1
|
Topchiy I, Mohbat J, Folorunso OO, Wang ZZ, Lazcano-Etchebarne C, Engin E. GABA system as the cause and effect in early development. Neurosci Biobehav Rev 2024; 161:105651. [PMID: 38579901 PMCID: PMC11081854 DOI: 10.1016/j.neubiorev.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
GABA is the primary inhibitory neurotransmitter in the adult brain and through its actions on GABAARs, it protects against excitotoxicity and seizure activity, ensures temporal fidelity of neurotransmission, and regulates concerted rhythmic activity of neuronal populations. In the developing brain, the development of GABAergic neurons precedes that of glutamatergic neurons and the GABA system serves as a guide and framework for the development of other brain systems. Despite this early start, the maturation of the GABA system also continues well into the early postnatal period. In this review, we organize evidence around two scenarios based on the essential and protracted nature of GABA system development: 1) disruptions in the development of the GABA system can lead to large scale disruptions in other developmental processes (i.e., GABA as the cause), 2) protracted maturation of this system makes it vulnerable to the effects of developmental insults (i.e., GABA as the effect). While ample evidence supports the importance of GABA/GABAAR system in both scenarios, large gaps in existing knowledge prevent strong mechanistic conclusions.
Collapse
Affiliation(s)
- Irina Topchiy
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Julie Mohbat
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
| | - Oluwarotimi O Folorunso
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Ziyi Zephyr Wang
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | | | - Elif Engin
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Rengifo AC, Rivera J, Álvarez-Díaz DA, Naizaque J, Santamaria G, Corchuelo S, Gómez CY, Torres-Fernández O. Morphological and Molecular Changes in the Cortex and Cerebellum of Immunocompetent Mice Infected with Zika Virus. Viruses 2023; 15:1632. [PMID: 37631975 PMCID: PMC10458311 DOI: 10.3390/v15081632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Zika virus (ZIKV) disease continues to be a threat to public health, and it is estimated that millions of people have been infected and that there have been more cases of serious complications than those already reported. Despite many studies on the pathogenesis of ZIKV, several of the genes involved in the malformations associated with viral infection are still unknown. In this work, the morphological and molecular changes in the cortex and cerebellum of mice infected with ZIKV were evaluated. Neonatal BALB/c mice were inoculated with ZIKV intraperitoneally, and the respective controls were inoculated with a solution devoid of the virus. At day 10 postinoculation, the mice were euthanized to measure the expression of the markers involved in cortical and cerebellar neurodevelopment. The infected mice presented morphological changes accompanied by calcifications, as well as a decrease in most of the markers evaluated in the cortex and cerebellum. The modifications found could be predictive of astrocytosis, dendritic pathology, alterations in the regulation systems of neuronal excitation and inhibition, and premature maturation, conditions previously described in other models of ZIKV infection and microcephaly.
Collapse
Affiliation(s)
- Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Jorge Rivera
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Diego Alejandro Álvarez-Díaz
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
- Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia
| | - Julián Naizaque
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Gerardo Santamaria
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Sheryll Corchuelo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Claudia Yadira Gómez
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| |
Collapse
|
3
|
Basavarajappa BS, Subbanna S. Synaptic Plasticity Abnormalities in Fetal Alcohol Spectrum Disorders. Cells 2023; 12:442. [PMID: 36766783 PMCID: PMC9913617 DOI: 10.3390/cells12030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The brain's ability to strengthen or weaken synaptic connections is often termed synaptic plasticity. It has been shown to function in brain remodeling following different types of brain damage (e.g., drugs of abuse, alcohol use disorders, neurodegenerative diseases, and inflammatory conditions). Although synaptic plasticity mechanisms have been extensively studied, how neural plasticity can influence neurobehavioral abnormalities in alcohol use disorders (AUDs) is far from being completely understood. Alcohol use during pregnancy and its harmful effects on the developing offspring are major public health, social, and economic challenges. The significant attribute of prenatal alcohol exposure on offspring is damage to the central nervous system (CNS), causing a range of synaptic structural, functional, and behavioral impairments, collectively called fetal alcohol spectrum disorder (FASD). Although the synaptic mechanisms in FASD are limited, emerging evidence suggests that FASD pathogenesis involves altering a set of molecules involved in neurotransmission, myelination, and neuroinflammation. These studies identify several immediate and long-lasting changes using many molecular approaches that are essential for synaptic plasticity and cognitive function. Therefore, they can offer potential synaptic targets for the many neurobehavioral abnormalities observed in FASD. In this review, we discuss the substantial research progress in different aspects of synaptic and molecular changes that can shed light on the mechanism of synaptic dysfunction in FASD. Increasing our understanding of the synaptic changes in FASD will significantly advance our knowledge and could provide a basis for finding novel therapeutic targets and innovative treatment strategies.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
