1
|
Peptide-based vaccine successfully induces protective immunity against canine visceral leishmaniasis. NPJ Vaccines 2019; 4:49. [PMID: 31815006 PMCID: PMC6884440 DOI: 10.1038/s41541-019-0144-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Dogs are the main reservoir of zoonotic visceral leishmaniasis. Vaccination is a promising approach to help control leishmaniasis and to interrupt transmission of the Leishmania parasite. The promastigote surface antigen (PSA) is a highly immunogenic component of Leishmania excretory/secretory products. A vaccine based on three peptides derived from the carboxy-terminal part of Leishmania amazonensis PSA and conserved among Leishmania species, formulated with QA-21 as adjuvant, was tested on naive Beagle dogs in a preclinical trial. Four months after the full course of vaccination, dogs were experimentally infected with Leishmania infantum promastigotes. Immunization of dogs with peptide-based vaccine conferred immunity against experimental infection with L. infantum. Evidence for macrophage nitric oxide production and anti-leishmanial activity associated with IFN-γ production by lymphocytes was only found in the vaccinated group. An increase in specific IgG2 antibodies was also measured in vaccinated dogs from 2 months after immunization. Additionally, after challenge with L. infantum, the parasite burden was significantly lower in vaccinated dogs than in the control group. These data strongly suggest that this peptide-based vaccine candidate generated cross-protection against zoonotic leishmaniasis by inducing a Th1-type immune response associated with production of specific IgG2 antibodies. This preclinical trial including a peptide-based vaccine against leishmaniasis clearly demonstrates effective protection in a natural host. This approach deserves further investigation to enhance the immunogenicity of the peptides and to consider the possible engineering of a vaccine targeting several Leishmania species. Leishmaniasis, caused by the protozoan parasite Leishmania, can present in different forms depending on the infecting species. Visceral leishmaniasis is associated with migration of the parasite, in this case Leishmania infantum, to various organs and can infect both humans and canids. Here Rachel Bras-Gonçalves and colleagues test a Leishmania vaccine for dogs as they are the main reservoir for this zoonotic disease. The vaccine is based on the abundant immunogenic component of Leishmania excretory/secretory product, promastigote surface antigen (PSA); specifically, three peptides from the carboxyl-terminal of PSA, which is conserved in Leishmania species. Uninfected Beagle dogs were immunized with QA-21 as an adjuvant, and no local or systemic adverse reactions were observed. Four months later after three doses of the vaccine, dogs were infected with L. infantum promastigotes. Vaccination provided immunity with reduced parasite burden and this was associated with macrophage anti-leishmanial activity, increased IFN-y and nitric oxide production and increased Leishmania-specific IgG2 antibodies.
Collapse
|
2
|
HIV specific responses induced in nonhuman primates with ANRS HIV-Lipo-5 vaccine combined with rMVA-HIV prime or boost immunizations. Vaccine 2015; 33:2354-9. [PMID: 25839103 DOI: 10.1016/j.vaccine.2015.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 01/23/2023]
Abstract
We evaluated the immunogenicity of a prime/boost vaccine strategy combining 5 lipopeptides (HIV-Lipo-5) and a recombinant modified vaccinia virus Ankara (rMVA-HIV) in cynomolgus macaques. Both of these vaccine components deliver HIV LAI Gag, Pol, and Nef antigens. Systemic and local safety was excellent in all groups. Immunization with HIV-Lipo-5 alone induced significant serum anti-HIV antibody titers which were not modified by rMVA-HIV immunization. However, induction of T-cell responses, as measured by IFNγ and IL-2 producing cells upon short-term stimulation with HIV peptide pools, required combined immunization with rMVA-HIV. Responses were preferentially observed against Gag antigen. Interestingly, HIV-Lipo-5 efficiently primed HIV induced T-cell responses upon the injection of rMVA-HIV, which may help to reduce the required number of vector injections. Our results provide a rationale for the use of a strategy involving HIV-Lipo-5 priming followed by rMVA-HIV booster immunization as a prophylactic or therapeutic vaccine approach against HIV infection and AIDS.
