1
|
Elena-Real CA, Urbanek A, Sagar A, Mohanty P, Levy G, Morató A, Fournet A, Allemand F, Sibille N, Mittal J, Sinnaeve D, Bernadó P. Site-Specific Incorporation of Fluorinated Prolines into Proteins and Their Impact on Neighbouring Residues. Chemistry 2025; 31:e202403718. [PMID: 39661394 PMCID: PMC11772113 DOI: 10.1002/chem.202403718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
The incorporation of fluorinated amino acids into proteins provides new opportunities to study biomolecular structure-function relationships in an elegant manner. The available strategies to incorporate the majority of fluorinated amino acids are not site-specific or imply important structural modifications. Here, we present a chemical biology approach for the site-specific incorporation of three commercially available Cγ-modified fluoroprolines that has been validated using a non-pathogenic version of huntingtin exon-1 (HttExon-1). 19F, 1H and 15N NMR chemical shifts measured for multiple variants of HttExon-1 indicated that the trans/cis ratio was strongly dependent on the fluoroproline variant and the sequence context. By isotopically labelling the rest of the protein, we have shown that the extent of spectroscopic perturbations to the neighbouring residues depends on the number of fluorine atoms and the stereochemistry at Cγ, as well as the isomeric form of the fluoroproline. We have rationalized these observations by means of extensive molecular dynamics simulations, indicating that the observed atomic chemical shift perturbations correlate with the distance to fluorine atoms and that the effect remains very local. These results validate the site-specific incorporation of fluoroprolines as an excellent strategy to monitor intra- and intermolecular interactions in disordered proline-rich proteins.
Collapse
Affiliation(s)
- Carlos A. Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Annika Urbanek
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Amin Sagar
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M, College Station, TX 77843
| | - Geraldine Levy
- Univ. Lille, INSERM, Institut Pasteur de Lille, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases. 59000 Lille, France
- CNRS EMR9002 – Integrative Structural Biology, 59000 Lille, France
| | - Anna Morató
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Aurélie Fournet
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M, College Station, TX 77843
- Department of Chemistry, Texas A&M University, College Station, TX 77843
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843
| | - Davy Sinnaeve
- Univ. Lille, INSERM, Institut Pasteur de Lille, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases. 59000 Lille, France
- CNRS EMR9002 – Integrative Structural Biology, 59000 Lille, France
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| |
Collapse
|
2
|
Das G, Harikrishna S, Gore KR. Investigating the Effect of Chemical Modifications on the Ribose Sugar Conformation, Watson-Crick Base Pairing, and Intrastrand Stacking Interactions: A Theoretical Approach. J Phys Chem B 2024; 128:8313-8331. [PMID: 39172066 DOI: 10.1021/acs.jpcb.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Over the last few decades, chemically modified sugars have been incorporated into nucleic acid-based therapeutics to improve their pharmacological potential. Chemical modification can influence the sugar conformation, Watson-Crick hydrogen (W-C) bonding, and nucleobase stacking interactions, which play major roles in the structural integrity and dynamic properties of nucleic acid duplexes. In this study, we categorized 33 uridine (U*) and cytidine (C*) sugar modifications and calculated their sugar conformational parameters. We also calculated the Watson-Crick hydrogen bond energies of the modified RNA-type base pairs (U*:A and C*:G) using DFT and sSAPT0 methods. The W-C base pairing energy calculations suggested that the South-type modified sugar strengthens the C*:G base pair and weakens the U*:A base pair compared to the unmodified one. In contrast, the North-type sugar modifications form weaker C*:G base pair and marginally stronger U*:A base pair compared to the South-type modified sugars. Moreover, intrastrand base stacking energies were calculated for 15 modifications incorporated at the fourth position in 7-mer non-self-complementary RNA duplexes [(GCAU*GAC)2 and (GCAC*GAC)2], utilizing molecular dynamics simulation and quantum mechanical (DFT and sSAPT0) methods. The sugar modifications were found to have minimal effect on the intrastrand base-stacking interactions. However, the glycol nucleic acid modification disturbs the intrastrand base-stacking significantly, corroborating the experimental data.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Das G, Harikrishna S, Gore KR. Influence of Sugar Modifications on the Nucleoside Conformation and Oligonucleotide Stability: A Critical Review. CHEM REC 2022; 22:e202200174. [PMID: 36048010 DOI: 10.1002/tcr.202200174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Indexed: 12/15/2022]
Abstract
Ribofuranose sugar conformation plays an important role in the structure and dynamics of functional nucleic acids such as siRNAs, AONs, aptamers, miRNAs, etc. To improve their therapeutic potential, several chemical modifications have been introduced into the sugar moiety over the years. The stability of the oligonucleotide duplexes as well as the formation of stable and functional protein-oligonucleotide complexes are dictated by the conformation and dynamics of the sugar moiety. In this review, we systematically categorise various ribofuranose sugar modifications employed in DNAs and RNAs so far. We discuss different stereoelectronic effects imparted by different substituents on the sugar ring and how these effects control sugar puckering. Using this data, it would be possible to predict the precise use of chemical modifications and design novel sugar-modified nucleosides for therapeutic oligonucleotides that can improve their physicochemical properties.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
4
|
Cao S, Rogers J, Yeo J, Anderson-Steele B, Ashby J, David SS. 2'-Fluorinated Hydantoins as Chemical Biology Tools for Base Excision Repair Glycosylases. ACS Chem Biol 2020; 15:915-924. [PMID: 32069022 DOI: 10.1021/acschembio.9b00923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The guanine oxidation products, 5-guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), are mutagenic and toxic base lesions that are removed by Fpg, Nei, and the Nei-like (NEIL) glycosylases as the first step in base excision repair (BER). The hydantoins are excellent substrates for the NEIL glycosylases in a variety of DNA contexts beyond canonical duplex DNA, implicating the potential impact of repair activity on a multitude of cellular processes. In order to prepare stable derivatives as chemical biology tools, oligonucleotides containing fluorine at the 2'-position of the sugar of 8-oxo-7,8-dihydro-2'-deoxyguanosine2'-F-OG) were synthesized in ribo and arabino configuration. Selective oxidation of 2'-F-OG within a DNA oligonucleotide provided the corresponding 2'-F-Gh or 2'-F-Sp containing DNA. The 2'-F-hydantoins in duplex DNA were found to be highly resistant to the glycosylase activity of Fpg and NEIL1 compared to the unmodified lesion substrates. Surprisingly, however, some glycosylase-mediated base removal from both the 2'-F-ribo- and 2'-F-arabinohydantoin duplex DNA was observed. Notably, the associated β-lyase strand scission reaction of the 2'-F-arabinohydantoins was inhibited such that the glycosylases were "stalled" at the Schiff-base intermediate. Fpg and NEIL1 showed high affinity for the 2'-F-Gh duplexes in both ribo and arabino configurations. However, binding affinity assessed using catalytically inactive variants of Fpg and NEIL1 indicated higher affinity for the 2'-F-riboGh-containing duplexes. The distinct features of glycosylase processing of 2'-F-ribohydantoins and 2'-F-arabinohydantoins illustrate their utility to reveal structural insight into damage recognition and excision by NEIL and related glycosylases and provide opportunities for delineating the impact of lesion formation and repair in cells.