4
|
Elibol B, Beker M, Sahbaz CD, Kilic U, Jakubowska-Doğru E. Prenatal ethanol intoxication and maternal intubation stress alter cell survival and apoptosis in the postnatal development of rat hippocampus. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, Wang X. Research and progress on ClC‑2 (Review). Mol Med Rep 2017; 16:11-22. [PMID: 28534947 PMCID: PMC5482133 DOI: 10.3892/mmr.2017.6600] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Chloride channel 2 (ClC-2) is one of the nine mammalian members of the ClC family. The present review discusses the molecular properties of ClC‑2, including CLCN2, ClC‑2 promoter and the structural properties of ClC‑2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of ClC‑2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of ClC‑2. The review then discusses the diseases associated with ClC‑2, including degeneration of the retina, Sjögren's syndrome, age‑related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of ClC‑2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of ClC‑2 to treat diseases associated with ClC‑2. The determination of CLCN2 is required to prevent and treat several diseases associated with ClC‑2.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, P.R. China
| | - Minghui Xu
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Qingjie Kong
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Fengyun Yan
- Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Wenying Tian
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xin Wang
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
6
|
Gavin DP, Grayson DR, Varghese SP, Guizzetti M. Chromatin Switches during Neural Cell Differentiation and Their Dysregulation by Prenatal Alcohol Exposure. Genes (Basel) 2017; 8:E137. [PMID: 28492482 PMCID: PMC5448011 DOI: 10.3390/genes8050137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal alcohol exposure causes persistent neuropsychiatric deficits included under the term fetal alcohol spectrum disorders (FASD). Cellular identity emerges from a cascade of intrinsic and extrinsic (involving cell-cell interactions and signaling) processes that are partially initiated and maintained through changes in chromatin structure. Prenatal alcohol exposure influences neuronal and astrocyte development, permanently altering brain connectivity. Prenatal alcohol exposure also alters chromatin structure through histone and DNA modifications. However, the data linking alcohol-induced differentiation changes with developmental alterations in chromatin structure remain to be elucidated. In the first part of this review, we discuss the sequence of chromatin structural changes involved in neural cell differentiation during normal development. We then discuss the effects of prenatal alcohol on developmental histone modifications and DNA methylation in the context of neurogenesis and astrogliogenesis. We attempt to synthesize the developmental literature with the FASD literature, proposing that alcohol-induced changes to chromatin structure account for altered neurogenesis and astrogliogenesis as well as altered neuron and astrocyte differentiation. Together these changes may contribute to the cognitive and behavioral abnormalities in FASD. Future studies using standardized alcohol exposure paradigms at specific developmental stages will advance the understanding of how chromatin structural changes impact neural cell fate and maturation in FASD.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Sajoy P Varghese
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239, USA.
- Veterans Affairs Portland Health Care System, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Nirgudkar P, Taylor DH, Yanagawa Y, Valenzuela CF. Ethanol exposure during development reduces GABAergic/glycinergic neuron numbers and lobule volumes in the mouse cerebellar vermis. Neurosci Lett 2016; 632:86-91. [PMID: 27565053 DOI: 10.1016/j.neulet.2016.08.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/05/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022]
Abstract
Cerebellar alterations are a hallmark of Fetal Alcohol Spectrum Disorders and are thought to be responsible for deficits in fine motor control, motor learning, balance, and higher cognitive functions. These deficits are, in part, a consequence of dysfunction of cerebellar circuits. Although the effect of developmental ethanol exposure on Purkinje and granule cells has been previously characterized, its actions on other cerebellar neuronal populations are not fully understood. Here, we assessed the impact of repeated ethanol exposure on the number of inhibitory neurons in the cerebellar vermis. We exposed pregnant mice to ethanol in vapor inhalation chambers during gestational days 12-19 and offspring during postnatal days 2-9. We used transgenic mice expressing the fluorescent protein, Venus, in GABAergic/glycinergic neurons. Using unbiased stereology techniques, we detected a reduction in Venus positive neurons in the molecular and granule cell layers of lobule II in the ethanol exposed group at postnatal day 16. In contrast, ethanol produced a more widespread reduction in Purkinje cell numbers that involved lobules II, IV-V and IX. We also found a reduction in the volume of lobules II, IV-V, VI-VII, IX and X in ethanol-exposed pups. These findings indicate that second and third trimester-equivalent ethanol exposure has a greater impact on Purkinje cells than interneurons in the developing cerebellar vermis. The decrease in the volume of most lobules could be a consequence of a reduction in cell numbers, dendritic arborizations, or axonal projections.
Collapse
Affiliation(s)
- Pranita Nirgudkar
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, U.S.A
| | - Devin H Taylor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, U.S.A
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, U.S.A..
