1
|
Mavrovounis G, Skouroliakou A, Kalatzis I, Stranjalis G, Kalamatianos T. Over 30 Years of DiI Use for Human Neuroanatomical Tract Tracing: A Scoping Review. Biomolecules 2024; 14:536. [PMID: 38785943 PMCID: PMC11117484 DOI: 10.3390/biom14050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
In the present study, we conducted a scoping review to provide an overview of the existing literature on the carbocyanine dye DiI, in human neuroanatomical tract tracing. The PubMed, Scopus, and Web of Science databases were systematically searched. We identified 61 studies published during the last three decades. While studies incorporated specimens across human life from the embryonic stage onwards, the majority of studies focused on adult human tissue. Studies that utilized peripheral nervous system (PNS) tissue were a minority, with the majority of studies focusing on the central nervous system (CNS). The most common topic of interest in previous tract tracing investigations was the connectivity of the visual pathway. DiI crystals were more commonly applied. Nevertheless, several studies utilized DiI in a paste or dissolved form. The maximum tracing distance and tracing speed achieved was, respectively, 70 mm and 1 mm/h. We identified studies that focused on optimizing tracing efficacy by varying parameters such as fixation, incubation temperature, dye re-application, or the application of electric fields. Additional studies aimed at broadening the scope of DiI use by assessing the utility of archival tissue and compatibility of tissue clearing in DiI applications. A combination of DiI tracing and immunohistochemistry in double-labeling studies have been shown to provide the means for assessing connectivity of phenotypically defined human CNS and PNS neuronal populations.
Collapse
Affiliation(s)
- Georgios Mavrovounis
- Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (G.M.); (G.S.)
| | - Aikaterini Skouroliakou
- Department of Biomedical Engineering, The University of West Attica, 12243 Athens, Greece; (A.S.); (I.K.)
| | - Ioannis Kalatzis
- Department of Biomedical Engineering, The University of West Attica, 12243 Athens, Greece; (A.S.); (I.K.)
| | - George Stranjalis
- Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (G.M.); (G.S.)
- Hellenic Centre for Neurosurgery Research “Professor Petros S. Kokkalis”, 10675 Athens, Greece
| | - Theodosis Kalamatianos
- Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (G.M.); (G.S.)
- Hellenic Centre for Neurosurgery Research “Professor Petros S. Kokkalis”, 10675 Athens, Greece
- Clinical and Experimental Neuroscience Research Group, Department of Neurosurgery, National and Kapodistrian University of Athens, 10675 Athens, Greece
| |
Collapse
|
2
|
Gerhardt B, Klaue K, Eigen L, Schwarz J, Hecht S, Brecht M. DiI-CT-A bimodal neural tracer for X-ray and fluorescence imaging. CELL REPORTS METHODS 2023; 3:100486. [PMID: 37426763 PMCID: PMC10326349 DOI: 10.1016/j.crmeth.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/31/2023] [Accepted: 05/01/2023] [Indexed: 07/11/2023]
Abstract
Here, we present an X-ray-visible neural tracer, referred to as DiI-CT, which is based on the well-established lipophilic indocarbocyanine dye DiI, to which we conjugated two iodine atoms. The tracer is visible with microfocus computed tomography (microCT) imaging and shares the excellent fluorescent tracing properties of DiI. We document the discovery potential of DiI-CT by analyzing the vibrissa follicle-sinus complex, a structure where visual access is poor and 3D tissue structure matters and reveal innervation patterns of the intact follicle in unprecedented detail. In the brain, DiI-CT tracing holds promise for verification evaluation of indirect connectivity measures, such as diffusion tensor imaging. We conclude that the bimodal dye DiI-CT opens new avenues for neuroanatomy.
Collapse
Affiliation(s)
- Ben Gerhardt
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Kristin Klaue
- Department of Chemistry & IRIS/CSMB Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Lennart Eigen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Jutta Schwarz
- Department of Chemistry & IRIS/CSMB Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Stefan Hecht
- Department of Chemistry & IRIS/CSMB Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
- NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
| |
Collapse
|
3
|
Crespo C, Grau R. Analysis of Caenorhabditis elegans Aging-related Neurodegeneration in Chemosensory Neurons. Bio Protoc 2022; 12:e4473. [PMID: 35978572 PMCID: PMC9350917 DOI: 10.21769/bioprotoc.4473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 12/29/2022] Open
Abstract
Aging and neuronal deterioration constitute important risk factors for the development of neuronal-related diseases, such as different dementia. The nematode Caenorhabditis elegans has emerged as a popular model system for studying neurodegeneration diseases, due to its complete neuronal connectivity map. DiI is a red fluorescent dye that can fill the worm amphid neurons and enables the visualization of their neurodegeneration over time. This protocol provides an efficient, fast, and safe method to stain worm amphid neurons to highlight the chemosensory structures of live nematodes.
Collapse
Affiliation(s)
- Cira Crespo
- Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Suipacha 531, Rosario (2000), Argentina
| | - Roberto Grau
- Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Suipacha 531, Rosario (2000), Argentina
,
*For correspondence:
| |
Collapse
|
4
|
von Döhren J, Kuhl S. A simple method for long-term vital-staining of ciliated epidermal cells in aquatic larvae. J Biol Methods 2020; 7:e132. [PMID: 32577422 PMCID: PMC7300427 DOI: 10.14440/jbm.2020.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 11/23/2022] Open
Abstract
Observing the process of growth and differentiation of tissues and organs is of crucial importance for the understanding of the evolution of organs in animals. Unfortunately, it is notoriously difficult to continuously monitor developmental processes due to the extended time they take. Long-term labeling of the tissues of interest represents a promising alternative to raise these pivotal data. In the case of the prototroch, a band of ciliated cells typical of marine, planktotrophic trochophora larvae, we were able to apply a long-term fluorescent vital-staining to the prototroch cells that remains detectable throughout further larval life. We were able to stain ciliated cells of planktonic larvae from different spiralian clades by using long-chain dialkylcarbocyanine dyes that are detectable in different fluorescent emission spectra in combination with a non-ionic surfactant. The larvae survived and developed normally, their ciliated cells retaining the originally applied fluorescent labels. Combined with additional fluorescent staining of the larvae after fixation, we provide an easy, versatile, and broadly applicable method to investigate the processes of the differentiation of epidermal organs in various aquatic larvae.