Collapse
|
3
|
Shen KY, Chang LS, Leng CH, Liu SJ. Self-adjuvanting lipoimmunogens for therapeutic HPV vaccine development: potential clinical impact. Expert Rev Vaccines 2014; 14:383-94. [PMID: 25455657 DOI: 10.1586/14760584.2015.966696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of therapeutic HPV vaccines is the induction of cytotoxic T lymphocyte immunity against HPV-associated cancers. Recombinant proteins and synthetic peptides have high safety profiles but low immunogenicity, which limits their efficacy when used in a vaccine. Self-adjuvanting lipid moieties have been conjugated to synthetic peptides or expressed as lipoproteins to enhance the immunogenicity of vaccine candidates. Mono-, di- and tri-palmitoylated peptides have been demonstrated to activate dendritic cells and induce robust cellular immunity against infectious diseases and cancer. Recently, a platform technology using the high-yield production of recombinant lipoproteins with Toll-like receptor 2 agonist activity was established for the development of novel subunit vaccines. This technology represents a novel strategy for the development of therapeutic HPV vaccines. In this review, we describe recent progress in the design of therapeutic HPV vaccines using lipoimmunogens.
Collapse
Affiliation(s)
- Kuan-Yin Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | | | | | | |
Collapse
|
4
|
Baz A, Jackson DC, Kienzle N, Kelso A. Memory cytolytic T-lymphocytes: induction, regulation and implications for vaccine design. Expert Rev Vaccines 2014; 4:711-23. [PMID: 16221072 DOI: 10.1586/14760584.4.5.711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The design of vaccines that protect against intracellular infections or cancer remains a challenge. In many cases, immunity depends on the development of antigen-specific memory CD8+ T-cells that can express cytokines and kill antigen-bearing cells when they encounter the pathogen or tumor. Here, the authors review current understanding of the signals and cells that lead to memory CD8+ T-cell differentiation, the relationship between the primary CD8+ T-cell response and the memory response and the regulation of memory CD8+ T-cell survival and function. The implications of this new knowledge for vaccine design are discussed, and recent progress in the development of lipidated peptide vaccines as a promising approach for vaccination against intracellular infections and cancer is reviewed.
Collapse
Affiliation(s)
- Adriana Baz
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|
5
|
Sun J, Hou J, Li D, Liu Y, Hu N, Hao Y, Fu J, Hu Y, Shao Y. Enhancement of HIV-1 DNA vaccine immunogenicity by BCG-PSN, a novel adjuvant. Vaccine 2012; 31:472-9. [PMID: 23174201 DOI: 10.1016/j.vaccine.2012.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 11/24/2022]
Abstract
Although the importance of DNA vaccines, especially as a priming immunization has been well established in numerous HIV vaccine studies, the immunogenictiy of DNA vaccines is generally moderate. Novel adjuvant is in urgent need for improving the immunogenicity of DNA vaccine. Polysaccharide and nucleic acid fraction extracted by hot phenol method from Mycobacterium bovis bacillus Calmette-Guérin, known as BCG-PSN, is a widely used immunomodulatory product in China clinical practice. In this study, we evaluated whether the BCG-PSN could serve as a novel adjuvant of DNA vaccine to trigger better cellular and humoral immune responses against the HIV-1 Env antigen in Balb/C mouse model. The BCG-PSN was mixed with 10 μg or 100 μg of pDRVI1.0gp145 (HIV-1 CN54 gp145 gene) DNA vaccine and intramuscularly immunized two or three times. We found that BCG-PSN could significantly improve the immunogenicity of DNA vaccine when co-administered with DNA vaccine. Further, at the same vaccination schedule, BCG-PSN co-immunization with 10 μg DNA vaccine could elicit cellular and humoral immune responses which were comparable to that induced by 100 μg DNA vaccine alone. Moreover, our results demonstrate that BCG-PSN can activate TLR signaling pathways and induce Th1-type cytokines secretion. These findings suggest that BCG-PSN can serve as a novel and effective adjuvant for DNA vaccination.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Song YC, Chou AH, Homhuan A, Huang MH, Chiang SK, Shen KY, Chuang PW, Leng CH, Tao MH, Chong P, Liu SJ. Presentation of lipopeptide by dendritic cells induces anti-tumor responses via an endocytosis-independent pathway in vivo. J Leukoc Biol 2011; 90:323-32. [DOI: 10.1189/jlb.0111046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine 2011; 29:3341-55. [PMID: 20713100 PMCID: PMC3000864 DOI: 10.1016/j.vaccine.2010.08.002] [Citation(s) in RCA: 378] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/27/2010] [Accepted: 08/01/2010] [Indexed: 12/29/2022]
Abstract
This work describes the nature and strength of the immune response induced by various Toll-like receptor ligands and their ability to act as vaccine adjuvants. It reviews the various ligands capable of triggering individual TLRs, and then focuses on the efficacy and safety of those agents for which clinical results are available.