| |
Collapse
|
8
|
Valenzuela CF, Jotty K. Mini-Review: Effects of Ethanol on GABAA Receptor-Mediated Neurotransmission in the Cerebellar Cortex--Recent Advances. THE CEREBELLUM 2016; 14:438-46. [PMID: 25575727 DOI: 10.1007/s12311-014-0639-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies from several laboratories have shown that ethanol impairs cerebellar function, in part, by altering GABAergic transmission. Here, we discuss recent advances in our understanding of the acute effects of ethanol on GABA(A) receptor-mediated neurotransmission at cerebellar cortical circuits, mainly focusing on electrophysiological studies with slices from laboratory animals. These studies have shown that acute ethanol exposure increases GABA release at molecular layer interneuron-to-Purkinje cell synapses and also at reciprocal synapses between molecular layer interneurons. In granule cells, studies with rat cerebellar slices have consistently shown that acute ethanol exposure both potentiates tonic currents mediated by extrasynaptic GABA(A) receptors and also increases the frequency of spontaneous inhibitory postsynaptic currents mediated by synaptic GABA(A) receptors. These effects have been also documented in some granule cells from mice and nonhuman primates. Currently, there are two distinct models on how ethanol produces these effects. In one model, ethanol primarily acts by directly potentiating extrasynaptic GABA(A) receptors, including a population that excites granule cell axons and stimulates glutamate release onto Golgi cells. In the other model, ethanol acts indirectly by increasing spontaneous Golgi cell firing via inhibition of the Na(+)/K(+) ATPase, a quinidine-sensitive K(+) channel, and neuronal nitric oxide synthase. It was also demonstrated that a direct inhibitory effect of ethanol on tonic currents can be unmasked under conditions of low protein kinase C activity. In the last section, we briefly discuss studies on the chronic effect of ethanol on cerebellar GABA(A) receptor-mediated transmission and highlight potential areas where future research is needed.
Collapse
Affiliation(s)
- C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA,
| | | |
Collapse
|
9
|
|
10
|
Bi MM, Hong S, Zhou HY, Wang HW, Wang LN, Zheng YJ. Chloride channelopathies of ClC-2. Int J Mol Sci 2013; 15:218-49. [PMID: 24378849 PMCID: PMC3907807 DOI: 10.3390/ijms15010218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/14/2013] [Accepted: 12/16/2013] [Indexed: 12/15/2022] Open
Abstract
Chloride channels (ClCs) have gained worldwide interest because of their molecular diversity, widespread distribution in mammalian tissues and organs, and their link to various human diseases. Nine different ClCs have been molecularly identified and functionally characterized in mammals. ClC-2 is one of nine mammalian members of the ClC family. It possesses unique biophysical characteristics, pharmacological properties, and molecular features that distinguish it from other ClC family members. ClC-2 has wide organ/tissue distribution and is ubiquitously expressed. Published studies consistently point to a high degree of conservation of ClC-2 function and regulation across various species from nematodes to humans over vast evolutionary time spans. ClC-2 has been intensively and extensively studied over the past two decades, leading to the accumulation of a plethora of information to advance our understanding of its pathophysiological functions; however, many controversies still exist. It is necessary to analyze the research findings, and integrate different views to have a better understanding of ClC-2. This review focuses on ClC-2 only, providing an analytical overview of the available literature. Nearly every aspect of ClC-2 is discussed in the review: molecular features, biophysical characteristics, pharmacological properties, cellular function, regulation of expression and function, and channelopathies.
Collapse
Affiliation(s)
- Miao Miao Bi
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Sen Hong
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Hong Yan Zhou
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Hong Wei Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Li Na Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Ya Juan Zheng
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| |
Collapse
|
11
|
Long-lasting distortion of GABA signaling in MS/DB neurons after binge-like ethanol exposure during initial synaptogenesis. Brain Res 2013; 1520:36-50. [PMID: 23685190 DOI: 10.1016/j.brainres.2013.04.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/22/2013] [Accepted: 04/30/2013] [Indexed: 12/30/2022]
Abstract
Using a well-established model of binge-like ethanol treatment of rat pups on postnatal days (PD) 4-9, we found that maturation of GABAA receptor (GABAAR) miniature postsynaptic currents (mPSCs) was substantially blunted for medial septum/diagonal band (MS/DB) neurons in brain slices on PD 11-16. Ethanol reduced mPSC amplitude, frequency, and decay kinetics, while attenuating or exaggerating allosteric actions of zolpidem and allopregnanolone, respectively. The impact of ethanol in vivo was long lasting as most changes in MS/DB GABAAR mPSCs were still observed as late as PD 60-85. Maturing MS/DB neurons in naïve brain slices PD 4-16 showed increasing mPSC frequency, decay kinetics, and zolpidem sensitivity that were nearly identical to our earlier findings in cultured septal neurons (DuBois et al., 2004, 2006). These rapidly developing mPSC parameters continued to mature through the first month of life then stabilized throughout the remainder of the lifespan. Finally, equivalent ethanol-induced alterations in GABAAR mPSC signaling were present in MS/DB neurons from both male and female animals. Previously, we showed ethanol treatment of cultured embryonic day 20 septal neurons distorts the maturation of GABAAR mPSCs predicting that early stages of GABAergic transmission in MS/DB neurons are vulnerable to intoxication injury (DuBois et al., 2004, 2006). Since the overall character, timing, and magnitude of GABAergic mPSC developmental- and ethanol-induced changes in the in vivo model so closely mirror chronologically equivalent adaptations in cultured septal neurons, this suggests that such parallel models of ethanol impairment of GABAergic synaptic development in vivo and in vitro should be useful for translational studies exploring the efficacy and mechanism of action of potential therapeutic interventions from the cellular to whole animal level.
