain the cysteine(thiolate) ligand; this form of Co(II) hCBS binds NO((g)) but not CO((g)). Co(II) hCBS is reoxidized in the air to form a new Co(III) form, which does not contain a cysteine(thiolate) ligand. Canonical and alternative CBS assays suggest that maintaining the native heme ligation motif of wild-type Fe hCBS (Cys/His) is essential in maintaining maximal activity in Co hCBS. Correlation between the coordination structures and enzyme activity in both native Fe and Co-substituted proteins implicates a structural role for the heme in CBS.
Collapse
Affiliation(s)
- Aaron T. Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045
- Department of Genomics & Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Katherine M. Freeman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Yang Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| |
Collapse
|
13
|
Residue N84 of Yeast Cystathionine β-Synthase is a Determinant of Reaction Specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1424-31. [DOI: 10.1016/j.bbapap.2010.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/28/2010] [Accepted: 02/12/2010] [Indexed: 11/23/2022]
|
14
|
Abstract
Genome mining and biochemical analyses have shown that Leishmania major possesses two pathways for cysteine synthesis – the de novo biosynthesis pathway comprising SAT (serine acetyltransferase) and CS (cysteine synthase) and the RTS (reverse trans-sulfuration) pathway comprising CBS (cystathionine β-synthase) and CGL (cystathionine γ-lyase). The LmjCS (L. major CS) is similar to the type A CSs of bacteria and catalyses the synthesis of cysteine using O-acetylserine and sulfide with Kms of 17.5 and 0.13 mM respectively. LmjCS can use sulfide provided by the action of MST (mercaptopyruvate sulfurtransferase) on 3-MP (3-mercaptopyruvate). LmjCS forms a bi-enzyme complex with Leishmania SAT (and Arabidopsis SAT), with residues Lys222, His226 and Lys227 of LmjCS being involved in the complex formation. LmjCBS (L. major CBS) catalyses the synthesis of cystathionine from homocysteine, but, unlike mammalian CBS, also has high cysteine synthase activity (but with the Km for sulfide being 10.7 mM). In contrast, LmjCS does not have CBS activity. CS was up-regulated when promastigotes were grown in medium with limited availability of sulfur amino acids. Exogenous methionine stimulated growth under these conditions and also the levels of intracellular cysteine, glutathione and trypanothione, whereas cysteine had no effect on growth or the intracellular cysteine levels, correlating with the low rate of transport of cysteine into the cell. These results suggest that cysteine is generated endogenously by promastigotes of Leishmania. The absence of CS from mammals and the clear differences between CBS of mammals and Leishmania suggest that each of the parasite enzymes could be a viable drug target.
Collapse
|
15
|
Kim HS, Huh J, Fay JC. Dissecting the pleiotropic consequences of a quantitative trait nucleotide. FEMS Yeast Res 2009; 9:713-22. [PMID: 19456872 DOI: 10.1111/j.1567-1364.2009.00516.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The downstream consequences of a single quantitative trait polymorphism can provide important insight into the molecular basis of a trait. However, the molecular consequences of a polymorphism may be complex and only a subset of these may influence the trait of interest. In natural isolates of Saccharomyces cerevisiae, a nonsynonymous polymorphism in cystathione beta-synthase (CYS4) causes a deficiency in both cysteine and glutathione that results in rust-colored colonies and drug-dependent growth defects. Using a single-nucleotide allele replacement, we characterized the effects of this polymorphism on gene expression levels across the genome. To determine whether any of the differentially expressed genes are necessary for the production of rust-colored colonies, we screened the yeast deletion collection for genes that enhance or suppress rust coloration. We found that genes in the sulfur assimilation pathway are required for the production of rust color but not the drug-sensitivity phenotype. Our results show that a single quantitative trait polymorphism can generate a complex set of downstream changes, providing a molecular basis for pleiotropy.
