Cnops L, Hu TT, Burnat K, Van der Gucht E, Arckens L. Age-dependent alterations in CRMP2 and CRMP4 protein expression profiles in cat visual cortex.
Brain Res 2006;
1088:109-19. [PMID:
16630590 DOI:
10.1016/j.brainres.2006.03.028]
[Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 03/03/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
We monitored the protein expression profiles of collapsin response mediator protein 2 and 4 (CRMP2 and CRMP4) throughout cat primary visual area 17 at different postnatal ages. Single immunocytochemical stainings revealed a clear effect of cortical maturation on the spatial and laminar distribution profile of CRMP2 and CRMP4. In kittens of postnatal day 10 (P10) and 30 (P30), CRMP2 and CRMP4 immunoreactivity was exclusively present in fibers running perpendicular to the cortical surface and crossing all cortical layers, but was never found in neuronal cell bodies. The immunoreactive fibers were embedded in an intensely and homogeneously stained neuropil. In contrast, mature visual cortex immunocytochemistry located CRMP2 and CRMP4 in the somatodendritic compartment of neurons with a clear CRMP-specific lamination pattern. Similar to kitten, neuropil staining was clearly observed but showed a decreasing gradient from layer I to VI in adult area 17. Detailed analysis of cellular morphology and size classified the CRMP2- and CRMP4-immunopositive cells in distinct neuronal populations. Double labeling of CRMP2 or CRMP4 with the typical interneuron marker parvalbumin (PV) showed many double-labeled cells immunoreactive for CRMP4 and PV, but not for CRMP2 and PV, corroborating the cell type-specific character of each CRMP. Our present results clearly illustrate that CRMP2 and CRMP4 may play an important role in visual cortex, possibly providing different classes of neurons with the potential to form a functionally meaningful network, not only during development, but also in adulthood, coincident with the belief that CRMPs are involved in neurite growth and guidance.
Collapse