Collapse
|
12
|
Littner Y, Tang N, He M, Bearer CF. L1 cell adhesion molecule signaling is inhibited by ethanol in vivo. Alcohol Clin Exp Res 2012; 37:383-9. [PMID: 23050935 DOI: 10.1111/j.1530-0277.2012.01944.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorder is an immense public health problem. In vitro studies support the hypothesis that L1 cell adhesion molecule (L1) is a target for ethanol (EtOH) developmental neurotoxicity. L1 is critical for the development of the central nervous system. It functions through signal transduction leading to phosphorylation and dephosphorylation of tyrosines on its cytoplasmic domain. The function of L1 is also dependent on trafficking through lipid rafts (LRs). Our hypothesis is that L1 is a target for EtOH neurotoxicity in vivo. Our objective is to demonstrate changes in L1 phosphorylation/dephosphorylation and LR association in vivo. METHODS Rat pups on postnatal day 6 are administered 4.5, 5.25, and 6 g/kg of EtOH divided into 2 doses 2 hours apart, then killed. Cerebella are rapidly frozen for assay. Blood is analyzed for blood EtOH concentration. L1 tyrosine phosphorylation is determined by immunoprecipitation and dephosphorylation of tyrosine 1176 determined by immunoblot. LRs are isolated by sucrose density gradient, and the distribution of L1 in LRs is determined. RESULTS EtOH at all doses reduced the relative amount of Y1176 dephosphorylation as well as the relative amount of L1 phosphorylated on other tyrosines. The proportion of L1 present in LRs is significantly increased in pups who received 6 g/kg EtOH compared to intubated controls. CONCLUSIONS L1 is a target for EtOH developmental neurotoxicity in vivo.
Collapse
Affiliation(s)
- Yoav Littner
- Department of Neuroscience, Lerner Research Institute, Children's Hospital, The Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
13
|
Varodayan FP, Pignataro L, Harrison NL. Alcohol induces synaptotagmin 1 expression in neurons via activation of heat shock factor 1. Neuroscience 2011; 193:63-71. [PMID: 21816209 DOI: 10.1016/j.neuroscience.2011.07.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 11/15/2022]
Abstract
Many synapses within the central nervous system are sensitive to ethanol. Although alcohol is known to affect the probability of neurotransmitter release in specific brain regions, the effects of alcohol on the underlying synaptic vesicle fusion machinery have been little studied. To identify a potential pathway by which ethanol can regulate neurotransmitter release, we investigated the effects of acute alcohol exposure (1-24 h) on the expression of the gene encoding synaptotagmin 1 (Syt1), a synaptic protein that binds calcium to directly trigger vesicle fusion. Syt1 was identified in a microarray screen as a gene that may be sensitive to alcohol and heat shock. We found that Syt1 mRNA and protein expression are rapidly and robustly up-regulated by ethanol in mouse cortical neurons, and that the distribution of Syt1 protein along neuronal processes is also altered. Syt1 mRNA up-regulation is dependent on the activation of the transcription factor heat shock factor 1 (HSF1). The transfection of a constitutively active Hsf1 construct into neurons stimulates Syt1 transcription, while transfection of Hsf1 small interfering RNA (siRNA) or a constitutively inactive Hsf1 construct into neurons attenuates the induction of Syt1 by ethanol. This suggests that the activation of HSF1 can induce Syt1 expression and that this may be a mechanism by which alcohol regulates neurotransmitter release during brief exposures. Further analysis revealed that a subset of the genes encoding the core synaptic vesicle fusion (soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor; SNARE) proteins share this property of induction by ethanol, suggesting that alcohol may trigger a specific coordinated adaptation in synaptic function. This molecular mechanism could explain some of the changes in synaptic function that occur following alcohol administration and may be an important step in the process of neuronal adaptation to alcohol.
Collapse
Affiliation(s)
- F P Varodayan
- Department of Neuroscience, Columbia University, 40 Haven Avenue, Room 865, New York, NY 10032, USA
| | | | | |
Collapse
|
14
|
Brocardo PS, Gil-Mohapel J, Christie BR. The role of oxidative stress in fetal alcohol spectrum disorders. ACTA ACUST UNITED AC 2011; 67:209-25. [PMID: 21315761 DOI: 10.1016/j.brainresrev.2011.02.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
The ingestion of alcohol/ethanol during pregnancy can result in abnormal fetal development in both humans and a variety of experimental animal models. Depending on the pattern of consumption, the dose, and the period of exposure to ethanol, a myriad of structural and functional deficits can be observed. These teratogenic effects are thought to result from the ethanol-induced dysregulation of a variety of intracellular pathways ultimately culminating in toxicity and cell death. For instance, ethanol exposure can lead to the generation of reactive oxygen species (ROS) and produce an imbalance in the intracellular redox state, leading to an overall increase in oxidative stress. In the present review we will provide an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on the levels of oxidative stress in the central nervous system (CNS) of experimental models of fetal alcohol spectrum disorders (FASD). We will also review the evidence for the use of antioxidants as potential therapeutic strategies for the treatment of some of the neuropathological deficits characteristic of both rodent models of FASD and children afflicted with these disorders. We conclude that an imbalance in the intracellular redox state contributes to the deficits seen in FASD and suggest that antioxidants are potential candidates for the development of novel therapeutic strategies for the treatment of these developmental disorders.
