1
|
Sevoflurane Exacerbates Cognitive Impairment Induced by A β 1-40 in Rats through Initiating Neurotoxicity, Neuroinflammation, and Neuronal Apoptosis in Rat Hippocampus. Mediators Inflamm 2018; 2018:3802324. [PMID: 30402039 PMCID: PMC6198580 DOI: 10.1155/2018/3802324] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/25/2018] [Indexed: 01/04/2023] Open
Abstract
Objective This study was aimed at investigating whether sevoflurane inhalation induced cognitive impairment in rats with a possible mechanism involved in the event. Methods Thirty-two rats were randomly divided into four groups of normal saline (NS) + O2, NS + sevoflurane (sevo), amyloid-β peptide (Aβ) + O2, and Aβ + sevo. The rats in the four groups received bilateral intrahippocampus injections of NS or Aβ. The treated hippocampus was harvested after inhaling 30% O2 or 2.5% sevoflurane. Evaluation of cognitive function was performed by Morris water maze (MWZ) and an Aβ1–42 level was determined by ELISA. Protein and mRNA expressions were executed by immunohistochemical (IHC) staining, Western blotting, and qRT-PCR. Results Compared with the NS-treated group, sevoflurane only caused cognitive impairment and increased the level of Aβ1–42 of the brain in the Aβ-treated group. Sevoflurane inhalation but not O2 significantly increased glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule (IBA)1 expression in Aβ-treated hippocampus of rats. Expression levels for Bcl-xL, caspase-9, receptor for advanced glycation end products (RAGE) and brain-derived neurotrophic factor (BDNF) were significantly different in quantification of band intensity between the rats that inhaled O2 and sevoflurane in Aβ-treated groups (all P < 0.05). Interleukin- (IL-) 1β, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) mRNA expression increased after the rats inhaled sevoflurane in the Aβ-treated group (both P < 0.01). There were no significant differences in the change of GFAP, IBA1, Bcl-xL, caspase-9, RAGE, BDNF, IL-1β, NF-κB, and iNOS in the NS + O2 and NS + sevo group (all P > 0.05). Conclusion Sevoflurane exacerbates cognitive impairment induced by Aβ1–40 in rats through initiating neurotoxicity, neuroinflammation, and neuronal apoptosis in rat hippocampus.
Collapse
|
2
|
Oo TF, Burke RE. Histochemical methods for the detection of apoptosis in the nervous system. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1.15. [PMID: 18428654 DOI: 10.1002/0471142301.ns0115s39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuroscientists often need to detect neuron death at the light microscope level in tissue sections derived from animal models of neurological disease. In many instances there is a need to detect apoptosis, the most common morphology of programmed cell death. This unit provides two protocols for the detection of apoptosis by immunostaining for either activated forms of caspases or their cleavage products. When used in conjunction with nuclear dyes, these protocols permit visualization not only of caspase activation, but also the nuclear chromatin clumps characteristic of apoptosis. The first protocol utilizes peroxidase-mediated chromogen deposition to visualize antibodies by brightfield microscopy. The second protocol utilizes fluorophores to visualize antibodies by epifluorescence. Double immunofluorescence labeling can be performed to identify the phenotype of cells in which caspases are activated. Not all cell death is apoptotic. Therefore, a third protocol is presented for suppressed silver staining, a useful method to screen for all morphologic forms of cell death.
Collapse
|
3
|
Vukojevic K, Carev D, Sapunar D, Petrovic D, Saraga-Babic M. Developmental patterns of caspase-3, bax and bcl-2 proteins expression in the human spinal ganglia. J Mol Histol 2008; 39:339-49. [PMID: 18415689 DOI: 10.1007/s10735-008-9171-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/08/2008] [Indexed: 02/04/2023]
Abstract
The distribution of the bcl-2, bax and caspase-3 proteins was investigated in the cells of developing human spinal ganglia. Paraffin sections of 10 human conceptuses between 5th and 9th gestational weeks were analysed morphologically, immunohistochemically and by TUNEL-method. Cells positive to caspase-3 had brown stained nuclei or nuclear fragmentations. At earliest stages, 6% of ganglion population were caspase-3 positive cells. Later on, a significant increase in number of caspase-3 positive cells appeared, particularly in the ventral part of ganglia (12%), and subsequently decreased to 6%. TUNEL-positive cells had the same distribution pattern as caspase-3 positive cells. Bax-positive cells followed the developmental pattern similar to caspase-3 cells, changing in range between 20% and 32%. There were 8% of bcl-2 positive cells at earliest stages. They increased significantly in dorsal part of the ganglion during the 7th week (28%), and than dropped to 15% by the end of the 8th week. These findings suggest a ventro-dorsal course of development in human spinal ganglia. Number of bcl-2, bax and caspase-3 positive cells changed in a temporally and spatially restricted manner, coincidently with ganglion differentiation. While apoptosis might control cell number, bcl-2 could act in suppression of apoptosis and enhancement of cell differentiation.