Collapse
Affiliation(s)
- Jörn von Döhren
- Institute of Evolutionary Biology and Ecology, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Sabrina Kuhl
- Institute of Evolutionary Biology and Ecology, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
5
|
Courson JA, Smith I, Do T, Landry PT, Hargrave A, Behzad AR, Hanlon SD, Rumbaut RE, Smith CW, Burns AR. Serial block-face scanning electron microscopy reveals neuronal-epithelial cell fusion in the mouse cornea. PLoS One 2019; 14:e0224434. [PMID: 31721785 PMCID: PMC6853292 DOI: 10.1371/journal.pone.0224434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 11/28/2022] Open
Abstract
The cornea is the most highly innervated tissue in the body. It is generally accepted that corneal stromal nerves penetrate the epithelial basal lamina giving rise to intra-epithelial nerves. During the course of a study wherein we imaged corneal nerves in mice, we observed a novel neuronal-epithelial cell interaction whereby nerves approaching the epithelium in the cornea fused with basal epithelial cells, such that their plasma membranes were continuous and the neuronal axoplasm freely abutted the epithelial cytoplasm. In this study we sought to determine the frequency, distribution, and morphological profile of neuronal-epithelial cell fusion events within the cornea. Serial electron microscopy images were obtained from the anterior stroma in the paralimbus and central cornea of 8–10 week old C57BL/6J mice. We found evidence of a novel alternative behavior involving a neuronal-epithelial interaction whereby 42.8% of central corneal nerve bundles approaching the epithelium contain axons that fuse with basal epithelial cells. The average surface-to-volume ratio of a penetrating nerve was 3.32, while the average fusing nerve was smaller at 1.39 (p ≤ 0.0001). Despite this, both neuronal-epithelial cell interactions involve similarly sized discontinuities in the basal lamina. In order to verify the plasma membrane continuity between fused neurons and epithelial cells we used the lipophilic membrane tracer DiI. The majority of corneal nerves were labeled with DiI after application to the trigeminal ganglion and, consistent with our ultrastructural observations, fusion sites recognized as DiI-labeled basal epithelial cells were located at points of stromal nerve termination. These studies provide evidence that neuronal-epithelial cell fusion is a cell-cell interaction that occurs primarily in the central cornea, and fusing nerve bundles are morphologically distinct from penetrating nerve bundles. This is, to our knowledge, the first description of neuronal-epithelial cell fusion in the literature adding a new level of complexity to the current understanding of corneal innervation.
Collapse
Affiliation(s)
- Justin A. Courson
- University of Houston, College of Optometry, Houston, TX, United States of America
- * E-mail:
| | - Ian Smith
- University of Houston, College of Optometry, Houston, TX, United States of America
| | - Thao Do
- University of Houston, College of Optometry, Houston, TX, United States of America
| | - Paul T. Landry
- University of Houston, College of Optometry, Houston, TX, United States of America
| | - Aubrey Hargrave
- University of Houston, College of Optometry, Houston, TX, United States of America
| | - Ali R. Behzad
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Sam D. Hanlon
- University of Houston, College of Optometry, Houston, TX, United States of America
| | - Rolando E. Rumbaut
- Baylor College of Medicine, Children’s Nutrition Center, Houston, TX, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States of America
| | - C. Wayne Smith
- Baylor College of Medicine, Children’s Nutrition Center, Houston, TX, United States of America
| | - Alan R. Burns
- University of Houston, College of Optometry, Houston, TX, United States of America
- Baylor College of Medicine, Children’s Nutrition Center, Houston, TX, United States of America
| |
Collapse
|
6
|
Bernal L, Cisneros E, García-Magro N, Roza C. Immunostaining in whole-mount lipid-cleared peripheral nerves and dorsal root ganglia after neuropathy in mice. Sci Rep 2019; 9:8374. [PMID: 31182787 PMCID: PMC6558043 DOI: 10.1038/s41598-019-44897-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/23/2019] [Indexed: 12/31/2022] Open
Abstract
Immunohistochemical characterization of primary afferent fibers (intact or after nerve damage) is traditionally performed in thin sections from dorsal root ganglia (DRGs) or in teased fibers, as light scattering in whole-mounts compromises visualization. These procedures are time-consuming, require specific equipment and advanced experimental skills. Lipid-clearing techniques are increasing in popularity, but they have never been used for the peripheral nervous system. We established a modified, inexpensive clearing method based on lipid-removal protocols to make transparent peripheral nerve tissue (inCLARITY). We compared retrograde-labeling and free-floating immunostaining with cryo-sections. Confocal microscopy on whole-mount transparent DRGs showed neurons marked with retrograde tracers applied to experimental neuromas (Retrobeads, Fluoro-ruby, Fluoro-emerald, DiI, and Fluoro-gold). After immunostaining with calcitonin gene-related peptide (peptidergic) or isolectin IB4 (non-peptidergic), nociceptors were visualized. Immunostaining in transparent whole-mount nerves allows simultaneous evaluation of the axotomized branches containing the neuroma and neighboring intact branches as they can be mounted preserving their anatomical disposition and fiber integrity. The goal of our study was to optimize CLARITY for its application in peripheral nerve tissues. The protocol is compatible with the use of retrograde tracers and improves immunostaining outcomes when compared to classical cryo-sectioning, as lack of lipids maximizes antibody penetration within the tissue.
Collapse
Affiliation(s)
- L Bernal
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, 28871, Madrid, Spain
| | - E Cisneros
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, 28871, Madrid, Spain.,Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain
| | - N García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029, Madrid, Spain
| | - C Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, 28871, Madrid, Spain.
| |
Collapse
|
7
|
Daly DT, Ariel M. A novel cerebellar commissure and other myelinated axons in the Purkinje cell layer of a pond turtle (Trachemys scripta elegans). J Comp Neurol 2018; 526:2802-2823. [PMID: 30173417 DOI: 10.1002/cne.24528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022]
Abstract
Parallel fibers in the molecular layer of the vertebrate cerebellum mediate slow spike conduction in the transverse plane. In contrast, electrophysiological recordings have indicated that rapid spike conduction exists between the lateral regions of the cerebellar cortex of the red-ear pond turtle (Trachemys scripta). The anatomical basis for this commissure is now examined in that species using neuronal tracing techniques. Fluorescently tagged dextrans and lipophilic carbocyanine dyes placed in one lateral edge of this nonfoliated cortex are transported across the midline of living brains in vitro and along the axonal membranes of fixed tissues, respectively. Surprisingly, the labeled commissural axons traversed the cortex within the Purkinje cell layer, and not in the white matter of the molecular layer or the white matter below the granule cell layer. Unlike thin parallel fibers that exhibit characteristic varicosities, this commissure is composed of smooth axons of large diameter that also extend beyond the cerebellar cortex via the cerebellar peduncles. Double labeling with myelin basic protein antibody demonstrated that these commissural axons are ensheathed with myelin. In contrast to this transverse pathway, an orthogonal myelinated tract was observed along the cerebellar midline. The connections of this transverse commissure with the lateral cerebellum, the vestibular nuclear complex, and the cochlear vestibular ganglia indicate that this commissure plays a role in bilateral vestibular connectivity.
