1
|
Naughton SX, Terry AV. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018; 408:101-112. [PMID: 30144465 DOI: 10.1016/j.tox.2018.08.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
Abstract
The term organophosphate (OP) refers to a diverse group of chemicals that are found in hundreds of products worldwide. As pesticides, their most common use, OPs are clearly beneficial for agricultural productivity and the control of deadly vector-borne illnesses. However, as a consequence of their widespread use, OPs are now among the most common synthetic chemicals detected in the environment as well as in animal and human tissues. This is an increasing environmental concern because many OPs are highly toxic and both accidental and intentional exposures to OPs resulting in deleterious health effects have been documented for decades. Some of these deleterious health effects include a variety of long-term neurological and psychiatric disturbances including impairments in attention, memory, and other domains of cognition. Moreover, some chronic illnesses that manifest these symptoms such as Gulf War Illness and Aerotoxic Syndrome have (at least in part) been attributed to OP exposure. In addition to acute acetylcholinesterase inhibition, OPs may affect a number of additional targets that lead to oxidative stress, axonal transport deficits, neuroinflammation, and autoimmunity. Some of these targets could be exploited for therapeutic purposes. The purpose of this review is thus to: 1) describe the important uses of organophosphate (OP)-based compounds worldwide, 2) provide an overview of the various risks and toxicology associated with OP exposure, particularly long-term neurologic and psychiatric symptoms, 3) discuss mechanisms of OP toxicity beyond cholinesterase inhibition, 4) review potential therapeutic strategies to reverse the acute toxicity and long term deleterious effects of OPs.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
2
|
Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis 2018; 117:82-113. [PMID: 29859868 DOI: 10.1016/j.nbd.2018.05.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Abstract
The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10 μM) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5 mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.
Collapse
|
3
|
Abstract
Originally, organophosphorus (OP) toxicology consisted of acetylcholinesterase inhibition by insecticides and chemical threat agents acting as phosphorylating agents for serine in the catalytic triad, but this is no longer the case. Other serine hydrolases can be secondary OP targets, depending on the OP structure, and include neuropathy target esterase, lipases, and endocannabinoid hydrolases. The major OP herbicides are glyphosate and glufosinate, which act in plants but not animals to block aromatic amino acid and glutamine biosynthesis, respectively, with safety for crops conferred by their expression of herbicide-tolerant targets and detoxifying enzymes from bacteria. OP fungicides, pharmaceuticals including calcium retention agents, industrial chemicals, and cytochrome P450 inhibitors act by multiple noncholinergic mechanisms, often with high potency and specificity. One type of OP-containing fire retardant forms a highly toxic bicyclophosphate γ-aminobutyric acid receptor antagonist upon combustion. Some OPs are teratogenic, mutagenic, or carcinogenic by known mechanisms that can be avoided as researchers expand knowledge of OP chemistry and toxicology for future developments in bioregulation.
Collapse
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720-3112;
| |
Collapse
|
4
|
Li D, Huang Q, Lu M, Zhang L, Yang Z, Zong M, Tao L. The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis. CHEMOSPHERE 2015; 135:387-93. [PMID: 26002045 DOI: 10.1016/j.chemosphere.2015.05.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 05/08/2023]
Abstract
The organophosphate insecticide chlorpyrifos (CPF) is known to induce neurological effects, malformation and micronucleus formation, persistent developmental disorders, and maternal toxicity in rats and mice. The binding of chlorpyrifos with DNA to produce DNA adducts leads to an increasing social concern about the genotoxic risk of CPF in human, but CPF-induced cytotoxicity through DNA damage and cell apoptosis is not well understood. Here, we quantified the cytotoxicity and potential genotoxicity of CPF using the alkaline comet assay, γH2AX foci formation, and the DNA laddering assay in order to detect DNA damage and apoptosis in human HeLa and HEK293 cells in vitro. Drosophila S2 cells were used as a positive control. The alkaline comet assay showed that sublethal concentrations of CPF induced significant concentration-dependent increases in single-strand DNA breaks in the treated cells compared with the control. The percentage of γH2AX-positive HeLa cells revealed that CPF also causes DNA double-strand breaks in a time-dependent manner. Moreover, DNA fragmentation analysis demonstrated that exposure to CPF induced a significant concentration- and time-dependent increase in cell apoptosis. We conclude that CPF is a strongly genotoxic agent that induces DNA damage and cell apoptosis.
Collapse
Affiliation(s)
- Diqiu Li
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Miaoqing Lu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhichuan Yang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Mimi Zong
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liming Tao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Carr RL, Adams AL, Kepler DR, Ward AB, Ross MK. Induction of endocannabinoid levels in juvenile rat brain following developmental chlorpyrifos exposure. Toxicol Sci 2013; 135:193-201. [PMID: 23761300 DOI: 10.1093/toxsci/kft126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) play vital roles during nervous system development. The degradation of 2-AG and AEA is mediated by monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively. These enzymes are inhibited following developmental chlorpyrifos (CPF) exposure. To investigate whether this inhibition is persistent or whether accumulation of endocannabinoids in the brain occurs, 10-day-old rat pups were orally exposed daily for 7 days to either corn oil or increasing dosages of CPF (1, 2.5, or 5mg/kg), and forebrains were collected at 4, 12, 24, and 48h following the last administration. All dosages inhibited cholinesterase (ChE), FAAH, and MAGL, and elevated AEA and 2-AG levels with the greatest effect occurring at 12h with ChE, FAAH, AEA, and 2-AG and at 4h with MAGL. With the high dosage, return to control levels occurred with 2-AG (48h) only. With the medium dosage, return to control levels occurred with MAGL, 2-AG, and AEA (48h) but not with ChE or FAAH. With the low dosage, return to control levels occurred with MAGL (12h), ChE and 2-AG (24h), and AEA (48h) but not with FAAH. With the lowest dosage, peak inhibition of FAAH (52%) is greater than that of ChE (24%) and that level of FAAH inhibition is sufficient to induce a persistent pattern of elevated AEA. It is possible that this pattern of elevation could alter the appropriate development of neuronal brain circuits.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762-6100, USA.
| | | | | | | | | |
Collapse
|
6
|
Terry AV. Functional consequences of repeated organophosphate exposure: potential non-cholinergic mechanisms. Pharmacol Ther 2012; 134:355-65. [PMID: 22465060 DOI: 10.1016/j.pharmthera.2012.03.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022]
Abstract
The class of chemicals known as the "organophosphates" (OPs) comprises many of the most common agricultural and commercial pesticides that are used worldwide as well as the highly toxic chemical warfare agents. The mechanism of the acute toxicity of OPs in both target and non-target organisms is primarily attributed to inhibitory actions on various forms of cholinesterase leading to excessive peripheral and central cholinergic activity. However, there is now substantial evidence that this canonical (cholinesterase-based) mechanism cannot alone account for the wide-variety of adverse consequences of OP exposure that have been described, especially those associated with repeated exposures to levels that produce no overt signs of acute toxicity. This type of exposure has been associated with prolonged impairments in attention, memory, and other domains of cognition, as well as chronic illnesses where these symptoms are manifested (e.g., Gulf War Illness, Alzheimer's disease). Due to their highly reactive nature, it is not surprising that OPs might alter the function of a number of enzymes and proteins (in addition to cholinesterase). However, the wide variety of long-term neuropsychiatric symptoms that have been associated with OPs suggests that some basic or fundamental neuronal process was adversely affected during the exposure period. The purpose of this review is to discuss several non-cholinesterase targets of OPs that might affect such fundamental processes and includes cytoskeletal and motor proteins involved in axonal transport, neurotrophins and their receptors, and mitochondria (especially their morphology and movement in axons). Potential therapeutic implications of these OP interactions are also discussed.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, GA 30912, USA.