Collapse
Affiliation(s)
- Hyun Seok Kim
- Department of Genetics, Washington University School of Medicine, 444 Forest Park Ave, St. Louis, MO 63108, USA
| | | | | |
Collapse
|
16
|
Belew MS, Quazi FI, Willmore WG, Aitken SM. Kinetic characterization of recombinant human cystathionine β-synthase purified from E. coli. Protein Expr Purif 2009; 64:139-45. [DOI: 10.1016/j.pep.2008.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/19/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
17
|
Majtan T, Singh LR, Wang L, Kruger WD, Kraus JP. Active cystathionine beta-synthase can be expressed in heme-free systems in the presence of metal-substituted porphyrins or a chemical chaperone. J Biol Chem 2008; 283:34588-95. [PMID: 18849566 PMCID: PMC2596375 DOI: 10.1074/jbc.m805928200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/06/2008] [Indexed: 11/06/2022] Open
Abstract
Cystathionine beta-synthase (CBS), a key enzyme in the metabolism of homocysteine, has previously been shown to require a heme co-factor for maximal activity. However, the biochemical function of the CBS heme is not well defined. Here, we show that expression of human CBS in heme-deficient strains of Saccharomyces cerevisiae and Escherichia coli results in production of an enzyme that is misfolded and degraded. Addition of exogenous heme, porphyrins with non-iron metal, or porphyrin lacking metal entirely produced stable and active CBS enzyme. Purification of recombinant CBS enzyme expressed in the presence of various metalloporphyrins confirmed that Mn(III) and Co(III) had 30-60% of the specific activity of Fe(III)-CBS, and still responded to allosteric activation by S-adenosyl-L-methionine. Treatment of S. cerevisiae with the chemical chaperone trimethylamine-N-oxide resulted in near complete restoration of function to human CBS produced in a heme-deficient strain. Taken together, these results suggest that porphyrin moiety of the heme plays a critical role in proper CBS folding and assembly, but that the metal ion is not essential for this function or for allosteric regulation by S-adenosyl-L-methionine.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
18
|
Wróbel M, Lewandowska I, Bronowicka-Adamska P, Paszewski A. The level of sulfane sulfur in the fungus Aspergillus nidulans wild type and mutant strains. Amino Acids 2008; 37:565-71. [PMID: 18781374 DOI: 10.1007/s00726-008-0175-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/01/2008] [Indexed: 11/24/2022]
Abstract
The interdependence of the sulfane sulfur metabolism and sulfur amino acid metabolism was studied in the fungus Aspergillus nidulans wild type strain and in mutants impaired in genes encoding enzymes involved in the synthesis of cysteine (a precursor of sulfane sulfur) or in regulatory genes of the sulfur metabolite repression system. It was found that a low concentration of cellular cysteine leads to elevation of two sulfane sulfurtransferases, rhodanase and cystathionine gamma-lyase, while the level of 3-mercaptopyruvate sulfurtransferase remains largely unaffected. In spite of drastic differences in the levels of biosynthetic enzymes and of sulfur amino acids due to mutations or sulfur supplementation of cultures, the level of total sulfane sulfur is fairly stable. This stability confirms the crucial role of sulfane sulfur as a fine-tuning regulator of cellular metabolism.
Collapse
Affiliation(s)
- Maria Wróbel
- Chair of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kopernika 7, 31-034, Cracow, Poland.
| | | | | | | |
Collapse
|
19
|
Frank N, Kent JO, Meier M, Kraus JP. Purification and characterization of the wild type and truncated human cystathionine beta-synthase enzymes expressed in E. coli. Arch Biochem Biophys 2007; 470:64-72. [PMID: 18060852 DOI: 10.1016/j.abb.2007.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/09/2007] [Accepted: 11/10/2007] [Indexed: 11/17/2022]
Abstract
In this paper, we describe the expression and characterization of recombinant human cystathionine beta-synthase (CBS) in Escherichia coli. We have used a glutathione-S-transferase (GST) fusion protein vector and incorporated a cleavage site with a long hinge region which allows for the independent folding of CBS and its fusion partner. In addition, our construct has the added benefit of yielding a purified CBS which only contains one extra glycine amino acid residue at the N-terminus. In our two-step purification procedure we are able to obtain a highly pure enzyme in sufficient quantities for crystallography and other physical chemical methods. We have investigated the biochemical and catalytic properties of purified full-length human CBS and of two truncation mutants lacking the C-terminal domain or both the N-terminal heme-binding and the C-terminal regulatory regions. Specifically, we have determined the pH optima of the different CBS forms and their kinetic and spectral properties. The full-length and the C-terminally truncated enzyme had a broad pH 8.5 optimum while the pH optimum of the N- and C- terminally truncated enzyme was sharp and shifted to pH 9. Furthermore, we have shown unequivocally that CBS binds one mole of heme per subunit by determining both the heme and the iron content of the enzyme. The activity of the enzyme was unaffected by the redox status of the heme iron. Finally, we show that CBS is stimulated by S-adenosyl- l-methionine but not its analogs.
Collapse
Affiliation(s)
- Nina Frank
- Department of Pediatrics, University of Colorado School of Medicine, UCHSC, RC1 North, Rm. 4128, 12800, Mail Stop 8313, P.O. Box 6511, Aurora, CO 80045-0511, USA
| | | | | | | |
Collapse
|
20
|
Cherney MM, Pazicni S, Frank N, Marvin KA, Kraus JP, Burstyn JN. Ferrous human cystathionine beta-synthase loses activity during enzyme assay due to a ligand switch process. Biochemistry 2007; 46:13199-210. [PMID: 17956124 DOI: 10.1021/bi701159y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystathionine beta-synthase (CBS) is a pyridoxal-5'-phosphate-dependent enzyme that catalyzes the condensation of serine and homocysteine to form cystathionine. Mammalian CBS also contains a heme cofactor that has been proposed to allosterically regulate enzyme activity via the heme redox state, with FeII CBS displaying approximately half the activity of FeIII CBS in vitro. The results of this study show that human FeII CBS spontaneously loses enzyme activity over the course of a 20 min enzyme assay. Both the full-length 63-kDa and truncated 45-kDa form of CBS slowly and irreversibly lose activity upon reduction to the FeII form. Additionally, electronic absorption spectroscopy reveals that FeII CBS undergoes a heme ligand exchange to FeII CBS424 when the enzyme is incubated at 37 degrees C and pH 8.6. The addition of enzyme substrates or imidazole has a moderate effect on the rate of the ligand switch, but does not prevent conversion to the inactive species. Time-dependent spectroscopic data describing the conversion of FeII CBS to FeII CBS424 were fitted to a three-state kinetic model. The resultant rate constants were used to fit assay data and to estimate the activity of FeII CBS prior to the ligand switch. Based on this fit it appears that FeII CBS initially has the same enzyme activity as FeIII CBS, but FeII CBS loses activity as the ligand switch proceeds. The slow and irreversible loss of FeII CBS enzyme activity in vitro resembles protein denaturation, and suggests that a simple regulatory mechanism based on the heme redox state is unlikely.