Collapse
Affiliation(s)
- Sheng Cao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - JohnPatrick Rogers
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jongchan Yeo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Brittany Anderson-Steele
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jonathan Ashby
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sheila S. David
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
5
|
Evich M, Spring-Connell AM, Germann MW. Impact of modified ribose sugars on nucleic acid conformation and function. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractThe modification of the ribofuranose in nucleic acids is a widespread method of manipulating the activity of nucleic acids. These alterations, however, impact the local conformation and chemical reactivity of the sugar. Changes in the conformation and dynamics of the sugar moiety alter the local and potentially global structure and plasticity of nucleic acids, which in turn contributes to recognition, binding of ligands and enzymatic activity of proteins. This review article introduces the conformational properties of the (deoxy)ribofuranose ring and then explores sugar modifications and how they impact local and global structure and dynamics in nucleic acids.
Collapse
Affiliation(s)
- Marina Evich
- Georgia State University, Department of Chemistry, 50 Decatur St. SE, Atlanta, GA 30303, USA
| | | | - Markus W. Germann
- Georgia State University, Department of Chemistry, 50 Decatur St. SE, Atlanta, GA 30303, USA
- Georgia State University, Department of Biology, P.O. 4010, Atlanta, GA 30303, USA
- Georgia State University, Neuroscience Institute, P.O. 5030, Atlanta, GA 30303, USA
| |
Collapse
|
6
|
Abstract
Fluorination reactions of medicinal and biologically-active compounds will be discussed. Late stage fluorination strategies of medicinal targets have recently attracted considerable attention on account of the influence that a fluorine atom can impart to targets of medicinal importance, such as modulation of lipophilicity, electronegativity, basicity and bioavailability, the latter as a consequence of membrane permeability. Therefore, the recourse to late-stage fluorine substitution on compounds with already known and relevant biological activity can provide the pharmaceutical industry with new leads with improved medicinal properties. The fluorination strategies will take into account different fluorinating reagents, either of nucleophilic or electrophilic, and of radical nature. Diverse families of organic compounds such as (hetero)aromatic rings, and aliphatic substrates (sp(3), sp(2), and sp carbon atoms) will be studied in late-stage fluorination reaction strategies.
Collapse
Affiliation(s)
- Damian E Yerien
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Junín 954 CP, 1113-Buenos Aires, Argentina.
| | | | | |
Collapse
|
7
|
Poznanski J, Bretner M, Kulikowski T, Balzarini J, Van Aerschot A, De Clercq E. Synthesis, Solution Conformation and Anti-HIV Activity of Novel 3-Substituted-2′,3′-Dideoxy-5-Hydroxymethyl-Uridines and Their 4,5-Substituted Analogues. ACTA ACUST UNITED AC 2016; 14:127-38. [PMID: 14521329 DOI: 10.1177/095632020301400302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To decrease the toxicity of potent anti-HIV nucleosides 3-azido-2′,3′-dideoxythymidine (AZT) and 2,3′-dideoxy-3′-fluorothymidine (3-FddThd, FLT), their new analogues, 3-azido-2′,3′-dideoxy-5-hydroxymethyluridine (3-Az5HmddUrd) and 2,3′-dideoxy-3′-fluoro-5-hydroxymethyluridine (3′-F5HmddUrd), were synthesized. The reaction of 3′-azido-2′,3′-dideoxyuridine (3′-AzddUrd) and 2,3′-dideoxy-3′-fluorouridine (3′-FddUrd) with formaldehyde, under strongly alkaline conditions and at elevated temperature, proceeded after 4 days to completion to afford the corresponding 5-hydroxymethyl derivatives 3′-Az5HmddUrd and 3′-F5HmddUrd in good yield. These compounds were also prepared by oxidation of AZT and FLT with the use of K2S2O8. 1H NMR analyses were subjected to the series of 3′,4 and 5-substituted pyrimidine 2′-deoxy- and 2′,3′-dideoxynucleosides involving 3′-Az5HmddUrd and 3′-F5HmddUrd. Analysis of the sugar furanose ring puckering demonstrated that all 3′-fluorine derivatives exhibited strong domination of the S conformation (∼100%) while 3-substitution by electron-donating groups, such as NH2, increased population of the N conformation. Experimentally observed substituent effect on the furanose ring puckering equilibrium was reconstructed in the 100 ps molecular dynamic trajectories obtained for AZT, FLT, dThd, 2′,3′-ddThd and 3′-amino-2′,3′-ddThd. It may be concluded that anti-HIV activity is linked to a direct interaction of the 3′-sub-stituent with reverse transcriptase (RT) binding site. Anti-HIV activities of 3′-Az5HmddUrd and 3′-F5HmddUrd are lower than activity of AZT and FLT; however, 3′-Az5HmddUrd and 3′-F5HmddUrd are less toxic than AZT and FLT.
Collapse
Affiliation(s)
- Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, (18)F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography.