Collapse
Affiliation(s)
- Daniel T Daly
- Center for Anatomical Sciences and Education, Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Michael Ariel
- Center for Anatomical Sciences and Education, Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri.,Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Caria MA, Biagi F, Mameli O. The mesencephalic-hypoglossal nuclei loop as a possible central pattern generator for rhythmical whisking in rats. Exp Brain Res 2018; 236:2899-2911. [PMID: 30073387 DOI: 10.1007/s00221-018-5347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 07/26/2018] [Indexed: 11/25/2022]
Abstract
It has been previously demonstrated that the Me5 nucleus is involved in the genesis of reflex activities at whisker pad level. Specific Me5 neurons, which provide sensory innervation of the macrovibrissae, are monosynaptically connected with small hypoglossal neurons innervating the extrinsic muscles that control macrovibrissal movements. Artificial whisking, induced by the electrical stimulation of the peripheral stump of the facial nerve and the electrical stimulation of the XII nucleus or the infraorbital nerve, induced evoked responses in the whisker pad extrinsic motor units, along with a significant increase in the electromyographic activity of the extrinsic pad muscles (Mameli et al. in Acta Oto-Laryngol 126:1334-1338, 2006; in Pfűgers Arch Eur J Physiol 456:1189-1198, 2008; in Brain Res 1283:34-40, 2009; in Exp Brain Res 234:753-761, 2016). In anaesthetized rats, we evaluated the possible involvement of this Me5-XII loop in the genesis of rhythmical whisking. The anatomical findings showed that in addition to the ipsilateral, even the contralateral Me5 nucleus could be retrogradely labeled by the Dil tracer injected into the whisker pad of one side, they, furthermore, showed labeled axons extending across the midline between the two nuclei. The electrophysiological findings agreed with the neuroanatomical results, since the mechanical or artificially induced deflection of the whiskers of one side, evoked in the Me5 contralateral nucleus different patterns of responses. The hypothesis that the Me5-XII loops, along with their cross-linked relationship, could act as a "central generator" responsible for the stereotyped symmetrical pattern of macrovibrissal movements such as rhythmical whisking has been discussed.
Collapse
Affiliation(s)
- Marcello Alessandro Caria
- Human Physiology Division, Department of Clinical and Experimental Medicine, Università degli Studi di Sassari, Sassari, Italy
| | - Francesca Biagi
- Anatomy of Domestic Animals Division, Department of Veterinary Medicine, Università degli Studi di Sassari, Sassari, Italy
| | - Ombretta Mameli
- Human Physiology Division, Department of Clinical and Experimental Medicine, Università degli Studi di Sassari, Sassari, Italy.
| |
Collapse
|
9
|
Abstract
Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain.
Collapse
Affiliation(s)
- Hei Ming Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Wai-Lung Ng
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Steve M Gentleman
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Joint Laboratory of Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Abstract
OBJECTIVES Axon tracers provide crucial insight into the development, connectivity, and function of neural pathways. A tracer can be characterized as a substance that allows for the visualization of a neuronal pathway. Axon tracers have previously been used exclusively with in vivo studies; however, newer methods of axon tracing can be applied to ex vivo studies. Ex vivo studies involve the examination of cells or tissues retrieved from an organism. These post mortem methods of axon tracing offer several advantages, such as reaching inaccessible tissues and avoiding survival surgeries. METHODS In order to evaluate the quality of the ex vivo tracing methods, we performed a systematic review of various experimental and comparison studies to discern the optimal method of axon tracing. RESULTS The most prominent methods for ex vivo tracing involve enzymatic techniques or various dyes. It appears that there are a variety of techniques and conditions that tend to give better fluorescent character, clarity, and distance traveled in the neuronal pathway. We found direct comparison studies that looked at variables such as the type of tracer, time required, effect of temperature, and presence of calcium, however, there are other variables that have not been compared directly. DISCUSSION We conclude there are a variety of promising tracing methods available depending on the experimental goals of the researcher, however, more direct comparison studies are needed to affirm the optimal method.
Collapse
Affiliation(s)
| | - Matthew B Jensen
- a Department of Neurology , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
11
|
Hagino-Yamagishi K, Nakazawa H. Involvement of Gα(olf)-expressing neurons in the vomeronasal system of Bufo japonicus. J Comp Neurol 2012; 519:3189-201. [PMID: 21618228 DOI: 10.1002/cne.22671] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most terrestrial vertebrates possess anatomically distinct olfactory organs: the olfactory epithelium (OE) and the vomeronasal organ (VNO). In rodents, olfactory receptors coupled to Gα(olf) are expressed in the OE, whereas vomeronasal receptors type 1 (V1R) and vomeronasal receptors type 2 (V2R), coupled to Gα(i2) and Gα(o) , respectively, are expressed in the VNO. These receptors and G proteins are thought to play important roles in olfactory perception. However, we previously reported that only V2R and Gα(o) expression is detected in the Xenopus laevis VNO. As X. laevis spends its entire life in water, we considered that expression of limited types of chemosensory machinery in the VNO might be due to adaptation of the VNO to aquatic life. Thus, we analyzed the expression of G proteins in the VNO and the accessory olfactory bulb (AOB) of the adult Japanese toad, Bufo japonicus, because this species is well adapted to a terrestrial life. By using immunohistochemical analysis in combination with in situ hybridization and DiI labeling, we found that B. japonicus Gα(olf) and Gα(o) were expressed in the apical and middle-to-basal layer of the vomeronasal neuroepithelium, and that the axons of these Gα(olf) - and Gα(o) -expressing vomeronasal neurons projected to the rostral and caudal accessory olfactory bulb, respectively. These results strongly suggest that both the Gα(olf) - and Gα(o) -mediated signal transduction pathways function in the B. japonicus VNO. The expression of Gα(olf) in the B. japonicus VNO may correlate with the detection of airborne chemical cues and with a terrestrial life.
