1
|
Dorst M, Vervaeke K. A low-cost perfusion heating system for slice electrophysiology. Sci Rep 2024; 14:28521. [PMID: 39557993 PMCID: PMC11574319 DOI: 10.1038/s41598-024-79856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Temperature-critical applications, such as patch-clamp electrophysiology, require constant perfusion at a fixed temperature. However, maintaining perfusate at a specific temperature throughout various applications requires heaters or coolers with integrated feedback systems, which has historically increased complexity and cost. This makes such systems prohibitively expensive in research environments with lower funding rates, particularly in developing countries. We developed a custom temperature control system that relies on off-the-shelf components and few custom parts, which can be easily produced with common tools. Our system can be built for less than $30 and maintains a set perfusate temperature within 0.4 °C while introducing negligible electrical interference. Using this system, we demonstrate that Striatal Medium Spiny Neurons exhibit increased membrane resistance, longer membrane time constants, lower firing rates, and increased rheobase current at room temperature compared to physiological temperature.
Collapse
Affiliation(s)
- Matthijs Dorst
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway.
- Department of Neurscience, Karolinska Institutet, Solna, Sweden.
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Sperduti M, Tagliamonte NL, Taffoni F, Guglielmelli E, Zollo L. Mechanical and thermal stimulation for studying the somatosensory system: a review on devices and methods. J Neural Eng 2024; 21:051001. [PMID: 39163886 DOI: 10.1088/1741-2552/ad716d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
The somatosensory system is widely studied to understand its functioning mechanisms. Multiple tests, based on different devices and methods, have been performed not only on humans but also on animals andex-vivomodels. Depending on the nature of the sample under analysis and on the scientific aims of interest, several solutions for experimental stimulation and for investigations on sensation or pain have been adopted. In this review paper, an overview of the available devices and methods has been reported, also analyzing the representative values adopted during literature experiments. Among the various physical stimulations used to study the somatosensory system, we focused only on mechanical and thermal ones. Based on the analysis of their main features and on literature studies, we pointed out the most suitable solution for humans, rodents, andex-vivomodels and investigation aims (sensation and pain).
Collapse
Affiliation(s)
- M Sperduti
- Università Campus Bio-Medico di Roma, Research Unit of Advanced Robotics and Human-Centered Technologies, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - N L Tagliamonte
- Università Campus Bio-Medico di Roma, Research Unit of Advanced Robotics and Human-Centered Technologies, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - F Taffoni
- Università Campus Bio-Medico di Roma, Research Unit of Advanced Robotics and Human-Centered Technologies, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - E Guglielmelli
- Università Campus Bio-Medico di Roma, Research Unit of Advanced Robotics and Human-Centered Technologies, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - L Zollo
- Università Campus Bio-Medico di Roma, Research Unit of Advanced Robotics and Human-Centered Technologies, Via Alvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
3
|
Arcas JM, Oudaha K, González A, Fernández-Trillo J, Peralta FA, Castro-Marsal J, Poyraz S, Taberner F, Sala S, de la Peña E, Gomis A, Viana F. The ion channel TRPM8 is a direct target of the immunosuppressant rapamycin in primary sensory neurons. Br J Pharmacol 2024; 181:3192-3214. [PMID: 38741464 DOI: 10.1111/bph.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The mechanistic target of rapamycin (mTOR) signalling pathway is a key regulator of cell growth and metabolism. Its deregulation is implicated in several diseases. The macrolide rapamycin, a specific inhibitor of mTOR, has immunosuppressive, anti-inflammatory and antiproliferative properties. Recently, we identified tacrolimus, another macrolide immunosuppressant, as a novel activator of TRPM8 ion channels, involved in cold temperature sensing, thermoregulation, tearing and cold pain. We hypothesized that rapamycin may also have agonist activity on TRPM8 channels. EXPERIMENTAL APPROACH Using calcium imaging and electrophysiology in transfected HEK293 cells and wildtype or Trpm8 KO mouse DRG neurons, we characterized rapamycin's effects on TRPM8 channels. We also examined the effects of rapamycin on tearing in mice. KEY RESULTS Micromolar concentrations of rapamycin activated rat and mouse TRPM8 channels directly and potentiated cold-evoked responses, effects also observed in human TRPM8 channels. In cultured mouse DRG neurons, rapamycin increased intracellular calcium levels almost exclusively in cold-sensitive neurons. Responses were markedly decreased in Trpm8 KO mice or by TRPM8 channel antagonists. Cutaneous cold thermoreceptor endings were also activated by rapamycin. Topical application of rapamycin to the eye surface evokes tearing in mice by a TRPM8-dependent mechanism. CONCLUSION AND IMPLICATIONS These results identify TRPM8 cationic channels in sensory neurons as novel molecular targets of the immunosuppressant rapamycin. These findings may help explain some of its therapeutic effects after topical application to the skin and the eye surface. Moreover, rapamycin could be used as an experimental tool in the clinic to explore cold thermoreceptors.