| |
Collapse
|
7
|
Torres-Altoro MI, Mathur BN, Drerup JM, Thomas R, Lovinger DM, O'Callaghan JP, Bibb JA. Organophosphates dysregulate dopamine signaling, glutamatergic neurotransmission, and induce neuronal injury markers in striatum. J Neurochem 2011; 119:303-13. [PMID: 21848865 DOI: 10.1111/j.1471-4159.2011.07428.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The neurological effects of organophosphate (OP) pesticides, commonly used on foods and in households, are an important public health concern. Furthermore, subclinical exposure to combinations of organophosphates is implicated in Gulf War illness. Here, we characterized the effects of the broadly used insecticide chlorpyrifos (CPF) on dopamine and glutamatergic neurotransmission effectors in corticostriatal motor/reward circuitry. CPF potentiated protein kinase A (PKA)-dependent phosphorylation of the striatal protein dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32) and the glutamate receptor 1 (GluR1) subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in mouse brain slices. It also increased GluR1 phosphorylation by PKA when administered systemically. This correlated with enhanced glutamate release from cortical projections in rat striatum. Similar effects were induced by the sarin congener, diisopropyl fluorophosphate, alone or in combination with the putative neuroprotectant, pyridostigmine bromide and the pesticide N,N-diethyl-meta-toluamide (DEET). This combination, meant to mimic the neurotoxicant exposure encountered by veterans of the 1991 Persian Gulf War, also induced hyperphosphorylation of the neurofibrillary tangle-associated protein tau. Diisopropyl fluorophosphate and pyrodostigmine bromide, alone or in combination, also increased the aberrant activity of the protein kinase, Cdk5, as indicated by conversion of its activating cofactor p35 to p25. Thus, consistent with recent findings in humans and animals, organophosphate exposure causes dysregulation in the motor/reward circuitry and invokes mechanisms associated with neurological disorders and neurodegeneration.
Collapse
Affiliation(s)
- Melissa I Torres-Altoro
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Carr RL, Borazjani A, Ross MK. Effect of developmental chlorpyrifos exposure, on endocannabinoid metabolizing enzymes, in the brain of juvenile rats. Toxicol Sci 2011; 122:112-20. [PMID: 21507991 DOI: 10.1093/toxsci/kfr081] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA or anandamide) play vital roles during nervous system development including regulating axonal guidance and synaptogenesis. The enzymatic degradation of 2-AG and AEA is highly susceptible to inhibition by organophosphate compounds in vitro. Furthermore, acute in vivo exposure of adult animals to the agricultural insecticide chlorpyrifos (CPS) caused moderate inhibition of both 2-AG and AEA hydrolysis. However, the effects of repeated exposure to lower levels of CPS, especially during development, on endocannabinoid metabolism in the brain is not known. To examine this, rat pups were orally exposed daily from postnatal days 10-16 to either 1.0, 2.5, or 5.0 mg/kg CPS. Body weight gain was reduced by 5.0 mg/kg on all days of treatment whereas 2.5 mg/kg reduced the weight gain only on the last two days of treatment. At 4-h postexposure on day 16, forebrain cholinesterase (ChE) activity and hydrolysis of 2-AG and AEA were inhibited in a dose-related manner, and the extent of inhibition from highest to lowest level was AEA hydrolysis > ChE activity > 2-AG hydrolysis. The extent of inhibition of AEA hydrolysis was approximately twice than that of ChE activity with AEA hydrolysis being virtually eliminated by 2.5 and 5.0 mg/kg and 1.0 mg/kg causing 40% inhibition. The sensitivity of AEA hydrolysis, compared with canonical targets such as ChE activity, suggests a potential alternative developmental target for CPS. Inhibition of AEA hydrolysis could result in accumulation of endocannabinoids, which could alter normal endocannabinoid transmission during brain maturation.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA.
| | | | | |
Collapse
|
9
|
Moreira EG, Yu X, Robinson JF, Griffith W, Hong SW, Beyer RP, Bammler TK, Faustman EM. Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos. Toxicol Appl Pharmacol 2010; 245:310-25. [PMID: 20350560 DOI: 10.1016/j.taap.2010.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/16/2010] [Accepted: 03/20/2010] [Indexed: 11/17/2022]
Abstract
Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles across doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Estefania G Moreira
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Organophosphate exposure during a critical developmental stage reprograms adenylyl cyclase signaling in PC12 cells. Brain Res 2010; 1329:36-44. [PMID: 20298678 DOI: 10.1016/j.brainres.2010.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/08/2010] [Indexed: 11/22/2022]
Abstract
Early-life organophosphate (OP) exposures elicit neurobehavioral deficits through mechanisms other than inhibiting cholinesterase. Cell signaling cascades are postulated as critical noncholinesterase targets that mediate both the initial alterations in neurodevelopment as well as subsequent abnormalities of synaptic function. We exposed PC12 cells to chlorpyrifos, diazinon or parathion in the undifferentiated state and during neurodifferentiation; we then assessed the function of the adenylyl cyclase (AC) signaling cascade, measuring basal AC activity as well as responses to stimulants acting at G-proteins or on the AC molecule itself. In undifferentiated cells, a 2day exposure to the OPs had no significant effect on AC signaling but the same treatment in differentiating cells produced deficits in all AC measures when exposure commenced at the initiation of differentiation. However, when exposure of the differentiating cells was continued for 6days, AC activities then became supranormal. The same increase was obtained if cells were exposed only for the first two days of differentiation, followed by four subsequent days without the OPs. Furthermore, the OP effects on cell signaling were entirely distinct from those on indices of cell number and neurite outgrowth. These results indicate that OP exposure reprograms the AC pathway during a discrete developmental stage at the commencement of neurodifferentiation, with effects that continue to emerge after OP exposure is discontinued. Importantly, the same sequence is seen with OP exposures in neonatal rats, indicating that direct effects of these agents to reprogram cell signaling provide a major mechanism for functional effects unrelated to cholinesterase inhibition.
Collapse
|
11
|
Adigun AA, Wrench N, Levin ED, Seidler FJ, Slotkin TA. Neonatal parathion exposure and interactions with a high-fat diet in adulthood: Adenylyl cyclase-mediated cell signaling in heart, liver and cerebellum. Brain Res Bull 2010; 81:605-12. [PMID: 20074626 DOI: 10.1016/j.brainresbull.2010.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 12/11/2022]
Abstract
Organophosphates are developmental neurotoxicants but recent evidence points to additional adverse effects on metabolism and cardiovascular function. One common mechanism is disrupted cell signaling mediated through cyclic AMP, targeting neurohumoral receptors, G-proteins and adenylyl cyclase (AC) itself. Earlier, we showed that neonatal parathion evokes later upregulation of the hepatic AC pathway in adolescence but that the effect wanes by young adulthood; nevertheless metabolic changes resembling prediabetes persist. Here, we administered parathion to neonatal rats (postnatal days 1-4, 0.1 or 0.2 mg/kg/day), straddling the threshold for cholinesterase inhibition, but we extended the studies to much later, 5 months of age. In addition, we investigated whether metabolic challenge imposed by consuming a high-fat diet for 7 weeks would exacerbate neonatal parathion's effects. Parathion alone increased the expression or function of G(i), thus reducing AC responses to fluoride. Receptors controlling AC activity were also affected: beta-adrenergic receptors (betaARs) in skeletal muscle were increased, whereas those in the heart were decreased, and the latter also showed an elevation of m(2)-muscarinic acetylcholine receptors, which inhibit AC. The high-fat diet also induced changes in AC signaling, enhancing the hepatic AC response to glucagon while impairing the cardiac response to fluoride or forskolin, and suppressing betaARs and m(2)-muscarinic receptors; the only change in the cerebellum was a decrease in betaARs. Although there were no significant interactions between neonatal parathion exposure and a high-fat diet, their convergent effects on the same signaling cascade indicate that early OP exposure, separately or combination with dietary factors, may contribute to the worldwide increase in the incidence of obesity and diabetes.