Collapse
Affiliation(s)
- Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia.
| | | | | | | | | |
Collapse
|
4
|
Vilović K, Ilijić E, Glamoclija V, Kolić K, Bocina I, Sapunar D, Saraga-Babić M. Cell death in developing human spinal cord. ACTA ACUST UNITED AC 2005; 211:1-9. [PMID: 16315061 DOI: 10.1007/s00429-005-0044-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Cell death in the developing human spinal cord was investigated in 5-12 week human conceptuses using immunohistochemical and TUNEL methods. Expression of pro-apoptotic (Fas-receptor, caspase-3) and anti-apoptotic (bcl-2) markers and marker for internucleosomal fragmentation (TUNEL) were analysed in the cranial and caudal parts of the human spinal cord. In early developmental stages (5-6 weeks) of the cranial spinal cord, bcl-2 positive cells were seen in the ventricular zone and in the roof plate, while in the caudal part they were seen surrounding the central lumen. Subsequently, bcl-2 expression appeared in the basal plates of the grey matter and in the spinal ganglia, and from the seventh week on they also appeared in the intermediate horn of the grey matter. In the fetal period, bcl-2 expression appeared in the dorsal horns of the grey matter (9 weeks) but ceased in the ventricular zone (12 weeks) . In the trunk region, TUNEL-positive cells were found in ventricular and mantle zones along the whole length of the spinal cord. Caspase-3 positive cells and Fas-receptor positive cells appeared only in the grey matter of the cranial segments (head and trunk) of the spinal cord, but they were missing in the caudal parts. Caspase-3 dependant pathway, probably activated by Fas-receptor, seems to operate only in the cranial part of the human spinal cord. In the caudal (sacrococcygeal and tail) parts, cells seem to die by caspase-3 independent pathway. The interplay of pro-apoptotic and anti-apoptotic factors may be associated with cranial spinal cord morphogenesis, adjustment of cells number and selective survival of neurons, while in the caudal regions these factors cause massive cell death associated with regression of the caudal spinal cord.
Collapse
Affiliation(s)
- Katarina Vilović
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, PAK, KB Split, Spincićeva 1, 21000 Split, Croatia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Rowe I, Le Blay K, Du Pasquier D, Palmier K, Levi G, Demeneix B, Coen L. Apoptosis of tail muscle during amphibian metamorphosis involves a caspase 9-dependent mechanism. Dev Dyn 2005; 233:76-87. [PMID: 15765509 DOI: 10.1002/dvdy.20312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The climax of amphibian metamorphosis is marked by thyroid hormone-dependent tadpole tail resorption, implicating apoptosis of multiple cell types, including epidermal cells, fibroblasts, nerve cells, and muscles. The molecular cascades leading to and coordinating the death of different cell types are not fully elucidated. It is known that the mitochondrial pathway, and in particular the Bax and XR11 genes, regulates the balance between apoptosis and survival in muscle. However, the down-stream factors modulated by changes in mitochondrial permeability have not been studied in a functional context. To investigate further the mitochondrial-dependent pathway, we analyzed the regulation and the role of caspase 9 in Xenopus tadpoles. We report that caspase 9 mRNA is expressed in the tail before metamorphosis and increases before and during climax. Similarly, at the protein level, the production of active forms of caspase 9 increases in muscle tissue as metamorphosis progresses. To assess the functional role of caspase 9, we designed a dominant-negative protein. Overexpression of this dominant-negative abrogates both Bax-induced cell death in vitro and muscle apoptosis in vivo during natural metamorphosis. These findings consolidate a model of metamorphic muscle death that directly implicates the mitochondrial pathway and the apoptosome.