Collapse
Affiliation(s)
- Eric P Gillis
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kyle J Eastman
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Matthew D Hill
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - David J Donnelly
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
9
|
Scott LG, Hennig M. ¹⁹F-Site-Specific-Labeled Nucleotides for Nucleic Acid Structural Analysis by NMR. Methods Enzymol 2015; 566:59-87. [PMID: 26791976 DOI: 10.1016/bs.mie.2015.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Naturally occurring RNA lacks fluorine-19 ((19)F), thus, their specifically fluorinated counterparts are particularly well suited to noninvasively monitoring the dynamic conformational properties and ligand-binding interactions of the RNA. For nuclear magnetic resonance (NMR) spectroscopy, (19)F-NMR of fluorine-substituted RNA provides an attractive, site-specific probe for structure determination in solution. Advantages of (19)F include high NMR sensitivity (83% of (1)H), high natural abundance (100%), and the extreme sensitivity of (19)F to the chemical environment leading to a large range of chemical shifts. The preparation of base-substituted 2-fluoropurine and 5-fluoropyrimidine 5'-triphosphates (2F-ATP/5F-CTP/5F-UTP) can be carried out using efficient enzymatic synthesis methods. Both pyrimidine analogs, 5-fluorouridine and 5-fluorocytidine, as well as, 2-fluoroadenosine are readily incorporated into RNA transcribed in vitro using T7 RNA polymerase.
Collapse
Affiliation(s)
| | - Mirko Hennig
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.
| |
Collapse
|
10
|
Dawadi S, Viswanathan K, Boshoff HI, Barry CE, Aldrich CC. Investigation and conformational analysis of fluorinated nucleoside antibiotics targeting siderophore biosynthesis. J Org Chem 2015; 80:4835-50. [PMID: 25916415 PMCID: PMC4674167 DOI: 10.1021/acs.joc.5b00550] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance represents one of the greatest threats to public health. The adenylation inhibitor 5'-O-[N-(salicyl)sulfamoyl]adenosine (SAL-AMS) is the archetype for a new class of nucleoside antibiotics that target iron acquisition in pathogenic microorganisms and is especially effective against Mycobacterium tuberculosis, the causative agent of tuberculosis. Strategic incorporation of fluorine at the 2' and 3' positions of the nucleoside was performed by direct fluorination to enhance activity and improve drug disposition properties. The resulting SAL-AMS analogues were comprehensively assessed for biochemical potency, whole-cell antitubercular activity, and in vivo pharmacokinetic parameters. Conformational analysis suggested a strong preference of fluorinated sugar rings for either a 2'-endo, 3'-exo (South), or a 3'-endo,2'-exo (North) conformation. The structure-activity relationships revealed a strong conformational bias for the C3'-endo conformation to maintain potent biochemical and whole-cell activity, whereas improved pharmacokinetic properties were associated with the C2'-endo conformation.
Collapse
Affiliation(s)
- Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kishore Viswanathan
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
11
|
Iannazzo L, Laisné G, Fonvielle M, Braud E, Herbeuval JP, Arthur M, Etheve-Quelquejeu M. Synthesis of 3′-Fluoro-tRNA Analogues for Exploring Non-ribosomal Peptide Synthesis in Bacteria. Chembiochem 2015; 16:477-86. [DOI: 10.1002/cbic.201402523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 11/08/2022]
|
12
|
Khalil A, Mathé C, Périgaud C. Synthesis of 2′,3′-Dideoxy-2′-fluoro-3′-(hydroxyimino)-, -3′-(methoxyimino)- and -3′-(hydroxyamino)pyrimidine Nucleosides. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Lewis M, Meza-Avina ME, Wei L, Crandall IE, Bello AM, Poduch E, Liu Y, Paige CJ, Kain KC, Pai EF, Kotra LP. Novel interactions of fluorinated nucleotide derivatives targeting orotidine 5'-monophosphate decarboxylase. J Med Chem 2011; 54:2891-901. [PMID: 21417464 DOI: 10.1021/jm101642g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fluorinated nucleosides and nucleotides are of considerable interest to medicinal chemists because of their antiviral, anticancer, and other biological activities. However, their direct interactions at target binding sites are not well understood. A new class of 2'-deoxy-2'-fluoro-C6-substituted uridine and UMP derivatives were synthesized and evaluated as inhibitors of orotidine 5'-monophosphate decarboxylase (ODCase or OMPDCase). These compounds were synthesized from the key intermediate, fully protected 2'-deoxy-2'-fluorouridine. Among the synthesized compounds, 2'-deoxy-2'-fluoro-6-iodo-UMP covalently inhibited human ODCase with a second-order rate constant of 0.62 ± 0.02 M(-1) s(-1). Interestingly, the 6-cyano-2'-fluoro derivative covalently interacted with ODCase defying the conventional thinking, where its ribosyl derivative undergoes transformation into BMP by ODCase. This confirms that the 2'-fluoro moiety influences the chemistry at the C6 position of the nucleotides and thus interactions in the active site of ODCase. Molecular interactions of the 2'-fluorinated nucleotides are compared to those with the 3'-fluorinated nucleotides bound to the corresponding target enzyme, and the carbohydrate moieties were shown to bind in different conformations.