Collapse
Affiliation(s)
- Abayomi A Adigun
- Department of Pharmacology & Cancer Biology, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
12
|
Adigun AA, Wrench N, Seidler FJ, Slotkin TA. Neonatal dexamethasone treatment leads to alterations in cell signaling cascades controlling hepatic and cardiac function in adulthood. Neurotoxicol Teratol 2009; 32:193-9. [PMID: 19853034 DOI: 10.1016/j.ntt.2009.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
Abstract
Increasing evidence indicates that early-life glucocorticoid exposure, either involving stress or the therapy of preterm labor, contributes to metabolic and cardiovascular disorders in adulthood. We investigated cellular mechanisms underlying these effects by administering dexamethasone (DEX) to neonatal rats on postnatal (PN) days 1-3 or 7-9, using doses spanning the threshold for somatic growth impairment: 0.05, 0.2 and 0.8 mg/kg. In adulthood, we assessed the effects on hepatic and cardiac cell function mediated through the adenylyl cyclase (AC) signaling cascade, which controls neuronal and hormonal inputs that regulate hepatic glucose metabolism and cardiac contractility. Treatment on PN1-3 produced heterologous sensitization of hepatic signaling, with upregulation of AC itself leading to parallel increases in the responses to beta-adrenergic or glucagon receptor stimulation, or to activation of G-proteins by fluoride. The effects were seen at the lowest dose but increasing DEX past the point of somatic growth impairment led to loss of the effect in females. Nonmonotonic effects were also present in the heart, where males showed AC sensitization at the lowest dose, with decreasing effects as the dose was raised; females showed progressive deficits of cardiac AC activity. Shifting the exposure to PN7-9 still elicited AC sensitization but with a greater offsetting contribution at the higher doses. Our findings show that, in contrast to growth restriction, the glucocorticoids associated with stress or the therapy of preterm labor are more sensitive and more important contributors to the cellular abnormalities underlying subsequent metabolic and cardiovascular dysfunction.
Collapse
MESH Headings
- Adenosine Triphosphate/biosynthesis
- Adenylyl Cyclases/drug effects
- Adenylyl Cyclases/metabolism
- Animals
- Animals, Newborn
- Dexamethasone/toxicity
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Female
- GTP-Binding Proteins/drug effects
- GTP-Binding Proteins/metabolism
- Glucocorticoids/toxicity
- Glucose/metabolism
- Heart/drug effects
- Heart/physiopathology
- Liver/drug effects
- Liver/metabolism
- Liver/physiopathology
- Male
- Pregnancy
- Prenatal Exposure Delayed Effects/etiology
- Prenatal Exposure Delayed Effects/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Glucagon/drug effects
- Receptors, Glucagon/metabolism
- Sex Characteristics
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Time
Collapse
Affiliation(s)
- Abayomi A Adigun
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
13
|
Carr RL, Nail CA. Effect of different administration paradigms on cholinesterase inhibition following repeated chlorpyrifos exposure in late preweanling rats. Toxicol Sci 2008; 106:186-92. [PMID: 18703558 DOI: 10.1093/toxsci/kfn164] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chlorpyrifos (CPS) is widely used in agricultural settings and residue analysis has suggested that children in agricultural communities are at risk of exposure. This has resulted in a large amount of literature investigating the potential for CPS-induced developmental neurotoxic effects. Two developmental routes of administration of CPS are orally in corn oil at a rate of 0.5 ml/kg and subcutaneously in dimethyl sulfoxide (DMSO) at a rate of 1.0 ml/kg. For comparison between these methods, rat pups were exposed daily from days 10 to 16 to CPS (5 mg/kg) either orally dissolved in corn oil or subcutaneously dissolved in DMSO, both at rates of either 0.5 or 1.0 ml/kg. A representative vehicle/route group was present for each treatment. Both the low and high volume CPS in DMSO subcutaneous groups were lower than that of the low and high volume CPS in oil oral groups. At 4 h following the final administration, serum carboxylesterase was inhibited > 90% with all treatments. For cholinesterase activity in the cerebellum, medulla-pons, forebrain, and hindbrain, and serum, inhibition in the CPS-oil groups was similar and inhibition in the CPS-DMSO groups was similar. However, significantly greater inhibition was present in the high volume CPS-DMSO group as compared to the CPS-oil groups. Inhibition in the low volume CPS-DMSO group was generally between that in the CPS-oil groups and the high volume CPS-DMSO group. These data suggest that using DMSO as a vehicle for CPS may alter the level of brain ChE inhibition.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | |
Collapse
|
14
|
Enzyme Induction and Cytotoxicity in Human Hepatocytes by Chlorpyrifos and N,N-Diethyl-m-toluamide (DEET). ACTA ACUST UNITED AC 2008; 23:237-60. [DOI: 10.1515/dmdi.2008.23.3-4.237] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Marty MS, Domoradzki JY, Hansen SC, Timchalk C, Bartels MJ, Mattsson JL. The Effect of Route, Vehicle, and Divided Doses on the Pharmacokinetics of Chlorpyrifos and Its Metabolite Trichloropyridinol in Neonatal Sprague-Dawley Rats. Toxicol Sci 2007; 100:360-73. [PMID: 17928393 DOI: 10.1093/toxsci/kfm239] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mary Sue Marty
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI 48674, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Roegge CS, Timofeeva OA, Seidler FJ, Slotkin TA, Levin ED. Developmental diazinon neurotoxicity in rats: later effects on emotional response. Brain Res Bull 2007; 75:166-72. [PMID: 18158111 DOI: 10.1016/j.brainresbull.2007.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 11/25/2022]
Abstract
Developmental exposure to the organophosphorus pesticides chlorpyrifos and diazinon (DZN) alters serotonergic synaptic function at doses below the threshold for cholinesterase inhibition, however there are some indications that the two agents may differ in several important attributes. Previously, we found that low-dose chlorpyrifos exposure in neonatal rats causes lasting changes in emotional response and in the current study we did a comparable evaluation for DZN. Male and female Sprague-Dawley rat pups (N=10-12 of each sex per treatment group) were given 0, 0.5 or 2 mg/(kg day) of DZN s.c. daily on postnatal days (PND) 1-4. These doses bracket the threshold for barely-detectable cholinesterase inhibition. Starting on PND 52, these rats began a battery of tests to assess emotional reactivity. In the elevated plus maze, there was a slight decrease in the time spent in the open arms for DZN-exposed males, while DZN-exposed females were not different from control females. In the novelty-suppressed feeding test, DZN-exposed males had significantly shorter latencies to begin eating than did control males, reducing the values to those normally seen in females. DZN-exposed rats of either sex showed reduced preference for chocolate milk in the anhedonia test that compared the consumption of chocolate milk to water. These findings show that neonatal exposures to DZN at a dose range below the threshold for cholinesterase inhibition nevertheless evokes specific, later alterations in emotional behaviors, particularly in males. The effects show not only some similarities to those of chlorpyrifos but also some differences, in keeping with neurochemical findings comparing the two agents.