Collapse
Affiliation(s)
- Isaline Rowe
- Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, UMR-CNRS 5166, Paris, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Kretz A, Kügler S, Happold C, Bähr M, Isenmann S. Excess Bcl-XL increases the intrinsic growth potential of adult CNS neurons in vitro. Mol Cell Neurosci 2004; 26:63-74. [PMID: 15121179 DOI: 10.1016/j.mcn.2004.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 01/15/2004] [Accepted: 01/16/2004] [Indexed: 02/01/2023] Open
Abstract
The regenerative potential of adult mammalian CNS neurons is limited. Recent data suggest that inactivation of major growth inhibitors may not suffice to induce robust regeneration from mature neurons unless the intrinsic growth state is modulated. To investigate a possible role of Bcl-XL for axon regeneration in the adult mammalian CNS, Bcl-XL was adenovirally overexpressed in severed rat RGCs. Bcl-XL overexpression in mature axotomized RGCs in vivo increased both numbers [3.10-fold (+/-0.20)] and cumulative length [6.72-fold (+/-0.47)] of neurites regenerated from retinal explants, and this effect was further pronounced in the central retina where specific and dense axoplasmatic transduction occurs. Similarly, delayed Bcl-XL gene transfer to explanted retinae 12-13 days after lesion increased the numbers and length of emanating neurites by a factor of 5.22 (+/-0.41) and 8.29 (+/-0.69), respectively. In vivo, intraretinal sprouting of unmyelinated RGC axons into the nerve fiber layer was increased. However, fiber ingrowth into the optic nerve remained sparse, likely due to myelin inhibitors and scar components. Therefore, Bcl-XL overexpression may enhance, but may not be sufficient to, restitute functional regeneration in the adult CNS. As assessed by cell quantification analysis, Bcl-XL overexpression rescued a higher proportion of RGCs in vivo than in vitro. Therefore, Bcl-XL is capable to induce both neuronal survival and axon regeneration, but these two processes appear to be differentially modified by distinct pathways in vivo.
Collapse
Affiliation(s)
- Alexandra Kretz
- Neuroregeneration Laboratory, Department of Neurology, University of Jena Medical School, Jena, Germany
| | | | | | | | | |
Collapse
|
7
|
Ganguly A, Oo TF, Rzhetskaya M, Pratt R, Yarygina O, Momoi T, Kholodilov N, Burke RE. CEP11004, a novel inhibitor of the mixed lineage kinases, suppresses apoptotic death in dopamine neurons of the substantia nigra induced by 6-hydroxydopamine. J Neurochem 2004; 88:469-80. [PMID: 14690535 DOI: 10.1046/j.1471-4159.2003.02176.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is much evidence that the kinase cascade which leads to the phosphorylation of c-jun plays an important signaling role in the mediation of programmed cell death. We have previously shown that c-jun is phosphorylated in a model of induced apoptotic death in dopamine neurons of the substantia nigra in vivo. To determine the generality and functional significance of this response, we have examined c-jun phosphorylation and the effect on cell death of a novel mixed lineage kinase inhibitor, CEP11004, in the 6-hydroxydopamine model of induced apoptotic death in dopamine neurons. We found that expression of total c-jun and Ser73-phosphorylated c-jun is increased in this model and both colocalize with apoptotic morphology. CEP11004 suppresses apoptotic death to levels of 44 and 58% of control values at doses of 1.0 and 3.0 mg/kg, respectively. It also suppresses, to approximately equal levels, the number of profiles positive for the activated form of capase 9. CEP11004 markedly suppresses striatal dopaminergic fiber loss in these models, to only 22% of control levels. We conclude that c-jun phosphorylation is a general feature of apoptosis in living dopamine neurons and that the mixed lineage kinases play a functional role as up-stream mediators of cell death in these neurons.