Collapse
Affiliation(s)
- Folkert Steinhagen
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States
| | | | | | | |
Collapse
|
8
|
Cobb A, Roberts LK, Palucka AK, Mead H, Montes M, Ranganathan R, Burkeholder S, Finholt JP, Blankenship D, King B, Sloan L, Harrod AC, Lévy Y, Banchereau J. Development of a HIV-1 lipopeptide antigen pulsed therapeutic dendritic cell vaccine. J Immunol Methods 2011; 365:27-37. [DOI: 10.1016/j.jim.2010.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
9
|
|
10
|
Renaudet O, Dasgupta G, Bettahi I, Shi A, Nesburn AB, Dumy P, BenMohamed L. Linear and branched glyco-lipopeptide vaccines follow distinct cross-presentation pathways and generate different magnitudes of antitumor immunity. PLoS One 2010; 5:e11216. [PMID: 20574522 PMCID: PMC2888579 DOI: 10.1371/journal.pone.0011216] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 05/26/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glyco-lipopeptides, a form of lipid-tailed glyco-peptide, are currently under intense investigation as B- and T-cell based vaccine immunotherapy for many cancers. However, the cellular and molecular mechanisms of glyco-lipopeptides (GLPs) immunogenicity and the position of the lipid moiety on immunogenicity and protective efficacy of GLPs remain to be determined. METHODS/PRINCIPAL FINDINGS We have constructed two structural analogues of HER-2 glyco-lipopeptide (HER-GLP) by synthesizing a chimeric peptide made of one universal CD4(+) epitope (PADRE) and one HER-2 CD8(+) T-cell epitope (HER(420-429)). The C-terminal end of the resulting CD4-CD8 chimeric peptide was coupled to a tumor carbohydrate B-cell epitope, based on a regioselectively addressable functionalized templates (RAFT), made of four alpha-GalNAc molecules. The resulting HER glyco-peptide (HER-GP) was then linked to a palmitic acid moiety, attached either at the N-terminal end (linear HER-GLP-1) or in the middle between the CD4+ and CD8+ T cell epitopes (branched HER-GLP-2). We have investigated the uptake, processing and cross-presentation pathways of the two HER-GLP vaccine constructs, and assessed whether the position of linkage of the lipid moiety would affect the B- and T-cell immunogenicity and protective efficacy. Immunization of mice revealed that the linear HER-GLP-1 induced a stronger and longer lasting HER(420-429)-specific IFN-gamma producing CD8(+) T cell response, while the branched HER-GLP-2 induced a stronger tumor-specific IgG response. The linear HER-GLP-1 was taken up easily by dendritic cells (DCs), induced stronger DCs maturation and produced a potent TLR- 2-dependent T-cell activation. The linear and branched HER-GLP molecules appeared to follow two different cross-presentation pathways. While regression of established tumors was induced by both linear HER-GLP-1 and branched HER-GLP-2, the inhibition of tumor growth was significantly higher in HER-GLP-1 immunized mice (p<0.005). SIGNIFICANCE These findings have important implications for the development of effective GLP based immunotherapeutic strategies against cancers.