Collapse
Affiliation(s)
- Cindy S Roegge
- WIL Research Laboratories, LLC, 1407 George Road, Ashland, OH 44805, USA
| | | | | | | | | |
Collapse
|
17
|
Slotkin TA, MacKillop EA, Ryde IT, Seidler FJ. Ameliorating the developmental neurotoxicity of chlorpyrifos: a mechanisms-based approach in PC12 cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1306-13. [PMID: 17805420 PMCID: PMC1964921 DOI: 10.1289/ehp.10194] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 06/14/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND Organophosphate developmental neurotoxicity involves multiple mechanisms converging on neural cell replication and differentiation. OBJECTIVES We evaluated mechanisms contributing to the adverse effects of chlorpyrifos (CPF) on DNA synthesis, cell number and size, and cell signaling mediated by adenylyl cyclase (AC) in PC12 cells, a neuronotypic cell line that recapitulates the essential features of developing mammalian neurons. RESULTS In undifferentiated cells, cholinergic receptor antagonists had little or no protective effect against the antimitotic actions of CPF; however, when nerve growth factor was used to evoke differentiation, the antagonists showed partial protection against deficits in cell loss and alteration in cell size elicited by CPF, but were ineffective in preventing the deterioration of AC signaling. Nicotine, which stimulates nicotinic acetylcholine receptors but also possesses a mixture of prooxidant/antioxidant activity, had adverse effects by itself but also protected undifferentiated cells from the actions of CPF and had mixed additive/protective effects on cell number in differentiating cells. The antioxidant vitamin E also protected both undifferentiated and differentiating cells from many of the adverse effects of CPF but worsened the impact on AC signaling. Theophylline, which prevents the breakdown of cyclic AMP, was the only agent that restored AC signaling to normal or supranormal levels but did so at further cost to cell replication. CONCLUSIONS Our results show definitive contributions of cholinergic hyperstimulation, oxidative stress, and interference with AC signaling in the developmental neurotoxicity of CPF and point to the potential use of this information to design treatments to ameliorate these adverse effects.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
18
|
Slotkin TA, MacKillop EA, Rudder CL, Ryde IT, Tate CA, Seidler FJ. Permanent, sex-selective effects of prenatal or adolescent nicotine exposure, separately or sequentially, in rat brain regions: indices of cholinergic and serotonergic synaptic function, cell signaling, and neural cell number and size at 6 months of age. Neuropsychopharmacology 2007; 32:1082-97. [PMID: 17047666 DOI: 10.1038/sj.npp.1301231] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nicotine is a neuroteratogen that disrupts neurodevelopment and synaptic function, with vulnerability extending into adolescence. We assessed the permanence of effects in rats on indices of neural cell number and size, and on acetylcholine and serotonin (5HT) systems, conducting assessments at 6 months of age, after prenatal nicotine exposure, adolescent exposure, or sequential exposure in both periods. For prenatal nicotine, indices of cell number and size showed few abnormalities by 6 months, but there were persistent deficits in cerebrocortical choline acetyltransferase activity and hemicholinium-3 binding to the presynaptic choline transporter, a pattern consistent with cholinergic hypoactivity; these effects were more prominent in males than females. The expression of 5HT receptors also showed permanent effects in males, with suppression of the 5HT(1A) subtype and upregulation of 5HT(2) receptors. In addition, cell signaling through adenylyl cyclase showed heterologous uncoupling of neurotransmitter responses. Nicotine exposure in adolescence produced lasting effects that were similar to those of prenatal nicotine. However, when animals were exposed to prenatal nicotine and received nicotine subsequently in adolescence, the adverse effects then extended to females, whereas the net effect in males was similar to that of prenatal nicotine by itself. Our results indicate that prenatal or adolescent nicotine exposure evoke permanent changes in synaptic function that transcend the recovery of less-sensitive indices of structural damage; further, prenatal exposure sensitizes females to the subsequent adverse effects of adolescent nicotine, thus creating a population that may be especially vulnerable to the lasting behavioral consequences of nicotine intake in adolescence.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Jia Z, Misra HP. Exposure to mixtures of endosulfan and zineb induces apoptotic and necrotic cell death in SH-SY5Y neuroblastoma cells,in vitro. J Appl Toxicol 2007; 27:434-46. [PMID: 17309119 DOI: 10.1002/jat.1218] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A number of epidemiological studies have demonstrated a strong association between the incidence of Parkinson's disease and pesticide exposure. Earlier it was demonstrated that exposure to the pesticides endosulfan and zineb, alone and in combination, caused neurodegeneration in vivo. It was hypothesized that these pesticides cause neurotoxicity, in part, by enhancing apoptotic cell death. SH-SY5Y human neuroblastoma cells, which retain a catecholaminergic phenotype, were exposed to endosulfan, zineb or a combination of these chemicals, in vitro. For mixture studies, concentrations of pesticides (100 microM each) were chosen based on LC(25) (lethal concentration) that would result in minimum cell death. Exposure to a mixture of pesticides exhibited significantly (P < or = 0.05) higher toxicity than each one alone. Both pesticides were found to cause apoptotic cell death that was concentration (50-400 microM) dependent. A flow cytometric (7-aminoactinomycin D) assay was used to distinguish live, early apoptotic and late apoptotic/necrotic populations. Exposure to mixtures of the pesticides enhanced both early apoptosis and late apoptosis/necrosis compared with either chemical alone. Visual evaluation using a DNA ladder assay and a fluorescence Annexin V/PI assay confirmed the contribution of both apoptotic and necrotic processes. These findings suggest that the cytotoxicity of endosulfan and zineb, both individually and in mixtures, is associated with the occurrence of early and late apoptotic/necrotic processes in SH-SY5Y human neuroblastoma cells and support the contention that pesticide-induced neuronal cell death leading to neurodegenerative disease may, at least in part, be associated with early and late apoptosis of dopaminergic neurons.
Collapse
Affiliation(s)
- Zhenquan Jia
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
20
|
Betancourt AM, Burgess SC, Carr RL. Effect of developmental exposure to chlorpyrifos on the expression of neurotrophin growth factors and cell-specific markers in neonatal rat brain. Toxicol Sci 2006; 92:500-6. [PMID: 16675515 DOI: 10.1093/toxsci/kfl004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chlorpyrifos (CPS), a known neurotoxicant, is a widely used agricultural organophosphorus insecticide. The effects of postnatal exposure to CPS on the expression of mRNA for two factors critical to brain development, nerve growth factor (NGF) and reelin, were investigated in the forebrain of rats. In addition, the expression of mRNA for the muscarinic acetylcholine receptor (mAChR) M(1) subtype and cell-specific markers for developing neurons (beta-III tubulin), astrocytes (glial fibrillary acidic protein, GFAP), and oligodendrocytes (myelin-associated glycoprotein, MAG) was also investigated. Oral administration of CPS (1.5 or 3.0 mg/kg) or the corn oil vehicle was performed daily from postnatal days (PNDs) 1 through 6. No signs of overt toxicity or of cholinergic hyperstimulation were observed after CPS administration. Body weight was significantly different from controls on PND7 in both males and females exposed to 3.0 mg/kg CPS. Quantitative PCR was performed on the forebrain. The expression of NGF, reelin, and M(1) mAChR mRNA was significantly reduced with both dosages of CPS in both sexes. beta-III Tubulin mRNA expression remained unchanged after exposure, whereas MAG mRNA expression was significantly decreased with both dosages of CPS in both sexes, suggesting effects on the developing oligodendrocytes. In contrast, GFAP mRNA levels were significantly increased with both dosages of CPS in both sexes, suggesting increased astrocyte reactivity. Our findings indicate that dosages of CPS which cause significant cholinesterase inhibition but do not exert overt toxicity can adversely affect the expression levels of critical genes involved in brain development during the early postnatal period in the rat.