Collapse
Affiliation(s)
- José Miguel Arcas
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Khalid Oudaha
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Alejandro González
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Jorge Fernández-Trillo
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | | | - Júlia Castro-Marsal
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Seyma Poyraz
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Francisco Taberner
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Salvador Sala
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Elvira de la Peña
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Ana Gomis
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Félix Viana
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| |
Collapse
|
4
|
Trif C, Banica AM, Manolache A, Anghel SA, Huţanu DE, Stratulat T, Badea R, Oprita G, Selescu T, Petrescu SM, Sisignano M, Offermanns S, Babes A, Tunaru S. Inhibition of TRPM8 function by prostacyclin receptor agonists requires coupling to Gq/11 proteins. Br J Pharmacol 2024; 181:1438-1451. [PMID: 38044577 DOI: 10.1111/bph.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The TRPM8 ion channel is involved in innocuous cold sensing and has a potent anti-inflammatory action. Its activation by lower temperature or chemical agonists such as menthol and icilin induces analgesic effects, reversing hypersensitivity and reducing chronic pain. On the other hand, prostacyclin (PGI2) enhances pain and inflammation by activating the IP receptors. Due to the critical roles of TRPM8 and IP receptors in the regulation of inflammatory pain, and considering their overlapping expression pattern, we analysed the functional interaction between human TRPM8 and IP receptors. EXPERIMENTAL APPROACH We transiently expressed human TRPM8 channels and IP receptors in HEK293T cells and carried out intracellular calcium and cAMP measurements. Additionally, we cultured neurons from the dorsal root ganglia (DRGs) of mice and determined the increase in intracellular calcium triggered by the TRPM8 agonist, icilin, in the presence of the IP receptor agonist cicaprost, the IP receptor antagonist Cay10441, and the Gq/11 inhibitor YM254890. KEY RESULTS Activation of IP receptors by selective agonists (cicaprost, beraprost, and iloprost) inhibited TRPM8 channel function, independently of the Gs-cAMP pathway. The potent inhibition of TRPM8 channels by IP receptor agonists involved Gq/11 coupling. These effects were also observed in neurons isolated from murine DRGs. CONCLUSIONS AND IMPLICATIONS Our results demonstrate an unusual signalling pathway of IP receptors by coupling to Gq/11 proteins to inhibit TRPM8 channel function. This pathway may contribute to a better understanding of the role of TRPM8 channels and IP receptors in regulating pain and inflammation.
Collapse
Affiliation(s)
- Cosmin Trif
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alexandra-Maria Banica
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alexandra Manolache
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Sorina Andreea Anghel
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Debora-Elena Huţanu
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Teodora Stratulat
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Rodica Badea
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - George Oprita
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Tudor Selescu
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Stefana M Petrescu
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alexandru Babes
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Sorin Tunaru
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- Prothanor Biotech S.R.L., Bucharest, Romania
| |
Collapse
|
5
|
Selescu T, Bivoleanu RA, Iodi Carstens M, Manolache A, Caragea VM, Hutanu DE, Meerupally R, Wei ET, Carstens E, Zimmermann K, Babes A. TRPM8-dependent shaking in mammals and birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573364. [PMID: 38234797 PMCID: PMC10793462 DOI: 10.1101/2023.12.27.573364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Removing water from wet fur or feathers is important for thermoregulation in warm-blooded animals. The "wet dog shake" (WDS) behavior has been largely characterized in mammals but to a much lesser extent in birds. Although it is known that TRPM8 is the main molecular transducer of low temperature in mammals, it is not clear if wetness-induced shaking in furred and feathered animals is dependent on TRPM8. Here, we show that a novel TRPM8 agonist induces WDS in rodents and, importantly, in birds, similar to the shaking behavior evoked by water-spraying. Furthermore, the WDS onset depends on TRPM8, as we show in water-sprayed mice. Overall, our results provide multiple evidence for a TRPM8 dependence of WDS behaviors in all tested species. These suggest that a convergent evolution selected similar shaking behaviors to expel water from fur and feathers, with TRPM8 being involved in wetness sensing in both mammals and birds.
Collapse
|
6
|
Thomet U, Amuzescu B, Knott T, Mann SA, Mubagwa K, Radu BM. Assessment of proarrhythmogenic risk for chloroquine and hydroxychloroquine using the CiPA concept. Eur J Pharmacol 2021; 913:174632. [PMID: 34785211 PMCID: PMC8590616 DOI: 10.1016/j.ejphar.2021.174632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
Chloroquine and hydroxychloroquine have been proposed recently as therapy for SARS-CoV-2-infected patients, but during 3 months of extensive use concerns were raised related to their clinical effectiveness and arrhythmogenic risk. Therefore, we estimated for these compounds several proarrhythmogenic risk predictors according to the Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm. Experiments were performed with either CytoPatch™2 automated or manual patch-clamp setups on HEK293T cells stably or transiently transfected with hERG1, hNav1.5, hKir2.1, hKv7.1+hMinK, and on Pluricyte® cardiomyocytes (Ncardia), using physiological solutions. Dose-response plots of hERG1 inhibition fitted with Hill functions yielded IC50 values in the low micromolar range for both compounds. We found hyperpolarizing shifts of tens of mV, larger for chloroquine, in the voltage-dependent activation but not inactivation, as well as a voltage-dependent block of hERG current, larger at positive potentials. We also found inhibitory effects on peak and late INa and on IK1, with IC50 of tens of μM and larger for chloroquine. The two compounds, tested on Pluricyte® cardiomyocytes using the β-escin-perforated method, inhibited IKr, ICaL, INa peak, but had no effect on If. In current-clamp they caused action potential prolongation. Our data and those from literature for Ito were used to compute proarrhythmogenic risk predictors Bnet (Mistry HB, 2018) and Qnet (Dutta S et al., 2017), with hERG1 blocking/unblocking rates estimated from time constants of fractional block. Although the two antimalarials are successfully used in autoimmune diseases, and chloroquine may be effective in atrial fibrillation, assays place these drugs in the intermediate proarrhythmogenic risk group.