Collapse
Affiliation(s)
- Melissa Lewis
- Center for Molecular Design and Preformulations and Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Khalil A, Mathé C, Périgaud C. Rapid synthesis of 2′,3′-dideoxy-3′β-fluoro-pyrimidine nucleosides from 2′-deoxypyrimidine nucleosides. Bioorg Chem 2010; 38:271-4. [DOI: 10.1016/j.bioorg.2010.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
|
15
|
Sharma NK, Ganesh KN. Base dependent pyrrolidine ring pucker in aep-PNA monomers: NMR and PSEUROT analysis. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.09.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Lee HY, Lee KH, Hah JH, Moon DK, Lee CK. Design, Synthesis and Antiviral Activity of 5-Hydroxymethyl-3-phosphonyl-4,5-dihydrofuran Analogs of Nucleotides. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.8.2139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Zheng F, Fu L, Wang R, Qing FL. Synthesis and conformational analysis ofd-2′-deoxy-2′,2′-difluoro-4′-dihydro-4′-thionucleosides. Org Biomol Chem 2010; 8:163-70. [DOI: 10.1039/b914679b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Feng Zheng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China
| | | | | | | |
Collapse
|
18
|
Zenkina OV, Konstantinovski LE, Shimon LJW, Diskin-Posner Y, Iron MA, van der Boom ME. Long-range through-bond heteronuclear communication in platinum complexes. Inorg Chem 2009; 48:4021-30. [PMID: 19338319 DOI: 10.1021/ic801940h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Four analogous platinum stilbene- and stilbazole-based complexes exhibit unusual long-range heteronuclear spin-spin coupling in solution. Single crystal analysis and NMR experiments show that the (19)F, (31)P, and (195)Pt nuclei communicate over large distances (0.9-1.3 nm) through bond rather than through space. Spin-spin couplings between (195)Pt and (19)F over seven bonds and between (31)P and (19)F over eight bonds are observed with (7)J(PtF) = 2.9 Hz and (8)J(PF) = 11.8 Hz. Remarkably, a very large spin coupling between (195)Pt and (19)F over six bonds ((6)J(PtF) = 40.1 Hz) is also observed in a structurally related pyridinium complex. Experimental and gNMR (version 5.0) simulated (19)F{(1)H}, (31)P{(1)H}, and (195)Pt{(1)H} spectra of the complexes reveal a three-spin AMY system (A = (31)P, M = (31)P, Y = (19)F) or a five-spin AMY(3) flanked by a four-spin AMXY or a six-spin AMXY(3) system (X = (195)Pt), respectively. Density functional theory calculations at the PBE0/SDD level of theory show a pi-conjugated metal-ligand network, which may contribute to the experimentally observed spin-spin interactions.
Collapse
Affiliation(s)
- Olena V Zenkina
- Department of Organic Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Pallan PS, Prakash TP, Li F, Eoff RL, Manoharan M, Egli M. A conformational transition in the structure of a 2'-thiomethyl-modified DNA visualized at high resolution. Chem Commun (Camb) 2009:2017-9. [PMID: 19333476 PMCID: PMC2909737 DOI: 10.1039/b822781k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structures of A-form and B-form DNA duplexes containing 2'-S-methyl-uridines reveal that the modified residues adopt a RNA-like C3'-endo pucker, illustrating that the replacement of electronegative oxygen at the 2'-carbon of RNA by sulfur does not appear to fundamentally alter the conformational preference of the sugar in the oligonucleotide context and sterics trump stereoelectronics.
Collapse
Affiliation(s)
- Pradeep S. Pallan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, Fax: (+) 1-615-322-7122
| | - Thazha P. Prakash
- Department of Medicinal Chemistry, ISIS Pharmaceuticals Inc., Carlsbad, California 92008
| | - Feng Li
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, Fax: (+) 1-615-322-7122
| | - Robert L. Eoff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, Fax: (+) 1-615-322-7122
| | - Muthiah Manoharan
- Department of Drug Discovery, Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts 02142
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, Fax: (+) 1-615-322-7122
| |
Collapse
|
20
|
Barchi JJ, Karki RG, Nicklaus MC, Siddiqui MA, George C, Mikhailopulo IA, Marquez VE. Comprehensive structural studies of 2',3'-difluorinated nucleosides: comparison of theory, solution, and solid state. J Am Chem Soc 2008; 130:9048-57. [PMID: 18558684 DOI: 10.1021/ja800964g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformations of three 2',3'-difluoro uridine nucleosides were studied by X-ray crystallography, NMR spectroscopy, and ab initio calculations in an attempt to define the roles that the two vicinal fluorine atoms play in the puckering preferences of the furanose ring. Two of the compounds examined contained fluorine atoms in either the arabino or xylo dispositions at C2' and C3' of a 2',3'-dideoxyuridine system. The third compound also incorporated fluorine atoms in the xylo configuration on the furanose ring but was substituted with a 6-azauracil base in place of uracil. A battery of NMR experiments in D 2O solution was used to identify conformational preferences primarily from coupling constant and NOE data. Both (1)H and (19)F NMR data were used to ascertain the preferred sugar pucker of the furanose ring through the use of the program PSEUROT. Compound-dependent parameters used in the PSEUROT calculations were newly derived from complete sets of conformations calculated from high-level ab initio methods. The solution and theoretical data were compared to the conformations of each molecule in the solid state. It was shown that both gauche and antiperiplanar effects may be operative to maintain a pseudodiaxial arrangement of the C2' and C3' vicinal fluorine atoms. These data, along with previously reported data by us and others concerning monofluorinated nucleoside conformations, were used to propose a model of how fluorine influences different aspects of nucleoside conformations.
Collapse
Affiliation(s)
- Joseph J Barchi
- Laboratory of Medicinal Chemistry, National Cancer Institute, Frederick, National Institutes of Health, 376 Boyles Street, P.O. Box B, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Kirk KL. Fluorination in Medicinal Chemistry: Methods, Strategies, and Recent Developments. Org Process Res Dev 2008. [DOI: 10.1021/op700134j] [Citation(s) in RCA: 953] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kenneth L. Kirk
- Laboratory of Bioorganic Chemistry, National Institute Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| |
Collapse
|
22
|
Seela F, Chittepu P. 6-Azauracil or 8-aza-7-deazaadenine nucleosides and oligonucleotides: the effect of 2'-fluoro substituents and nucleobase nitrogens on conformation and base pairing. Org Biomol Chem 2008; 6:596-607. [PMID: 18219432 DOI: 10.1039/b715512c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoselective syntheses of 6-azauracil- and 8-aza-7-deazaadenine 2'-deoxy-2'-fluoro-beta-d-arabinofuranosides and employing nucleobase anion glycosylation with 3,5-di-O-benzoyl-2-deoxy-2-fluoro-alpha-d-arabinofuranosyl bromide as the sugar component are described; the 6-azauracil 2'-deoxy-2'-fluoro-beta-d-ribofuranoside was prepared from 6-azauridine via the 2,2'-anhydro intermediate and transformation of the sugar with DAST. Compounds show a preferred N-conformer population (100% N for , and 78% N for ) being rather different from nucleosides not containing the combination of a fluorine atom at the 2'-position and a nitrogen next to the glycosylation site. Oligonucleotides incorporating and were synthesized using the phosphoramidites and . Although the N-conformation is favoured in the series of 6-azauracil- and 8-aza-7-deazaadenine 2'-deoxy-2'-fluoroarabinonucleosides only the pyrimidine compound shows an unfavourable effect on duplex stability, while oligonucleotide duplexes containing the 8-aza-7-deazaadenine-2'-deoxy-2'-fluoroarabinonucleoside were as stable as those incorporating dA or 8-aza-7-deaza-2'-deoxyadenosine .