Collapse
Affiliation(s)
- Kimiko Hagino-Yamagishi
- Integrated Neuroscience Research Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | |
Collapse
|
12
|
Yáñez J, Folgueira M, Köhler E, Martínez C, Anadón R. Connections of the terminal nerve and the olfactory system in two galeomorph sharks: an experimental study using a carbocyanine dye. J Comp Neurol 2012; 519:3202-17. [PMID: 21618231 DOI: 10.1002/cne.22674] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In elasmobranchs the terminal nerve courses separately from the olfactory nerve. This characteristic makes elasmobranchs excellent models to study the anatomy and function of these two systems. Here we study the neural connections of the terminal nerve and olfactory system in two sharks by experimental tracing methods using carbocyanine dyes. The main projections from the terminal nerve system (consisting of three ganglia in Scyliorhinus canicula) course ipsilaterally to the medial septal nucleus and bilaterally to the ventromedial telencephalic pallial region. Minor terminal nerve projections were also traced ipsilaterally to diencephalic and mesencephalic levels. With regard to the olfactory connections, our results show that in sharks, unlike ray-finned fishes, the primary olfactory projections are mainly restricted to the olfactory bulb. We also performed tracer application to the olfactory bulb in order to analyze the possible central neuroanatomical relationship between the projections of the terminal nerve and the olfactory bulb. In these experiments labeled neurons and fibers were observed from telencephalic to caudal mesencephalic regions. However, we observe almost no overlap between the two systems at central levels. The afferent and the putatively efferent connections of the dogfish olfactory bulb are compared with those previously reported in other elasmobranchs. The significance of the extratelencephalic secondary olfactory projections is also discussed in a comparative context.
Collapse
Affiliation(s)
- Julián Yáñez
- Department of Cell and Molecular Biology, University of A Coruña, E-15008 A Coruña, Spain.
| | | | | | | | | |
Collapse
|
13
|
Murphy MC, Fox EA. Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. J Comp Neurol 2010; 518:2934-51. [PMID: 20533354 DOI: 10.1002/cne.22372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vagal sensory neurons are dependent on neurotrophins for survival during development. Here, the contribution of brain-derived neurotrophic factor (BDNF) to survival and other aspects of gastric vagal afferent development was investigated. Post-mortem anterograde tracing with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbo-cyanine perchlorate (DiI) was used to label selectively vagal projections to the stomach on postnatal days (P) 0, 3, 4, and 6 in wild types and heterozygous or homozygous BDNF mutants. Sampling sites distributed throughout the ventral stomach wall were scanned with a confocal microscope, and vagal axon bundles, single axons, putative mechanoreceptor precursors (intraganglionic laminar endings, IGLEs; intramuscular arrays, IMAs), and efferent terminals were quantified. Also, myenteric neurons, which are innervated by IGLEs, were stained with cuprolinic blue and counted. Quantitative comparisons across wild-type stomach compartments demonstrated that the adult distribution of IMAs was not present at P0 but began to form by P3-6. Among all the quantified elements, at P0, only IGLE density was significantly different in homozygous mutants compared with wild types, exhibiting a 50% reduction. Also, antrum innervation appeared disorganized, and some putative IMA precursors had truncated telodendria. At P3-6, the effect on IGLEs had recovered, the disorganization of antrum innervation had partially recovered, and some IMA telodendria were still truncated. The present results suggest that gastric IGLEs are among the vagal sensory neurons dependent on BDNF for survival or axon guidance. Alternatively, BDNF deficiency may delay gastric IGLE development. Also, BDNF may contribute to IMA differentiation and patterning of antral vagal innervation.
Collapse
Affiliation(s)
- Michelle C Murphy
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
14
|
Lipoprotein mediated lipid uptake in oocytes of polychaetes (Annelida). Cell Tissue Res 2009; 337:341-8. [PMID: 19533173 DOI: 10.1007/s00441-009-0817-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/04/2009] [Indexed: 11/27/2022]
Abstract
The uptake of the 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled sex-unspecific Nereis lipoprotein was investigated in oocytes of the nereidid polychaetes Nereis virens and Platynereis dumerilii. The fluorescence label was first observed in endocytic vesicles (<1 microm diameter), which later fused to larger vesicles (2-3 microm); these were finally incorporated into existing unlabeled yolk granules (5-6 microm). In Platynereis oocytes, the fusion of endocytic vesicles was delayed in oocytes at their final stage of development compared with those at an early stage of development. Lipoprotein double-labeled with fluorescein isothiocyanate (FITC) and DiI revealed that both the protein and the lipid moiety remained co-localized during incorporation into the yolk granules of the oocyte. No labeling of the cytoplasmic lipid droplets was observed. In N. virens, unlabeled Nereis lipoprotein was effective as a competitive inhibitor of DiI-labeled Nereis lipoprotein. Ligand blot experiments demonstrated the presence of a lipoprotein receptor with an apparent molecular mass of 120 kDa, which is different from that of the known yolk protein receptor. This indicates the presence, in the polychaete oocyte, of two distinct receptors mediating yolk protein and lipoprotein uptake, respectively. Thus, the sex-unspecific lipoprotein contributes to the lipid supply of the growing oocyte in addition to the known uptake of the yolk-protein-associated lipids. The absence of label in the cytoplasmic lipid droplets, even after prolonged incubation with labeled lipoprotein, suggests that these lipids arise either by the breakdown and resynthesis of lipoprotein-derived lipids and/or by de novo synthesis within the oocyte.
Collapse
|
15
|
Alpeeva EV, Makarenko IG. Perinatal development of the mammillothalamic tract and innervation of the anterior thalamic nuclei. Brain Res 2008; 1248:1-13. [PMID: 19026995 DOI: 10.1016/j.brainres.2008.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 01/07/2023]
Abstract
Axonal projections originating from the mammillary bodies represent important pathways that are essential for spatial information processing. Mammillothalamic tract is one of the main efferent projection systems of the mammillary body belonging to the limbic "Papez circuit". This study was aimed to describe the schedule of the mammillothalamic tract development in the rat using carbocyanine dye tracing. It was shown for the first time that fibers of the mammillothalamic tract being the collaterals of the mammillotegmental tract axons start bifurcating from the mammillotegmental tract on E17. The axons of the mammillothalamic tract grow simultaneously and reach the ventral region of the anterior thalamus where they form first terminal arborizations on E20-E21. Ipsilateral projections from the medial mammillary nucleus to the anteromedial and anteroventral thalamic nuclei develop from E20 to P6. Bilateral projections from the lateral mammillary nucleus to the anterodorsal thalamic nuclei develop later, on P3-P6, after the formation of the thalamic decussation of the mammillary body axons. Unique spatial and temporal pattern of the perinatal development of ascending mammillary body projections to the anterior thalamic nuclei may reflect the importance of these connections within the limbic circuitry.