Collapse
Affiliation(s)
- Olivier Renaudet
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Département de Chimie Moléculaire, UMR-CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, Grenoble, France
| | - Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ilham Bettahi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alda Shi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Pascal Dumy
- Département de Chimie Moléculaire, UMR-CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, Grenoble, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Institute for Immunology, University of California Irvine Medical Center, Irvine, California, United States of America
- Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Irvine, California, United States of America
| |
Collapse
|
11
|
Faham A, Bennett D, Altin JG. Liposomal Ag engrafted with peptides of sequence derived from HMGB1 induce potent Ag-specific and anti-tumour immunity. Vaccine 2009; 27:5846-54. [PMID: 19660589 DOI: 10.1016/j.vaccine.2009.07.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 10/20/2022]
Abstract
High-mobility group box 1 (HMGB1) protein is a nuclear binding protein which is released by monocytes and macrophages and is a potent maturation signal for dendritic cells (DCs). Synthetic HMGB1-related peptides are reported to be potent DC stimulants. Two HMGB1-related peptides, denoted as pHMGB-89 and pHMGB-106, were explored for their ability to enhance the immunogenicity of Ag-containing liposomes. pHMGB-engrafted liposomes targeted murine CD11c(+) and CD11b(+) cells in vitro and in vivo. Vaccination of mice with OVA-containing liposomes engrafted with pHMGB-89 and pHMGB-106 induced OVA-specific T cell priming and production of IgG(1), IgG(2a) and IgG(2b) antibodies. Importantly, vaccination of mice with B16-OVA-derived plasma membrane vesicles (PMVs) engrafted with pHMGB-89 and pHMGB-106 inhibited tumour growth and metastasis, in syngeneic mice challenged with highly metastatic B16-OVA melanoma. The results show that vaccination with Ag-containing liposomes/PMVs engrafted with HMGB1 peptides could be an effective approach for developing novel vaccines and cancer immunotherapies.
Collapse
Affiliation(s)
- Abdus Faham
- Biochemistry and Molecular Biology, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | |
Collapse
|
12
|
Abstract
Dendritic cells (DC) have profound abilities to induce and coordinate T-cell immunity. This makes them ideal biological agents for use in immunotherapeutic strategies to augment T-cell immunity to HIV infection. Current clinical trials are administering DC-HIV antigen preparations carried out ex vivo as proof of principle that DC immunotherapy is safe and efficacious in HIV-infected patients. These trials are largely dependent on preclinical studies that will provide knowledge and guidance about the types of DC, form of HIV antigen, method of DC maturation, route of DC administration, measures of anti-HIV immune function and ultimately control of HIV replication. Additionally, promising immunotherapy approaches are being developed based on targeting of DC with HIV antigens in vivo. The objective is to define a safe and effective strategy for enhancing control of HIV infection in patients undergoing antiretroviral therapy.
Collapse
Affiliation(s)
- C R Rinaldo
- Department of Infectious Diseases, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Jones KL, Brown LE, Eriksson EMY, Ffrench RA, Latour PA, Loveland BE, Wall DM, Roberts SK, Jackson DC, Gowans EJ. Human dendritic cells pulsed with specific lipopeptides stimulate autologous antigen-specific T cells without the addition of exogenous maturation factors. J Viral Hepat 2008; 15:761-72. [PMID: 18637077 DOI: 10.1111/j.1365-2893.2008.01003.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Serum-free culture conditions to generate immature human monocyte-derived DC (Mo-DC) were optimized, and the parameters that influence their maturation after exposure to lipopeptides containing CD4(+) and CD8(+) T-cell epitopes were examined. The lipopeptides contained a single CD4(+) helper T-cell epitopes, one of a number of human leucocyte antigen (HLA)-A2-restricted cytotoxic T-cell epitope and the lipid Pam2Cys. To ensure complete maturation of the Mo-DC, we examined (i) the optimal lipopeptide concentration, (ii) the optimal Mo-DC density and (iii) the appropriate period of exposure of the Mo-DC to the lipopeptides. The results showed that a high dose of lipopeptide (30 microm) was no more efficient at upregulating maturation markers on Mo-DC than a low dose (6 microm). There was an inverse relationship between Mo-DC concentration and the mean fluorescence intensity of maturation markers. In addition, at the higher cell concentrations, the chemotactic capacity of the Mo-DC towards a cognate ligand, CCL21, was reduced. Thus, high cell concentrations during lipopeptide exposure were detrimental to Mo-DC maturation and function. The duration of exposure of Mo-DC to the lipopeptides had little effect on phenotype, although Mo-DC exposed to lipopeptides for 48 rather than 4 h showed an increased ability to stimulate autologous peripheral blood mononuclear cells to release interferon-gamma in the absence of exogenous maturation factors. These findings reveal conditions for generating mature antigen-loaded DC suitable for targeted immunotherapy.