Collapse
Affiliation(s)
- Melisa M Cherney
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
21
|
Fiorucci S, Distrutti E, Cirino G, Wallace JL. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 2006; 131:259-71. [PMID: 16831608 DOI: 10.1053/j.gastro.2006.02.033] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 02/15/2006] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide, like nitric oxide, was best known as a toxic pollutant before becoming recognized as a key regulator of several physiologic processes. In recent years, evidence has accumulated to suggest important roles for hydrogen sulfide as a mediator of several aspects of gastrointestinal and liver function. Moreover, alterations in hydrogen sulfide production could contribute to disorders of the gastrointestinal tract and liver. For example, nonsteroidal anti-inflammatory drugs can reduce production of hydrogen sulfide in the stomach, and this has been shown to contribute to the generation of mucosal injury. Hydrogen sulfide has also been shown to play a key role in modulation of visceral hyperalgesia. Inhibitors of hydrogen sulfide synthesis and drugs that can generate safe levels of hydrogen sulfide in vivo have been developed and are permitting interventional studies in experimental models and, in the near future, humans.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimenti di Medicina Clinica and Patologia, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
22
|
Pazicni S, Cherney MM, Lukat-Rodgers GS, Oliveriusová J, Rodgers KR, Kraus JP, Burstyn JN. The heme of cystathionine beta-synthase likely undergoes a thermally induced redox-mediated ligand switch. Biochemistry 2006; 44:16785-95. [PMID: 16363792 DOI: 10.1021/bi051305z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cystathionine beta-synthase (CBS) is a pyridoxal-5'-dependent enzyme that catalyzes the condensation of homocysteine and serine to form cystathionine. Human CBS is unique in that heme is also required for maximal activity, although the function of heme in this enzyme is presently unclear. The study presented herein reveals that the heme of human CBS undergoes a coordination change upon reduction at elevated temperatures. We have termed this new species "CBS424" and demonstrate that its formation is likely irreversible when pH 9 Fe(III) CBS is reduced at moderately elevated temperatures (approximately 40 degrees C and higher) or when pH 9 Fe(II) CBS is heated to similar temperatures. Spectroscopic techniques, including resonance Raman, electronic absorption, and variable temperature/variable field magnetic circular dichroism spectroscopy, provide strong evidence that CBS424 is coordinated by two neutral donor ligands. It appears likely that the native cysteine(thiolate) heme ligand is displaced by an endogenous neutral donor upon conversion to CBS424. This behavior is consistent with other six-coordinate, cysteine(thiolate)-ligated heme centers, which seek to avoid this coordination structure in the Fe(II) state. Functional assays show that CBS424 is inactive and suggest that the ligand switch is responsible for eliminating enzyme activity. When this investigation is taken together with other functional studies of CBS, it provides strong evidence that coordination of Cys52 to the heme iron is crucial for full activity in this enzyme. We hypothesize that cysteine displacement may serve as a mechanism for CBS inactivation and that second-sphere interactions of the Cys52 thiolate with surrounding residues are responsible for communicating the heme ligand displacement to the CBS active site.
Collapse
Affiliation(s)
- Samuel Pazicni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ignoul S, Eggermont J. CBS domains: structure, function, and pathology in human proteins. Am J Physiol Cell Physiol 2005; 289:C1369-78. [PMID: 16275737 DOI: 10.1152/ajpcell.00282.2005] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cystathionine-β-synthase (CBS) domain is an evolutionarily conserved protein domain that is present in the proteome of archaebacteria, prokaryotes, and eukaryotes. CBS domains usually come in tandem repeats and are found in cytosolic and membrane proteins performing different functions (metabolic enzymes, kinases, and channels). Crystallographic studies of bacterial CBS domains have shown that two CBS domains form an intramolecular dimeric structure (CBS pair). Several human hereditary diseases (homocystinuria, retinitis pigmentosa, hypertrophic cardiomyopathy, myotonia congenital, etc.) can be caused by mutations in CBS domains of, respectively, cystathionine-β-synthase, inosine 5′-monophosphate dehydrogenase, AMP kinase, and chloride channels. Despite their clinical relevance, it remains to be established what the precise function of CBS domains is and how they affect the structural and/or functional properties of an enzyme, kinase, or channel. Depending on the protein in which they occur, CBS domains have been proposed to affect multimerization and sorting of proteins, channel gating, and ligand binding. However, recent experiments revealing that CBS domains can bind adenosine-containing ligands such ATP, AMP, or S-adenosylmethionine have led to the hypothesis that CBS domains function as sensors of intracellular metabolites.