Collapse
Affiliation(s)
- Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.
| | | |
Collapse
|
23
|
Abstract
It has become evident that fluorinated compounds have a remarkable record in medicinal chemistry and will play a continuing role in providing lead compounds for therapeutic applications. This tutorial review provides a sampling of renowned fluorinated drugs and their mode of action with a discussion clarifying the role and impact of fluorine substitution on drug potency.
Collapse
Affiliation(s)
- Sophie Purser
- The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, UK OX1 3TA
| | | | | | | |
Collapse
|
24
|
Hennig M, Munzarova ML, Bermel W, Scott LG, Sklenar V, Williamson JR. Measurement of long-range 1H-19F scalar coupling constants and their glycosidic torsion dependence in 5-fluoropyrimidine-substituted RNA. J Am Chem Soc 2007; 128:5851-8. [PMID: 16637654 PMCID: PMC2556634 DOI: 10.1021/ja060165t] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long-range scalar 5J(H1',F) couplings were observed in 5-fluoropyrimidine-substituted RNA. We developed a novel S3E-19F-alpha,beta-edited NOESY experiment for quantitation of these long-range scalar 5J(H1',F) couplings, where the J-couplings can be extracted from inspection of intraresidual (H1',H6) NOE cross-peaks. Quantum chemical calculations were exploited to investigate the relation between scalar couplings and conformations around the glycosidic bond in oligonucleotides. The theoretical dependence of the observed 5J(H1',F) couplings on the torsion angle chi can be described by a generalized Karplus relationship. The corresponding density functional theory (DFT) analysis is outlined. Additional NMR experiments facilitating the resonance assignments of 5-fluoropyrimidine-substituted RNAs are described, and chemical shift changes due to altered shielding in the presence of fluorine-19 (19F) are presented.
Collapse
Affiliation(s)
- Mirko Hennig
- Department of Molecular Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, MB 33, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Zhang C, Xue Y. Density functional theory studies on conformational stability and vibrational spectra of 2′-deoxyinosine. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.theochem.2006.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Sun G, Voigt JH, Filippov IV, Marquez VE, Nicklaus MC. PROSIT: pseudo-rotational online service and interactive tool, applied to a conformational survey of nucleosides and nucleotides. ACTA ACUST UNITED AC 2005; 44:1752-62. [PMID: 15446834 DOI: 10.1021/ci049881+] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A Pseudo-Rotational Online Service and Interactive Tool (PROSIT) designed to perform complete pseudorotational analysis of nucleosides and nucleotides is described. This service is freely available at http://cactus.nci.nih.gov/prosit/. Files containing nucleosides/nucleotides or DNA/RNA segments, isolated or bound to other molecules (e.g., a protein) can be uploaded to be processed by PROSIT. The service outputs the pseudorotational phase angle P, puckering amplitude numax, and other related information for each nucleoside/nucleotide detected. The service was implemented using the chemoinformatics toolkit CACTVS. PROSIT was used for a survey of nucleosides contained in the Cambridge Structural Database and nucleotides in high-resolution crystal structures from the Nucleic Acid Database. Special cases discussed include nucleosides having constrained sugar moieties with extreme puckering amplitudes, and several specific DNA/RNA helices and protein-bound DNA oligonucleotides (Dickerson-Drew dodecamer, RNA/DNA hybrid viral polypurine tract, Z-DNA enantiomers, B-DNA containing (L)-alpha-threofuranosyl nucleotides, TATA-box binding protein/TATA-box complex, and DNA (cytosine C5)-methyltransferase complexed with an oligodeoxyribonucleotide containing transition state analogue 5,6-dihydro-5-azacytosine). When the puckering amplitude decreases to a small value, the sugar becomes increasingly planar, thus reducing the significance of the phase angle P. We introduce the term "central conformation" to describe this part of the pseudorotational hyperspace in contrast to the conventional north and south conformations.
Collapse
Affiliation(s)
- Guangyu Sun
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, NIH, DHHS, NCI-Frederick, 376 Boyles St., Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
27
|
Ivanov AY, Krasnokutski SA, Sheina G, Blagoi YP. Conformational structures and vibrational spectra of isolated pyrimidine nucleosides: Fourier transform infrared matrix isolation study of 2-deoxyuridine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2003; 59:1959-1973. [PMID: 12788450 DOI: 10.1016/s1386-1425(02)00416-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The conformational structures of 2-deoxyuridine (dU) were investigated using Fourier transform infrared (FTIR) matrix isolation spectroscopy. For the first time the FTIR spectra of dU in Ar matrices were obtained in the range 4000-200 cm(-1). The stabilities of conformers were estimated by the methods HF/3-21G (p), HF/6-31G (d,p) and MP2/6-31G (d,p). Ab initio calculations of the infrared spectra were performed by the methods HF/3-21G (p) and HF/6-31G (d,p). The actual occupancy of conformational isomers in matrix samples was determined. It was shown that anti-conformers of dU are dominant. The ribose rings of the main anti-conformers dU _a0, dU _a1 are in the C2'-endo conformation, but the ribose rings of minor anti-conformers dU_a2, dU_a3 have the C3'-endo conformation, stabilized by intramolecular hydrogen bonds O3'H...O5' and O5'H...O3', accordingly. Syn-conformers of dU are stabilized by the intramolecular hydrogen bond O5'H...O2 and the dominant conformation of the ribose ring is C2'-endo.