Collapse
Affiliation(s)
- K L Jones
- Department of Immunology, Monash University, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pfender NA, Grosch S, Roussel G, Koch M, Trifilieff E, Greer JM. Route of uptake of palmitoylated encephalitogenic peptides of myelin proteolipid protein by antigen-presenting cells: importance of the type of bond between lipid chain and peptide and relevance to autoimmunity. THE JOURNAL OF IMMUNOLOGY 2008; 180:1398-404. [PMID: 18209034 DOI: 10.4049/jimmunol.180.3.1398] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, we have shown that thiopalmitoylation of peptides of myelin proteolipid protein, as occurs naturally in vivo, increases their ability to induce experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis, and skews the autoimmune response toward a CD4(+)-mediated response. In contrast, the same peptide, when synthesized with a stable amide bond between peptide and lipid, inhibits experimental autoimmune encephalomyelitis and skews the response toward a CD8(+) response. The aim of the current study was to determine the mechanisms responsible for these observations. We show that proteolipid protein lipopeptides, when synthesized with a thioester bond between the lipid and the peptide, are taken up into APCs via an actin-independent endocytic route, the thioester bond is cleaved in the endosome, and the peptide is subsequently displayed on the surface of the APC in the context of MHC class II. The same peptide, when synthesized with the lipid attached via a stable amide bond, rapidly enters into the cytoplasm of the APC and forms micelles; however, the bond between peptide and lipid is not cleaved, and the micelles travel via the endoplasmic reticulum to complex with MHC class I. These findings have implications for vaccine development and for the development of MHC class II-restricted autoimmune diseases, as many human autoantigens thus far identified are thioacylated.
Collapse
Affiliation(s)
- Nadège A Pfender
- Chimie Organique des Substances Naturelles, Unité Mixte de Recherche 7177, Centre National de la Recherche Scientifique/Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
15
|
Launay O, Durier C, Desaint C, Silbermann B, Jackson A, Pialoux G, Bonnet B, Poizot-Martin I, Gonzalez-Canali G, Cuzin L, Figuereido S, Surenaud M, Ben Hamouda N, Gahery H, Choppin J, Salmon D, Guérin C, Bourgault Villada I, Guillet JG. Cellular immune responses induced with dose-sparing intradermal administration of HIV vaccine to HIV-uninfected volunteers in the ANRS VAC16 trial. PLoS One 2007; 2:e725. [PMID: 17712402 PMCID: PMC1942115 DOI: 10.1371/journal.pone.0000725] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 06/20/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The objective was to compare the safety and cellular immunogenicity of intradermal versus intramuscular immunization with an HIV-lipopeptide candidate vaccine (LIPO-4) in healthy volunteers. METHODOLOGY A randomized, open-label trial with 24 weeks of follow-up was conducted in France at six HIV-vaccine trial sites. Sixty-eight healthy 21- to 55-year-old HIV-uninfected subjects were randomized to receive the LIPO-4 vaccine (four HIV lipopeptides linked to a T-helper-stimulating epitope of tetanus-toxin protein) at weeks 0, 4 and 12, either intradermally (0.1 ml, 100 microg of each peptide) or intramuscularly (0.5 ml, 500 microg of each peptide). Comparative safety of both routes was evaluated. CD8+ T-cell immune responses to HIV epitopes (ELISpot interferon-gamma assay) and tetanus toxin-specific CD4+ T-cell responses (lymphoproliferation) were assessed at baseline, two weeks after each injection, and at week 24. RESULTS AND CONCLUSION No severe, serious or life-threatening adverse events were observed. Local pain was significantly more frequent after intramuscular injection, but local inflammatory reactions were more frequent after intradermal immunization. At weeks 2, 6, 14 and 24, the respective cumulative percentages of induced CD8+ T-cell responses to at least one HIV peptide were 9, 33, 39 and 52 (intradermal group) or 14, 20, 26 and 37 (intramuscular group), and induced tetanus toxin-specific CD4+ T-cell responses were 6, 27, 33 and 39 (intradermal), or 9, 46, 54 and 63 (intramuscular). In conclusion, intradermal LIPO-4 immunization was well tolerated, required one-fifth of the intramuscular dose, and induced similar HIV-specific CD8+ T-cell responses. Moreover, the immunization route influenced which antigen-specific T-cells (CD4+ or CD8+) were induced. TRIAL REGISTRATION ClinicalTrials.gov NCT00121121.