Collapse
Affiliation(s)
- Anindita Ganguly
- Department of Neurology, The College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Urase K, Kouroku Y, Fujita E, Momoi T. Region of caspase-3 activation and programmed cell death in the early development of the mouse forebrain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:241-8. [PMID: 14604764 DOI: 10.1016/j.devbrainres.2003.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caspase-3-deficient 129/Sv mice show hyperplasia of the brain at embryonic (E) day 10.5-12.5, but caspase-3-deficient C57L/B6 mice do not. We examined the relationship between activation of caspase-3 and programmed cell death (PCD) during forebrain development of various mouse strains (129/Sv, ICR, C57L/B6, and CBA) using terminal deoxytransferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and immunostaining with antiserum against the caspase-3 (anti-m3D175) cleavage site. A number of anti-m3D175 positive cells and TUNEL positive cells were detected in the ventral side of the forebrain of 129/Sv and ICR mice at E8.5-9 but not in C57L/B6 and CBA mice. Ac-DEVD-MCA cleavage activity, a caspase-3-like activity, also suggests the preferential activation of caspase-3 in the ventral forebrain of ICR mice but not in C57L/B6 mice. Developmental changes of TUNEL and anti-m3D175 reactivities were essentially similar during brain morphogenesis of ICR and 129/Sv mice. The number of TUNEL/anti-m3D175 positive cells decreased in the neuroepithelium of the ventral forebrain at E9.5 before generation of the medial ganglionic eminence (MGE). TUNEL and/or anti-m3D175 reactivity was slightly detectable in the MGE at E10.5, from which neuroprogenitor cells follow a tangential migratory route to the cortex. Activation of caspase-9 was also immunohistochemically detected in the ventral forebrain at E8.5-9, suggesting that activation of caspase-3 and caspase-9 occurs in the PCD of this region. Thus, it is likely that decreased cell death in the ventral forebrain of caspase-3- and caspase-9-deficient 129/Sv mice increases the number of neuroprogenitor cells in the MGE, leading to hyperplasia of the forebrain.
Collapse
Affiliation(s)
- Koko Urase
- Division of Development and Differentiation, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | | | | | |
Collapse
|
9
|
Tsuji Y, Denda S, Soma T, Raftery L, Momoi T, Hibino T. A potential suppressor of TGF-beta delays catagen progression in hair follicles. J Investig Dermatol Symp Proc 2003; 8:65-8. [PMID: 12894996 DOI: 10.1046/j.1523-1747.2003.12173.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TGF-beta plays important roles in the induction of catagen during the hair cycle. We examined whether TGF-beta2 could activate a caspase in human hair follicles. Using active caspase-9 and -3 specific antibodies, we found that TGF-beta2 activated these caspases in two regions, the lower part of the hair bulb and the outer layer of the outer root sheath. In addition, we searched for a plant extract that can effectively suppress TGF-beta action. We found that an extract of Hydrangea macrophylla reduced synthesis of a TGDbeta-inducible protein. We confirmed that the extract has a potential to promote hair elongation in the organ culture system. Furthermore, it delayed in vivo progression of catagen in a mouse model. Our results suggest that the induction of catagen by TGF-beta is mediated via activation of caspases and that a suppressor of TGF-beta could be effective in preventing male pattern baldness.
Collapse
Affiliation(s)
- Yumiko Tsuji
- Shiseido Life Science Research Center, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Pfister Y, Savioz A, Vallet PG, Dubois-Dauphin M. Permanent cerebral ischemia induces sustained procaspase 9L increase not controlled by Bcl-2. Brain Res 2003; 966:26-39. [PMID: 12646305 DOI: 10.1016/s0006-8993(02)04147-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have investigated how transgenic overexpression of human Bcl-2 (Hu-Bcl-2) modifies cell death proteins activation in the long-term in a model of permanent cerebral ischemia induced by middle cerebral artery occlusion. Hu-Bcl-2, cytochrome c, caspases 9 and 3 expression were examined by immunoblotting and immunohistochemistry. In wild type mice, 1 day after middle cerebral artery occlusion, cytochrome c released from the mitochondria was detected. Middle cerebral artery occlusion induces a lasting activation of caspases in WT mice from day 3 post-injury. Increased level of caspase 3 is accompanied by a decrease in procaspase 3. In contrast, middle cerebral artery occlusion induced a sustained increase of procaspase 9L and a decrease in procaspase 9S concomitant to caspase 9 production. These events were observed in the operated but not in the unoperated hemisphere. Bcl-2 overexpression blocks cytochrome c release and delays caspases activation. Consequently procaspase 3 decrease was no more observed. However, Bcl-2 overexpression did not influence the middle cerebral artery occlusion-induced changes in procaspases 9 L and S. Fourteen days after middle cerebral artery occlusion the apoptotic cascade was no longer blocked in transgenic mice. Caspases 9 and 3 were increased, procaspase 3 was decreased but procaspase 9L and procaspase 9S remained increased and decreased respectively. Hu-Bcl-2 overexpression delays the activation of the cell death molecular machinery but does not control the ischemia-induced change in procaspase 9 L and S. Procaspase 9L increase is a potentially harmful event threatening cells of a rapid destruction when anti-apoptotic treatments by Bcl-2, or caspases inhibitors, are overrun.