Collapse
Affiliation(s)
- Sofie Ignoul
- Laboratory of Physiology, K.U. Leuven, Campus Gasthuisberg O&N, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|
24
|
Pazicni S, Lukat-Rodgers GS, Oliveriusová J, Rees KA, Parks RB, Clark RW, Rodgers KR, Kraus JP, Burstyn JN. The Redox Behavior of the Heme in Cystathionine β-synthase Is Sensitive to pH. Biochemistry 2004; 43:14684-95. [PMID: 15544339 DOI: 10.1021/bi0488496] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human cystathionine beta-synthase (CBS) is a unique pyridoxal-5'-phosphate-dependent enzyme in which heme is also present as a cofactor. Because the function of heme in this enzyme has yet to be elucidated, the study presented herein investigated possible relationships between the chemistry of the heme and the strong pH dependence of CBS activity. This study revealed, via study of a truncation variant, that the catalytic core of the enzyme governs the pH dependence of the activity. The heme moiety was found to play no discernible role in regulating CBS enzyme activity by sensing changes in pH, because the coordination sphere of the heme is not altered by changes in pH over a range of pH 6-9. Instead, pH was found to control the equilibrium amount of ferric and ferrous heme present after reaction of CBS with one-electron reducing agents. A variety of spectroscopic techniques, including resonance Raman, magnetic circular dichroism, and electron paramagnetic resonance, demonstrated that at pH 9 Fe(II) CBS is dominant while at pH 6 Fe(III) CBS is favored. At low pH, Fe(II) CBS forms transiently but reoxidizes by an apparent proton-gated electron-transfer mechanism. Regulation of CBS activity by the iron redox state has been proposed as the role of the heme moiety in this enzyme. Given that the redox behavior of the CBS heme appears to be controlled by pH, interplay of pH and oxidation state effects must occur if CBS activity is redox regulated.
Collapse
Affiliation(s)
- Samuel Pazicni
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Miles EW, Kraus JP. Cystathionine beta-synthase: structure, function, regulation, and location of homocystinuria-causing mutations. J Biol Chem 2004; 279:29871-4. [PMID: 15087459 DOI: 10.1074/jbc.r400005200] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Edith Wilson Miles
- NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
26
|
Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 2004; 113:274-84. [PMID: 14722619 PMCID: PMC311435 DOI: 10.1172/jci19874] [Citation(s) in RCA: 577] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 11/04/2003] [Indexed: 11/17/2022] Open
Abstract
CBS domains are defined as sequence motifs that occur in several different proteins in all kingdoms of life. Although thought to be regulatory, their exact functions have been unknown. However, their importance was underlined by findings that mutations in conserved residues within them cause a variety of human hereditary diseases, including (with the gene mutated in parentheses): Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase); retinitis pigmentosa (IMP dehydrogenase-1); congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members); and homocystinuria (cystathionine beta-synthase). AMP-activated protein kinase is a sensor of cellular energy status that is activated by AMP and inhibited by ATP, but the location of the regulatory nucleotide-binding sites (which are prime targets for drugs to treat obesity and diabetes) was not characterized. We now show that tandem pairs of CBS domains from AMP-activated protein kinase, IMP dehydrogenase-2, the chloride channel CLC2, and cystathionine beta-synthase bind AMP, ATP, or S-adenosyl methionine,while mutations that cause hereditary diseases impair this binding. This shows that tandem pairs of CBS domains act, in most cases, as sensors of cellular energy status and, as such, represent a newly identified class of binding domain for adenosine derivatives.
Collapse
Affiliation(s)
- John W Scott
- Division of Molecular Physiology, Faculty of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Aitken SM, Kirsch JF. Role of Active-Site Residues Thr81, Ser82, Thr85, Gln157, and Tyr158 inYeast Cystathionine β-Synthase Catalysis and Reaction Specificity. Biochemistry 2004; 43:1963-71. [PMID: 14967036 DOI: 10.1021/bi035496m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cystathionine beta-synthase (CBS) effects the condensation of l-serine with l-homocysteine to form l-cystathionine. A series of active-site mutants, T81A, S82A, T85A, Q157A/E/H, and Y158F, was constructed to investigate effects on catalysis and reaction specificity in yeast CBS (yCBS). The effects of these mutations on the k(cat)/K(m)(L-Ser) for the beta-replacement reaction range from a reduction of only 3-fold for Y158F to below detectable levels for the Q157A and Q157E mutants. The order of importance of these residues to the beta-replacement reaction is Gln157 >or= Thr81 > Ser82 > Thr85 approximately Tyr158. All seven of the mutant enzymes catalyze a competing beta-elimination reaction, in which L-Ser is hydrolyzed to NH(3) and pyruvate. The ping-pong mechanism of CBS was thus expanded to include the latter reaction for these mutants. This activity is not detectable for wild-type yCBS, suggesting that the mutations result in a shift in the equilibrium between the open and the closed conformations of the active site of yCBS-substrate complexes. The Q157H and Y158F mutants additionally suffer suicide inhibition via a mechanism in which the released aminoacrylate intermediate covalently attacks the internal aldimine of the enzyme.