Collapse
Affiliation(s)
- Odile Launay
- Université Paris Descartes, Faculté de Médecine, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang X, Issagholian A, Berg EA, Fishman JB, Nesburn AB, BenMohamed L. Th-cytotoxic T-lymphocyte chimeric epitopes extended by Nepsilon-palmitoyl lysines induce herpes simplex virus type 1-specific effector CD8+ Tc1 responses and protect against ocular infection. J Virol 2006; 79:15289-301. [PMID: 16306600 PMCID: PMC1316035 DOI: 10.1128/jvi.79.24.15289-15301.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Molecularly defined vaccine formulations capable of inducing antiviral CD8+ T-cell-specific immunity in a manner compatible with human delivery are limited. Few molecules achieve this target without the support of an appropriate immunological adjuvant. In this study, we investigate the potential of totally synthetic palmitoyl-tailed helper-cytotoxic-T-lymphocyte chimeric epitopes (Th-CTL chimeric lipopeptides) to induce herpes simplex virus type 1 (HSV-1)-specific CD8+ T-cell responses. As a model antigen, the HSV-1 glycoprotein B498-505 (gB498-505) CD8+ CTL epitope was synthesized in line with the Pan DR peptide (PADRE), a universal CD4+ Th epitope. The peptide backbone, composed solely of both epitopes, was extended by N-terminal attachment of one (PAM-Th-CTL), two [(PAM)2-Th-CTL], or three [(PAM)3-Th-CTL] palmitoyl lysines and delivered to H2b mice in adjuvant-free saline. Potent HSV-1 gB498-505-specific antiviral CD8+ T-cell effector type 1 responses were induced by each of the palmitoyl-tailed Th-CTL chimeric epitopes, irrespective of the number of lipid moieties. The palmitoyl-tailed Th-CTL chimeric epitopes provoked cell surface expression of major histocompatibility complex and costimulatory molecules and production of interleukin-12 and tumor necrosis factor alpha proinflammatory cytokines by immature dendritic cells. Following ocular HSV-1 challenge, palmitoyl-tailed Th-CTL-immunized mice exhibited a decrease of virus replication in the eye and in the local trigeminal ganglion and reduced herpetic blepharitis and corneal scarring. The rational of the molecularly defined vaccine approach presented in this study may be applied to ocular herpes and other viral infections in humans, providing steps are taken to include appropriate Th and CTL epitopes and lipid groups.
Collapse
Affiliation(s)
- Xiuli Zhang
- Laboratory of Cellular and Molecular Immunology, University of California, Irvine, College of Medicine, Bldg. 55, Room 202, Orange, CA 92868, USA
| | | | | | | | | | | |
Collapse
|
17
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Hovav AH, Davidovitch L, Nussbaum G, Mullerad J, Fishman Y, Bercovier H. Mitogenicity of the recombinant mycobacterial 27-kilodalton lipoprotein is not connected to its antiprotective effect. Infect Immun 2004; 72:3383-90. [PMID: 15155644 PMCID: PMC415711 DOI: 10.1128/iai.72.6.3383-3390.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reported previously that even though immunization with the recombinant mycobacterial 27-kDa lipoprotein (r27) induced a Th1-type response in mice, the vaccinated mice became more susceptible to challenge with Mycobacterium tuberculosis. In this study we show that r27 stimulates naive splenocytes to proliferate. Acylation of r27 was crucial for this effect, since a nonacylated mutant of r27, termed r27DeltaSP, failed to stimulate splenocytes either in vitro or in vivo. Depletion experiments indicated that only B cells were proliferating in a T-cell-independent manner. We also found that r27 is recognized by TLR2, which is involved in mitogenic stimulation. Interestingly, r27 but not r27DeltaSP induced high gamma interferon levels in splenocyte supernatants, whereas no significant interleukin-2 levels were detected. Since B-cell polyclonal activation might aggravate pathogen infection, we asked whether the antiprotective effect of the r27 lipoprotein is associated with its mitogenicity. We showed that, as in the case of r27, immunization of mice with the nonmitogenic r27DeltaSP lipoprotein resulted in increased M. tuberculosis multiplication. We conclude that the antiprotective effect of the r27 lipoprotein must be linked to properties of the polypeptide portion of the lipoprotein rather than to its lipid moiety and its mitogenicity.
