1
|
Barbaresi P, Mensà E, Sagrati A, Graciotti L. Postnatal development of the distribution of nitric oxide-producing neurons in the rat corpus callosum. Neurosci Res 2019; 151:15-30. [PMID: 30796928 DOI: 10.1016/j.neures.2019.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 11/18/2022]
Abstract
The postnatal development of nitric oxide (NO)-producing intracallosal neurons was studied in rats by nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry from postnatal day 0 (P0) to P30. NADPH-d-positive neurons (NADPH-d+Ns) were detected already at P0, mainly in the rostral region of the corpus callosum (cc). Their location and the intensity of staining allowed them to be classified as type I NO-producing neurons. At P0, tufts of intensely labeled fibers, probably corresponding to the callosal septa described in the monkey and human cc, entered the ventral cc region and reached its dorsal portion. From P5, cell bodies and dendrites were often associated to blood vessels. The number of intracallosal NADPH-d+Ns rose in the first postnatal days to peak at P5, it declined until P10, and then remained almost constant until P30. Their size increased from P0 to P30, dramatically so (>65%) from P0 to P15. From P10 onward their distribution was adult-like, i.e. NADPH-d+Ns were more numerous in the lateral and intermediate portions of the cc and diminished close to the midline. In conjunction with previous data, these findings indicate that intracallosal NADPH-d+Ns could have a role in callosal axon guidance, myelination, refinement processes, and callosal blood flow regulation.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020, Ancona, Italy.
| | - Emanuela Mensà
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020, Ancona, Italy; Department of Clinical and Molecular Sciences, Section of Experimental Pathology, Marche Polytechnic University, I-60020, Ancona, Italy
| | - Andrea Sagrati
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020, Ancona, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Section of Experimental Pathology, Marche Polytechnic University, I-60020, Ancona, Italy
| |
Collapse
|
2
|
Jay M, Bradley S, McDearmid JR. Effects of nitric oxide on neuromuscular properties of developing zebrafish embryos. PLoS One 2014; 9:e86930. [PMID: 24489806 PMCID: PMC3904980 DOI: 10.1371/journal.pone.0086930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide is a bioactive signalling molecule that is known to affect a wide range of neurodevelopmental processes. However, its functional relevance to neuromuscular development is not fully understood. Here we have examined developmental roles of nitric oxide during formation and maturation of neuromuscular contacts in zebrafish. Using histochemical approaches we show that elevating nitric oxide levels reduces the number of neuromuscular synapses within the axial swimming muscles whilst inhibition of nitric oxide biosynthesis has the opposite effect. We further show that nitric oxide signalling does not change synapse density, suggesting that the observed effects are a consequence of previously reported changes in motor axon branch formation. Moreover, we have used in vivo patch clamp electrophysiology to examine the effects of nitric oxide on physiological maturation of zebrafish neuromuscular junctions. We show that developmental exposure to nitric oxide affects the kinetics of spontaneous miniature end plate currents and impacts the neuromuscular drive for locomotion. Taken together, our findings implicate nitrergic signalling in the regulation of zebrafish neuromuscular development and locomotor maturation.
Collapse
Affiliation(s)
- Michael Jay
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
| | - Sophie Bradley
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
| | - Jonathan Robert McDearmid
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Keser A, Nesil T, Kanit L, Pogun S. Brain nitric oxide metabolites in rats preselected for nicotine preference and intake. Neurosci Lett 2013; 545:102-6. [PMID: 23643897 DOI: 10.1016/j.neulet.2013.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/05/2013] [Accepted: 04/14/2013] [Indexed: 11/27/2022]
Abstract
Nicotine addiction is a serious health problem resulting in millions of preventable deaths worldwide. The gas messenger molecule nitric oxide (NO) plays a critical role in addiction, and nicotine increases nitric oxide metabolites (NOx) in the brain. Understanding the factors which underlie individual differences in nicotine preference and intake is important for developing effective therapeutic strategies for smoking cessation. The present study aimed to assess NO activity, by measuring its stable metabolites, in three brain regions that express high levels of nicotinic acetylcholine receptors in rats preselected for nicotine preference. Rats (n=88) were exposed to two-bottle, free choice of oral nicotine/water starting either as adolescents or adults; control animals received only water under identical conditions. Following 12 or six weeks of exposure, levels of NOx (nitrite+nitrate), were determined in the hippocampus, frontal cortex, and amygdala. Since the rats were singly housed during oral nicotine treatment, naïve rats were also included in the study to evaluate the effect of isolation stress. Isolation stress increased NOx in the hippocampus. Nicotine preference did not have a significant effect on NO activity, but rats with adolescent exposure had higher NOx levels in the frontal cortex compared to adult-onset rats. Our findings suggest that nicotine exposure during adolescence, regardless of the amount of nicotine consumed, results in higher NO activity in the frontal cortex of rats, which persists through adulthood.