Collapse
Affiliation(s)
- A Yu Ivanov
- Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Lenin Avenue 47, 310103 Kharkov, Ukraine.
| | | | | | | |
Collapse
|
28
|
Denisov AY, Noronha AM, Wilds CJ, Trempe JF, Pon RT, Gehring K, Damha MJ. Solution structure of an arabinonucleic acid (ANA)/RNA duplex in a chimeric hairpin: comparison with 2'-fluoro-ANA/RNA and DNA/RNA hybrids. Nucleic Acids Res 2001; 29:4284-93. [PMID: 11691916 PMCID: PMC60200 DOI: 10.1093/nar/29.21.4284] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hybrids of RNA and arabinonucleic acid (ANA) as well as the 2'-fluoro-ANA analog (2'F-ANA) were recently shown to be substrates of the enzyme RNase H. Although RNase H binds to double-stranded RNA, no cleavage occurs with such duplexes. Therefore, knowledge of the structure of ANA/RNA hybrids may prove helpful in the design of future antisense oligonucleotide analogs. In this study, we have determined the NMR solution structures of ANA/RNA and DNA/RNA hairpin duplexes and compared them to the recently published structure of a 2'F-ANA/RNA hairpin duplex. We demonstrate here that the sugars of RNA nucleotides of the ANA/RNA hairpin stem adopt the C3'-endo (north, A-form) conformation, whereas those of the ANA strand adopt a 'rigid' O4'-endo (east) sugar pucker. The DNA strand of the DNA/RNA hairpin stem is flexible, but the average DNA/RNA hairpin structural parameters are close to the ANA/RNA and 2'F-ANA/RNA hairpin parameters. The minor groove width of ANA/RNA, 2'F-ANA/RNA and DNA/RNA helices is 9.0 +/- 0.5 A, a value that is intermediate between that of A- and B-form duplexes. These results rationalize the ability of ANA/RNA and 2'F-ANA/RNA hybrids to elicit RNase H activity.
Collapse
Affiliation(s)
- A Y Denisov
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Trempe JF, Wilds CJ, Denisov AY, Pon RT, Damha MJ, Gehring K. NMR solution structure of an oligonucleotide hairpin with a 2'F-ANA/RNA stem: implications for RNase H specificity toward DNA/RNA hybrid duplexes. J Am Chem Soc 2001; 123:4896-903. [PMID: 11457316 DOI: 10.1021/ja003859p] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first structure of a 2'-deoxy-2'-fluoro-D-arabinose nucleic acid (2'F-ANA)/RNA duplex is presented. We report the structural characterization by NMR spectroscopy of a small hybrid hairpin, r(GGAC)d(TTCG)2'F-a(GTCC), containing a 2'F-ANA/RNA stem and a four-residue DNA loop. Complete (1)H, (13)C, (19)F, and (31)P resonance assignments, scalar coupling constants, and NOE constraints were obtained from homonuclear and heteronuclear 2D spectra. In the chimeric duplex, the RNA strand adopts a classic A-form structure having C3' endo sugar puckers. The 2'F-ANA strand is neither A-form nor B-form and contains O4' endo sugar puckers. This contrasts strongly with the dynamic sugar conformations previously observed in the DNA strands of DNA/RNA hybrid duplexes. Structural parameters for the duplex, such as minor groove width, x-displacement, and inclination, were intermediate between those of A-form and B-form duplexes and similar to those of DNA/RNA duplexes. These results rationalize the enhanced stability of 2'F-ANA/RNA duplexes and their ability to elicit RNase H activity. The results are relevant for the design of new antisense drugs based on sugar-modified nucleic acids.
Collapse
Affiliation(s)
- J F Trempe
- Department of Biochemistry and Montreal Joint Center for Structural Biology, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Jeong LS, Kim HO, Moon HR, Hong JH, Yoo SJ, Choi WJ, Chun MW, Lee CK. Syntheses and structure--activity relationships of novel apio and thioapio dideoxydidehydronucleosides as anti-HCMV agents. J Med Chem 2001; 44:806-13. [PMID: 11262090 DOI: 10.1021/jm000342f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of the fact that apio dideoxynucleosides, in which the furanose oxygen and the C2 of the 2,3-dideoxyribose are transposed, exhibited potent anti-HIV activity and 2',3'-dideoxy-2',3'-didehydronucleosides also showed potent anti-HIV activity, we synthesized apio dideoxydidehydronucleosides in which the oxygen atom and the double bond of the 2,3-dideoxy-2,3-didehydroribose are exchanged. The thioapio dideoxydidehydronucleosides were also synthesized since sulfur serves as a bioisostere of oxygen. Apio dideoxydidehydronucleosides 13a--f were synthesized starting from 1,3-dihydroxyacetone, utilizing phenylselenenyl chemistry as a key step. The ratio of the anomeric mixture was variable from 1:1 to 5:1 during the condensation of nucleosidic bases with the phenylselenyl acetate 11 in the presence of a Lewis acid. This is in contrast with other glycosyl donors such as 5-O-(tert-butyldiphenylsilyl)-2-phenylselenenyl-2,3-dideoxyribosyl acetate which shows excellent neighboring group effect (alpha:beta = 1:99). Thioapio dideoxydidehydronucleosides 22a,b were synthesized from the lactone 9 via thiolactone 17 as a key intermediate which was synthesized from dicyclohexylcarbodiimide coupling of the mercapto acid produced from the basic hydrolysis of thioacetate 16. The majority of apio analogues synthesized in this study exhibited moderate to potent anti-HCMV activity, among which the 5-fluorouracil derivative 13c was found to be the most potent against HCMV, while thioapio analogues showed no activity against HCMV. However, all synthesized compounds did not exhibit any significant activities against HIV-1, HSV-1, and HSV-2. The fact that apio dideoxydidehydronucleosides were active against HCMV suggests that the apio dideoxydidehydro sugar moiety can serve as a novel template for the development of new antiviral agents.