Collapse
Affiliation(s)
- Patricia S Brocardo
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | | | | |
Collapse
|
15
|
Kim KC, Go HS, Bak HR, Choi CS, Choi I, Kim P, Han SH, Han SM, Shin CY, Ko KH. Prenatal exposure of ethanol induces increased glutamatergic neuronal differentiation of neural progenitor cells. J Biomed Sci 2010; 17:85. [PMID: 21073715 PMCID: PMC2996361 DOI: 10.1186/1423-0127-17-85] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/12/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Prenatal ethanol exposure during pregnancy induces a spectrum of mental and physical disorders called fetal alcohol spectrum disorder (FASD). The central nervous system is the main organ influenced by FASD, and neurological symptoms include mental retardation, learning abnormalities, hyperactivity and seizure susceptibility in childhood along with the microcephaly. In this study, we examined whether ethanol exposure adversely affects the proliferation of NPC and de-regulates the normal ratio between glutamatergic and GABAergic neuronal differentiation using primary neural progenitor culture (NPC) and in vivo FASD models. METHODS Neural progenitor cells were cultured from E14 embryo brain of Sprague-Dawley rat. Pregnant mice and rats were treated with ethanol (2 or 4 g/kg/day) diluted with normal saline from E7 to E16 for in vivo FASD animal models. Expression level of proteins was investigated by western blot analysis and immunocytochemical assays. MTT was used for cell viability. Proliferative activity of NPCs was identified by BrdU incorporation, immunocytochemistry and FACS analysis. RESULTS Reduced proliferation of NPCs by ethanol was demonstrated using BrdU incorporation, immunocytochemistry and FACS analysis. In addition, ethanol induced the imbalance between glutamatergic and GABAergic neuronal differentiation via transient increase in the expression of Pax6, Ngn2 and NeuroD with concomitant decrease in the expression of Mash1. Similar pattern of expression of those transcription factors was observed using an in vivo model of FASD as well as the increased expression of PSD-95 and decreased expression of GAD67. CONCLUSIONS These results suggest that ethanol induces hyper-differentiation of glutamatergic neuron through Pax6 pathway, which may underlie the hyper-excitability phenotype such as hyperactivity or seizure susceptibility in FASD patients.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hyo Sang Go
- Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hae Rang Bak
- Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Chang Soon Choi
- School of Medicine and Center for Neuroscience Research, IBST, Konkuk University, Korea
| | - Inha Choi
- School of Medicine and Center for Neuroscience Research, IBST, Konkuk University, Korea
| | - Pitna Kim
- School of Medicine and Center for Neuroscience Research, IBST, Konkuk University, Korea
| | - Seol-Heui Han
- School of Medicine and Center for Neuroscience Research, IBST, Konkuk University, Korea
| | - So Min Han
- Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, IBST, Konkuk University, Korea
| | - Kwang Ho Ko
- Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Jung KH, Das ND, Park JH, Lee HT, Choi MR, Chung MK, Park KS, Jung MH, Lee BC, Choi IG, Chai YG. Effects of acute ethanol treatment on NCCIT cells and NCCIT cell-derived embryoid bodies (EBs). Toxicol In Vitro 2010; 24:1696-704. [DOI: 10.1016/j.tiv.2010.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/08/2010] [Accepted: 05/21/2010] [Indexed: 12/25/2022]
|
17
|
Isayama RN, Leite PEC, Lima JPM, Uziel D, Yamasaki EN. Impact of ethanol on the developing GABAergic system. Anat Rec (Hoboken) 2010; 292:1922-39. [PMID: 19943346 DOI: 10.1002/ar.20966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alcohol intake during pregnancy has a tremendous impact on the developing brain. Embryonic and early postnatal alcohol exposures have been investigated experimentally to elucidate the fetal alcohol spectrum disorders' (FASD) milieu, and new data have emerged to support a devastating effect on the GABAergic system in the adult and developing nervous system. GABA is a predominantly inhibitory neurotransmitter that during development excites neurons and orchestrates several developmental processes such as proliferation, migration, differentiation, and synaptogenesis. This review summarizes and brings new data on neurodevelopmental aspects of the GABAergic system with FASD in experimental telencephalic models.
Collapse
Affiliation(s)
- Ricardo Noboro Isayama
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
18
|
Krahe TE, Wang W, Medina AE. Phosphodiesterase inhibition increases CREB phosphorylation and restores orientation selectivity in a model of fetal alcohol spectrum disorders. PLoS One 2009; 4:e6643. [PMID: 19680548 PMCID: PMC2721629 DOI: 10.1371/journal.pone.0006643] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 07/14/2009] [Indexed: 12/15/2022] Open
Abstract
Background Fetal alcohol spectrum disorders (FASD) are the leading cause of mental retardation in the western world and children with FASD present altered somatosensory, auditory and visual processing. There is growing evidence that some of these sensory processing problems may be related to altered cortical maps caused by impaired developmental neuronal plasticity. Methodology/Principal Findings Here we show that the primary visual cortex of ferrets exposed to alcohol during the third trimester equivalent of human gestation have decreased CREB phosphorylation and poor orientation selectivity revealed by western blotting, optical imaging of intrinsic signals and single-unit extracellular recording techniques. Treating animals several days after the period of alcohol exposure with a phosphodiesterase type 1 inhibitor (Vinpocetine) increased CREB phosphorylation and restored orientation selectivity columns and neuronal orientation tuning. Conclusions/Significance These findings suggest that CREB function is important for the maturation of orientation selectivity and that plasticity enhancement by vinpocetine may play a role in the treatment of sensory problems in FASD.