Collapse
Affiliation(s)
- Aysegul Keser
- Ege University, Center for Brain Research, Bornova, Izmir, Turkey
| | | | | | | |
Collapse
|
4
|
Charriaut-Marlangue C, Bonnin P, Pham H, Loron G, Leger PL, Gressens P, Renolleau S, Baud O. Nitric oxide signaling in the brain: A new target for inhaled nitric oxide? Ann Neurol 2013; 73:442-8. [DOI: 10.1002/ana.23842] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/24/2012] [Accepted: 12/21/2012] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Hoa Pham
- Paris Diderot University, Sorbonne Paris Cité, INSERM U676; Paris; France
| | - Gauthier Loron
- Paris Diderot University, Sorbonne Paris Cité, INSERM U676; Paris; France
| | | | | | | | | |
Collapse
|
5
|
Magno L, Oliveira MG, Mucha M, Rubin AN, Kessaris N. Multiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex. Front Neural Circuits 2012; 6:65. [PMID: 23015780 PMCID: PMC3449337 DOI: 10.3389/fncir.2012.00065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/30/2012] [Indexed: 11/13/2022] Open
Abstract
CORTICAL GABAERGIC INTERNEURONS IN RODENTS ORIGINATE IN THREE SUBCORTICAL REGIONS: the medial ganglionic eminence (MGE), the lateral/caudal ganglionic eminence (LGE/CGE), and the preoptic area (POA). Each of these neuroepithelial precursor domains contributes different interneuron subtypes to the cortex. Neuronal NOS (nNOS)-expressing neurons represent a heterogenous population of cortical interneurons. We examined the development of these cells in the mouse embryonic cortex and their abundance and distribution in adult animals. Using genetic lineage tracing in transgenic mice we find that nNOS type I cells originate only in the MGE whereas type II cells have a triple origin in the MGE, LGE/CGE, and POA. The two populations are born at different times during development, occupy different layers in the adult cortex and have distinct neurochemical profiles. nNOS neurons are more numerous in the adult cortex than previously reported and constitute a significant proportion of the cortical interneuron population. Our data suggest that the heterogeneity of nNOS neurons in the cortex can be attributed to their multiple embryonic origins which likely impose distinct genetic specification programs.
Collapse
Affiliation(s)
- Lorenza Magno
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London London, UK
| | | | | | | | | |
Collapse
|
6
|
Kashem MA, Sarker R, Des Etages H, Machaalani R, King N, McGregor IS, Matsumoto I. Comparative proteomics in the corpus callosal sub-regions of postmortem human brain. Neurochem Int 2009; 55:483-90. [PMID: 19433127 DOI: 10.1016/j.neuint.2009.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 12/13/2022]
Abstract
The corpus callosum (CC) is a single anatomical region with homologous cytoarchitecture and divided into four sub-regions such as the rostrum, the genu, the body and the splenium. Neuroimaging analysis revealed that susceptibility to clinical neurological diseases of these sub-regions is variable, indicating biochemical and physiological heterogenecity. To understand the biochemical make up of these regions, we compared the protein expression of these three sub-regional areas [the genu, the body and the splenium (n=9)] through 2D proteomics, which is a high-throughput global protein expression analysis technique. Normative proteomic comparison of gels, and analysis of spectra revealed that 17 (identified as 7 proteins), 35 (identified as 20 proteins) and 39 (identified as 21 proteins) protein spots were differentially expressed in the genu vs. the body, the genu vs. the splenium and the body vs. the splenium, respectively. These results suggest that the sub-regions of the CC differ at the level of protein expression. Identified proteins of the different groups belong to several functional classes such as cytoskeletal, metabolic, signaling, oxidative stress and calcium regulation. Interestingly, oxidative stress defense and glucose metabolic pathways of the splenium are quite different from the genu which might be correlated to region specific vulnerability of neuronal illness. Protein expression maps of these regions can be used as a reference source for future studies to investigate the molecular basis of functional differences and degree of pathogenesis of various neurodegenerative diseases of the CC.