Collapse
Affiliation(s)
- E V Alpeeva
- Optical Research Group, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., 119334 Moscow, Russian Federation
| | | |
Collapse
|
16
|
Jensen-Smith H, Gray B, Muirhead K, Ohlsson-Wilhelm B, Fritzsch B. Long-distance three-color neuronal tracing in fixed tissue using NeuroVue dyes. Immunol Invest 2008; 36:763-89. [PMID: 18161528 PMCID: PMC2430174 DOI: 10.1080/08820130701706711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dissecting development of neuronal connections is critical for understanding neuronal function in both normal and diseased states. Charting the development of the multitude of connections is a monumental task, since a given neuron typically receives hundreds of convergent inputs from other neurons and provides divergent outputs for hundreds of other neurons. Although progress is being made utilizing various mutants and/or genetic constructs expressing fluorescent proteins like GFP, substantial work remains before a database documenting the development and final location of the neuronal pathways in an adult animal is completed. The vast majority of developing neurons cannot be specifically labeled with antibodies and making specific GFP-expressing constructs to tag each of them is an overwhelming task. Fortunately, fluorescent lipophilic dyes have emerged as very useful tools to systematically compare changes in neuronal networks between wild-type and mutant mice. These dyes diffuse laterally along nerve cell membranes in fixed preparations, allowing tracing of the position of a given neuron within the neuronal network in murine mutants fixed at various stages of development. Until recently, however, most evaluations have been limited to one, or at most, two color analyses. We have previously reported three color neuronal profiling using the novel lipophilic dyes NeuroVue (NV) Green, Red and Maroon (Fritzsch et al., Brain. Res. Bull. 66: 249-258, 2005). Unfortunately such three color experiments have been limited by the fact that NV Green and its brighter successor, NV Emerald, both exhibit substantially decreased signal intensities when times greater than 48 hours at 37 degrees C are required to achieve neuronal profile filling (unpublished observations). Here we describe a standardized test system developed to allow comparison of candidate dyes and its use to evaluate a series of 488 nm-excited green-emitting lipophilic dyes. The best of these, NV Jade, has spectral properties well matched to NV Red and NV Maroon, better solubility in DMF than DiO or DiA, improved thermostability compared with NV Emerald, and the ability to fill neuronal profiles at rates of 1 mm per day for periods of at least 5 days. Use of NV Jade in combination with NV Red and NV Maroon substantially improves the efficiency of connectional analysis in complex mutants and transgenic models where limited numbers of specimens are available.
Collapse
|
17
|
Gabriele ML, Shahmoradian SH, French CC, Henkel CK, McHaffie JG. Early segregation of layered projections from the lateral superior olivary nucleus to the central nucleus of the inferior colliculus in the neonatal cat. Brain Res 2007; 1173:66-77. [PMID: 17850770 PMCID: PMC2075569 DOI: 10.1016/j.brainres.2007.07.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 11/18/2022]
Abstract
The central nucleus of the inferior colliculus (IC) is a laminated structure that receives multiple converging afferent projections. These projections terminate in a layered arrangement and are aligned with dendritic arbors of the predominant disc-shaped neurons, forming fibrodendritic laminae. Within this structural framework, inputs terminate in a precise manner, establishing a mosaic of partially overlapping domains that likely define functional compartments. Although several of these patterned inputs have been described in the adult, relatively little is known about their organization prior to hearing onset. The present study used the lipophilic carbocyanine dyes DiI and DiD to examine the ipsilateral and contralateral projections from the lateral superior olivary (LSO) nucleus to the IC in a developmental series of paraformaldehyde-fixed kitten tissue. By birth, the crossed and uncrossed projections had reached the IC and were distributed across the frequency axis of the central nucleus. At this earliest postnatal stage, projections already exhibited a characteristic banded arrangement similar to that described in the adult. The heaviest terminal fields of the two inputs were always complementary in nature, with the ipsilateral input appearing slightly denser. This early arrangement of interdigitating ipsilateral and contralateral LSO axonal bands that occupy adjacent sublayers supports the idea that the initial establishment of this highly organized mosaic of inputs that defines distinct synaptic domains within the IC occurs largely in the absence of auditory experience. Potential developmental mechanisms that may shape these highly ordered inputs prior to hearing onset are discussed.
Collapse
Affiliation(s)
- Mark L Gabriele
- James Madison University, Department of Biology, MSC 7801, Harrisonburg, VA 22807, USA.
| | | | | | | | | |
Collapse
|
18
|
Murphy MC, Fox EA. Anterograde tracing method using DiI to label vagal innervation of the embryonic and early postnatal mouse gastrointestinal tract. J Neurosci Methods 2007; 163:213-25. [PMID: 17418900 PMCID: PMC1974840 DOI: 10.1016/j.jneumeth.2007.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 03/01/2007] [Accepted: 03/04/2007] [Indexed: 11/18/2022]
Abstract
The mouse is an extremely valuable model for studying vagal development in relation to strain differences, genetic variation, gene manipulations or pharmacological manipulations. Therefore, a method using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was developed for labeling vagal innervation of the gastrointestinal (GI) tract in embryonic and postnatal mice. DiI labeling was adapted and optimized for this purpose by varying several facets of the method. For example, insertion and crushing of DiI crystals into the nerve led to faster DiI diffusion along vagal axons and diffusion over longer distances as compared with piercing the nerve with a micropipette tip coated with dried DiI oil. Moreover, inclusion of EDTA in the fixative reduced leakage of DiI out of nerve fibers that occurred with long incubations. Also, mounting labeled tissue in PBS was superior to glycerol with n-propyl gallate, which resulted in reduced clarity of DiI labeling that may have been due to DiI leaking out of fibers. Optical sectioning of flattened wholemounts permitted examination of individual tissue layers of the GI tract wall. This procedure aided identification of nerve ending types because in most instances each type innervates a different tissue layer. Between embryonic day 12.5 and postnatal day 8, growth of axons into the GI tract, formation and patterning of fiber bundles in the myenteric plexus and early formation of putative afferent and efferent nerve terminals were observed. Thus, the DiI tracing method developed here has opened up a window for investigation during an important phase of vagal development.