Collapse
Affiliation(s)
- Thomas E. Krahe
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - Weili Wang
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - Alexandre E. Medina
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Volgin DV. Perinatal alcohol exposure leads to prolonged upregulation of hypothalamic GABA A receptors and increases behavioral sensitivity to gaboxadol. Neurosci Lett 2008; 439:182-6. [PMID: 18514412 DOI: 10.1016/j.neulet.2008.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 05/04/2008] [Accepted: 05/05/2008] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (AE) is associated with lasting abnormalities of sleep and motor development, but the underlying mechanisms are unknown. We hypothesized that AE alters development of GABAergic signaling in the hypothalamic regions important for the control of sleep and motor activity. Alcohol (5.25 g/(kg day)) was administered intragastrically to male rats on postnatal days (PD) 4-9, a period of brain development equivalent to the human third trimester (AE group). Control pups were sham-intubated (S group). Motor activity was monitored on PD27 and 28. On PD29 and 30, GABA A receptor subunit mRNA levels and alpha4 and delta subunit proteins were quantified by RT-PCR and immunoblotting, respectively, in the wake- and motor activity-promoting perifornical (PF) region of the posterior hypothalamus and the sleep-promoting ventrolateral preoptic (VLPO) region of the anterior hypothalamus. Then, in 47-52-day-old rats, motor activity was quantified following administration of GABA A receptor agonist, gaboxadol (5 mg/kg s.c.). In the PF region, mRNA and protein levels for the alpha4 and delta subunits were significantly higher and beta3 and gamma2 subunit mRNAs were also increased in the AE group. In the VLPO region, only the delta subunit mRNA was increased. Spontaneous motor activity was lower and suppressed more by gaboxadol in the AE than S group, and the latency to a transient total loss of activity after gaboxadol was shorter in the AE group. Thus, perinatal AE leads to GABA A receptor overexpression in the vigilance- and motor activity-promoting hypothalamic PF region, with the neurochemical and functional outcomes lasting long beyond the period of the insult.
Collapse
Affiliation(s)
- Denys V Volgin
- Department of Animal Biology, 209E/VET, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Santillano DR, Kumar LS, Prock TL, Camarillo C, Tingling JD, Miranda RC. Ethanol induces cell-cycle activity and reduces stem cell diversity to alter both regenerative capacity and differentiation potential of cerebral cortical neuroepithelial precursors. BMC Neurosci 2005; 6:59. [PMID: 16159388 PMCID: PMC1249578 DOI: 10.1186/1471-2202-6-59] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/13/2005] [Indexed: 12/30/2022] Open
Abstract
Background The fetal cortical neuroepithelium is a mosaic of distinct progenitor populations that elaborate diverse cellular fates. Ethanol induces apoptosis and interferes with the survival of differentiating neurons. However, we know little about ethanol's effects on neuronal progenitors. We therefore exposed neurosphere cultures from fetal rat cerebral cortex, to varying ethanol concentrations, to examine the impact of ethanol on stem cell fate. Results Ethanol promoted cell cycle progression, increased neurosphere number and increased diversity in neurosphere size, without inducing apoptosis. Unlike controls, dissociated cortical progenitors exposed to ethanol exhibited morphological evidence for asymmetric cell division, and cells derived from ethanol pre-treated neurospheres exhibited decreased proliferation capacity. Ethanol significantly reduced the numbers of cells expressing the stem cell markers CD117, CD133, Sca-1 and ABCG2, without decreasing nestin expression. Furthermore, ethanol-induced neurosphere proliferation was not accompanied by a commensurate increase in telomerase activity. Finally, cells derived from ethanol-pretreated neurospheres exhibited decreased differentiation in response to retinoic acid. Conclusion The reduction in stem cell number along with a transient ethanol-driven increase in cell proliferation, suggests that ethanol promotes stem to blast cell maturation, ultimately depleting the reserve proliferation capacity of neuroepithelial cells. However, the lack of a concomitant change in telomerase activity suggests that neuroepithelial maturation is accompanied by an increased potential for genomic instability. Finally, the cellular phenotype that emerges from ethanol pre-treated, stem cell depleted neurospheres is refractory to additional differentiation stimuli, suggesting that ethanol exposure ablates or delays subsequent neuronal differentiation.