Collapse
Affiliation(s)
- L S Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lobo BA, Davis A, Koe G, Smith JG, Middaugh CR. Isothermal Titration Calorimetric Analysis of the Interaction between Cationic Lipids and Plasmid DNA. Arch Biochem Biophys 2001; 386:95-105. [PMID: 11361005 DOI: 10.1006/abbi.2000.2196] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of buffer and ionic strength upon the enthalpy of binding between plasmid DNA and a variety of cationic lipids used to enhance cellular transfection were studied using isothermal titration calorimetry at 25.0 degrees C and pH 7.4. The cationic lipids DOTAP (1,2-dioleoyl-3-trimethyl ammonium propane), DDAB (dimethyl dioctadecyl ammonium bromide), DOTAP:cholesterol (1:1), and DDAB:cholesterol (1:1) bound endothermally to plasmid DNA with a negligible proton exchange with buffer. In contrast, DOTAP: DOPE (L-alpha-dioleoyl phosphatidyl ethanolamine) (1:1) and DDAB:DOPE (1:1) liposomes displayed a negative enthalpy and a significant uptake of protons upon binding to plasmid DNA at neutral pH. These findings are most easily explained by a change in the apparent pKa of the amino group of DOPE upon binding. Complexes formed by reverse addition methods (DNA into lipid) produced different thermograms, sizes, zeta potentials, and aggregation behavior, suggesting that structurally different complexes were formed in each titration direction. Titrations performed in both directions in the presence of increasing ionic strength revealed a progressive decrease in the heat of binding and an increase in the lipid to DNA charge ratio at which aggregation occurred. The unfavorable binding enthalpy for the cationic lipids alone and with cholesterol implies an entropy-driven interaction, while the negative enthalpies observed with DOPE-containing lipid mixtures suggest an additional contribution from changes in protonation of DOPE.
Collapse
Affiliation(s)
- B A Lobo
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66047, USA
| | | | | | | | | |
Collapse
|
32
|
Tennilä T, Azhayeva E, Vepsäläinen J, Laatikainen R, Azhayev A, Mikhailopulo IA. Oligonucleotides containing 9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-adenine and -guanine: synthesis, hybridization and antisense properties. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:1861-84. [PMID: 11200279 DOI: 10.1080/15257770008045466] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Synthesis of 9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-adenine (7, ara-A2'F) and -guanine (12, ara-G2'F) was accomplished via the condensation of 2,6-dichloropurine (1) with 2-deoxy-2-fluoro-1,3,5-tri-O-benzoyl-alpha-D-arabinofuranose (2) as a key chemical step. Condensation of silylated N6-benzoyladenine (6) with 2 gave, after deblocking and chromatographic separation, ara-A2'F (7) (14%), it's alpha-anomer 8 (14%) and N7-alpha-isomer 9 (25%). The PSEUROT analysis of N9-betaD-arabinosides 7 and 12 manifested slight preference for the S rotamer (64%) for the former, and an equal population of the N and S rotamers for the latter. The arabinosides 7 and 12 were used for the preparation of the respective phosphoamidite building blocks 13 and 14 for automated oligonucleotide synthesis. Four 15-mer oligonucleotides (ONs) complementary to the initiation codon region of firefly luciferase mRNA were prepared: unmodified 2'-deoxy-ON (AS 1) and containing (i) ara-A2'F instead of the only A (AS2), (ii) ara-G2'F vs. 3-G from the 5'-terminus (AS3), and (iii) both arabinosides at the same positions (AS4). All these ONs display practically the same (i) affinity to both complementary DNA and RNA, and (ii) ability to inhibit a luciferase gene expression in a cell-free transcription-translation system.
Collapse
Affiliation(s)
- T Tennilä
- Department of Pharmaceutical Chemistry, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
33
|
Mu L, Sarafianos SG, Nicklaus MC, Russ P, Siddiqui MA, Ford H, Mitsuya H, Le R, Kodama E, Meier C, Knispel T, Anderson L, Barchi JJ, Marquez VE. Interactions of conformationally biased north and south 2'-fluoro-2', 3'-dideoxynucleoside 5'-triphosphates with the active site of HIV-1 reverse transcriptase. Biochemistry 2000; 39:11205-15. [PMID: 10985766 DOI: 10.1021/bi001090n] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations of a ternary complex of HIV-1 reverse transcriptase (RT), double-stranded DNA, and bound dideoxynucleoside-5'-triphosphate (RT-DNA-ddNTP), utilizing the ddNTPs ddATP, betaFddATP, and alphaFddATP, explain the experimentally observed order of potency of these 5'-triphosphates as inhibitors of RT: ddATP > betaFddATP > alphaFddATP. On the basis of RT's known preference to bind the incoming dNTP (or ddNTP) with a north conformation at the polymerase site, alphaFddATP, which in solution prefers almost exclusively a north conformation, was predicted to be the most potent inhibitor. However, Tyr115, which appears to function as a steric gate to preclude the binding of ribonucleoside 5'-triphosphates, prevents the effective binding of alphaFddATP in its preferred north conformation. The south-biased betaFddATP, while able to bind to RT without hindrance by Tyr115, has to pay a high energy penalty to be flipped to the active north conformation at the polymerase site. Finally, the more flexible and less conformationally biased ddATP is able to switch to a north conformation at the RT site with a smaller energy penalty than betaFddATP. These results highlight the opposite conformational preferences of HIV-1 RT for alphaFddATP and betaFddATP and help establish conformational guidelines for optimal binding at the polymerase site of this enzyme.
Collapse
Affiliation(s)
- L Mu
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, and Experimental Retrovirology Section, Medicine Branch, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wilds CJ, Damha MJ. 2'-Deoxy-2'-fluoro-beta-D-arabinonucleosides and oligonucleotides (2'F-ANA): synthesis and physicochemical studies. Nucleic Acids Res 2000; 28:3625-35. [PMID: 10982885 PMCID: PMC110742 DOI: 10.1093/nar/28.18.3625] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2000] [Revised: 07/18/2000] [Accepted: 07/18/2000] [Indexed: 11/13/2022] Open
Abstract
Recently, hybrids of RNA and D-arabinonucleic acids (ANA) as well as the 2'-deoxy-2'-fluoro-D-arabinonucleic acid analog (2'F-ANA) were shown to be substrates of RNase H. This enzyme is believed to be involved in the primary mechanism by which antisense oligonucleotides cause a reduction in target RNA levels in vivo. To gain a better understanding of the properties of arabinose based oligonucleotides, we have prepared a series of 2'F-ANA sequences of homopolymeric (A and T) and mixed base composition (A, T, G and C). UV thermal melting and circular dichroic (CD) studies were used to ascertain the thermodynamic stability and helical conformation of 2'F-ANA/RNA and 2'F-ANA/DNA hybrids. It is shown that 2'F-ANA has enhanced RNA affinity relative to that of DNA and phosphorothioate DNA. The 2'-fluoroarabino modification showed favorable pairing to single-stranded DNA also. This is in sharp contrast to ANA, which forms weak ANA/DNA hybrids at best. According to the measured thermodynamic parameters for duplex formation, the increased stability of hybrids formed by 2'F-ANA (e.g., 2'F-ANA/RNA) appears to originate from conformational pre-organization of the fluorinated sugars and a favorable enthalpy of hybridization. In addition, NMR spectroscopy revealed a five-bond coupling between the 2'F and the base protons (H6/H8) of 2'-deoxy-2'-fluoro-beta-D-arabinonucleosides. This observation is suggestive of a through-space interaction between 2'F and H6/H8 atoms. CD experiments indicate that 2'F-ANA/RNA hybrids adopt an 'A-like' structure and show more resemblance to DNA/RNA hybrids than to the pure RNA/RNA duplex. This feature is believed to be an important factor in the mechanism that allows RNase H to discriminate between 2'F-ANA/RNA (or DNA/RNA) and RNA/RNA duplexes.