Collapse
Affiliation(s)
- Angela M Betancourt
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, 39762, USA
| | | | | |
Collapse
|
21
|
Kreider ML, Tate CA, Cousins MM, Oliver CA, Seidler FJ, Slotkin TA. Lasting effects of developmental dexamethasone treatment on neural cell number and size, synaptic activity, and cell signaling: critical periods of vulnerability, dose-effect relationships, regional targets, and sex selectivity. Neuropsychopharmacology 2006; 31:12-35. [PMID: 15920497 DOI: 10.1038/sj.npp.1300783] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucocorticoids administered to prevent respiratory distress in preterm infants are associated with neurodevelopmental disorders. To evaluate the long-term effects on forebrain development, we treated developing rats with dexamethasone (Dex) at 0.05, 0.2, or 0.8 mg/kg, doses below or spanning the range in clinical use, testing the effects of administration during three different stages: gestational days 17-19, postnatal days 1-3, or postnatal days 7-9. In adulthood, we assessed biomarkers of neural cell number and size, cholinergic presynaptic activity, neurotransmitter receptor expression, and synaptic signaling mediated through adenylyl cyclase (AC), in the cerebral cortex, hippocampus, and striatum. Even at doses that were devoid of lasting effects on somatic growth, Dex elicited deficits in the number and size of neural cells, with the largest effect in the cerebral cortex. Indices of cholinergic synaptic function (choline acetyltransferase, hemicholinium-3 binding) indicated substantial hyperactivity in males, especially in the hippocampus, effectively eliminating the normal sex differences for these parameters. However, the largest effects were seen for cerebrocortical cell signaling mediated by AC, where Dex treatment markedly elevated overall activity while obtunding the function of G-protein-coupled catecholaminergic or cholinergic receptors that stimulate or inhibit AC; uncoupling was noted despite receptor upregulation. Again, the effects on signaling were larger in males and offset the normal sex differences in AC. These results indicate that, during critical developmental periods, Dex administration evokes lasting alterations in neural cell numbers and synaptic function in forebrain regions, even at doses below those used in preterm infants.
Collapse
Affiliation(s)
- Marisa L Kreider
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
22
|
Slotkin TA, Tate CA, Cousins MM, Seidler FJ. Imbalances emerge in cardiac autonomic cell signaling after neonatal exposure to terbutaline or chlorpyrifos, alone or in combination. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:219-30. [PMID: 16256208 DOI: 10.1016/j.devbrainres.2005.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/13/2005] [Accepted: 09/16/2005] [Indexed: 11/19/2022]
Abstract
During early neonatal development, the future reactivity of the heart to cardiac autonomic stimulation is programmed by the timing and intensity of the arrival of parasympathetic and sympathetic inputs. In neonatal rats, we examined the effects of exposure to terbutaline, a beta-adrenoceptor (betaAR) agonist used to arrest preterm labor, and chlorpyrifos (CPF), a widely used organophosphate pesticide that acts in part through inhibition of cholinesterase, using scenarios mimicking the likely developmental stages corresponding to peak human exposures: postnatal days (PN) 2-5 for terbutaline and PN11-14 for CPF. Terbutaline evoked a progressive deficit in cardiac betaAR binding but did not interfere with the ability of the receptors to stimulate adenylyl cyclase (AC). Terbutaline also reduced expression of m2 muscarinic acetylcholine receptors and suppressed their ability to inhibit AC. Surprisingly, CPF produced similar actions, a decrement in betaAR and m2 muscarinic receptor binding and a loss of the cholinergic AC response, and also augmented the ability of betaARs to stimulate AC. The effects of CPF are thus unlikely to reside in cholinergic hyperstimulation resulting from cholinesterase inhibition but instead involve other actions converging on receptors and cell signaling. Exposure to both agents, terbutaline followed by CPF, produced a summation of the two individual effects. Our findings at the level of cell signaling thus indicate that neonatal exposure to terbutaline or CPF, or sequentially to both agents, results in an imbalance of cardiac autonomic inputs favoring increased excitability, an outcome that may have an impact on cardiovascular responses.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
23
|
Kreider ML, Aldridge JE, Cousins MM, Oliver CA, Seidler FJ, Slotkin TA. Disruption of rat forebrain development by glucocorticoids: critical perinatal periods for effects on neural cell acquisition and on cell signaling cascades mediating noradrenergic and cholinergic neurotransmitter/neurotrophic responses. Neuropsychopharmacology 2005; 30:1841-55. [PMID: 15841102 DOI: 10.1038/sj.npp.1300743] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucocorticoids are the consensus treatment for the prevention of respiratory distress in preterm infants, but there is evidence for increased incidence of neurodevelopmental disorders as a result of their administration. We administered dexamethasone (Dex) to developing rats at doses below or within the range of those used clinically, evaluating the effects on forebrain development with exposure in three different stages: gestational days 17-19, postnatal days 1-3, or postnatal days 7-9. At 24 h after the last dose, we evaluated biomarkers of neural cell acquisition and growth, synaptic development, neurotransmitter receptor expression, and synaptic signaling mediated by adenylyl cyclase (AC). Dex impaired the acquisition of neural cells, with a peak effect when given in the immediate postnatal period. In association with this defect, Dex also elicited biphasic effects on cholinergic presynaptic development, promoting synaptic maturation at a dose (0.05 mg/kg) well below those used therapeutically, whereas the effect was diminished or lost when doses were increased to 0.2 or 0.8 mg/kg. Dex given postnatally also disrupted the expression of adrenergic receptors known to participate in neurotrophic modeling of the developing brain and evoked massive induction of AC activity. As a consequence, disparate receptor inputs all produced cyclic AMP overproduction, a likely contributor to disrupted patterns of cell replication, differentiation, and apoptosis. Superimposed on the heterologous AC induction, Dex impaired specific receptor-mediated cholinergic and adrenergic signals. These results indicate that, during a critical developmental period, Dex administration leads to widespread interference with forebrain development, likely contributing to eventual, adverse neurobehavioral outcomes.
Collapse
Affiliation(s)
- Marisa L Kreider
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
24
|
Brimijoin S. Can cholinesterase inhibitors affect neural development? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:429-432. [PMID: 21783508 DOI: 10.1016/j.etap.2004.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Accumulating evidence supports the view that acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can influence the proliferation and differentiation of nerve cells. AChE in particular has been found to promote neurite outgrowth in a variety of model systems, possibly by serving as an adhesion molecule. Thus one might suspect that cholinesterase inhibitors would disturb neuronal development, with long-term implications for structure and function in the central and peripheral nervous systems. The actual picture is more complex because AChE's effects on neurite outgrowth may reflect protein-protein interactions that are not directly related to catalytic function but are nonetheless influenced by ligands with special structural features. The putative structural interactions have not yet been rigorously defined, but they are likely to involve enzyme regions at or near the peripheral anionic site. In addition to such effects, some organophosphorus anticholinesterases have been reported to act by still other mechanisms to depress macromolecule synthesis and cell survival in the developing brain. Taken together, this emerging information highlights the potential importance of anticholinesterase agents in developmental neurotoxicology.