Collapse
Affiliation(s)
- Daniel R Santillano
- Department of Human Anatomy & Medical Neurobiology, Texas A&M University System Health Science Center, College of Medicine, College Station, TX, USA
| | - Leena S Kumar
- Department of Human Anatomy & Medical Neurobiology, Texas A&M University System Health Science Center, College of Medicine, College Station, TX, USA
| | - Terasa L Prock
- Department of Human Anatomy & Medical Neurobiology, Texas A&M University System Health Science Center, College of Medicine, College Station, TX, USA
| | - Cynthia Camarillo
- Department of Human Anatomy & Medical Neurobiology, Texas A&M University System Health Science Center, College of Medicine, College Station, TX, USA
| | - Joseph D Tingling
- Department of Human Anatomy & Medical Neurobiology, Texas A&M University System Health Science Center, College of Medicine, College Station, TX, USA
| | - Rajesh C Miranda
- Department of Human Anatomy & Medical Neurobiology, Texas A&M University System Health Science Center, College of Medicine, College Station, TX, USA
- Centre for Environmental and Rural Health, Texas A&M University, College Station, TX, USA
| |
Collapse
|
21
|
Abstract
Exposure of the developing brain to ethanol disposes to the fetal alcohol syndrome, causing changes in the neurotransmitter systems of glutamate and gamma-amino butyric acid (GABA). However, expression of genes involved in GABA synthesis, vesicular and transmembrane transport has not been investigated so far. We exposed organotypic slice cultures of newborn rat cerebral cortex to ethanol (100 mM) for 4 days and observed a significant induction of the enzyme producing GABA (GAD67, +21%) and the vesicular transporter VGAT (+112%), whereas the expression of the transmembrane transporters did not differ from control conditions. In summary, ethanol exposure of the developing cortex induces GABAergic genes, which might facilitate the excitatory functions of GABA during development.
Collapse
Affiliation(s)
- Mathias Zink
- Department of Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| | | |
Collapse
|
22
|
Carvan MJ, Loucks E, Weber DN, Williams FE. Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 2005; 26:757-68. [PMID: 15451040 DOI: 10.1016/j.ntt.2004.06.016] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Exposure to ethanol during development can lead to a constellation of congenital anomalies, resulting in prenatal and postnatal failure to thrive, central nervous system (CNS) deficits, and a number of patterning defects that lead to defects in the cardiovascular system, facial structures, and limbs. The cellular, biochemical, and molecular mechanisms by which ethanol exerts its developmental toxicity and the genes that influence sensitivity to developmental ethanol exposure have yet to be discovered, despite being one of the more common nongenetic causes of birth defects. The zebrafish undergoes much the same patterning and morphogenesis as other vertebrate embryos do--including humans--that are distinct and cannot be studied in invertebrates. Developmental processes in zebrafish are affected by ethanol exposure in a dose-dependent manner, resulting in learning and memory deficits, cell death in the CNS, skeletal dysmorphogenesis, and alterations in startle reflex responses. Interestingly, significant ethanol effects on learning and behavioral endpoints occurred at concentrations well below those that induced cell death in the CNS. This work provides the foundation for identifying genes and pathways involved in developmental alcohol toxicity in vertebrates, leading to a more complete mechanistic understanding of fetal alcohol disorders in humans.
Collapse
MESH Headings
- Alcohol-Induced Disorders, Nervous System/pathology
- Alcohol-Induced Disorders, Nervous System/physiopathology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Bone and Bones/abnormalities
- Bone and Bones/drug effects
- Cell Death/drug effects
- Cell Death/genetics
- Craniofacial Abnormalities/chemically induced
- Craniofacial Abnormalities/pathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/drug effects
- Ethanol/toxicity
- Larva/drug effects
- Larva/growth & development
- Learning Disabilities/chemically induced
- Learning Disabilities/physiopathology
- Memory Disorders/chemically induced
- Memory Disorders/physiopathology
- Reflex, Startle/drug effects
- Reflex, Startle/genetics
- Zebrafish/abnormalities
- Zebrafish/growth & development
Collapse
Affiliation(s)
- Michael J Carvan
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, 600 E. Greenfield Avenue, Milwaukee, WI 53204, USA.
| | | | | | | |
Collapse
|
23
|
Medina AE, Krahe TE, Ramoa AS. Early alcohol exposure induces persistent alteration of cortical columnar organization and reduced orientation selectivity in the visual cortex. J Neurophysiol 2004; 93:1317-25. [PMID: 15483067 DOI: 10.1152/jn.00714.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a major cause of learning and sensory deficits in children. The visual system in particular is markedly affected, with an elevated prevalence of poor visual perceptual skills. Developmental problems involving the neocortex are likely to make a major contribution to some of these abnormalities. Neuronal selectivity to stimulus orientation, a functional property thought to be crucial for normal vision, may be especially vulnerable to alcohol exposure because it starts developing even before eye opening. To address this issue, we examined the effects of early alcohol exposure on development of cortical neuron orientation selectivity and organization of cortical orientation columns. Ferrets were exposed to ethanol starting at postnatal day (P) 10, when the functional properties and connectivity of neocortical neurons start to develop. Alcohol exposure ended at P30, just before eye opening at P32. Following a prolonged alcohol-free period (15-35 days), long-term effects of early alcohol exposure on cortical orientation selectivity were examined at P48-P65, when orientation selectivity in normal ferret cortex has reached a mature state. Optical imaging of intrinsic signals revealed decreased contrast of orientation maps in alcohol- but not saline-treated animals. Moreover, single-unit recordings revealed that early alcohol treatment weakened neuronal orientation selectivity while preserving robust visual responses. These findings indicate that alcohol exposure during a brief period of development disrupts cortical processing of sensory information at a later age and suggest a neurobiological substrate for some types of sensory deficits in FAS.