Collapse
Affiliation(s)
- Avi-Hai Hovav
- Department of Clinical Microbiology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Nadège P, Erwann G, Judith GM, Elisabeth T. Solid-phase synthesis of a biotin-labelled thiopalmitoylated myelin proteolipid protein epitope and application in the study of uptake of antigen by macrophages. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-3534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Development of lipid-core-peptide (LCP) based vaccines for the prevention of group A streptococcal (GAS) infection. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-2431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Development of lipid-core-peptide (LCP) based vaccines for the prevention of group A streptococcal (GAS) infection. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/bf02442594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Solid-phase synthesis of a biotin-labelled thiopalmitoylated myelin proteolipid protein epitope and application in the study of uptake of antigen by macrophages. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/bf02442591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Carbonneil C, Aouba A, Burgard M, Cardinaud S, Rouzioux C, Langlade-Demoyen P, Weiss L. Dendritic cells generated in the presence of granulocyte-macrophage colony-stimulating factor and IFN-alpha are potent inducers of HIV-specific CD8 T cells. AIDS 2003; 17:1731-40. [PMID: 12891059 DOI: 10.1097/00002030-200308150-00002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the ability of granulocyte-macrophage colony-stimulating factor (GM-CSF) and IFN-alpha to induce the differentiation of peripheral monocytes into dendritic cells (DC) and their ability to trigger an HIV-specific CD8 T-cell response. METHODS Monocytes isolated from both seronegative controls and HIV-infected individuals were differentiated into DC using GM-CSF with either IL-4 or IFN-alpha for 7 days. We assessed the phenotypic characteristics and IL-12 production by flow cytometry. The ability of DC to trigger CD8 T-cell responses was assessed by means of ELISpot and cytotoxicity assays. In addition, HIV-1-RNA levels were measured in culture supernatants. RESULTS Compared with control DC generated in the presence of GM-CSF and IL-4, DC generated in the presence of GM-CSF and IFN-alpha expressed higher levels of MHC class I molecules and produced similar or higher levels of IL-12 after CD40 ligation or Staphyloccus aureus Cowan stimulation. GM-CSF/IFN-alpha DC expressed low levels of CD4, CXCR4 and DC-SIGN and did not produce detectable virus during the differentiation period. Pulsed GM-CSF/IFN-alpha DC were found to prime CD8 T cells from HIV-negative controls to exert cytotoxic activity against target cells expressing HIV antigens. HIV peptide-pulsed GM-CSF/IFN-alpha DC promote specific IFN-gamma production by autologous CD8 T cells from HIV-seronegative donors. Furthermore, GM-CSF/IFN-alpha DC from HIV-seropositive patients efficiently present HIV peptides to autologous CD8 T lymphocytes. CONCLUSION GM-CSF and IFN-alpha allow the generation of DC with high CD8 T-cell stimulating abilities. Therefore, this strategy may represent a novel approach to therapeutic vaccination in HIV disease.
Collapse
|
24
|
Abstract
Dendritic cells are professional antigen-presenting cells required for generation of adaptive immunity. These cells are one of the initial target cells for HIV-1 infection or capture of virions at site of transmission in the mucosa. DCs carrying HIV-1 will migrate to the lymphoid tissue where they can contribute to the dissemination of the virus to adjacent CD4+ T cells. In addition, HIV-1-exposed DCs may have impaired antigen-presenting capacity resulting in inadequate expansion of HIV-1-specific T cell responses. Here, we review the infection of different subtypes of DCs by HIV-1 and the relevance of these cells in the transmission and establishment of HIV-1 disease. In addition, we discuss the mechanisms through which HIV-1-DC interactions could be exploited to optimise the generation and maintenance of HIV-1-specific T cell immunity.
Collapse
Affiliation(s)
- Karin Lore
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3022, USA.
| | | |
Collapse
|