Collapse
|
7
|
Thyroid hormones affect the level and activity of nitric oxide synthase in rat cerebral cortex during postnatal development. Neurochem Res 2007; 33:569-78. [PMID: 17940896 DOI: 10.1007/s11064-007-9480-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
The effects of thyroid hormones (TH) on the enzyme level and activity of neuronal nitric oxide synthase (nNOS) were studied in the rat cerebral cortex during postnatal life. As revealed by arginine/citrulline conversion assay and Western blot analysis of the homogenate of the parietal cortex T4 significantly increased nNOS activity and nNOS protein level to 153 +/- 25% and to 178 +/- 20%, respectively. In contrast, 6-n-propyl-2-thyouracil (PTU) decreased nNOS activity and nNOS level to 45 +/- 10% and to 19 +/- 4%, respectively. The number of nNOS-immunoreactive neurons did not change after either T4 or PTU treatment, however, following T4 administration the percentage of intensively immunoreactive neurons increased to 85 +/- 3% compared to control (65 +/- 6%), whereas it decreased to 49 +/- 2% after PTU treatment. Our findings indicate that abnormal TH levels differentially regulate the activity and the level of nNOS and suggest a cross-talk between the TH and NO signaling pathway in the developing cerebral cortex of rats.
Collapse
|
8
|
Nitric oxide and the zebrafish (Danio rerio): Developmental neurobiology and brain neurogenesis. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1872-2423(07)01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Toda N, Ayajiki K. Phylogenesis of constitutively formed nitric oxide in non-mammals. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 157:31-80. [PMID: 17236649 DOI: 10.1007/112_0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is widely recognized that nitric oxide (NO) in mammalian tissues is produced from L-arginine via catalysis by NO synthase (NOS) isoforms such as neuronal NOS (nNOS) and endothelial NOS (eNOS) that are constitutively expressed mainly in the central and peripheral nervous system and vascular endothelial cells, respectively. This review concentrates only on these constitutive NOS (cNOS) isoforms while excluding information about iNOS, which is induced mainly in macrophages upon stimulation by cytokines and polysaccharides. The NO signaling pathway plays a crucial role in the functional regulation of mammalian tissues and organs. Evidence has also been accumulated for the role of NO in invertebrates and non-mammalian vertebrates. Expression of nNOS in the brain and peripheral nervous system is widely determined by staining with NADPH (reduced nicotinamide adenine dinucleotide phosphate) diaphorase or NOS immunoreactivity, and functional roles of NO formed by nNOS are evidenced in the early phylogenetic stages (invertebrates and fishes). On the other hand, the endothelium mainly produces vasodilating prostanoids rather than NO or does not liberate endothelium-derived relaxing factor (EDRF) (fishes), and the ability of endothelial cells to liberate NO is observed later in phylogenetic stages (amphibians). This review article summarizes various types of interesting information obtained from lower organisms (invertebrates, fishes, amphibians, reptiles, and birds) about the properties and distribution of nNOS and eNOS and also the roles of NO produced by the cNOS as an important intercellular signaling molecule.
Collapse
Affiliation(s)
- N Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
10
|
Holmqvist B, Ellingsen B, Forsell J, Zhdanova I, Alm P. The early ontogeny of neuronal nitric oxide synthase systems in the zebrafish. ACTA ACUST UNITED AC 2004; 207:923-35. [PMID: 14766951 DOI: 10.1242/jeb.00845] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To examine a putative role for neuronal nitric oxide synthase (nNOS) in early vertebrate development we investigated nNOS mRNA expression and cGMP production during development of the zebrafish Danio rerio. The nNOS mRNA expression in the central nervous system (CNS) and periphery showed a distinct spatio-temporal pattern in developing zebrafish embryo and young larvae. nNOS mRNA expression was first detected at 19 h postfertilisation (h.p.f.), in a bilateral subpopulation of the embryonic ventrorostral cell cluster in the forebrain. The number of nNOS mRNA-expressing cells in the brain slowly increased, also appearing in the ventrocaudal cell cluster from about 26 h.p.f., and in the dorsorostral and hindbrain cell cluster and in the medulla at 30 h.p.f. A major increase in nNOS mRNA expression started at about 40 h.p.f., and by 55 h.p.f. the expression constituted cell populations in differentiated central nuclei and in association with the proliferation zones of the brain, and in the medulla and retina. In parts of the skin, nNOS mRNA expression started at 20 h.p.f. and ended at 55 h.p.f. Between 40 and 55 h.p.f., nNOS mRNA expression started in peripheral organs, forming distinct populations after hatching within or in the vicinity of the presumptive swim bladder, enteric ganglia, and along the alimentary tract and nephritic ducts. Expression of nNOS mRNA correlated with the neuronal differentiation pattern and with the timing and degree of cGMP production. These studies indicate spatio-temporal actions by NO during embryogenesis in the formation of the central and peripheral nervous system, with possible involvement in processes such as neurogenesis, organogenesis and early physiology.