Collapse
Affiliation(s)
- Urs Thomet
- Anaxon A.G., Brünnenstrasse 90, 3018, Bern, Switzerland
| | - Bogdan Amuzescu
- Dept. Anatomy, Animal Physiology & Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania.
| | - Thomas Knott
- CytoBioScience Inc., 3463 Magic Drive, San Antonio, TX, 78229, USA
| | - Stefan A Mann
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829, Cologne, Germany
| | - Kanigula Mubagwa
- Dept. Cardiovascular Sciences, Faculty of Medicine, K U Leuven, B-3000, Leuven, Belgium; Dept. Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR Congo
| | - Beatrice Mihaela Radu
- Dept. Anatomy, Animal Physiology & Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania
| |
Collapse
|
7
|
Boyd JT, LoCoco PM, Furr AR, Bendele MR, Tram M, Li Q, Chang FM, Colley ME, Samenuk GM, Arris DA, Locke EE, Bach SBH, Tobon A, Ruparel SB, Hargreaves KM. Elevated dietary ω-6 polyunsaturated fatty acids induce reversible peripheral nerve dysfunction that exacerbates comorbid pain conditions. Nat Metab 2021; 3:762-773. [PMID: 34140694 PMCID: PMC8287645 DOI: 10.1038/s42255-021-00410-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Chronic pain is the leading cause of disability worldwide1 and is commonly associated with comorbid disorders2. However, the role of diet in chronic pain is poorly understood. Of particular interest is the Western-style diet, enriched with ω-6 polyunsaturated fatty acids (PUFAs) that accumulate in membrane phospholipids and oxidise into pronociceptive oxylipins3,4. Here we report that mice administered an ω-6 PUFA-enriched diet develop persistent nociceptive hypersensitivities, spontaneously active and hyper-responsive glabrous afferent fibres and histologic markers of peripheral nerve damage reminiscent of a peripheral neuropathy. Linoleic and arachidonic acids accumulate in lumbar dorsal root ganglia, with increased liberation via elevated phospholipase (PLA)2 activity. Pharmacological and molecular inhibition of PLA2G7 or diet reversal with high levels of ω-3 PUFAs attenuate nociceptive behaviours, neurophysiologic abnormalities and afferent histopathology induced by high ω-6 intake. Additionally, ω-6 PUFA accumulation exacerbates allodynia observed in preclinical inflammatory and neuropathic pain models and is strongly correlated with multiple pain indices of clinical diabetic neuropathy. Collectively, these data reveal dietary enrichment with ω-6 PUFAs as a new aetiology of peripheral neuropathy and risk factor for chronic pain and implicate multiple therapeutic considerations for clinical pain management.
Collapse
Affiliation(s)
- Jacob T Boyd
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter M LoCoco
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ashley R Furr
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michelle R Bendele
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Meilinn Tram
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Qun Li
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Fang-Mei Chang
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Madeline E Colley
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX, USA
| | - Grace M Samenuk
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX, USA
| | - Dominic A Arris
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Erin E Locke
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stephan B H Bach
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX, USA
| | - Alejandro Tobon
- Department of Neurology, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Shivani B Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kenneth M Hargreaves
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
8
|
Manolache A, Selescu T, Maier GL, Mentel M, Ionescu AE, Neacsu C, Babes A, Szedlacsek SE. Regulation of TRPM8 channel activity by Src‐mediated tyrosine phosphorylation. J Cell Physiol 2019; 235:5192-5203. [DOI: 10.1002/jcp.29397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Alexandra Manolache
- Department of Anatomy, Physiology and Biophysics, Faculty of BiologyUniversity of Bucharest Bucuresti Romania
| | - Tudor Selescu
- Department of Anatomy, Physiology and Biophysics, Faculty of BiologyUniversity of Bucharest Bucuresti Romania
| | - G. Larisa Maier
- Department of Anatomy, Physiology and Biophysics, Faculty of BiologyUniversity of Bucharest Bucuresti Romania
| | - Mihaela Mentel
- Department of EnzymologyInstitute of Biochemistry of the Romanian Academy Bucuresti Romania
| | - Aura Elena Ionescu
- Department of EnzymologyInstitute of Biochemistry of the Romanian Academy Bucuresti Romania
| | - Cristian Neacsu
- Department of Anatomy, Physiology and Biophysics, Faculty of BiologyUniversity of Bucharest Bucuresti Romania
| | - Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, Faculty of BiologyUniversity of Bucharest Bucuresti Romania
| | | |
Collapse
|
9
|
The Immunosuppressant Macrolide Tacrolimus Activates Cold-Sensing TRPM8 Channels. J Neurosci 2018; 39:949-969. [PMID: 30545944 DOI: 10.1523/jneurosci.1726-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/02/2018] [Accepted: 11/18/2018] [Indexed: 12/30/2022] Open
Abstract
TRPM8 is a polymodal, nonselective cation channel activated by cold temperature and cooling agents that plays a critical role in the detection of environmental cold. We found that TRPM8 is a pharmacological target of tacrolimus (FK506), a macrolide immunosuppressant with several clinical uses, including the treatment of organ rejection following transplants, treatment of atopic dermatitis, and dry eye disease. Tacrolimus is an inhibitor of the phosphatase calcineurin, an action shared with cyclosporine. Tacrolimus activates TRPM8 channels in different species, including humans, and sensitizes their response to cold temperature by inducing a leftward shift in the voltage-dependent activation curve. The effects of tacrolimus on purified TRPM8 in lipid bilayers demonstrates conclusively that it has a direct gating effect. Moreover, the lack of effect of cyclosporine rules out the canonical signaling pathway involving the phosphatase calcineurin. Menthol (TRPM8-Y745H)- and icilin (TRPM8-N799A)-insensitive mutants were also activated by tacrolimus, suggesting a different binding site. In cultured mouse DRG neurons, tacrolimus evokes an increase in intracellular calcium almost exclusively in cold-sensitive neurons, and these responses were drastically blunted in Trpm8 KO mice or after the application of TRPM8 antagonists. Cutaneous and corneal cold thermoreceptor endings are also activated by tacrolimus, and tacrolimus solutions trigger blinking and cold-evoked behaviors. Together, our results identify TRPM8 channels in sensory neurons as molecular targets of the immunosuppressant tacrolimus. The actions of tacrolimus on TRPM8 resemble those of menthol but likely involve interactions with other channel residues.SIGNIFICANCE STATEMENT TRPM8 is a polymodal TRP channel involved in cold temperature sensing, thermoregulation, and cold pain. TRPM8 is also involved in the pathophysiology of dry eye disease, and TRPM8 activation has antiallodynic and antipruritic effects, making it a prime therapeutic target in several cutaneous and neural diseases. We report the direct agonist effect of tacrolimus, a potent natural immunosuppressant with multiple clinical applications, on TRPM8 activity. This interaction represents a novel neuroimmune interface. The identification of a clinically approved drug with agonist activity on TRPM8 channels could be used experimentally to probe the function of TRPM8 in humans. Our findings may explain some of the sensory and anti-inflammatory effects described for this drug in the skin and the eye surface.