Collapse
Affiliation(s)
- Y Pfister
- University Hospital Geneva, Belle-Idée, Department of Psychiatry, Geneva, Switzerland
| | | | | | | |
Collapse
|
11
|
Jimbo A, Fujita E, Kouroku Y, Ohnishi J, Inohara N, Kuida K, Sakamaki K, Yonehara S, Momoi T. ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res 2003; 283:156-66. [PMID: 12581736 DOI: 10.1016/s0014-4827(02)00033-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Excess ER stress induces caspase-12 activation and/or cytochrome c release, causing caspase-9 activation. Little is known about their relationship during ER stress-mediated cell death. Upon ER stress, P19 embryonal carcinoma (EC) cells showed activation of various caspases, including caspase-3, caspase-8, caspase-9, and caspase-12, and extensive DNA fragmentation. We examined the relationship between ER stress-mediated cytochrome c/caspase-9 and caspase-12 activation by using caspase-9- and caspase-8-deficient mouse embryonic fibroblasts and a P19 EC cell clone [P19-36/12 (-) cells] lacking expression of caspase-12. Caspase-9 and caspase-8 deficiency inhibited and delayed the onset of DNA fragmentation but did not inhibit caspase-12 processing induced by ER stress. P19-36/12 (-) cells underwent apoptosis upon ER stress, with cytochrome c release and caspase-8 and caspase-9 activation. The dominant negative form of FADD and z-VAD-fmk inhibited caspase-8, caspase-9, Bid processing, cytochrome c release, and DNA fragmentation induced by ER stress, suggesting that caspase-8 and caspase-9 are the main caspases involved in ER stress-mediated apoptosis of P19-36/12 (-) cells. Caspase-8 deficiency also inhibited the cytochrome c release induced by ER stress. Thus, in parallel with the caspase-12 activation, ER stress triggers caspase-8 activation, resulting in cytochrome c/caspase-9 activation via Bid processing.
Collapse
Affiliation(s)
- A Jimbo
- Division of Development, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Koike M, Shibata M, Ohsawa Y, Nakanishi H, Koga T, Kametaka S, Waguri S, Momoi T, Kominami E, Peters C, Figura KV, Saftig P, Uchiyama Y. Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice. Mol Cell Neurosci 2003; 22:146-61. [PMID: 12676526 DOI: 10.1016/s1044-7431(03)00035-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
To understand the mechanisms of retinal atrophy in cathepsin D-deficient mice, the postnatal development of their retinae was analyzed. TUNEL-positive cells appeared abundantly in the outer nuclear layer (ONL) and slightly in the inner nuclear layer (INL). Nitric oxide synthase (NOS) was induced in microglial cells which invaded retinal layers and phagocytosed dead cell debris, while NOS inhibitors prevented cell death in the INL but not in the ONL. Caspases 9 and 3 were activated only in the ONL after P15. Moreover, no atrophic change was detected in the retina of mice deficient in cathepsin B or L. These results suggest that cathepsin D is essential for the metabolic maintenance of retinal photoreceptor cells and that its deficiency induces apoptosis of the cells, while the loss of INL neurons is mediated by NO from microglial cells.