Collapse
Affiliation(s)
- Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN 55905, USA
| |
Collapse
|
25
|
Casida JE, Quistad GB. Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol 2005; 17:983-98. [PMID: 15310231 DOI: 10.1021/tx0499259] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA.
| | | |
Collapse
|
26
|
Aldridge JE, Meyer A, Seidler FJ, Slotkin TA. Developmental exposure to terbutaline and chlorpyrifos: pharmacotherapy of preterm labor and an environmental neurotoxicant converge on serotonergic systems in neonatal rat brain regions. Toxicol Appl Pharmacol 2005; 203:132-44. [PMID: 15710174 DOI: 10.1016/j.taap.2004.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 08/04/2004] [Indexed: 11/29/2022]
Abstract
Developmental exposure to unrelated neurotoxicants can nevertheless produce similar neurobehavioral outcomes. We examined the effects of developmental exposure to terbutaline, a tocolytic beta2-adrenoceptor agonist used to arrest preterm labor, and chlorpyrifos (CPF), a widely used organophosphate pesticide, on serotonin (5HT) systems. Treatments were chosen to parallel periods typical of human developmental exposures, terbutaline (10 mg/kg) on postnatal days (PN) 2-5 and CPF (5 mg/kg) on PN11-14, with assessments conducted on PN45, comparing each agent alone as well as sequential administration of both. Although neither treatment affected growth or viability, each elicited similar alterations in factors that are critical to the function of the 5HT synapse: 5HT1A receptors, 5HT2 receptors, and the presynaptic 5HT transporter (5HTT). Either agent elicited global increases in 5HT receptors and the 5HTT in brain regions possessing 5HT cell bodies (midbrain, brainstem) as well as in the hippocampus, which contains 5HT projections. For both terbutaline and CPF, males were affected more than females, although there were some regional disparities in the sex selectivity between the two agents. Both altered 5HT receptor-mediated cell signaling, suppressing stimulatory effects on adenylyl cyclase and enhancing inhibitory effects. When animals were exposed sequentially to both agents, the outcomes were no more than additive and, for many effects, less than additive, suggesting convergence of the two agents on a common set of developmental mechanisms. Our results indicate that 5HT systems represent a target for otherwise unrelated neuroteratogens.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Animals
- Animals, Newborn
- Brain/drug effects
- Brain/metabolism
- Chlorpyrifos/administration & dosage
- Chlorpyrifos/toxicity
- Female
- Insecticides/administration & dosage
- Insecticides/toxicity
- Male
- Membrane Glycoproteins/metabolism
- Membrane Transport Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin, 5-HT1/drug effects
- Receptors, Serotonin, 5-HT1/metabolism
- Receptors, Serotonin, 5-HT2/drug effects
- Receptors, Serotonin, 5-HT2/metabolism
- Serotonin
- Serotonin Plasma Membrane Transport Proteins
- Sex Factors
- Teratogens/toxicity
- Terbutaline/administration & dosage
- Terbutaline/toxicity
- Tocolytic Agents/administration & dosage
- Tocolytic Agents/toxicity
Collapse
Affiliation(s)
- Justin E Aldridge
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
27
|
Meyer A, Seidler FJ, Aldridge JE, Slotkin TA. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos. Toxicol Appl Pharmacol 2005; 203:154-66. [PMID: 15710176 DOI: 10.1016/j.taap.2004.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 08/12/2004] [Indexed: 11/25/2022]
Abstract
Exposure to apparently unrelated neurotoxicants can nevertheless converge on common neurodevelopmental events. We examined the long-term effects of developmental exposure of rats to terbutaline, a beta-adrenoceptor agonist used to arrest preterm labor, and the organophosphorus insecticide chlorpyrifos (CPF) separately and together. Treatments mimicked the appropriate neurodevelopmental stages for human exposures: terbutaline on postnatal days (PN) 2-5 and CPF on PN11-14, with assessments conducted on PN45. Although neither treatment affected growth or viability, each elicited alterations in CNS cell signaling mediated by adenylyl cyclase (AC), a transduction pathway shared by numerous neuronal and hormonal signals. Terbutaline altered signaling in the brainstem and cerebellum, with gender differences particularly notable in the cerebellum (enhanced AC in males, suppressed in females). By itself, CPF exposure elicited deficits in AC signaling in the midbrain, brainstem, and striatum. However, sequential exposure to terbutaline followed by CPF produced larger alterations and involved a wider spectrum of brain regions than were obtained with either agent alone. In the cerebral cortex, adverse effects of the combined treatment intensified between PN45 and PN60, suggesting that exposures alter the long-term program for development of synaptic communication, leading to alterations in AC signaling that emerge even after adolescence. These findings indicate that terbutaline, like CPF, is a developmental neurotoxicant, and reinforce the idea that its use in preterm labor may create a subpopulation that is sensitized to long-term CNS effects of organophosphorus insecticides.
Collapse
Affiliation(s)
- Armando Meyer
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (AM), Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
28
|
Slotkin TA, Cousins MM, Tate CA, Seidler FJ. Serotonergic cell signaling in an animal model of aging and depression: olfactory bulbectomy elicits different adaptations in brain regions of young adult vs aging rats. Neuropsychopharmacology 2005; 30:52-7. [PMID: 15367926 DOI: 10.1038/sj.npp.1300569] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aging involves neuronal and synaptic loss, and maintenance of function depends on adaptations in cellular responsiveness. We studied olfactory bulbectomy (OBX), a model that recapitulates monoaminergic dysfunction in depression, in 10-week vs 19-month-old rats, and evaluated 5HT (5-hydroxytryptamine, serotonin) mechanisms. OBX elicited little change in 5HT1A receptors in the cerebral cortex or striatum of either age group. In contrast, 5HT2 receptors showed disparate effects, with a decrease in the cerebral cortex of young OBX but not aging OBX rats, whereas the latter group showed a selective decrease in striatal 5HT2 receptors. Greater differences were apparent for 5HT-mediated cell signaling, assessed for the adenylyl cyclase (AC) cascade. In young animals, 5HT had a stimulatory effect on AC that was unaltered by OBX. However, in aging animals, the pattern of 5HT responses showed marked alterations in response to OBX: under basal conditions, stimulatory effects were enhanced but when AC was activated with forskolin, 5HT became markedly inhibitory in the striatum of aged OBX animals. Assessment of the relative AC responses to two direct stimulants that act on different epitopes of the enzyme, forskolin and Mn2+, pointed to a shift in the AC isoform and/or its ability to associate with G-proteins as the mechanism underlying the age-related differences for OBX effects. These data indicate that there are biological distinctions in the response of 5HT systems to OBX in young adult vs aging animals, which, if present in geriatric depression, could provide a mechanistic basis for differences in responses to antidepressants that act on 5HT.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Adenylyl Cyclases/biosynthesis
- Adenylyl Cyclases/metabolism
- Aging/physiology
- Animals
- Colforsin/pharmacology
- Depression/physiopathology
- GTP-Binding Proteins/metabolism
- Male
- Manganese/pharmacology
- Neurotransmitter Agents/metabolism
- Olfactory Bulb/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Serotonin/drug effects
- Serotonin/physiology
- Signal Transduction/physiology
- Stimulation, Chemical
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
29
|