Collapse
|
10
|
The anthelminthic drug praziquantel is a selective agonist of the sensory transient receptor potential melastatin type 8 channel. Toxicol Appl Pharmacol 2017; 336:55-65. [PMID: 29054683 DOI: 10.1016/j.taap.2017.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022]
Abstract
Praziquantel is the most effective anthelminthic drug for the treatment of schistosomiasis, an infectious disease caused by the platyhelminth Schistosoma mansoni. While praziquantel is known to trigger calcium influx into schisostomes, followed by spastic paralysis of the worms and tegumental disruption, the mechanism of action of the drug is not completely understood. Although relatively well tolerated, praziquantel has been reported to cause mild adverse effects, including nausea, abdominal pain and headaches. As a number of putative Transient Receptor Potential (TRP) channel genes have recently been predicted in S. mansoni, we sought to investigate the effect of praziquantel on three mammalian TRP channels, TRP melastatin type 8 (TRPM8), TRP vanilloid type 1 (TRPV1) and TRP ankyrin type 1 (TRPA1). Using calcium microfluorimetry and the patch clamp technique, we recorded the effect of praziquantel on HEK293T cells expressing recombinant TRPM8, TRPV1 or TRPA1, as well as on cultured dorsal root ganglion (DRG) neurons from wild type and TRPM8 null mutant mice. We discovered that praziquantel is a relatively potent and selective partial agonist of the mammalian and avian cold and menthol receptor TRPM8. The activation of cultured DRG neurons by clinically relevant concentrations of praziquantel is predominantly mediated by TRPM8. Our results may provide clues to a better understanding of praziquantel's mechanism of action and its adverse effects.
Collapse
|
11
|
Rozas P, Lazcano P, Piña R, Cho A, Terse A, Pertusa M, Madrid R, Gonzalez-Billault C, Kulkarni AB, Utreras E. Targeted overexpression of tumor necrosis factor-α increases cyclin-dependent kinase 5 activity and TRPV1-dependent Ca2+ influx in trigeminal neurons. Pain 2016; 157:1346-1362. [PMID: 26894912 PMCID: PMC4868804 DOI: 10.1097/j.pain.0000000000000527] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We reported earlier that TNF-α, a proinflammatory cytokine implicated in many inflammatory disorders causing orofacial pain, increases the activity of Cdk5, a key kinase involved in brain development and function and recently found to be involved in pain signaling. To investigate a potential mechanism underlying inflammatory pain in trigeminal ganglia (TGs), we engineered a transgenic mouse model (TNF) that can conditionally overexpresses TNF-α upon genomic recombination by Cre recombinase. TNF mice were bred with Nav1.8-Cre mouse line that expresses the Cre recombinase in sensory neurons to obtain TNF-α:Nav1.8-Cre (TNF-α cTg) mice. Although TNF-α cTg mice appeared normal without any gross phenotype, they displayed a significant increase in TNF-α levels after activation of NFκB signaling in the TG. IL-6 and MCP-1 levels were also increased along with intense immunostaining for Iba1 and GFAP in TG, indicating the presence of infiltrating macrophages and the activation of satellite glial cells. TNF-α cTg mice displayed increased trigeminal Cdk5 activity, and this increase was associated with elevated levels of phospho-T407-TRPV1 and capsaicin-evocated Ca influx in cultured trigeminal neurons. Remarkably, this effect was prevented by roscovitine, an inhibitor of Cdk5, which suggests that TNF-α overexpression induced sensitization of the TRPV1 channel. Furthermore, TNF-α cTg mice displayed more aversive behavior to noxious thermal stimulation (45°C) of the face in an operant pain assessment device as compared with control mice. In summary, TNF-α overexpression in the sensory neurons of TNF-α cTg mice results in inflammatory sensitization and increased Cdk5 activity; therefore, this mouse model would be valuable for investigating the mechanism of TNF-α involved in orofacial pain.
Collapse
Affiliation(s)
- Pablo Rozas
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pablo Lazcano
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ricardo Piña
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Andrew Cho
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Anita Terse
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Maria Pertusa
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Rodolfo Madrid
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Elias Utreras
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Ciobanu A, Selescu T, Gasler I, Soltuzu L, Babes A. Glycolytic metabolite methylglyoxal inhibits cold and menthol activation of the transient receptor potential melastatin type 8 channel. J Neurosci Res 2015; 94:282-94. [DOI: 10.1002/jnr.23700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Affiliation(s)
- A.C. Ciobanu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - T. Selescu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - I. Gasler
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - L. Soltuzu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - A. Babes
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| |
Collapse
|
13
|
Selescu T, Ciobanu AC, Dobre C, Reid G, Babes A. Camphor Activates and Sensitizes Transient Receptor Potential Melastatin 8 (TRPM8) to Cooling and Icilin. Chem Senses 2013; 38:563-75. [DOI: 10.1093/chemse/bjt027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
|
15
|
Bharate SS, Bharate SB. Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci 2012; 3:248-67. [PMID: 22860192 PMCID: PMC3369806 DOI: 10.1021/cn300006u] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 02/06/2023] Open
Abstract
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling. TRPM8 is activated by innocuous cooling (<30 °C) and contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia and is a receptor for menthol and icilin (mint-derived and synthetic cooling compounds, respectively). TRPA1 (Ankyrin family) is activated by noxious cold (<17 °C), icilin, and a variety of pungent compounds. Extensive amount of medicinal chemistry efforts have been published mainly in the form of patent literature on various classes of cooling compounds by various pharmaceutical companies; however, no prior comprehensive review has been published. When expressed in heterologous expression systems, such as Xenopus oocytes or mammalian cell lines, TRPM8 mediated currents are activated by a number of cooling compounds in addition to menthol and icilin. These include synthetic p-menthane carboxamides along with other class of compounds such as aliphatic/alicyclic alcohols/esters/amides, sulphones/sulphoxides/sulphonamides, heterocyclics, keto-enamines/lactams, and phosphine oxides. In the present review, the medicinal chemistry of various cooling compounds as activators of thermoTRPM8 channel will be discussed according to their chemical classes. The potential of these compounds to emerge as therapeutic agents is also discussed.