Collapse
Affiliation(s)
- Masato Koike
- Department of Cell Biology and Neurosciences, Osaka University Graduate School of Medicine, 565-0871, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Momoi T, Fujita E, Urase K. Strain-specific caspase-3-dependent programmed cell death in the early developing mouse forebrain. Neuroreport 2003; 14:111-5. [PMID: 12544841 DOI: 10.1097/00001756-200301200-00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Caspase-3-deficient 129/Sv mice show hyperplasia of the forebrain at embryonic day (E) 10.5, which suggests that caspase-3-dependent programmed cell death (PCD) plays an essential role in brain morphogenesis prior to neurogenesis. However, little is known about region-specific caspase-3-dependent PCD in the developing forebrain. We examined the PCD region in the early developmental brain at E9.5 by whole mount terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL). In addition to hindbrain, TUNEL-reactivity was detected in the ventral forebrain and in the caudal portion of the front nasal region, just behind the regions expressing fgf-8 and otx-2. It has been shown recently that brain hyperplasia induced by caspase-3-deficiency is mouse strain-dependent; such that brain abnormalities were observed in caspase-3-deficient 129/Sv mice but not in caspase-3-deficient C57BL/6 mice. We examined the caspase-3-dependent PCD in the ventral forebrain of 129/Sv and C57BL/6 mouse embryos (E8.5-9 and E9.5) by double staining of TUNEL and antiserum against the active form of caspase-3 (anti-m3D175). TUNEL/anti-m3D175 reactivity in the ventral forebrain was mouse strain-dependent, such that many TUNEL/anti-m3D175-positive cells were detected in the ventral forebrains of 129/Sv mice, but were not observed in C57BL/6 mice. Thus, it is likely that this region is the site of the strain-specific caspase-3-dependent PCD. A strain-dependent 'modulator' that regulates both caspase-3-dependent and -independent cell death pathways may control PCD in the ventral forebrain at E8.5-9.5.
Collapse
Affiliation(s)
- Takashi Momoi
- Division of Developmental Differentiation, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan.
| | | | | |
Collapse
|
14
|
Yoshida H, Okada Y, Kinoshita N, Hara H, Sasaki M, Sawa H, Nagashima K, Mak TW, Ikeda K, Motoyama N. Differential requirement for Apaf1 and Bcl-X(L) in the regulation of programmed cell death during development. Cell Death Differ 2002; 9:1273-6. [PMID: 12404127 DOI: 10.1038/sj.cdd.4401128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Fujita E, Kouroku Y, Jimbo A, Isoai A, Maruyama K, Momoi T. Caspase-12 processing and fragment translocation into nuclei of tunicamycin-treated cells. Cell Death Differ 2002; 9:1108-14. [PMID: 12232799 DOI: 10.1038/sj.cdd.4401080] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 05/10/2002] [Accepted: 05/13/2002] [Indexed: 11/09/2022] Open
Abstract
Excess endoplasmic reticulum (ER) stress induces processing of caspase-12, which is located in the ER, and cell death. However, little is known about the relationship between caspase-12 processing and cell death. We prepared antisera against putative caspase-12 cleavage sites (anti-m12D318 and anti-m12D341) and showed that overexpression of caspase-12 induced autoprocessing at D(318) but did not induce cell death. Mutation analysis confirmed that D(318) was a unique autoprocessing site. In contrast, tunicamycin, one of the ER stress stimuli, induced caspase-12 processing at the N-terminal region and the C-terminal region (both at D(318) and D(341)) and cell death. Anti-m12D318 and anti-m12D341 immunoreactivities were located in the ER of the tunicamycin-treated cells, and some immunoreactivities were located around and in the nuclei of the apoptotic cells. Thus, processing at the N-terminal region may be necessary for the translocation of processed caspase-12 into nuclei and cell death induced by ER stress. Some of the caspase-12 processed at the N-terminal and C-terminal regions may directly participate in the apoptotic events in nuclei.
