1
|
Szczotka M, Kuźmak J. Cytokine secretion in stem cells of cattle infected with bovine leukaemia virus. J Vet Res 2024; 68:19-33. [PMID: 38525233 PMCID: PMC10960261 DOI: 10.2478/jvetres-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Bovine leukaemia virus (BLV) is a Deltaretrovirus responsible for enzootic bovine leukosis, the most common neoplastic disease of cattle. It deregulates the immune system, favouring secondary infections and changes in the blood and lymphatic tissues. Blood homeostasis depends on functional haematopoietic stem cells (HSCs). Bone marrow is populated by these cells, which express CD34+ and CD35+ surface antigens and produce and release cytokines involved in the maintenance of haematopoiesis. The aim of the study was determination of the profile of cytokine production by CD34+ stem cells of cattle naturally infected with BLV. Material and Methods The HSCs were generated from the blood and lymphoid organs of cows infected with BLV and healthy control cows with immunomagnetic separation and anti-CD34+ monoclonal antibodies. Isolated CD34+ cells were cultivated for two weeks with interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor. The levels of IL-6, IL-10, IL-12p40, IL-12p70, interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α) were determined in culture fluid by flow cytometry. Results The expression of IL-6, IL-12p70 and TNF-α in blood HSCs was higher in BLV+ cows than in the control animals. In bone marrow HSCs of infected cows, IL-12, TNF-α and IFN-γ were more concentrated, but in these cows' spleen HSCs only expression of IL-10 was elevated. In HSCs isolated from the lymph nodes of leukaemic cows, only TNF-α secretion was lower than in control cows, the other cytokines being more potently secreted. Conclusion Infection with BLV caused statistically significant differences in cytokine expression by HSC CD34+ cells.
Collapse
Affiliation(s)
- Maria Szczotka
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
2
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
3
|
Expression of bovine leukaemia virus (BLV) gp51 protein in blood and milk cells of cows with leukosis. J Vet Res 2022; 66:305-315. [PMID: 36349123 PMCID: PMC9597945 DOI: 10.2478/jvetres-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Bovine leukaemia virus (BLV) is the retroviral causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle and a serious problem worldwide. Its diagnosis is commonly by tests for antibodies recognising the p24 capsid protein and structural glycoprotein (gp) 51. With flow cytometry recently having come to veterinary immunology, applications for it may now include BLV. The study determined BLV gp51 expression in blood and milk lymphocytes of naturally infected cows by flow cytometry.
Material and Methods
Nineteen Polish Black and White Lowland breed cows aged 4–9 years and naturally infected with BLV and ten uninfected counterparts had blood and milk sampled and cultured. The immunological status of the animals was confirmed with ELISA and PCR. Dual-colour flow cytometry analysis was performed with specific monoclonal antibodies for lymphocyte cluster of differentiation (CD) markers and gp51 viral envelope protein and conjugates labelled with fluorescein isothiocyanate or phycoerythrin. Bovine leukaemia virus gp51 was confirmed in lymphocytes by immunofluorescence with anti-gp51 monoclonal antibodies.
Results
The gp51 antigen was detected in blood and milk lymphocytes of infected cows, but the percentage of cells expressing it in milk was much lower than in blood. A depleted number of CD4+ lymphocytes, an augmented number of CD8+ lymphocytes, a lower ratio of CD4+ to CD8+ and a proliferation of CD19+ immunoglobulin M+ cells were also found.
Conclusion
These proliferated cells were immature, gave no sign of a tendency to differentiation and were characterised by prolonged vitality.