Collapse
Affiliation(s)
- Susan M Aitken
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, California 94720-3206, USA
| | | |
Collapse
|
28
|
Maclean KN, Kraus E, Kraus JP. The dominant role of Sp1 in regulating the cystathionine beta-synthase -1a and -1b promoters facilitates potential tissue-specific regulation by Kruppel-like factors. J Biol Chem 2003; 279:8558-66. [PMID: 14670973 DOI: 10.1074/jbc.m310211200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystathionine beta-synthase (CBS) catalyzes the condensation of serine with homocysteine to form cystathionine and occupies a crucial regulatory position between the methionine cycle and transsulfuration. The human cystathionine beta-synthase gene promoters -1a and -1b are expressed in a limited number of tissues and are coordinately regulated with proliferation through a redox-sensitive mechanism. Site-directed mutagenesis, DNase I footprinting and deletion analysis of 5276 bp of 5' proximal -1b flanking sequence revealed that this region does not confer tissue-specific expression and that 210 bp of proximal sequence is sufficient for maximal promoter activity. As little as 32 bp of the -1b proximal promoter region is capable of driving transcription in HepG2 cells, and this activity is entirely dependent upon the presence of a single overlapping Sp1/Egr1 binding site. Co-transfection studies in Drosophila SL2 cells indicated that both promoters are transactivated by Sp1 and Sp3 but only the -1b promoter is subject to a site-specific synergistic regulatory interaction between Sp1 and Sp3. Sp1-deficient fibroblasts expressing both Sp3 and NF-Y were negative for CBS activity. Transfection of these cells with a mammalian Sp1 expression construct induced high levels of CBS activity indicating that Sp1 has a critical and indispensable role in the regulation of cystathionine beta-synthase. Sp1 binding to both CBS promoters is sensitive to proliferation status and is negatively regulated by Kruppel-like factors in co-transfection experiments suggesting a possible mechanism for the tissue specific regulation of cystathionine beta-synthase.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
29
|
Abstract
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, used to methylate homocysteine in methionine biosynthesis. Methionine can be activated by ATP to give rise to the universal methyl donor, S-adenosylmethionine (AdoMet). Previously, a chimeric MTHFR (Chimera-1) comprised of the yeast Met13p N-terminal catalytic domain and the Arabidopsis thaliana MTHFR (AtMTHFR-1) C-terminal regulatory domain was constructed (Roje, S., Chan, S. Y., Kaplan, F., Raymond, R. K., Horne, D. W., Appling, D. R., and Hanson, A. D. (2002) J. Biol. Chem. 277, 4056-4061). Engineered yeast (SCY4) expressing Chimera-1 accumulated more than 100-fold more AdoMet and 7-fold more methionine than the wild type. Surprisingly, SCY4 showed no appreciable growth defect. The ability of yeast to hyperaccumulate AdoMet was investigated by studying the intracellular compartmentation of AdoMet as well as the mode of hyperaccumulation. Previous studies have established that AdoMet is distributed between the cytosol and the vacuole. A strain expressing Chimera-1 and lacking either vacuoles (vps33 mutant) or vacuolar polyphosphate (vtc1 mutant) was not viable when grown under conditions that favored AdoMet hyperaccumulation. The hyperaccumulation of AdoMet was a robust phenomenon when these cells were grown in medium containing glycine and formate but did not occur when these supplements were replaced by serine. The basis of the nutrient-dependent AdoMet hyperaccumulation effect is discussed in relation to homocysteine biosynthesis and sulfur metabolism.
Collapse
Affiliation(s)
- Sherwin Y Chan
- Department of Chemistry and Biochemistry, The Institute for Cellular and Molecular Biology and The Biochemical Institute, The University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
30
|
Higgins VJ, Beckhouse AG, Oliver AD, Rogers PJ, Dawes IW. Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl Environ Microbiol 2003; 69:4777-87. [PMID: 12902271 PMCID: PMC169144 DOI: 10.1128/aem.69.8.4777-4787.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide expression analysis of an industrial strain of Saccharomyces cerevisiae during the initial stages of an industrial lager fermentation identified a strong response from genes involved in the biosynthesis of ergosterol and oxidative stress protection. The induction of the ERG genes was confirmed by Northern analysis and was found to be complemented by a rapid accumulation of ergosterol over the initial 6-h fermentation period. From a test of the metabolic activity of deletion mutants in the ergosterol biosynthesis pathway, it was found that ergosterol is an important factor in restoring the fermentative capacity of the cell after storage. Additionally, similar ERG10 and TRR1 gene expression patterns over the initial 24-h fermentation period highlighted a possible interaction between ergosterol biosynthesis and the oxidative stress response. Further analysis showed that erg mutants producing altered sterols were highly sensitive to oxidative stress-generating compounds. Here we show that genome-wide expression analysis can be used in the commercial environment and was successful in identifying environmental conditions that are important in industrial yeast fermentation.