Collapse
Affiliation(s)
- B Holmqvist
- Department of Pathology, Lund University, Sölvegatan 25, S-221 85 Lund, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Hare GMT, Mazer CD, Mak W, Gorczynski RM, Hum KM, Kim SY, Wyard L, Barr A, Qu R, Baker AJ. Hemodilutional anemia is associated with increased cerebral neuronal nitric oxide synthase gene expression. J Appl Physiol (1985) 2003; 94:2058-67. [PMID: 12533500 DOI: 10.1152/japplphysiol.00931.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Severe hemodilutional anemia may reduce cerebral oxygen delivery, resulting in cerebral tissue hypoxia. Increased nitric oxide synthase (NOS) expression has been identified following cerebral hypoxia and may contribute to the compensatory increase in cerebral blood flow (CBF) observed after hypoxia and anemia. However, changes in cerebral NOS gene expression have not been reported after acute anemia. This study tests the hypothesis that acute hemodilutional anemia causes cerebral tissue hypoxia, triggering changes in cerebral NOS gene expression. Anesthetized rats underwent hemodilution when 30 ml/kg of blood were exchanged with pentastarch, resulting in a final hemoglobin concentration of 51.0 +/- 1.2 g/l (n = 7 rats). Caudate tissue oxygen tension (Pbr(O(2))) decreased transiently from 17.3 +/- 4.1 to 14.4 +/- 4.1 Torr (P < 0.05), before returning to baseline after approximately 20 min. An increase in CBF may have contributed to restoring Pbr(O(2)) by improving cerebral tissue oxygen delivery. An increase in neuronal NOS (nNOS) mRNA was detected by RT-PCR in the cerebral cortex of anemic rats after 3 h (P < 0.05, n = 5). A similar response was observed after exposure to hypoxia. By contrast, no increases in mRNA for endothelial NOS or interleukin-1beta were observed after anemia or hypoxia. Hemodilutional anemia caused an acute reduction in Pbr(O(2)) and an increase in cerebral cortical nNOS mRNA, supporting a role for nNOS in the physiological response to acute anemia.
Collapse
Affiliation(s)
- Gregory M T Hare
- Department of Anaesthesia, University of Toronto, St. Michael's Hospital, Toronto M5B 1W8, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Groc L, Jackson Hunter T, Jiang H, Bezin L, Koubi D, Corcoran GB, Levine RA. Nitric oxide synthase inhibition during development: effect on apoptotic death of dopamine neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 138:147-53. [PMID: 12354642 DOI: 10.1016/s0165-3806(02)00464-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Naturally occurring cell death via apoptosis occurs in the substantia nigra pars compacta (SNc) during rat development, culminating during the perinatal period. We previously showed that lipid peroxidation-mediated oxidative stress is not involved in this cell death process. Nitric oxide (NO) has been proposed to be critical for many developmental processes in brain and has been shown to mediate cell death in neurotoxin models of neurodegenerative disorders. Here, we reported that in vivo pre- and postnatal treatment with the non-specific NO synthase (NOS) inhibitor, L-NAME (60 mg/kg), or with the neuronal NOS inhibitor, 7-NI (30 mg/kg), dramatically decreased the NOS activity as well as the NADPH-diaphorase staining in brain. However, those treatments did not rescue dopamine neurons from developmental death, suggesting that NO is not involved in vivo in developmental death of these neurons or in the overall development of the SNc.
Collapse
Affiliation(s)
- Laurent Groc
- William T Gossett Neurology Laboratories, Henry Ford Hospital, Detroit, MI, USA.
| | | | | | | | | | | | | |
Collapse
|