Collapse
|
4
|
Nieto Farias MV, Souza FN, Lendez PA, Martínez-Cuesta L, Santos KR, Della Libera AMMP, Ceriani MC, Dolcini GL. Lymphocyte proliferation and apoptosis of lymphocyte subpopulations in bovine leukemia virus-infected dairy cows with high and low proviral load. Vet Immunol Immunopathol 2018; 206:41-48. [PMID: 30502911 DOI: 10.1016/j.vetimm.2018.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022]
Abstract
Bovine leukemia virus (BLV) is one of the most important virus in dairy cattle. The infection behavior follows what we call the iceberg phenomenon: 60% of infected animals do not show clinical signs; 30% develop persistent lymphocytosis (PL); and the remaining 10%, die due to lymphosarcoma. BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms by which cattle governs the control of viral dissemination will be desirable for designing effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. It is known that BLV affects cellular homeostasis: proliferation and apoptosis. It is also known that the BLV tropism is directed towards B lymphocytes, and that lymphocytotic animals have elevated amounts of these cells. Usually, when an animal is infected by BLV, the B markers that increase are CD21, CD5 and CD11b. This increase could be related to the modulation of apoptosis in these cells. This is the first work in which animals infected with BLV are classified according to their proviral load and the subpopulations of B and T lymphocytes are evaluated in terms of their percentage in peripheral blood and its stage of apoptosis and viability. PBMCs from HPL animals proliferated more than LPL and non-infected animals. CD11b+/CD5+ lymphocytes in LPL animals presented greater early and late apoptosis than HPL animals and cells of HPL animals had increased viability than LPL animals. Our results confirm that BLV alters the mechanism of apoptosis and proliferation of infected cells.
Collapse
Affiliation(s)
- María Victoria Nieto Farias
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Fernando Nogueira Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, 05508-270, Brazil
| | - Pamela Anahí Lendez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Lucía Martínez-Cuesta
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Kamila Reis Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, 05508-270, Brazil
| | - Alice Maria Melville Paiva Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, 05508-270, Brazil
| | - María Carolina Ceriani
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Guillermina Laura Dolcini
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina.
| |
Collapse
|
5
|
Ruiz V, Porta NG, Lomónaco M, Trono K, Alvarez I. Bovine Leukemia Virus Infection in Neonatal Calves. Risk Factors and Control Measures. Front Vet Sci 2018; 5:267. [PMID: 30410920 PMCID: PMC6209627 DOI: 10.3389/fvets.2018.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). Although efficient eradication programs have been successfully implemented in most European countries and Oceania, BLV infection rates are still high worldwide. BLV naturally infects cattle, inducing a persistent infection with diverse clinical outcomes. The virus infects lymphocytes and integrates a DNA intermediate as a provirus into the genome of the cells. Therefore, exposure to biological fluids contaminated with infected lymphocytes potentially spreads the virus. Vertical transmission may occur in utero or during delivery, and about 10% of calves born to BLV-infected dams are already infected at birth. Most frequently, transmission from dams to their offspring occurs through the ingestion of infected colostrum or milk. Therefore, although EBL is not a disease specific to the neonatal period, during this period the calves are at special risk of becoming infected, especially in dairy farms, where they ingest colostrum and/or raw milk either naturally or artificially. Calves infected during the first week of life could play an active role in early propagation of BLV to susceptible animals. This review discusses the main factors that contribute to neonatal BLV infection in dairy herds, as well as different approaches and management practices that could be implemented to reduce the risk of BLV transmission during this period, aiming to decrease BLV infection in dairy herds.