Slotkin TA, Seidler FJ, Qiao D, Aldridge JE, Tate CA, Cousins MM, Proskocil BJ, Sekhon HS, Clark JA, Lupo SL, Spindel ER. Effects of prenatal nicotine exposure on primate brain development and attempted amelioration with supplemental choline or vitamin C: neurotransmitter receptors, cell signaling and cell development biomarkers in fetal brain regions of rhesus monkeys. Neuropsychopharmacology 2005; 30:129-44. [PMID: 15316571 DOI: 10.1038/sj.npp.1300544] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies in developing rodents indicate that nicotine is a neuroteratogen that disrupts brain development by stimulating nicotinic acetylcholine receptors (nAChRs) that control neural cell replication and differentiation. We administered nicotine to pregnant Rhesus monkeys from gestational day 30 through 160 by continuous infusion, achieving maternal plasma levels comparable to those in smokers (30 ng/ml). Fetal brain regions and peripheral tissues were examined for nAChR subtypes, other neurotransmitter receptors, and indices of cell signaling and cell damage. Nicotine evoked nAChR upregulation, but with distinct regional disparities indicative of selective stimulatory responses. Similarly, indices of cell loss (reduced DNA), cell size and neuritic outgrowth (protein/DNA and membrane/total protein ratios) were distinct for each region and did not necessarily follow the rank order of nAChR upregulation, suggesting the involvement of additional mechanisms such as oxidative stress. We then attempted to offset the adverse effects of nicotine with standard dietary supplements known to interact with nicotine. By itself, choline elicited nicotine-like actions commensurate with its promotion of cholinergic neurotransmission. When given in combination with nicotine, choline protected some regions from damage but worsened nicotine's effects in other regions. Similarly, Vitamin C supplementation had mixed effects, increasing nAChR responses while providing protection from cell damage in the caudate, the brain region most susceptible to oxidative stress. Our results indicate that nicotine elicits neurodevelopmental damage that is highly selective for different brain regions, and that dietary supplements ordinarily thought to be neuroprotectant may actually worsen some of the adverse effects of nicotine on the fetal brain.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Levario-Carrillo M, Amato D, Ostrosky-Wegman P, González-Horta C, Corona Y, Sanin LH. Relation between pesticide exposure and intrauterine growth retardation. CHEMOSPHERE 2004; 55:1421-7. [PMID: 15081785 DOI: 10.1016/j.chemosphere.2003.11.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Revised: 10/20/2003] [Accepted: 11/10/2003] [Indexed: 05/20/2023]
Abstract
The increased use of organophosphorus insecticides in agriculture and their widespread existence in the environment poses a potential health hazard. To determine the relationship between exposure to pesticides and intrauterine growth retardation (IUGR), live newborns from singleton pregnancies, with (n = 79) and without (n = 292) IUGR were studied. During the gestational period the mothers were living in agricultural communities in the state of Chihuahua, Mexico. Exposure to agrochemical products was evaluated. A significant association between the history of positive exposure to pesticides (i.e. the women themselves or their newborns who showed acetylcholinesterase activity levels lower than 20%) and the presence of IUGR was found. The proportions of exposure in the cases were 18% and 8% in the control group; the adjusted OR (fat free mass, anti-cytomegalovirus antibodies and placental weight) was 2.33 (p = 0.04).
Collapse
Affiliation(s)
- Margarita Levario-Carrillo
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Ginecología y Obstetricia IMSS, Av. División del Norte 2300 CH 44-228, Colonia Altavista, CP 31320 Chihuahua, México.
| | | | | | | | | | | |
Collapse
|
31
|
Abreu-Villaça Y, Seidler FJ, Slotkin TA. Impact of adolescent nicotine exposure on adenylyl cyclase-mediated cell signaling: enzyme induction, neurotransmitter-specific effects, regional selectivities, and the role of withdrawal. Brain Res 2003; 988:164-72. [PMID: 14519538 DOI: 10.1016/s0006-8993(03)03368-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent animal studies indicate that the adolescent brain is especially vulnerable to nicotine-induced alterations in synaptic function, echoing the increased susceptibility to nicotine dependence and withdrawal noted for adolescent smokers. We administered nicotine to adolescent rats via continuous minipump infusions from PN30 to PN47.5, using 6 mg/kg/day, a dose rate that replicates the plasma nicotine levels found in smokers, and examined the effects on cell signaling mediated through adenylyl cyclase (AC) and its response to catecholamines. Studies were conducted during nicotine administration (PN45) and in the posttreatment, withdrawal period (PN50, 60, 75). Adolescent nicotine augmented AC activity as evidenced by increased responsiveness to the direct AC stimulants, forskolin and Mn(2+). The effects on AC were equally noted in brain regions enriched (striatum) or sparse (cerebellum) in cholinergic projections, implying that the effects are secondary to activation/repression of neural circuits, rather than representing direct effects on AC mediated by nicotinic cholinergic receptors. AC responses to dopaminergic and noradrenergic stimulants were also enhanced by nicotine exposure. However, in contrast to earlier work with serotonin-mediated responses, the effects on catecholaminergic stimulation were smaller and did not display the sex-dependence noted for serotonin. An alternate administration paradigm that maximizes episodic withdrawal (twice-daily nicotine injections) induced AC more rapidly at lower nicotine doses. Our results indicate that adolescent nicotine exposure elicits lasting alterations in synaptic signaling that intensify and persist during withdrawal. These findings support the concept that the adolescent brain is especially susceptible to persistent nicotine-induced alterations.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA
| | | | | |
Collapse
|
32
|
Carr KD, Tsimberg Y, Berman Y, Yamamoto N. Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience 2003; 119:1157-67. [PMID: 12831870 DOI: 10.1016/s0306-4522(03)00227-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well established that chronic food restriction enhances sensitivity to the rewarding and motor-activating effects of abused drugs. However, neuroadaptations underlying these behavioral effects have not been characterized. The purpose of the present study was to explore the possibility that food restriction produces increased dopamine (DA) receptor function that is evident in behavior, signal transduction, and immediate early gene expression. In the first two experiments, rats received intracerebroventricular (i.c.v.) injections of the D1 DA receptor agonist SKF-82958, and the D2/3 DA receptor agonist quinpirole. Both agonists produced greater motor-activating effects in food-restricted than ad libitum-fed rats. In addition, Fos-immunostaining induced by SKF-82958 in caudate-putamen (CPu) and nucleus accumbens (Nac) was greater in food-restricted than ad libitum-fed rats, as was staining induced by quinpirole in globus pallidus and ventral pallidum. In the next two experiments, neuronal membranes prepared from CPu and Nac were exposed to SKF-82958 and quinpirole. Despite the documented involvement of cyclic AMP (cAMP) signaling in D1 DA receptor-mediated c-fos induction, stimulation of adenylyl cyclase (AC) activity by SKF-82958 in CPu and Nac did not differ between groups. Food restriction did, however, decrease AC stimulation by the direct enzyme stimulant, forskolin, but not NaF or MnCl(2), suggesting a shift in AC expression to a less catalytically efficient isoform. Finally, food restriction increased quinpirole-stimulated [(35)S]guanosine triphosphate-gammaS binding in CPu, suggesting that increased functional coupling between D2 DA receptors and G(i) may account for the augmented behavioral and pallidal c-Fos responses to quinpirole. Results of this study support the hypothesis that food restriction leads to neuroadaptations at the level of postsynaptic D1 and D2 receptor-bearing cells which, in turn, mediate augmented behavioral and transcriptional responses to DA. The signaling pathways mediating these augmented responses remain to be fully elucidated.