Collapse
Affiliation(s)
- Sonali S. Bharate
- Department of Pharmaceutics, P.E. Society’s Modern
College of Pharmacy for Ladies, Dehu-Alandi Road, Moshi,
Pune, India
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, Indian Institute of Integrative Medicine
(CSIR), Canal
Road, Jammu-180001, India
| |
Collapse
|
16
|
Neacsu C, Babes A. The M-channel blocker linopirdine is an agonist of the capsaicin receptor TRPV1. J Pharmacol Sci 2011; 114:332-40. [PMID: 21099148 DOI: 10.1254/jphs.10172fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Linopirdine is a well known blocker of voltage-gated potassium channels from the Kv7 (or KCNQ) family that generate the so called M current in mammalian neurons. Kv7 subunits are also expressed in pain-sensing neurons in dorsal root ganglia, in which they modulate neuronal excitability. In this study we demonstrate that linopirdine acts as an agonist of TRPV1 (transient receptor potential vanilloid type 1), another ion channel expressed in nociceptors and involved in pain signaling. Linopirdine induces increases in intracellular calcium concentration in human embryonic kidney 293 (HEK293) cells expressing TRPV1, but not TRPA1 and TRPM8 or in wild-type HEK293 cells. Linopirdine also activates an inward current in TRPV1-expressing HEK293 cells that is almost completely blocked by the selective TRPV1 antagonist capsazepine. At low concentrations linopirdine sensitizes both recombinant and native TRPV1 channels to heat, in a manner that is not prevented by the Kv7-channel opener flupirtine. Taken together, these results indicate that linopirdine exerts an excitatory action on mammalian nociceptors not only through inhibition of the M current but also through activation of the capsaicin receptor TRPV1.
Collapse
Affiliation(s)
- Cristian Neacsu
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Romania
| | | |
Collapse
|
17
|
Pharmacological and functional properties of TRPM8 channels in prostate tumor cells. Pflugers Arch 2010; 461:99-114. [PMID: 21052713 DOI: 10.1007/s00424-010-0895-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/09/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
Prostate cancer (PC) is a major health problem in adult males. TRPM8, a cationic TRP channel activated by cooling and menthol is upregulated in PC. However, the precise role of TRPM8 in PC is still unclear. Some studies hypothesized that TRPM8-mediated transmembrane Ca(2+) fluxes play a key role in cellular proliferation of PC cells. In contrast, other findings suggest that high TRPM8 levels may reduce the metastatic potential of PC cells. A detailed understanding of the response of TRPM8 channels to pharmacological modulators of their activity is relevant when considering potential therapies, targeting this ion channel to treat PC. We characterized the pharmacological and functional properties of native TRPM8 channels in four human prostate cell lines, PNT1A, LNCaP, DU145, and PC3, commonly used as experimental models of PC. PNT1A is a non-tumoral prostate cell line while the other three correspond to different stages of PC. Here, we show that cold- and agonist-evoked [Ca(2+)](i) responses in PC cells are much less sensitive to well-characterized agonists (menthol and icilin) and antagonists (BCTC, clotrimazole, and DD01050) of TRPM8 channels, compared to TRPM8 channels in other tissues, suggesting a different molecular composition and/or spatial organization. In addition, the forced overexpression of human TRPM8 facilitated the trafficking of TRPM8 channels residing in the endoplasmic reticulum to the plasma membrane, leading to a marked potentiation in the efficacy of the different blockers. These results predict that blockers of canonical TRPM8 channels may be less effective in halting proliferation of PC cells than expected.
Collapse
|
18
|
Acute and chronic effects of neurotrophic factors BDNF and GDNF on responses mediated by thermo-sensitive TRP channels in cultured rat dorsal root ganglion neurons. Brain Res 2009; 1284:54-67. [DOI: 10.1016/j.brainres.2009.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/05/2009] [Accepted: 06/06/2009] [Indexed: 11/22/2022]
|
19
|
Pennell T, Suchyna T, Wang J, Heo J, Felske JD, Sachs F, Hua SZ. Microfluidic chip to produce temperature jumps for electrophysiology. Anal Chem 2008; 80:2447-51. [PMID: 18302344 DOI: 10.1021/ac702169t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a microfluidic chip that provides rapid temperature changes and accurate temperature control of the perfusing solution to facilitate patch-clamp studies. The device consists of a fluid channel connected to an accessible reservoir for cell culture and patch-clamp measurements. A thin-film platinum heater was placed in the flow channel to generate rapid temperature change, and the temperature was monitored using a thin-film resistor. We constructed the thermal chip using SU-8 on a glass wafer to minimize the heat loss. The chip is capable of increasing the solution temperature from bath temperature (20 degrees C) to 80 degrees C at an optimum heating rate of 0.5 degrees C/ms. To demonstrate the ability of the thermal chip, we have conducted on-chip patch-clamp recordings of temperature-sensitive ion channels (TRPV1) transfected HEK293 cells. The heat-stimulated currents were observed using whole-cell and cell-attached patch configurations. The results demonstrated that the chip can provide rapid temperature jumps at the resolution of single-ion channels.