Collapse
Affiliation(s)
- Vanesa Ruiz
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Natalia Gabriela Porta
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marina Lomónaco
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina
| | - Karina Trono
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Irene Alvarez
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
6
|
Corredor AP, González J, Baquero LA, Curtidor H, Olaya-Galán NN, Patarroyo MA, Gutiérrez MF. In silico and in vitro analysis of boAP3d1 protein interaction with bovine leukaemia virus gp51. PLoS One 2018; 13:e0199397. [PMID: 29928016 PMCID: PMC6013181 DOI: 10.1371/journal.pone.0199397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/06/2018] [Indexed: 11/19/2022] Open
Abstract
The envelope glycoprotein 51 (gp51) is essential for bovine leukaemia virus (BLV) entry to bovine B-lymphocytes. Although the bovine adaptor protein 3 complex subunit delta-1 (boAP3D1) has been proposed as the potential receptor, the specific ligand-receptor interaction has not yet been completely defined and boAP3D1 receptor and gp51 3D structures have not been determined. This study was thus aimed at a functional annotation of boAP3D1 cellular adaptor protein and BLV gp51 and, proposing a reliable model for gp51-AP3D1 interaction using bioinformatics tools. The boAP3D1 receptor interaction patterns were calculated based on models of boAP3D1 receptor and gp51 complexes’ 3D structures, which were constructed using homology techniques and data-driven docking strategy. The results showed that the participation of 6 key amino acids (aa) on gp51 (Asn170, Trp127, His115, Ala97, Ser98 and Glu128) and 4 aa on AP3D1 (Lys925, Asp807, Asp695 and Arg800) was highly probable in the interaction between gp51 and BLVR domains. Three gp51 recombinant peptides were expressed and purified to validate these results: the complete domain (rgp51), the N-terminal portion (rNgp51) and the C-terminal fragment (rCgp51); and binding assays to Madin-Darby bovine kidney (MDBK) cells were then carried out with each recombinant. It was found that rNgp51 preferentially bound to MDBK cells, suggesting this domain’s functional role during invasion. The rNgp51-MDBK cell interaction was sensitive to trypsin (98% reduction) and chymotrypsin treatment (80% reduction). These results highlighted that the N-terminal portion of gp51 interacted in vitro with the AP3D1 receptor and provides a plausible in silico interaction model.
Collapse
Affiliation(s)
| | - Janneth González
- Nutrition and Biochemistry Department, Science Faculty, Universidad Javeriana, Bogotá DC, Colombia
- * E-mail: (MFG); (JG)
| | - Luis Alfredo Baquero
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá DC, Colombia
| | - Hernando Curtidor
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá DC, Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Nury Nathalia Olaya-Galán
- Virology Laboratory, Universidad Javeriana, Bogotá DC, Colombia
- PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá DC, Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | | |
Collapse
|
7
|
Frie MC, Sporer KRB, Benitez OJ, Wallace JC, Droscha CJ, Bartlett PC, Coussens PM. Dairy Cows Naturally Infected with Bovine Leukemia Virus Exhibit Abnormal B- and T-Cell Phenotypes after Primary and Secondary Exposures to Keyhole Limpet Hemocyanin. Front Vet Sci 2017; 4:112. [PMID: 28770217 PMCID: PMC5509956 DOI: 10.3389/fvets.2017.00112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/29/2017] [Indexed: 01/08/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that is highly prevalent in US dairy herds: over 83% are BLV infected and the within-herd infection rate can be almost 50% on average. While BLV is known to cause lymphosarcomas, only 5% or fewer infected cattle will develop lymphoma; this low prevalence of cancer has historically not been a concern to dairy producers. However, more recent research has found that BLV+ cows without lymphoma produce less milk and have shorter lifespans than uninfected herdmates. It has been hypothesized that BLV infection interferes with normal immune function in infected cattle, and this could lead to reduced dairy production. To assess how naturally infected BLV+ cows responded to a primary and secondary immune challenge, 10 BLV+ and 10 BLV- cows were injected subcutaneously with keyhole limpet hemocyanin (KLH) and dimethyldioctadecylammonium bromide. B- and T-cell responses were characterized over the following 28 days. A total of 56 days after primary KLH exposure, cows were re-injected with KLH and B- and T-cell responses were characterized again over the following 28 days. BLV+ cows produced less KLH-specific IgM after primary immune stimulation; demonstrated fewer CD45R0+ B cells, altered proportions of CD5+ B cells, altered expression of CD5 on CD5+ B cells, and reduced MHCII surface expression on B cells ex vivo; exhibited reduced B-cell activation in vitro; and displayed an increase in BLV proviral load after KLH exposure. In addition, BLV+ cows had a reduced CD45R0+γδ+ T-cell population in the periphery and demonstrated a greater prevalence of IL4-producing T cells in vitro. All together, our results demonstrate that both B- and T-cell immunities are disrupted in BLV+ cows and that antigen-specific deficiencies can be detected in BLV+ cows even after a primary immune exposure.