Collapse
Affiliation(s)
- K D Carr
- Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
33
|
Xu Z, Seidler FJ, Cousins MM, Slikker W, Slotkin TA. Adolescent nicotine administration alters serotonin receptors and cell signaling mediated through adenylyl cyclase. Brain Res 2002; 951:280-92. [PMID: 12270507 DOI: 10.1016/s0006-8993(02)03174-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nicotine is a neuroteratogen that targets synaptic function during critical developmental stages and recent studies indicate that CNS vulnerability extends into adolescence, the age at which smoking typically commences. We administered nicotine to adolescent rats via continuous minipump infusions from PN30 to PN47.5, using 6 mg/kg/day, a dose rate that replicates the plasma nicotine levels found in smokers, and examined 5HT receptors and related cell signaling during nicotine administration (PN45) and in the post-treatment period (PN50, 60, 75). Adolescent nicotine decreased 5HT(2) receptor binding in brain regions containing 5HT projections (hippocampus and cerebral cortex), with selectivity for females in the cerebral cortex; regions containing 5HT cell bodies showed either an increase (midbrain in males) or no change (brainstem). In contrast, there were no significant changes in 5HT(1A) receptors; however, the ability of the receptors to signal through adenylyl cyclase (AC) showed a switch from stimulatory to inhibitory effects in females during the post-treatment period. There were also transient alterations in AC responses to beta-adrenergic receptor stimulation, as well as pronounced induction of the AC response to the non-receptor-mediated stimulant, forskolin. Our results indicate that adolescent nicotine exposure alters the concentrations and functions of postsynaptic 5HT receptors in a manner commensurate with impaired 5HT synaptic function. The direction of change, emergence of defects after the cessation of nicotine administration, and sex-preference for effects in females, all support a relationship of impaired 5HT function to the higher incidence of depression seen in adolescent smokers.
Collapse
Affiliation(s)
- Z Xu
- Department of Pharmacology and Cancer Biology, Box 3813 DUMC, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
34
|
Auman JT, Seidler FJ, Tate CA, Slotkin TA. Are developing beta-adrenoceptors able to desensitize? Acute and chronic effects of beta-agonists in neonatal heart and liver. Am J Physiol Regul Integr Comp Physiol 2002; 283:R205-17. [PMID: 12069947 DOI: 10.1152/ajpregu.00122.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During fetal and neonatal development, beta-adrenergic receptors (beta-ARs) appear to be resistant to desensitization by beta-agonist drugs. To determine the mechanisms underlying the regulatory differences between adults and neonates, we administered isoproterenol, a mixed beta(1)/beta(2)-AR agonist, and terbutaline, a beta(2)-selective agonist. Effects were examined in the ensuing 4 h after a single injection, or after the last of four daily injections. We prepared cell membranes from heart (predominantly beta(1)-ARs) and liver (predominantly beta(2)-ARs) and assessed signal transduction in the adenylyl cyclase (AC) pathway. In the first few hours after a single administration of isoproterenol to adult rats, cardiac beta-ARs showed activation of G proteins (elevated AC response to forskolin) and desensitization of beta-AR-mediated responses; after the fourth injection, heterologous desensitization emerged, characterized by a loss of signaling mediated either through beta-ARs or glucagon receptors. Terbutaline evoked an increase in the forskolin response but no desensitization of receptor-mediated responses. When we gave the same treatments to neonatal rats, we observed cardiac G protein activation, but there was neither homologous nor heterologous desensitization of beta-ARs or glucagon receptors. In the adult liver, isoproterenol and terbutaline both failed to evoke desensitization, regardless of whether the drugs were given once or for 4 days. In neonates, however, acute or chronic treatment elicited homologous desensitization of beta-AR-mediated AC signaling, while sensitizing the response to glucagon. These results show that neonatal beta-ARs are inherently capable of desensitization in some, but not all, cell types; cellular responses can be maintained through heterologous sensitization of signaling proteins downstream from the receptor. Differences from adult patterns of response are highly tissue selective and are likely to depend on ontogenetic differences in subtypes of beta-ARs and AC.
Collapse
Affiliation(s)
- J T Auman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
35
|
Raines KW, Seidler FJ, Slotkin TA. Alterations in serotonin transporter expression in brain regions of rats exposed neonatally to chlorpyrifos. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 130:65-72. [PMID: 11557094 DOI: 10.1016/s0165-3806(01)00211-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chlorpyrifos (CPF), one of the most widely-used organophosphate pesticides, is a suspected neuroteratogen. We administered CPF to neonatal rats on postnatal days (PN) 1-4 (1 mg/kg) or PN11-14 (5 mg/kg), treatments devoid of overt toxicity. At the end of the treatment period (PN5 and 15, respectively) and 5-7 days later, we then examined the effects on paroxetine (PXT) binding to the presynaptic 5HT high-affinity transporter, a marker for serotonin (5HT) projections. In males, we found a persistent decrease in PXT binding across the two different treatment regimens, with deficits apparent in a brain region containing 5HT terminal fields (forebrain) as well as in a region containing 5HT cell bodies (brainstem). In contrast, females given the early treatment regimen (PN1-4) showed deficits in the brainstem but transient elevations in the forebrain; the later treatment regimen (PN11-14) had no significant effect on PXT binding in females. These data are consistent with earlier work showing brainstem cell injury resulting from neonatal CPF exposure, and indicate specific damage to 5HT neurons, with a consequent loss of transporter expression in both terminal fields and perikarya. In females, the damage may be temporarily offset by initial trophic effects in the terminal region, consequent to the cholinergic stimulation evoked by cholinesterase inhibition via the active metabolite, CPF oxon. The gender-selective effects on 5HT systems are likely to contribute to similar gender dimorphism in behavioral performance. Because the CPF effects involve 5HT, a neurotransmitter intimately involved in the control of mood, we suggest the need to evaluate behaviors that typify animal models of depression.
Collapse
Affiliation(s)
- K W Raines
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, P.O. Box 3813 DUMC, Durham, NC 27710, USA
| | | | | |
Collapse
|
36
|
Garcia SJ, Seidler FJ, Crumpton TL, Slotkin TA. Does the developmental neurotoxicity of chlorpyrifos involve glial targets? Macromolecule synthesis, adenylyl cyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells. Brain Res 2001; 891:54-68. [PMID: 11164809 DOI: 10.1016/s0006-8993(00)03189-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The widespread use of chlorpyrifos (CPF) has raised major concerns about its potential to cause fetal or neonatal neurobehavioral damage, even at doses that do not evoke acute toxicity. CPF has been shown to inhibit replication of brain cells, to elicit alterations in neurotrophic signaling governing cell differentiation and apoptosis, and to evoke oxidative stress. However, the specific cell types targeted by CPF have not been clarified, an issue of vital importance in establishing the boundaries of the critical period in which the developing brain is vulnerable. In the current study, we evaluated the effects of CPF on C6 glioma cells, a well-established glial model. In undifferentiated C6 cells, CPF inhibited DNA synthesis in a concentration-dependent manner, with greater potency than had been seen previously with neuronal cell lines. Just as found after in vivo CPF treatment or with neuronal cell lines, the effects on cell replication were independent of cholinergic stimulation, as cholinergic antagonists did not block CPF-induced inhibition. CPF interfered with cell signaling mediated through adenylyl cyclase at the level of G-protein function; the effects again were greater in undifferentiated C6 cells but were still detectable in differentiating cells. In contrast, differentiation enhanced the ability of CPF to elicit the formation of reactive oxygen species and to evoke deficits in Sp1, a nuclear transcription factor essential for differentiation. These results indicate that glial-type cells are targeted by CPF through the same multiple mechanisms that have been demonstrated for the effects of CPF on brain development in vivo. Because glial development continues long after the conclusion of neurogenesis, and given that CPF targets events in both glial cell replication and the later stages of differentiation, the vulnerable period for developmental neurotoxicity of CPF is likely to extend well into childhood.
Collapse
Affiliation(s)
- S J Garcia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|