Collapse
Affiliation(s)
- C J Wilds
- Department of Chemistry, Otto Maass Chemistry Building, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| | | |
Collapse
|
35
|
Ford H, Dai F, Mu L, Siddiqui MA, Nicklaus MC, Anderson L, Marquez VE, Barchi JJ. Adenosine deaminase prefers a distinct sugar ring conformation for binding and catalysis: kinetic and structural studies. Biochemistry 2000; 39:2581-92. [PMID: 10704207 DOI: 10.1021/bi992112c] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several recent X-ray crystal structures of adenosine deaminase (ADA) in complex with various adenosine surrogates have illustrated the preferred mode of substrate binding for this enzyme. To define more specific structural details of substrate preferences for binding and catalysis, we have studied the ADA binding efficiencies and deamination kinetics of several synthetic adenosine analogues in which the furanosyl ring is biased toward a particular conformation. NMR solution studies and pseudorotational analyses were used to ascertain the preferred furanose ring puckers (P, nu(MAX)) and rotamer distributions (chi and gamma) of the nucleoside analogues. It was shown that derivatives which are biased toward a "Northern" (3'-endo, N) sugar ring pucker were deaminated up to 65-fold faster and bound more tightly to the enzyme than those that preferred a "Southern" (2'-endo, S) conformation. This behavior, however, could be modulated by other structural factors. Similarly, purine riboside inhibitors of ADA that prefer the N hemisphere were more potent inhibitors than S analogues. These binding propensities were corroborated by detailed molecular modeling studies. Docking of both N- and S-type analogues into the ADA crystal structure coordinates showed that N-type substrates formed a stable complex with ADA, whereas for S-type substrates, it was necessary for the sugar pucker to adjust to a 3'-endo (N-type) conformation to remain in the ADA substrate binding site. These data outline the intricate structural details for optimum binding in the catalytic cleft of ADA.
Collapse
Affiliation(s)
- H Ford
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Meier C, Knispel T, Marquez VE, De Clercq E, Balzarini J. CycloSal-2'-ara(ribo)-fluoro-2',3'-dideoxyadenosine monophosphates--an effort to solve the structure-activity relationship of 2'-fluoro-ddA. NUCLEOSIDES & NUCLEOTIDES 1999; 18:907-12. [PMID: 10432708 DOI: 10.1080/15257779908041598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Novel lipophilic cycloSal-triesters 3 and 4 from the ara- and ribo-configurated 2'-fluorinated ddAs 1 and 2, respectively, were prepared. The title compounds 3 and 4 delivered the corresponding monophosphates and thus, increasing the bioactivity or convert a formerly inactive compound into a RT inhibitor.
Collapse
Affiliation(s)
- C Meier
- Institut für Organische Chemie, Universität Hamburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Thibaudeau C, Plavec J, Chattopadhyaya J. A New Generalized Karplus-Type Equation Relating Vicinal Proton-Fluorine Coupling Constants to H−C−C−F Torsion Angles. J Org Chem 1998. [DOI: 10.1021/jo980144k] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christophe Thibaudeau
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-751 23 Uppsala, Sweden, and National Institute of Chemistry, Hajdrihova 19, SI-1115 Ljubljana, Slovenia
| | - Janez Plavec
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-751 23 Uppsala, Sweden, and National Institute of Chemistry, Hajdrihova 19, SI-1115 Ljubljana, Slovenia
| | - Jyoti Chattopadhyaya
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-751 23 Uppsala, Sweden, and National Institute of Chemistry, Hajdrihova 19, SI-1115 Ljubljana, Slovenia
| |
Collapse
|
39
|
Berger I, Tereshko V, Ikeda H, Marquez VE, Egli M. Crystal structures of B-DNA with incorporated 2'-deoxy-2'-fluoro-arabino-furanosyl thymines: implications of conformational preorganization for duplex stability. Nucleic Acids Res 1998; 26:2473-80. [PMID: 9580702 PMCID: PMC147554 DOI: 10.1093/nar/26.10.2473] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fundamental conformational states of right-handed double helical DNA, the A- and B-forms, are associated with distinct puckers of the sugar moieties. The furanose conformation itself is affected by the steric and electronic nature of the ring substituents. For example, a strongly electronegative substituent at the C2' position, such as in the 2'-deoxy-2'-fluoro ribo furanosyl analogue, will drive the conformational equilibrium towards the C3'- endo type (north). Conversely, the 2'-deoxy-2'-fluoro arabino furanosyl modification with opposite stereochemistry at C2' appears to have a preference for a C2'- endo type pucker (south). Incorporation of 2'-fluoroarabinofuranosyl thymines was previously shown to enhance the thermodynamic stability of B-DNA duplexes. We have determined the crystal structures of the B-DNA dodecamer duplexes [d(CGCGAASSCGCG)]2and [d(CGCGAASTCGCG)]2with incorporated 2'-deoxy-2'-fluoroarabinofuranosyl thymines S (south) at 1.55 A resolution. In the crystal structures, all S residues adopt an O4'- endo conformation (east), well compatible with an overall B-form duplex geometry. In addition to the increased rigidity of S nucleosides, a clathrate-like ordered water structure around the 2'-fluorines may account for the observed larger thermodynamic stability of DNA duplexes containing 2'-deoxy-2'-fluoroarabino thymidines.
Collapse
Affiliation(s)
- I Berger
- Institute for Molecular Biology and Biophysics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|