Collapse
Affiliation(s)
- Alexandre E Medina
- Deptartment of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Box 0709, 1101 East Marshall St., Rm. 12-042, Richmond, VA 23298-0709, USA
| | | | | |
Collapse
|
24
|
Hauser KF, Khurdayan VK, Goody RJ, Nath A, Saria A, Pauly JR. Selective vulnerability of cerebellar granule neuroblasts and their progeny to drugs with abuse liability. THE CEREBELLUM 2003; 2:184-95. [PMID: 14509568 PMCID: PMC4306667 DOI: 10.1080/14734220310016132] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cerebellar development is shaped by the interplay of genetic and numerous environmental factors. Recent evidence suggests that cerebellar maturation is acutely sensitive to substances with abuse liability including alcohol, opioids, and nicotine. Assuming substance abuse disrupts cerebellar maturation, a central question is: what are the basic mechanisms underlying potential drug-induced developmental defects? Evidence reviewed herein suggests that the maturation of granule neurons and their progeny are intrinsically affected by several classes of substances with abuse liability. Although drug abuse is also likely to target directly other cerebellar neuron and glial types, such as Purkinje cells and Bergmann glia, findings in isolated granule neurons suggest that they are often the principle target for drug actions. Developmental events that are selectively disrupted by drug abuse in granule neurons and/or their neuroblast precursors include proliferation, migration, differentiation (including neurite elaboration and synapse formation), and programmed cell death. Moreover, different classes of drugs act through distinct molecular mechanisms thereby disrupting unique aspects of development. For example, drug-induced perturbations in: (i) neurotransmitter biogenesis; (ii) ligand and ion-gated receptor function and their coupling to intracellular effectors; (iii) neurotrophic factor biogenesis and signaling; and (iv) intercellular adhesion are all likely to have significant effects in shaping developmental outcome. In addition to identifying therapeutic strategies for drug abuse intervention, understanding the mechanisms by which drugs affect cellular maturation is likely to provide a better understanding of the neurochemical events that normally shape central nervous system development.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky, 40536-0298, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Hsiao SH, Frye GD. AMPA receptors on developing medial septum/diagonal band neurons are sensitive to early postnatal binge-like ethanol exposure. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:89-99. [PMID: 12694947 DOI: 10.1016/s0165-3806(03)00034-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The impact of binge-like, early postnatal ethanol treatment on AMPA or kainate whole cell currents was examined in acutely isolated medial septum/diagonal band (MS/DB) neurons. AMPA (10 or 100 microM) current was inhibited by GYKI 52466, a selective AMPA receptor (AMPAR) antagonist, in all neurons isolated on postnatal day (PD) 5-8, PD 12-15 or PD 32-35. Cyclothiazide, a selective inhibitor of AMPAR desensitization, also effectively potentiated AMPA currents. This suggests that non-NMDA, ionotropic glutamate receptors on immature MS/DB neuron are predominantly AMPARs. Concentration-dependent kainate (10-1000 microM) application evoked nondesensitizing currents that exhibited an increase in the maximum response by the end of first postnatal month, consistent with developmental regulation of AMPAR function. Acute 3 s ethanol application (100 mM) consistently blunted AMPA- and kainate currents approximately 20-30% across age groups. Inhibition was sustained during continuous ethanol superfusion lasting 10-12 min without evidence of acute tolerance. Repeated oral intubation of rat pups with ethanol (5.25 g/kg/day on PD 4-9), which models third trimester human binge drinking, resulted in peak blood ethanol levels of approximately 350 mg/dl (measured 90 min after PD 6 dosing). AMPA or kainate currents were upregulated in neurons isolated on PD 32-35 by earlier ethanol intubation suggesting that binge-like intoxication augments developing AMPAR function. Despite this augmentation of AMPAR function, no significant changes were found in the sensitivity of AMPA currents to GYKI 52466, cyclothiazide or acute ethanol (100 mM) sensitivity or in the levels of GluR1/GluR2 subunit proteins from MS/DB tissue. These results indicate that non-NMDA ionotrophic glutamate receptors on immature MS/DB neurons, which are largely of the AMPAR subtype, are moderately sensitive to immediate inhibition by ethanol. Repeating this inhibition during early postnatal binge-like intoxication can augment normal development of AMPAR function.
Collapse
Affiliation(s)
- Shu-Huei Hsiao
- Department of Medical Pharmacology and Toxicology, Texas A&M University System Health Science Center, College of Medicine MS 1114, College Station, TX 77843-1114, USA
| | | |
Collapse
|