Collapse
Affiliation(s)
- Thomas Pennell
- Department of Mechanical and Aerospace Engineering, State University of New York-Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Madrid R, Donovan-Rodríguez T, Meseguer V, Acosta MC, Belmonte C, Viana F. Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J Neurosci 2006; 26:12512-25. [PMID: 17135413 PMCID: PMC6674899 DOI: 10.1523/jneurosci.3752-06.2006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) is the best molecular candidate for innocuous cold detection by peripheral thermoreceptor terminals. To dissect out the contribution of this cold- and menthol-gated, nonselective cation channel to cold transduction, we identified BCTC [N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide] as a potent and full blocker of recombinant TRPM8 channels. In cold-sensitive trigeminal ganglion neurons of mice and guinea pig, responses to menthol were abolished by BCTC. In contrast, the effect of BCTC on cold-evoked responses was variable but showed a good correlation with the presence or lack of menthol sensitivity in the same neuron, suggesting a specific blocking action of BCTC on TRPM8 channels. The biophysical properties of native cold-gated currents (I(cold)), and the currents blocked by BCTC were nearly identical, consistent with a role of this channel in cold sensing at the soma. The temperature activation threshold of native TRPM8 channels was significantly warmer than those reported in previous expression studies. The effect of BCTC on native I(cold) was characterized by a dose-dependent shift in the temperature threshold of activation. The role of TRPM8 in transduction was further investigated in the guinea pig cornea, a peripheral territory densely innervated with cold thermoreceptors. All cold-sensitive terminals were activated by menthol, suggesting the functional expression of TRPM8 channels in their membrane. However, the spontaneous activity and firing pattern characteristic of cold thermoreceptors was totally immune to TRPM8 channel blockade with BCTC or SKF96365 (1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride). Cold-evoked responses in corneal terminals were also essentially unaffected by these drugs, whereas responses to menthol were completely abolished. The minor impairment in the ability to transduce cold stimuli by peripheral corneal thermoreceptors during TRPM8 blockade unveils an overlapping functional role for various thermosensitive mechanisms in these nerve terminals.
Collapse
Affiliation(s)
- Rodolfo Madrid
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| | - Tansy Donovan-Rodríguez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| | - Victor Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| | - Mari Carmen Acosta
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| | - Carlos Belmonte
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| | - Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| |
Collapse
|
21
|
Linte RM, Ciobanu C, Reid G, Babes A. Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp Brain Res 2006; 178:89-98. [PMID: 17006682 DOI: 10.1007/s00221-006-0712-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 09/10/2006] [Indexed: 01/30/2023]
Abstract
The interaction between cold sensitivity and inflammation in mammals is not entirely understood. We have used adult rat dorsal root ganglion neurones in primary culture together with calcium microfluorimetry to assess the effects of selected inflammatory mediators on cold responses of cold- and menthol-sensitive (most likely TRPM8-expressing) neurones. We observed a high degree of functional co-expression of TRPM8, the receptors for the inflammatory agents bradykinin, prostaglandin E2 and histamine, and TRPA1 in cultured sensory neurones. Treatment with either bradykinin or prostaglandin E2 led to a reduction in the amplitude of the response to cooling and shifted the threshold temperature to colder values, and we provide evidence for a role of protein kinases C and A, respectively, in mediating these effects. In both cases the effects were mainly restricted to the subgroups of cold- and menthol-sensitive cells which had responded to the application of the inflammatory agents at basal temperature. This desensitization of cold-sensitive neurones may enhance inflammatory pain by removing the analgesic effects of gentle cooling.
Collapse
Affiliation(s)
- Ramona Madalina Linte
- Department of Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, Romania
| | | | | | | |
Collapse
|
22
|
Babes A, Zorzon D, Reid G. A novel type of cold‐sensitive neuron in rat dorsal root ganglia with rapid adaptation to cooling stimuli. Eur J Neurosci 2006; 24:691-8. [PMID: 16848799 DOI: 10.1111/j.1460-9568.2006.04941.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cold sensing in mammals is heterogeneous and more than one type of receptor molecule is likely to be involved in the transduction process. Most features of innocuous cold receptors have been explained by TRPM8, the cold and menthol receptor, but their fast adaptation to cooling has not yet been reproduced in cellular systems. In this study we have used a newly developed system for applying fast thermal stimuli to dissociated dorsal root ganglia (DRG) neurons from young rats (150-200 g) in primary culture. We describe a novel type of cold-sensitive rat DRG neuron with rapid adaptation to cooling. These cells (4.3% of the total DRG population) do not express either TRPM8 or the other cold-activated TRP channel, TRPA1, and the epithelial sodium channel (ENaC) is not involved in their transduction. Increases in intracellular calcium induced by cooling in rapidly adapting neurons are caused by calcium entry. These neurons express a large and rapidly adapting cold-induced inward current with a time constant of adaptation in the seconds range, and may correspond to the rapidly adapting cold receptors described in vivo.
Collapse
Affiliation(s)
- Alexandru Babes
- Department of Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, Romania.
| | | | | |
Collapse
|
23
|
Pena F, Amuzescu B, Neaga E, Flonta ML. Thermodynamic properties of hyperpolarization-activated current (Ih) in a subgroup of primary sensory neurons. Exp Brain Res 2006; 173:282-90. [PMID: 16676167 DOI: 10.1007/s00221-006-0473-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/24/2006] [Indexed: 11/25/2022]
Abstract
Ih is a poorly selective cation current that activates upon hyperpolarization, present in various types of neurons. Our aim was to perform a detailed thermodynamic analysis of Ih gating kinetics, in order to assess putative structural changes associated with its activation and deactivation. To select dorsal root ganglia neurons that exhibit large Ih, we applied a current signature method by Petruska et al. (J Neurophysiol 84:2365-2379, 2000) and found appropriate neurons in cluster 4. Currents elicited by 3,000-ms hyperpolarizing pulses at 25 and 33 degrees C were fitted with double exponential functions, yielding time constants similar to those of HCN1. The fast activation and deactivation rates showed temperature coefficients (Q10) of 2.9 and 3.1, respectively, while Q10 of the absolute conductance was 1.3. Using the Arrhenius-Eyring formalism we computed heights of voltage-independent Gibbs free energy and entropy barriers for each rate. The free energy barriers of the fast rates were just approximately 2RT units lower than those of the corresponding slow rates (31.3 vs. 33.2RT for activation, and 24.7 vs. 25.8RT for deactivation, at 25 degrees C). Interestingly, the entropy barriers of the slow rates were negative: -15.2R units for activation and -11.9R units for deactivation, compared to 4.6 and 1.3R units, respectively, for the fast component. The equivalent gating charge (zg) (3.75 +/- 0.32, mean +/- SEM, at 25 degrees C) and half-activation potential (V1/2) (-70.0 +/- 1.3 mV at 25 degrees C) did not vary significantly with temperature.