Collapse
Affiliation(s)
- Meredith C Frie
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
| | - Kelly R B Sporer
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Oscar J Benitez
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, United States
| | - Joseph C Wallace
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | | | - Paul C Bartlett
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - Paul M Coussens
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Reduced humoral immunity and atypical cell-mediated immunity in response to vaccination in cows naturally infected with bovine leukemia virus. Vet Immunol Immunopathol 2016; 182:125-135. [PMID: 27863543 DOI: 10.1016/j.vetimm.2016.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022]
Abstract
Bovine leukemia virus (BLV) is a retrovirus that is widely distributed across US dairy herds: over 83% of herds are BLV-infected and within-herd infection rates can approach 50%. BLV infection reduces both animal longevity and milk production and can interfere with normal immune health. With such a high prevalence of BLV infection in dairy herds, it is essential to understand the circumstances by which BLV negatively affects the immune system of infected cattle. To address this question, BLV- and BLV+ adult, lactating Holstein dairy cows were vaccinated with Bovi-Shield GOLD® FP® 5 L5 HB and their immune response to vaccination was measured over the course of 28days. On day 0 prior to vaccination and days 7, 14 and 28 post-vaccination, fresh PBMCs were characterized for T and B cell ratios in the periphery. Plasma was collected to measure titers of IgM, IgG1 and IgG2 produced against bovine herpesvirus 1 (BHV1), Leptospira hardjo and L. pomona, as well as to characterize neutralizing antibody titers produced against BHV1 and bovine viral diarrhea virus types 1 and 2. On day 18 post-vaccination, PBMCs were cultured in the presence of BHV1 and flow cytometry was used to determine IFNγ production by CD4+, CD8+ and γδ T cells and to investigate CD25 and MHCII expression on B cells. BLV+ cows produced significantly lower titers of IgM against BHV1, L. hardjo and L. pomona and produced lower titers of IgG2 against BHV1. γδ T cells from BLV+ cows displayed a hyper reactive response to stimulation in vitro, although no differences were observed in CD4+ or CD8+ T cell activation. Finally, B cells from BLV+ cows exhibited higher CD25 expression and reduced MHCII expression in response to stimulation in vitro. All together, data from this study support the hypothesis that BLV+ cows fail to respond to vaccination as strongly as BLV- cows and, consequently, may have reduced protective immunity when compared to healthy BLV- cows.
Collapse
|
9
|
Bovine leukemia virus: a major silent threat to proper immune responses in cattle. Vet Immunol Immunopathol 2014; 163:103-14. [PMID: 25554478 DOI: 10.1016/j.vetimm.2014.11.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/27/2014] [Accepted: 11/26/2014] [Indexed: 11/22/2022]
Abstract
Bovine leukemia virus (BLV) infection is widespread in the US dairy industry and the majority of producers do not actively try to manage or reduce BLV incidence within their herds. However, BLV is estimated to cost the dairy industry hundreds of millions of dollars annually and this is likely a conservative estimate. BLV is not thought to cause animal distress or serious pathology unless infection progresses to leukemia or lymphoma. However, a wealth of research supports the notion that BLV infection causes widespread abnormal immune function. BLV infection can impact cells of both the innate and adaptive immune system and alter proper functioning of uninfected cells. Despite strong evidence of abnormal immune signaling and functioning, little research has investigated the large-scale effects of BLV infection on host immunity and resistance to other infectious diseases. This review focuses on mechanisms of immune suppression associated with BLV infection, specifically aberrant signaling, proliferation and apoptosis, and the implications of switching from BLV latency to activation. In addition, this review will highlight underdeveloped areas of research relating to BLV infection and how it causes immune suppression.