Collapse
Affiliation(s)
- Michelle C Murphy
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
19
|
Kouki T, Yamanouchi K. Postnatal development of septal projections to the midbrain central gray in female rats: tract-tracing analysis with DiI. Neurosci Lett 2006; 411:37-41. [PMID: 17110037 DOI: 10.1016/j.neulet.2006.09.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/14/2006] [Accepted: 09/05/2006] [Indexed: 11/20/2022]
Abstract
The neural projection of the lateral septum (LS) to the rostral mesencephalic central gray (MCG) is sexually dimorphic and plays an important role in inhibiting female reproductive behavior. In this experiment, development of the LS-MCG connection from birth to 15 days after birth was examined in female rats by a tract-tracing method with DiI. On the birth day (D1 rat), and 5, 10 or 15 days after birth (D5, D10 or D15 rat, respectively) or 8 weeks after birth (adult), the brain was fixed by perfusion of a mixture of 4% PFA and 0.1% glutaraldehyde. DiI was pasted on the coronally cut-surface of the LS and the sample was incubated in PFA at 40 degrees C for up to 4 months. After incubation, 200-microm frozen parasagittal sections were prepared and observed by fluorescence microscopy. As a result, numerous DiI labeled fibers were found in the preoptic area, the anterior and posterior hypothalamus, and the MCG in adult rats. In D1 rats, several labeled axons extended caudal to the anterior hypothalamic area. In D5 rats, a few labeled fibers reached the MCG. Some labeled fibers were observed in the rostral MCG of D10 rats. In D15 rats, a considerable number of labeled fibers were seen to reach the rostral MCG and relative density of the fibers was comparable to that of adult. These results suggest that the neural pathway from the LS to the rostral MCG develops acutely during the period from 5-10 days up to more than 15 days after birth.
Collapse
Affiliation(s)
- Tom Kouki
- Neuroendocrinology, Department of Human Behavior and Environment Sciences, Faculty of Human Sciences, Waseda University, 2-579-15, Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | | |
Collapse
|
20
|
Gabriele ML, Smoot JE, Jiang H, Stein BE, McHaffie JG. Early establishment of adult-like nigrotectal architecture in the neonatal cat: a double-labeling study using carbocyanine dyes. Neuroscience 2005; 137:1309-19. [PMID: 16359814 DOI: 10.1016/j.neuroscience.2005.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
Virtually nothing is known about the ontogeny of substantia nigra, pars reticulata projections to the midbrain superior colliculus, even though this pathway is critical for the basal ganglia modulation of midbrain-mediated visuomotor behaviors. The present studies used the lipophilic carbocyanine dyes 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and 1,1'-dioctodecyl-3,3,3',3'-tetramethylindodi, 4-chlorobenzenesulfonate salt to examine the crossed and uncrossed nigrotectal projections in neonatal cats, from parturition to 14 days postnatal (the technical limits of the tracing technique). In retrograde experiments, paired placement of the dyes in each superior colliculus produced numerous retrogradely-labeled nigrotectal neurons, with the uncrossed neurons far out numbering their crossed counterparts. No double-labeled neurons were observed, indicating that crossed and uncrossed nigrotectal neurons are segregated at birth. In anterograde experiments, dye placements into each substantia nigra, pars reticulata resulted in an iterative series of labeled patches, aligned medial-to-lateral across the intermediate and deep superior colliculus, a pattern reminiscent of the adult. Uncrossed neonatal axons had simple linear morphologies with few branch points; by contrast, crossed axons displayed more extensive terminal arbors that were distributed diffusely throughout the rostrocaudal extent of the contralateral superior colliculus In the final series of experiments, one dye was placed unilaterally in the substantia nigra, pars reticulata, while the second dye was positioned in the predorsal bundle, in order to bilaterally label superior colliculus output neurons. Although both crossed and uncrossed axons appeared to have contacted superior colliculus output neurons, crossed axons preferentially targeted the soma and proximal dendrites, whereas uncrossed terminals were distributed more distally. Throughout this early postnatal period, no significant changes in cellular morphologies or gross modification of terminal projection patterns were observed; however, the presence of growth cones in even the oldest animals studied suggests that the refinement of the nigrotectal projections extends well into postnatal life. Nevertheless, the segregation of crossed and uncrossed nigrotectal neurons into a highly organized afferent mosaic that has established synaptic contacts with superior colliculus output neurons indicates that many of the salient features characterizing nigrotectal projections are established prior to the onset of visual experience.
Collapse
Affiliation(s)
- M L Gabriele
- James Madison University, Department of Biology, MSC 7801, Harrisonburg, VA 22807, USA
| | | | | | | | | |
Collapse
|
21
|
Gaudin A, Gascuel J. 3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis. J Comp Neurol 2005; 489:403-24. [PMID: 16025461 DOI: 10.1002/cne.20655] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adult Xenopus presents the unique capability to smell odors both in water and air thanks to two different olfactory pathways. Nevertheless, the tadpole can initially perceive only water-borne odorants, as the olfactory receptor neurons (ORN) that will detect air-borne odorants develop later. Such a phenomenon requires major reorganization processes. Here we focused on the precise description of the neuroanatomical modifications occurring in the olfactory bulb (OB) of the tadpole throughout metamorphosis. Using both carbocyanine dyes and lectin staining, we investigated the evolution of ORN projection patterns into the OB from Stages 47 to 66, thus covering the period of time when all the modifications take place. Although our results confirm previous works (Reiss and Burd [1997] Semin Cell Dev Biol 8:171-179), we showed for the first time that the main olfactory bulb (MOB) is subdivided into seven zones at Stage 47 plus the accessory olfactory bulb (AOB). These seven zones receive fibers dedicated to aquatic olfaction ("aquatic fibers") and are conserved until Stage 66. At Stage 48 the first fibers dedicated to the aerial olfaction constitute a new dorsomedial zone that grows steadily, pushing the seven original zones ventrolaterally. Only the part of the OB receiving aquatic fibers is fragmented, reminiscent of the organization described in fish. This raises the question of whether such an organization in zones constitutes a plesiomorphy or is linked to aquatic olfaction. We generated a 3D atlas at several stages which are representative of the reorganization process. This will be a useful tool for future studies of development and function.
Collapse
Affiliation(s)
- Arnaud Gaudin
- Centre des Sciences du Goût (Unité Mixte de Recherche 5170 Centre National de la Recherche Scientifique-Université de Bourgogne-Institut National de la Recherche Agronomique), F-21000 Dijon, France
| | | |
Collapse
|
22
|
Mimura T, Amano S, Usui T, Araie M, Ono K, Akihiro H, Yokoo S, Yamagami S. Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats. Exp Eye Res 2004; 79:231-7. [PMID: 15325570 DOI: 10.1016/j.exer.2004.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2004] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
PURPOSE The feasibility of corneal reconstruction with cultured adult human corneal endothelial cells (HCEC) was examined in a nude rat model. METHODS Endothelial cells were removed from the corneas of Lewis rats using a sterile cotton swab. Cultured adult HCEC labelled with a fluorescent marker chloromethyl-benzamidodialkylcarbocyanine (CM-Dil) were seeded onto the denuded Descemet's membrane. Then the corneas were centrifuged, incubated for 2 days, and transplanted into the eyes of nude rats using the penetrating keratoplasty technique (HCEC group). Control nude received corneas denuded of endothelium and without HCEC. The operated eyes were observed for 28 days after transplantation, and then were subjected to histological and fluorescein microscopic examination. RESULTS The mean corneal thickness was significantly smaller in the HCEC group than in the control group throughout the observation period. The corneal endothelial cell density of the grafts at 28 days postoperatively ranged from 2425 to 3250 cells mm(-2) (mean+/-sd, 2744+/-337 cells mm(-2)). Fluorescein microscopy at 28 days after surgery showed numerous DiI-labelled cells on the posterior corneal surface in the HCEC group. Frozen sections showed a monolayer of DiI-labelled cells on Descemet's membrane. CONCLUSIONS Cultured adult HCEC function well and maintain corneal transparency for 1 month after transplantation in nude rats.