Collapse
Affiliation(s)
- Florentina Pena
- Department of Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 76201, Romania
| | | | | | | |
Collapse
|
24
|
Dittert I, Benedikt J, Vyklický L, Zimmermann K, Reeh PW, Vlachová V. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J Neurosci Methods 2005; 151:178-85. [PMID: 16129494 DOI: 10.1016/j.jneumeth.2005.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/01/2005] [Accepted: 07/10/2005] [Indexed: 11/30/2022]
Abstract
We have developed an improved technique for fast cooling and heating of solutions superfusing isolated cells under patch-clamp or calcium imaging conditions. The system meets the requirements for studying temperature dependency of all kinds of ion channels, in particular temperature-gated ion channels. It allows the application of temperature changes within a range of 5-60 degrees C at maximum rates of -40 degrees C/s to 60 degrees C/s. Barrels filled with different solutions are connected to a manifold consisting of seven silica capillaries (320 microm inner diameter, i.d.). A common outlet consists of a glass capillary through which the solutions are applied onto the cell surface. The upper part of this capillary is embedded in a temperature exchanger driven by a miniature Peltier device which preconditions the temperature of the passing solution. The lower part of the capillary carries an insulated copper wire, densely coiled over a length of 7 mm, and connected to a dc current source for resistive heating. The Peltier device and the heating element are electrically connected to the headstage probe which is fixed on to a micromanipulator for positioning of the manifold. The temperature of the flowing solution is measured by a miniature thermocouple inserted into the common outlet capillary near to its orifice which is placed at a distance of less than 100 microm from the surface of the examined cell. The temperature is either manually controlled by voltage commands or adjusted via the digital-to-analog converter of a conventional data acquisition interface. Examples are given of using the device in patch-clamp studies on heterologously expressed TRPV1, TRPM8, and on cultured rat sensory neurons.
Collapse
Affiliation(s)
- Ivan Dittert
- Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
25
|
Reid G. ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch 2005; 451:250-63. [PMID: 16075243 DOI: 10.1007/s00424-005-1437-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 04/08/2005] [Indexed: 11/28/2022]
Abstract
Cooling is sensed by peripheral thermoreceptors, the main transduction mechanism of which is probably a cold- and menthol-activated ion channel, transient receptor potential (melastatin)-8 (TRPM8). Stronger cooling also activates another TRP channel, TRP (ankyrin-like)-1, (TRPA1), which has been suggested to underlie cold nociception. This review examines the roles of these two channels and other mechanisms in thermal transduction. TRPM8 is activated directly by gentle cooling and depolarises sensory neurones; its threshold temperature (normally approximately 26-31 degrees C in native neurones) is very flexible and it can adapt to long-term variations in baseline temperature to sensitively detect small temperature changes. This modulation is enabled by TRPM8's low intrinsic thermal sensitivity: it is sensitised to varying degrees by its cellular context. TRPM8 is not the only thermosensitive element in cold receptors and interacts with other ionic currents to shape cold receptor activity. Cold can also cause pain: the transduction mechanism is uncertain, possibly involving TRPM8 in some neurones, but another candidate is TRPA1 which is activated in expression systems by strong cooling. However, native neurones that appear to express TRPA1 respond very slowly to cold, and TRPA1 alone cannot account readily for cold nociceptor activity or cold pain in humans. Other, as yet unknown, mechanisms of cold nociception are likely.
Collapse
Affiliation(s)
- Gordon Reid
- Department of Animal Physiology and Biophysics Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 76201 Bucharest, Romania.
| |
Collapse
|
26
|
Babes A, Zorzon D, Reid G. Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur J Neurosci 2004; 20:2276-82. [PMID: 15525269 DOI: 10.1111/j.1460-9568.2004.03695.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cold sensing in mammals is not completely understood, although significant progress has been made recently with the cloning of two cold-activated ion channels, TRPM8 and TRPA1. We have used rat DRG neurons in primary culture and calcium fluorimetry to identify distinct populations of cold-sensitive neurons, which may underlie different functions. Menthol sensitivity clearly separated two classes of cold-responding neurons. One group was menthol-sensitive (MS), was activated at warmer temperatures and responded faster and with a larger increase in intracellular calcium concentration during cooling; the fraction of MS neurons in culture and their cold sensitivity were both increased in the presence of nerve growth factor. Neurons in the menthol-insensitive (MI) group required stronger cooling for activation than MS cells and neither their proportion nor their cold sensitivity were significantly altered by nerve growth factor. The two groups of cold-sensitive neurons also had different pharmacology. A larger fraction of MS cells were capsaicin-sensitive and coexpression of menthol and capsaicin sensitivity was observed in the absence of NGF. MI neurons were not stimulated by the super-cooling agent icilin or by the irritant mustard oil. Taken together these findings support a picture in which TRPM8 is the major player in detecting gentle cooling, while TRPA1 does not seem to be involved in cold sensing by MI neurons, at least in the temperature range between 32 and 12 degrees C.