Collapse
Affiliation(s)
- Vincent J Higgins
- Clive and Vera Ramaciotti Centre for Gene Function Analysis. School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | | | |
Collapse
|
31
|
Aitken SM, Kirsch JF. Kinetics of the yeast cystathionine beta-synthase forward and reverse reactions: continuous assays and the equilibrium constant for the reaction. Biochemistry 2003; 42:571-8. [PMID: 12525186 DOI: 10.1021/bi026681n] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystathionine beta-synthase (CBS) is a pyridoxal-phosphate-dependent enzyme that catalyzes a beta-replacement reaction in which the hydroxyl group of serine (L-Ser) is displaced by the thiol of homocysteine (L-Hcys) to form cystathionine (L-Cth) in the first step of the trans-sulfuration pathway. A new continuous assay for the forward reaction, employing cystathionine beta-lyase and L-lactate dehydrogenase as coupling enzymes, is described. It alleviates product inhibition by L-Cth and revealed that the values for (1.2 mM) and for substrate inhibition by L-Hcys ( = 2.0 mM) are lower than those previously reported. A continuous, 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB)-based assay for the CBS-catalyzed hydrolysis of L-Cth to L-Ser and L-Hcys provides a tool for investigation of the reverse reaction (k(catR) = 0.56 s(-)(1), = 0.083 mM). The (catR)/ versus pH profile of ytCBS is bell-shaped with a pH optimum of 8.3, and the pK(a) values for the acidic and basic limbs are 8.05 and 8.63, respectively. The latter is assigned to the alpha-amino group of L-Cth (pK(a) = 8.54). The internal aldimine of ytCBS remains protonated at pH < 11; therefore, the acidic pK(a) is assigned to an enzyme functionality that is not associated with the internal aldimine. K(eq) was determined directly and from the kinetic parameters, and the values are 0.61 and 1.2 microM, respectively.
Collapse
Affiliation(s)
- Susan M Aitken
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, California 94720-3206, USA
| | | |
Collapse
|
32
|
Oliveriusová J, Kery V, Maclean KN, Kraus JP. Deletion mutagenesis of human cystathionine beta-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation. J Biol Chem 2002; 277:48386-94. [PMID: 12379655 DOI: 10.1074/jbc.m207087200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystathionine beta-synthase is a tetrameric hemeprotein that catalyzes the pyridoxal 5'-phosphate-dependent condensation of serine and homocysteine to cystathionine. We have used deletion mutagenesis of both the N and C termini to investigate the functional organization of the catalytic and regulatory regions of this enzyme. Western blot analysis of these mutants expressed in Escherichia coli indicated that residues 497-543 are involved in tetramer formation. Deletion of the 70 N-terminal residues resulted in a heme-free protein retaining 20% of wild type activity. Additional deletion of 151 C-terminal residues from this mutant resulted in an inactive enzyme. Expression of this double-deletion mutant as a glutathione S-transferase fusion protein generated catalytically active protein (15% of wild type activity) that was unaffected by subsequent removal of the fusion partner. The function of the N-terminal region appears to be primarily steric in nature and involved in the correct folding of the enzyme. The C-terminal region of human cystathionine beta-synthase contains two hydrophobic motifs designated "CBS domains." Partial deletion of the most C-terminal of these domains decreased activity and caused enzyme aggregation and instability. Removal of both of these domains resulted in stable constitutively activated enzyme. Deletion of as few as 8 C-terminal residues increased enzyme activity and abolished any further activation by S-adenosylmethionine indicating that the autoinhibitory role of the C-terminal region is not exclusively a function of the CBS domains.