Collapse
Affiliation(s)
- Tatsuya Mimura
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rink E, Wullimann MF. Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res 2004; 1011:206-20. [PMID: 15157807 DOI: 10.1016/j.brainres.2004.03.027] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2004] [Indexed: 11/27/2022]
Abstract
Connections of the medial precommissural subpallial ventral telencephalon, i.e., dorsal (Vd, interpreted as part of striatum) and ventral (Vv, interpreted as part of septum) nuclei of area ventralis telencephali, were studied in the zebrafish (Danio rerio) using two tracer substances (DiI or biocytin). The following major afferent nuclei to Vd/Vv were identified: medial and posterior pallial zones of dorsal telencephalic area, and the subpallial supracommissural and postcommissural nuclei of the ventral telencephalic area, the olfactory bulb, dorsal entopeduncular, anterior and posterior parvocellular preoptic and suprachiasmatic nuclei, anterior, dorsal and central posterior dorsal thalamic, as well as rostrolateral nuclei, periventricular nucleus of the posterior tuberculum, posterior tuberal nucleus, various tuberal hypothalamic nuclei, dorsal tegmental nucleus, superior reticular nucleus, locus coeruleus, and superior raphe nucleus. Efferent projections of the ventral telencephalon terminate in the supracommissural nucleus of area ventralis telencephali, the posterior zone of area dorsalis telencephali, habenula, periventricular pretectum, paracommissural nucleus, posterior dorsal thalamus, preoptic region, midline posterior tuberculum (especially the area dorsal to the posterior tuberal nucleus), tuberal (midline) hypothalamus and interpeduncular nucleus. Strong reciprocal interconnections likely exist between septum and preoptic region/midline hypothalamus and between striatum and dorsal thalamus (dopaminergic) posterior tuberculum. Regarding ascending activating/modulatory systems, the pallium shares with the subpallium inputs from the (noradrenergic) locus coeruleus, and the (serotoninergic) superior raphe, while the subpallium additionally receives such inputs from the (dopaminergic) posterior tuberculum, the (putative cholinergic) superior reticular nucleus, and the (putative histaminergic) caudal hypothamalic zone.
Collapse
Affiliation(s)
- Elke Rink
- Brain Research Institute, University of Bremen, 28334, Bremen, Germany.
| | | |
Collapse
|
24
|
Jin K, Mao XO, Cottrell B, Schilling B, Xie L, Row RH, Sun Y, Peel A, Childs J, Gendeh G, Gibson BW, Greenberg DA. Proteomic and immunochemical characterization of a role for stathmin in adult neurogenesis. FASEB J 2004; 18:287-99. [PMID: 14769823 DOI: 10.1096/fj.03-0973com] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stathmin is a developmentally regulated cytosolic protein expressed at high levels in the brain. Two-dimensional differential in-gel electrophoresis and mass spectroscopy of proteins expressed in immature and mature cultures from embryonic rat cerebral cortex identified stathmin among several differentially expressed proteins, consistent with a possible role in neurogenesis. Stathmin immunohistochemistry in adult rodent brain revealed prominent expression in neuroproliferative zones and neuronal migration pathways, a pattern that resembles the expression of doublecortin, which is implicated in neuronal migration. Stathmin immunoreactivity was also associated with neurons undergoing ectopic chain migration into the ischemic striatum and cerebral cortex following focal cerebral ischemia. Reducing the expression of stathmin or doublecortin with an antisense oligonucleotide inhibited the migration of new neurons from the subventricular zone to the olfactory bulb via the rostral migratory stream. These results suggest a role for stathmin in the migration of newborn neurons in the adult brain.
Collapse
Affiliation(s)
- Kunlin Jin
- Buck Institute for Age Research, Novato, California 94945, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jarvis E, Smith V, Wada K, Rivas M, McElroy M, Smulders T, Carninci P, Hayashizaki Y, Dietrich F, Wu X, McConnell P, Yu J, Wang P, Hartemink A, Lin S. A framework for integrating the songbird brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2002; 188:961-80. [PMID: 12471494 PMCID: PMC2509580 DOI: 10.1007/s00359-002-0358-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2002] [Revised: 08/13/2002] [Accepted: 09/05/2002] [Indexed: 01/11/2023]
Abstract
Biological systems by default involve complex components with complex relationships. To decipher how biological systems work, we assume that one needs to integrate information over multiple levels of complexity. The songbird vocal communication system is ideal for such integration due to many years of ethological investigation and a discreet dedicated brain network. Here we announce the beginnings of a songbird brain integrative project that involves high-throughput, molecular, anatomical, electrophysiological and behavioral levels of analysis. We first formed a rationale for inclusion of specific biological levels of analysis, then developed high-throughput molecular technologies on songbird brains, developed technologies for combined analysis of electrophysiological activity and gene regulation in awake behaving animals, and developed bioinformatic tools that predict causal interactions within and between biological levels of organization. This integrative brain project is fitting for the interdisciplinary approaches taken in the current songbird issue of the Journal of Comparative Physiology A and is expected to be conducive to deciphering how brains generate and perceive complex behaviors.