Collapse
|
10
|
Ikebuchi R, Konnai S, Okagawa T, Nishimori A, Nakahara A, Murata S, Ohashi K. Differences in cellular function and viral protein expression between IgMhigh and IgMlow B-cells in bovine leukemia virus-infected cattle. J Gen Virol 2014; 95:1832-1842. [PMID: 24814926 DOI: 10.1099/vir.0.065011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bovine leukemia virus (BLV) induces abnormal B-cell proliferation and B-cell lymphoma in cattle, where the BLV provirus is integrated into the host genome. BLV-infected B-cells rarely express viral proteins in vivo, but short-term cultivation augments BLV expression in some, but not all, BLV-infected B-cells. This observation suggests that two subsets, i.e. BLV-silencing cells and BLV-expressing cells, are present among BLV-infected B-cells, although the mechanisms of viral expression have not been determined. In this study, we examined B-cell markers and viral antigen expression in B-cells from BLV-infected cattle to identify markers that may discriminate BLV-expressing cells from BLV-silencing cells. The proportions of IgM(high) B-cells were increased in blood lymphocytes from BLV-infected cattle. IgM(high) B-cells mainly expressed BLV antigens, whereas IgM(low) B-cells did not, although the provirus load was equivalent in both subsets. Several parameters were investigated in these two subsets to characterize their cellular behaviour. Real-time PCR and microarray analyses detected higher expression levels of some proto-oncogenes (e.g. Maf, Jun and Fos) in IgM(low) B-cells than those in IgM(high) B-cells. Moreover, lymphoma cells obtained from the lymph nodes of 14 BLV-infected cattle contained IgM(low) or IgM(-) B-cells but no IgM(high) B-cells. To our knowledge, this is the first study to demonstrate that IgM(high) B-cells mainly comprise BLV-expressing cells, whereas IgM(low) B-cells comprise a high proportion of BLV-silencing B-cells in BLV-infected cattle.
Collapse
Affiliation(s)
- Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ayako Nakahara
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Banerjee P, Crawford L, Samuelson E, Feuer G. Hematopoietic stem cells and retroviral infection. Retrovirology 2010; 7:8. [PMID: 20132553 PMCID: PMC2826343 DOI: 10.1186/1742-4690-7-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/04/2010] [Indexed: 11/10/2022] Open
Abstract
Retroviral induced malignancies serve as ideal models to help us better understand the molecular mechanisms associated with the initiation and progression of leukemogenesis. Numerous retroviruses including AEV, FLV, M-MuLV and HTLV-1 have the ability to infect hematopoietic stem and progenitor cells, resulting in the deregulation of normal hematopoiesis and the development of leukemia/lymphoma. Research over the last few decades has elucidated similarities between retroviral-induced leukemogenesis, initiated by deregulation of innate hematopoietic stem cell traits, and the cancer stem cell hypothesis. Ongoing research in some of these models may provide a better understanding of the processes of normal hematopoiesis and cancer stem cells. Research on retroviral induced leukemias and lymphomas may identify the molecular events which trigger the initial cellular transformation and subsequent maintenance of hematologic malignancies, including the generation of cancer stem cells. This review focuses on the role of retroviral infection in hematopoietic stem cells and the initiation, maintenance and progression of hematological malignancies.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Lindsey Crawford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Elizabeth Samuelson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
12
|
Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, Balon H, Bouzar AB, Defoiche J, Burny A, Reichert M, Kettmann R, Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 2007; 4:18. [PMID: 17362524 PMCID: PMC1839114 DOI: 10.1186/1742-4690-4-18] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/16/2007] [Indexed: 12/15/2022] Open
Abstract
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arnaud Florins
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Mathieu Boxus
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Catherine Burteau
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Annamaria Nigro
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Fabian Vandermeers
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Hervé Balon
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Amel-Baya Bouzar
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Julien Defoiche
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arsène Burny
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | - Richard Kettmann
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Luc Willems
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