Collapse
Affiliation(s)
- Jana Oliveriusová
- Department of Pediatrics, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | |
Collapse
|
33
|
Maclean KN, Janosík M, Kraus E, Kozich V, Allen RH, Raab BK, Kraus JP. Cystathionine beta-synthase is coordinately regulated with proliferation through a redox-sensitive mechanism in cultured human cells and Saccharomyces cerevisiae. J Cell Physiol 2002; 192:81-92. [PMID: 12115739 DOI: 10.1002/jcp.10118] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystathionine beta-synthase (CBS) catalyzes the condensation of serine with homocysteine to form cystathionine and occupies a crucial regulatory position between the methionine cycle and the biosynthesis of cysteine by transsulfuration. Analysis of CBS activity under a variety of growth conditions indicated that CBS is coordinately regulated with proliferation in both yeast and human cells. In batch cultures of Saccharomyces cerevisiae, maximal CBS activities were observed in the exponential phase of cells grown on glucose, while growth-arrested cultures or those growing non-fermentatively on ethanol or glycerol had approximately 3-fold less activity. CBS activity assays and Western blotting indicated that growth-specific regulation of CBS is evolutionarily conserved in a range of human cell lines. CBS activity was found to be maximal during proliferation and was reduced two- to five-fold when cells became quiescent at confluence. In cultured HepG2 cells, the human CBS gene is induced by serum and basic fibroblast growth factor and is downregulated, but not abolished, by contact inhibition, serum-starvation, nutrient depletion, or the induction of differentiation. Consequently, for certain cell types, CBS may represent a novel marker of both differentiation and proliferation. The intracellular level of the CBS regulator compound, S-adenosylmethionine, was found to reflect the proliferation status of both yeast and human cells, and as such, constitutes an additional mechanism for proliferation-specific regulation of human CBS. Our data indicates that screening compounds for the ability to affect transsulfuration in cultured cell models must take proliferation status into account to avoid masking regulatory interactions that may be of significance in vivo.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Maclean KN, Gaustadnes M, Oliveriusová J, Janosík M, Kraus E, Kozich V, Kery V, Skovby F, Rüdiger N, Ingerslev J, Stabler SP, Allen RH, Kraus JP. High homocysteine and thrombosis without connective tissue disorders are associated with a novel class of cystathionine beta-synthase (CBS) mutations. Hum Mutat 2002; 19:641-55. [PMID: 12007221 DOI: 10.1002/humu.10089] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystathionine beta-synthase (CBS) is a crucial regulator of plasma levels of the thrombogenic amino acid homocysteine (Hcy). Homocystinuria due to CBS deficiency confers a dramatically increased risk of thrombosis. Early diagnosis usually occurs after the observation of ectopia lentis, mental retardation, or characteristic skeletal abnormalities. Homocystinurics with this phenotype typically carry mutations in the catalytic region of the protein that abolish CBS activity. We describe a novel class of missense mutations consisting of I435T, P422L, and S466L that are located in the non-catalytic C-terminal region of CBS that yield enzymes that are catalytically active but deficient in their response to S-adenosylmethionine (AdoMet). The P422L and S466L mutations were found in patients suffering premature thrombosis and homocystinuric levels of Hcy but lacking any of the connective tissue disorders typical of homocystinuria due to CBS deficiency. The P422L and S466L mutants demonstrated a level of CBS activity comparable to that of the AdoMet stimulated wild-type CBS but could not be further induced by the addition of AdoMet. In terms of temperature stability, oligomeric organization, and heme saturation the I435T, P422L, and S466L mutants are indistinguishable from wild-type CBS. Our findings illustrate the importance of AdoMet for the regulation of Hcy metabolism and are consistent with the possibility that the characteristic connective tissue disturbances observed in homocystinuria due to CBS deficiency may not be due to elevated Hcy.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lo SCC, Hamer L, Hamer JE. Molecular characterization of a cystathionine beta-synthase gene, CBS1, in Magnaporthe grisea. EUKARYOTIC CELL 2002; 1:311-4. [PMID: 12455965 PMCID: PMC118034 DOI: 10.1128/ec.1.2.311-314.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CBS1 from Magnaporthe grisea is a structural and functional homolog of the cystathionine beta-synthase (CBS) gene from Saccharomyces cerevisiae. Our studies indicated that M. grisea can utilize homocysteine and methionine through a CBS-independent pathway. The results also revealed responses of M. grisea to homocysteine that are reminiscent of human homocystinuria.
Collapse
Affiliation(s)
- Sze Chung Clive Lo
- Microbial Research, Paradigm Genetics, Inc., Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
36
|
Christopher SA, Melnyk S, James SJ, Kruger WD. S-adenosylhomocysteine, but not homocysteine, is toxic to yeast lacking cystathionine beta-synthase. Mol Genet Metab 2002; 75:335-43. [PMID: 12051965 DOI: 10.1016/s1096-7192(02)00003-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Elevated plasma homocysteine is associated with a variety of diseases in humans including coronary heart disease, stroke, peripheral vascular disease, and birth defects. However, the mechanism by which plasma homocysteine affects cells is unknown. We have examined the growth of isogenic wild-type and cystathionine beta-synthase (CBS) deficient yeast in response to homocysteine and its immediate metabolic precursor, S-adenosylhomocysteine (SAH). CBS deficient yeast export significantly more homocysteine into the media than wild-type yeast and have elevated internal pools of homocysteine and SAH. We found that 5 mM homocysteine added to the media had very little effect on the growth of wild-type or CBS deficient yeast, although intracellular homocysteine concentrations increased five- to tenfold. In contrast, as little as 25 microM S-adenosylhomocysteine inhibited the growth of CBS deficient yeast, but had no effect on wild-type yeast. Measurements of the intracellular S-adenosylmethionine (SAM) and SAH indicate that CBS deficient yeast contain reduced SAM/SAH ratios relative to wild-type, and this ratio is further reduced by adding SAH to the media. Growth inhibition by SAH in CBS deficient yeast can be totally reversed by addition of SAM to the media, indicating that the ratio and not absolute level is critical for cell growth. These results suggest that CBS plays a key role in the regulation of the SAM/SAH ratio inside cells and that excessive perturbations of this ratio can inhibit growth. We hypothesize that elevated extracellular homocysteine present in humans may reflect an altered intracellular SAM/SAH ratio and that this may be related to disease pathogenesis.