Collapse
Affiliation(s)
- E Fujita
- Divisions of Development and Differentiation, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Bitzer M, Armeanu S, Prinz F, Ungerechts G, Wybranietz W, Spiegel M, Bernlöhr C, Cecconi F, Gregor M, Neubert WJ, Schulze-Osthoff K, Lauer UM. Caspase-8 and Apaf-1-independent caspase-9 activation in Sendai virus-infected cells. J Biol Chem 2002; 277:29817-24. [PMID: 12021264 DOI: 10.1074/jbc.m111898200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptotic cell death is of central importance in the pathogenesis of viral infections. Activation of a cascade of cysteine proteases, i.e. caspases, plays a key role in the effector phase of virus-induced apoptosis. However, little is known about pathways leading to the activation of initiator caspases in virus-infected host cells. Recently, we have shown that Sendai virus (SeV) infection triggers apoptotic cell death by activation of the effector caspase-3 and initiator caspase-8. We now investigated mechanisms leading to the activation of another initiator caspase, caspase-9. Unexpectedly we found that caspase-9 cleavage is not dependent on the presence of active caspases-3 or -8. Furthermore, the presence of caspase-9 in mouse embryonic fibroblast (MEF) cells was a prerequisite for Sendai virus-induced apoptotic cell death. Caspase-9 activation occurred without the release of cytochrome c from mitochondria and was not dependent on the presence of Apaf-1 or reactive oxygen intermediates. Our results therefore suggest an alternative mechanism for caspase-9 activation in virally infected cells beside the well characterized pathways via death receptors or mitochondrial cytochrome c release.
Collapse
Affiliation(s)
- Michael Bitzer
- Department of Internal Medicine I, University Clinic Tübingen, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Little SA, Mirkes PE. Teratogen-induced activation of caspase-9 and the mitochondrial apoptotic pathway in early postimplantation mouse embryos. Toxicol Appl Pharmacol 2002; 181:142-51. [PMID: 12051998 DOI: 10.1006/taap.2002.9414] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we showed that teratogen-induced cell death in mouse embryos is apoptotic in nature, i.e., involves the release of cytochrome c from mitochondria and the subsequent activation of caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), and internucleosomal DNA fragmentation. Herein we show that hyperthermia, 4-hydroperoxycyclophosphamide, and staurosporine also activate caspase-9, the apical caspase in the mitochondrial apoptotic pathway. Activation of procaspase-9 is associated with the cleavage of this proenzyme and the generation of two forms of the large subunit, primarily a 39-kDa subunit (p39) but also a lesser amount of a 37-kDa subunit (p37). We also present data that support the idea that the teratogen-induced formation of the p37 subunit in vivo occurs by the cytochrome c-mediated processing of procaspase-9, whereas the p39 subunit is formed by an amplification loop involving caspase-3. We also previously showed that the release of cytochrome c, activation of caspase-3, cleavage of PARP, and DNA fragmentation are blocked in cells of the developing heart, which are resistant to teratogen-induced cell death. We now show that this block in the mitochondrial apoptotic pathway in heart cells extends to the activation of procaspase-9. Thus, our cumulative data indicate that hyperthermia, 4-hydroperoxycyclophosphamide, and staurosporine induce cell death in Day 9 mouse embryos by activating the mitochondrial apoptotic pathway. In addition, our data suggest that cells of the Day 9 mouse embryo that are resistant to teratogen-induced cell death possess multiple mechanisms for inhibiting the mitochondrial apoptotic pathway after a teratogenic exposure.
Collapse
Affiliation(s)
- Sally A Little
- Birth Defects Research Laboratory, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
18
|
Nakanishi K, Maruyama M, Shibata T, Morishima N. Identification of a caspase-9 substrate and detection of its cleavage in programmed cell death during mouse development. J Biol Chem 2001; 276:41237-44. [PMID: 11514563 DOI: 10.1074/jbc.m105648200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The caspase family of proteases represents the main machinery by which apoptosis occurs. In vitro studies have revealed that upstream caspases are activated in response to apoptotic stimuli, and the active caspases in turn process downstream effector caspases that are involved in the destruction of cellular structure. Caspase-9 is an upstream caspase that can become active in response to cellular damage, including deprivation of growth factors and exposure to oxidative stress in vitro. Little is known, however, about how activation of caspase-9 is temporally and spatially regulated in vivo, e.g. during development. We have identified vimentin as the first example of a caspase-9 substrate that is not a downstream procaspase. Immunohistochemical analysis, using a specific antibody against the vimentin fragments generated by caspase-9, showed that caspase-9 cleaves vimentin in apoptotic cells in the embryonic nervous system and the interdigital regions. This result is consistent with observations that gene knockouts of caspase-9 and its activator, Apaf-1, result in developmental defects in these tissues. Our results show that the specific antibody is useful for in situ detection of caspase-9 activation in programmed cell death.