- Luc Willems, National fund for Scientific Research, Molecular and Cellular Biology laboratory, 13 avenue Maréchal Juin, 5030 Gembloux, Belgium
| |
Collapse
|
13
|
Van den Broeke A, Cleuter Y, Beskorwayne T, Kerkhofs P, Szynal M, Bagnis C, Burny A, Griebel P. CD154 costimulated ovine primary B cells, a cell culture system that supports productive infection by bovine leukemia virus. J Virol 2001; 75:1095-103. [PMID: 11152482 PMCID: PMC114015 DOI: 10.1128/jvi.75.3.1095-1103.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine leukemia virus (BLV) is closely associated with the development of B-cell leukemia and lymphoma in cattle. BLV infection has also been studied extensively in an in vivo ovine model that provides a unique system for studying B-cell leukemogenesis. There is no evidence that BLV can directly infect ovine B cells in vitro, and there are no direct data regarding the oncogenic potential of the viral Tax transactivator in B cells. Therefore, we developed ovine B-cell culture systems to study the interaction between BLV and its natural target, the B cell. In this study, we used murine CD154 (CD40 ligand) and gamma-chain-common cytokines to support the growth of B cells isolated from ovine lymphoid tissues. Integrated provirus, extrachromosomal forms, and viral transcripts were detected in BLV-exposed populations of immature, rapidly dividing surface immunoglobulin M-positive B cells from sheep ileal Peyer's patches and also in activated mature B cells isolated from blood. Conclusive evidence of direct B-cell infection by BLV was obtained through the use of cloned B cells derived from sheep jejunal Peyer's patches. Finally, inoculation of sheep with BLV-infected cultures proved that infectious virus was shed from in vitro-infected B cells. Collectively, these data confirm that a variety of ovine B-cell populations can support productive infection by BLV. The development of ovine B-cell cultures permissive for BLV infection provides a controlled system for investigating B-cell leukemogenic processes and the pathogenesis of BLV infection.
Collapse
Affiliation(s)
- A Van den Broeke
- Hématologie Expérimentale, Institut J. Bordet, 1000 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Twizere JC, Kerkhofs P, Burny A, Portetelle D, Kettmann R, Willems L. Discordance between bovine leukemia virus tax immortalization in vitro and oncogenicity in vivo. J Virol 2000; 74:9895-902. [PMID: 11024116 PMCID: PMC102026 DOI: 10.1128/jvi.74.21.9895-9902.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bovine leukemia virus (BLV) Tax protein, a transcriptional activator of viral expression, is essential for viral replication in vivo. Tax is believed to be involved in leukemogenesis because of its second function, immortalization of primary cells in vitro. These activities of Tax can be dissociated on the basis of point mutations within specific regions of the protein. For example, mutation of the phosphorylation sites at serines 106 and 293 abrogates immortalization potential in vitro but maintains transcriptional activity. This type of mutant is thus particularly useful for unraveling the role of Tax immortalization activity during leukemogenesis independently of viral replication. In this report, we describe the biological properties of BLV recombinant proviruses mutated in the Tax phosphorylation sites (BLVTax106+293). Titration of the proviral loads by semiquantitative PCR revealed that the BLV mutants propagated at wild-type levels in vivo. Furthermore, two animals (sheep 480 and 296) infected with BLVTax106+293 developed leukemia or lymphosarcoma after 16 and 36 months, respectively. These periods of time are within the normal range of latencies preceding the onset of pathogenesis induced by wild-type viruses. The phenotype of the mutant-infected cells was characteristic of a B lymphocyte (immunoglobulin M positive) expressing CD11b and CD5 (except at the final stage for the latter marker), a pattern that is typical of wild-type virus-infected target cells. Interestingly, the transformed B lymphocytes from sheep 480 also coexpressed the CD8 marker, a phenotype rarely observed in tumor biopsies from chronic lymphocytic leukemia patients. Finally, direct sequencing of the tax gene demonstrated that the leukemic cells did not harbor revertant proviruses. We conclude that viruses expressing a Tax mutant unable to transform primary cells in culture are still pathogenic in the sheep animal model. Our data thus provide a clear example of the discordant conclusions that can be drawn from in vitro immortalization assays and in vivo experiments. These observations could be of interest for other systems, such as the related human T-cell leukemia virus type 1, which currently lack animal models allowing the study of the leukemogenic process.
Collapse
Affiliation(s)
- J C Twizere
- Department of Applied Biochemistry and Biology, Faculty of Agronomy, Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|