Collapse
Affiliation(s)
- Alexandru Babes
- Department of Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenei 91-95, 76201 Bucharest, Romania.
| | | | | |
Collapse
|
27
|
Reid G, Babes A, Pluteanu F. A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol 2002; 545:595-614. [PMID: 12456837 PMCID: PMC2290674 DOI: 10.1113/jphysiol.2002.024331] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Accepted: 09/17/2002] [Indexed: 01/12/2023] Open
Abstract
Skin temperature is sensed by peripheral thermoreceptors. Using the neuronal soma in primary culture as a model of the receptor terminal, we have investigated the mechanisms of cold transduction in thermoreceptive neurones from rat dorsal root ganglia. Cold-sensitive neurones were pre-selected by screening for an increase in [Ca(2+)](i) on cooling; 49 % of them were also excited by 0.5 microM capsaicin. Action potentials and voltage-gated currents of cold-sensitive neurones were clearly distinct from those of cold-insensitive neurones. All cold-sensitive neurones expressed an inward current activated by cold and sensitised by (-)-menthol, which was absent from cold-insensitive neurones. This current was carried mainly by Na(+) ions and caused a depolarisation on cooling accompanied by action potentials, inducing voltage-gated Ca(2+) entry; a minor fraction of Ca(2+) entry was voltage-independent. Application of (-)-menthol shifted the threshold temperatures of the cold-induced depolarisation and the inward current to the same extent, indicating that the cold- and menthol-activated current normally sets the threshold temperature for depolarisation during cooling. The action of menthol was stereospecific, with the (+)-isomer being a less effective agonist than the (-)-isomer. Extracellular Ca(2+) modulated the cold- and menthol-activated current in a similar way to its action on intact cold receptors: lowered [Ca(2+)](o) sensitised the current, while raised [Ca(2+)](o) antagonised the menthol-induced sensitisation. During long cooling pulses the current showed adaptation, which depended on extracellular Ca(2+) and was mediated by a rise in [Ca(2+)](i). This adaptation consisted of a shift in the temperature sensitivity of the channel. In capsaicin-sensitive neurones, capsaicin application caused a profound depression of the cold-activated current. Inclusion of nerve growth factor in the culture medium shifted the threshold of the cold-activated current towards warmer temperatures. The current was blocked by 50 microM capsazepine and 100 microM SKF 96365. We conclude that the cold- and menthol-activated current is the major mechanism responsible for cold-induced depolarisation in DRG neurones, and largely accounts for the known transduction properties of intact cold receptors.
Collapse
Affiliation(s)
- Gordon Reid
- Department of Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 76201 Bucharest, Romania.
| | | | | |
Collapse
|
28
|
Reid G, Flonta ML. Ion channels activated by cold and menthol in cultured rat dorsal root ganglion neurones. Neurosci Lett 2002; 324:164-8. [PMID: 11988352 DOI: 10.1016/s0304-3940(02)00181-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cold- and menthol-activated ionic current has been described in sensory neurones, which probably has a role in temperature sensing. Here we describe the ion channels underlying this current. Cooling activated non-selective cation channels (conductance, about 22 pS; reversal potential, -4.2 mV) in outside-out patches from cold-sensitive rat dorsal root ganglion neurones, and their activity was strongly increased by menthol. The activation threshold was 17.9 degrees C, shifting to 24.3 degrees C in 100 microM (-)-menthol, about 10 degrees C colder than observed in intact neurones. Channels in excised patches did not adapt to sustained cooling, unlike the current in intact neurones. We conclude that the ion channels underlying the cold- and menthol-induced current are directly activated by these stimuli, although other modulatory factors appear to be important in determining threshold and adaptation.
Collapse
Affiliation(s)
- Gordon Reid
- Department of Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 76201 Bucharest, Romania.
| | | |
Collapse
|
29
|
Babes A, Amuzescu B, Krause U, Scholz A, Flonta ML, Reid G. Cooling inhibits capsaicin-induced currents in cultured rat dorsal root ganglion neurones. Neurosci Lett 2002; 317:131-4. [PMID: 11755257 DOI: 10.1016/s0304-3940(01)02443-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whole-cell and single-channel recordings from rat dorsal root ganglion neurones were used to investigate the temperature dependence of currents through the capsaicin receptor (vanilloid receptor 1, VR1). Reducing the temperature from 31 to 14 degrees C inhibited the current induced by 0.5 microM capsaicin by 80%. The Q(10) (temperature coefficient over a 10 degrees C range) of the whole-cell capsaicin-induced current was 2.3 between 10 and 30 degrees C. Single-channel recordings showed that this inhibition by cooling was due to a marked reduction in the open probability (Q(10)=8.2 between 10 and 30 degrees C). This effect can explain the pain relief and reduction in inflammation caused by strong cooling of the skin.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Capsaicin/pharmacology
- Cells, Cultured
- Cold Temperature
- Cryotherapy
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/physiology
- Hypothermia, Induced
- Inflammation/metabolism
- Inflammation/physiopathology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Nociceptors/cytology
- Nociceptors/drug effects
- Nociceptors/physiology
- Pain/metabolism
- Pain/physiopathology
- Pain Management
- Patch-Clamp Techniques
- Rats
- Rats, Wistar
- Receptors, Drug/drug effects
- Receptors, Drug/metabolism
- TRPV Cation Channels
Collapse
Affiliation(s)
- Alexandru Babes
- Department of Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 76201 Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
We sense the temperature of our skin and surroundings using specific thermoreceptors, which are sensitive to cold and warmth, but little is known about how these receptors transduce temperature into electrical activity. We have discovered an inward ionic current that is activated by moderate cooling in a small number of rat sensory neurons. This current has features that are found in intact cold receptors, including sensitization by menthol, adaptation upon sustained cooling, and modulation by calcium, and is likely to be important in cold sensing.
Collapse
Affiliation(s)
- G Reid
- Department of Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 76201 Bucharest, Romania.
| | | |
Collapse
|