Collapse
Affiliation(s)
- K Nakanishi
- Bioarchitect Research Group, RIKEN (Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
19
|
Dubois-Dauphin M, Pfister Y, Vallet PG, Savioz A. Prevention of apoptotic neuronal death by controlling procaspases? A point of view. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:196-203. [PMID: 11690616 DOI: 10.1016/s0165-0173(01)00095-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In various animal models of neurodegenerative diseases the long-lasting control of cell death by anti-apoptotic therapies is not successful. We present here our view on the control of procaspase expression in a model of cerebral stroke. We have investigated how Hu-Bcl-2 overexpression modifies cell death protein activation in a model of cerebral ischemia induced by permanent middle cerebral artery occlusion (MCAO). In wild type mice MCAO induced release of cytochrome c from the mitochondria, and activation of caspases 9 and 3. In parallel with caspases activation, procaspase 9 and procaspase 3 were, respectively, increased and decreased. In Hu-Bcl-2 transgenic mice cytochrome c release and caspases 9 and 3 activation were blocked. However procaspase 9 increased, like in wt mice, but procaspase 3 remained unchanged. By 2 weeks after MCAO caspases were no longer blocked in Hu-Bcl-2 transgenic mice. Procaspase 9 increase could represent a time bomb in Hu-Bcl-2 mice where caspase 9 activation is blocked. Indeed, cellular accumulation of procaspase 9 is a potentially harmful event able to overcome anti-apoptotic protection by Bcl-2 and threaten cells with rapid destruction. Through understanding of the upstream regulation of procaspase 9, early targets for the pharmacological control of apoptotic cell death may be revealed.
Collapse
Affiliation(s)
- M Dubois-Dauphin
- Department of Neuropsychiatry, University Hospital of Geneva, 2, Chemin du Petit Bel-Air, 1225 Chêne-Bourg, Geneva, Switzerland.
| | | | | | | |
Collapse
|
20
|
Kouroku Y, Fujita E, Urase K, Tsuru T, Setsuie R, Kikuchi T, Yagi Y, Momoi MY, Momoi T. Caspases that are activated during generation of nuclear polyglutamine aggregates are necessary for DNA fragmentation but not sufficient for cell death. J Neurosci Res 2000; 62:547-56. [PMID: 11070498 DOI: 10.1002/1097-4547(20001115)62:4<547::aid-jnr9>3.0.co;2-g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Truncated polypeptides containing expanded polyglutamine (polyQ) stretches tend to form cytoplasmic or nuclear aggregates in cultured cells, leading to cell death. Although it has been shown recently that caspase-8 coaggregates with polyQ and is activated during polyQ-mediated cell death, little is known of the location and timing of caspase-8 activation by nuclear polyQ aggregates. Also, the relationship between nuclear polyQ aggregate-mediated cell death and activation of other caspases is unclear. In P19 embryonal carcinoma (EC) cells, which can be made to differentiate into neuronal cells, polyQ72 repeats preferentially aggregate in the nucleus. Nuclear aggregates of polyQ72 induced P19 EC cell death, with a high frequency of cells exhibiting morphology characteristic of apoptosis (i.e., roundness, cell shrinkage, chromatin condensation) and DNA fragmentation. In the present study, we used antisera that specifically recognized the active forms of caspase-8, -3, and -9 but not their proforms, and showed that only caspase-8 and -3 were activated during the generation of polyQ72 aggregates in P19 EC cell nuclei. Furthermore, we showed that the caspase inhibitor z-VAD-fmk inhibited DNA fragmentation, but only partially inhibited the appearance of apoptotic morphology. Thus, caspase activation, including caspase-8 and -3, is necessary for polyQ-mediated DNA fragmentation but not sufficient for polyQ-mediated cell death in P19 EC cells.
Collapse
Affiliation(s)
- Y Kouroku
- Divisions of Development and Differentiation, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|