Collapse
Affiliation(s)
- Scott A Christopher
- Division of Population Science, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
37
|
Jhee KH, Niks D, McPhie P, Dunn MF, Miles EW. Yeast cystathionine beta-synthase reacts with L-allothreonine, a non-natural substrate, and L-homocysteine to form a new amino acid, 3-methyl-L-cystathionine. Biochemistry 2002; 41:1828-35. [PMID: 11827527 DOI: 10.1021/bi011756t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our studies of the reaction mechanism of cystathionine beta-synthase from yeast (Saccharomyces cerevisiae) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme. The enzyme catalyzes the reaction of L-serine with L-homocysteine to form L-cystathionine through a series of pyridoxal phosphate intermediates. In this work, we explore the substrate specificity of the enzyme by use of substrate analogues combined with kinetic measurements under pre-steady-state conditions and with circular dichroism and fluorescence spectroscopy under steady-state conditions. Our results show that L-allothreonine, but not L-threonine, serves as an effective substrate. L-Allothreonine reacts with the pyridoxal phosphate cofactor to form a stable 3-methyl aminoacrylate intermediate that absorbs maximally at 446 nm. The rapid-scanning stopped-flow results show that the binding of L-allothreonine as the external aldimine is faster than formation of the 3-methyl aminoacrylate intermediate. The 3-methyl aminoacrylate intermediate reacts with L-homocysteine to form a new amino acid, 3-methyl-L-cystathionine, which was characterized by nuclear magnetic resonance spectroscopy. This new amino acid may be a useful analogue of L-cystathionine.
Collapse
Affiliation(s)
- Kwang-Hwan Jhee
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | |
Collapse
|
38
|
Janosík M, Kery V, Gaustadnes M, Maclean KN, Kraus JP. Regulation of human cystathionine beta-synthase by S-adenosyl-L-methionine: evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region. Biochemistry 2001; 40:10625-33. [PMID: 11524006 DOI: 10.1021/bi010711p] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cystathionine beta-synthase (CBS), condensing homocysteine and serine, represents a key regulatory point in the biosynthesis of cysteine via the transsulfuration pathway. Inherited deficiency of CBS causes homocystinuria. CBS is activated by S-adenosyl-L-methionine (AdoMet) by inducing a conformational change involving a noncatalytic C-terminal region spanning residues 414-551. We report the purification of two patient-derived C-terminal mutant forms of CBS, S466L and I435T, that provide new insight into the mechanism of CBS regulation and indicate a regulatory function for the "CBS domain". Both of these point mutations confer catalytically active proteins. The I435T protein is AdoMet inducible but is 10-fold less responsive than wild-type (WT) CBS to physiologically relevant concentrations of this compound. The S466L form does not respond to AdoMet but is constitutively activated to a level intermediate between those of WT CBS in the presence and absence of AdoMet. Both mutant proteins are able to bind AdoMet, indicating that their impairment is related to their ability to assume the fully activated conformation that AdoMet induces in WT CBS. We found that I435T and WT CBS can be activated by partial thermal denaturation but that the AdoMet-stimulated WT, S466L, and a truncated form of CBS lacking the C-terminal region cannot be further activated by this treatment. Tryptophan and PLP fluorescence data for these different forms of CBS indicate that activation by AdoMet, limited proteolysis, and thermal denaturation share a common mechanism involving the displacement of an autoinhibitory domain located in the C-terminal region of the protein.
Collapse
Affiliation(s)
- M Janosík
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
39
|
Meier M, Janosik M, Kery V, Kraus JP, Burkhard P. Structure of human cystathionine beta-synthase: a unique pyridoxal 5'-phosphate-dependent heme protein. EMBO J 2001; 20:3910-6. [PMID: 11483494 PMCID: PMC149156 DOI: 10.1093/emboj/20.15.3910] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2001] [Revised: 06/08/2001] [Accepted: 06/08/2001] [Indexed: 11/14/2022] Open
Abstract
Cystathionine beta-synthase (CBS) is a unique heme- containing enzyme that catalyzes a pyridoxal 5'-phosphate (PLP)-dependent condensation of serine and homocysteine to give cystathionine. Deficiency of CBS leads to homocystinuria, an inherited disease of sulfur metabolism characterized by increased levels of the toxic metabolite homocysteine. Here we present the X-ray crystal structure of a truncated form of the enzyme. CBS shares the same fold with O-acetylserine sulfhydrylase but it contains an additional N-terminal heme binding site. This heme binding motif together with a spatially adjacent oxidoreductase active site motif could explain the regulation of its enzyme activity by redox changes.
Collapse
Affiliation(s)
- M Meier
- M.E.Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
40
|
|