Collapse
Affiliation(s)
- E.D. Jarvis
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA, E-mail: , Tel.: +1-919-6811680, Fax: +1-919-6810877
| | - V.A. Smith
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA, E-mail: , Tel.: +1-919-6811680, Fax: +1-919-6810877
| | - K. Wada
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA, E-mail: , Tel.: +1-919-6811680, Fax: +1-919-6810877
| | - M.V. Rivas
- Department of Cell Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA
| | - M. McElroy
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA, E-mail: , Tel.: +1-919-6811680, Fax: +1-919-6810877
| | - T.V. Smulders
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA, E-mail: , Tel.: +1-919-6811680, Fax: +1-919-6810877
| | - P. Carninci
- Genome Science Laboratory, Riken Wako Main Campus, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Y. Hayashizaki
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Science Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehirocho, Tsurumiku, Yokohama, Kanagawa, 230-0045, Japan
| | - F. Dietrich
- Duke Center for Genome Technology, Duke University Medical Center, Box 3568, Durham, NC 27710, USA
| | - X. Wu
- Duke Center for Genome Technology, Duke University Medical Center, Box 3568, Durham, NC 27710, USA
| | - P. McConnell
- Duke Bioinformatics Shared Resource, Duke University Medical Center, Box 3958, Durham, NC 27710, USA
| | - J. Yu
- Department of Electrical and Computer Engineering, Duke University, Box 90291, Durham, NC 27708, USA
| | - P.P. Wang
- Department of Electrical and Computer Engineering, Duke University, Box 90291, Durham, NC 27708, USA
| | - A.J. Hartemink
- Department of Computer Science, Duke University, Box 90129, Durham, NC 27708, USA
| | - S. Lin
- Duke Bioinformatics Shared Resource, Duke University Medical Center, Box 3958, Durham, NC 27710, USA
| |
Collapse
|
26
|
Ahrens K, Wullimann MF. Hypothalamic inferior lobe and lateral torus connections in a percomorph teleost, the red cichlid (Hemichromis lifalili). J Comp Neurol 2002; 449:43-64. [PMID: 12115692 DOI: 10.1002/cne.10264] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neuroanatomic connections of the inferior lobe and the lateral torus of the percomorph Hemichromis lifalili were investigated by 1,1', dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine perchlorate (DiI) tracing. The inferior lobe and the lateral torus both receive afferents from the secondary gustatory nucleus. Additional afferents reach the inferior lobe from the nucleus glomerulosus, nucleus suprachiasmaticus, dorsal and central posterior thalamic nucleus, nucleus lateralis valvulae, magnocellular part of the magnocellular nucleus of the preoptic region, caudal nucleus of the preglomerular region, posterior tuberal nucleus, area dorsalis of the telencephalon, and a tegmental nucleus (T2). Efferents from the inferior lobe and the lateral torus terminate in the dorsal hypothalamic neuropil and corpus mamillare. Furthermore, the inferior lobe projects to the medial nucleus of the lateral tuberal hypothalamus and perhaps makes axo-axonal synapses in the tractus tectobulbaris rectus. The inferior lobe and the torus lateralis have reciprocal connections with the preglomerular tertiary gustatory nucleus and posterior thalamic nucleus and are also mutually interconnected. The inferior lobe is also reciprocally connected with the medial nucleus of the preglomerular region, reticular formation and sparsely with the anterior dorsal thalamic and the ventromedial thalamic nuclei. Thus, whereas the lateral torus is exclusively connected with the gustatory system, the inferior lobe is of a multisensory nature. In comparison with the goldfish (Carassius auratus), the connectivity pattern of the inferior lobe of Hemichromis lifalili reflects its specialization with respect to the visual system, as it receives qualitative (i.e., dorsal posterior, anterior, and ventromedial thalamic nuclei) as well as quantitative (i.e., nucleus glomerulosus) additional visual input.
Collapse
Affiliation(s)
- Katja Ahrens
- Brain Research Institute, Center for Cognition Research, University of Bremen, D-28334 Bremen, Germany
| | | |
Collapse
|
27
|
Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 2002. [PMID: 11943818 DOI: 10.1523/jneurosci.22-08-03161.2002] [Citation(s) in RCA: 379] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The embryonic ventricular zone (VZ) of the cerebral cortex contains migrating neurons, radial glial cells, and a large population of cycling progenitor cells that generate newborn neurons. The latter two cell classes have been assumed for some time to be distinct in both function and anatomy, but the cellular anatomy of the progenitor cell type has remained poorly defined. Several recent reports have raised doubts about the distinction between radial glial and precursor cells by demonstrating that radial glial cells are themselves neuronal progenitor cells (Malatesta et al., 2000; Hartfuss et al., 2001; Miyata et al., 2001; Noctor et al., 2001). This discovery raises the possibility that radial glia and the population of VZ progenitor cells may be one anatomical and functional cell class. Such a hypothesis predicts that throughout neurogenesis almost all mitotically active VZ cells and a substantial percentage of VZ cells overall are radial glia. We have therefore used various anatomical, immunohistochemical, and electrophysiological techniques to test these predictions. Our data demonstrate that the majority of VZ cells, and nearly all mitotically active VZ cells during neurogenesis, both have radial glial morphology and express radial glial markers. In addition, intracellular dye filling of electrophysiologically characterized progenitor cells in the VZ demonstrates that these cells have the morphology of radial glia. Because the vast majority cycling cells in the cortical VZ have characteristics of radial glia, the radial glial precursor cell may be responsible for both the production of newborn neurons and the guidance of daughter neurons to their destinations in the developing cortex.
Collapse
|
28
|
Kosaka K, Kosaka T. Nidus and tasseled cell: distinctive neuronal organization of the main olfactory bulb of the laboratory musk shrew (Suncus murinus). J Comp Neurol 2001; 430:542-61. [PMID: 11169486 DOI: 10.1002/1096-9861(20010219)430:4<542::aid-cne1049>3.0.co;2-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We revealed the structural features of particular synaptic regions, nidi, and newly found neurons, tasseled cells, in the main olfactory bulb (MOB) of the laboratory musk shrew (Suncus murinus). Nidi were intensely immunoreactive for glutamic acid decarboxylase (GAD) and calbindin D28k (CB), were 30-80 microm in diameter, and were located beneath glomeruli, appearing to make glomerulus-nidus unit-like complexes. In contrast to glomeruli, they contained few or no olfactory nerves. Nidi were distributed throughout the whole MOB and made a distinctive layer, nidal layer. Tasseled cells were located in the mitral cell layer and in the middle of the external plexiform layer (EPL) and extended single primary dendrites to the nidus, where their small tuft-like complicated branches intermingled with processes of perinidal cells surrounding nidi. Primary dendrites of mitral/tufted cells also penetrated nidi but passed to glomeruli. In the outer half of the EPL, columnar structures were seen, where CB- and GAD-positive elements appeared to associate with bundles of cylindrical dendrites of presumed mitral/tufted and tasseled cells. By electron microscopic examinations, nidi were confirmed to be particular synaptic areas where GAD-positive processes made symmetrical synapses to GAD-negative presumed tasseled and mitral/tufted cell dendrites and received asymmetrical synapses from the latter. Retrograde tracings revealed that tasseled cells, in addition to mitral/tufted cells, projected their axons to the lateral olfactory tract, indicating that there were two parallel projection systems in the shrew MOB, which might interact with each other via various types of gamma-aminobutyric acid (GABA)ergic interneurons. The present study clearly showed that the neuronal organization of the shrew MOB was distinctly different from that in rodents.
Collapse
Affiliation(s)
- K Kosaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|