1
|
Yan M, Nada OA, Fu LL, Li DZ, Feng HC, Chen LM, Gosau M, Friedrich RE, Smeets R. A comparative study on the secretion of various cytokines by pulp stem cells at different passages and their neurogenic potential. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 166:161-167. [PMID: 34747415 DOI: 10.5507/bp.2021.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
AIMS By measuring the extent of cytokines secreted by human dental pulp stem cells (hDPSCs) from passages 2 through 10, the optimal passage of hDPSCs was determined. This offers a potential theoretical basis for the treatment of neurological disorders. METHOD After isolation and culture of hDPSCs from human teeth, the morphological features of the cells were observed under an inverted microscope. hDPSCs were identified by their immunophenotypes and their multiple differentiation capability. Cytokine concentrations secreted in the supernatants at passages 2-10 were detected by ELISA. RESULTS hDPSCs were viewed as fusiform or polygonal in shape, with a bulging cell body, homogenized cytoplasm, and a clear nucleus. Moreover, they could differentiate into neuroblasts in vitro. hDPSCs at passage 3 were positive for CD29 (91.5%), CD73 (94.8%) and CD90 (96.7%), but negative for the hematopoietic markers CD34 (0.13%). ELISA results showed that hDPSCs at passage 3 had the highest secretion levels of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF), with the highest secretion level of Neurotrophin-3 (NT-3) being at passage 2. CONCLUSION hDPSCs have steady biological features of stem cells and exhibit optimal proliferation potential. hDPSCs at different passages have different capacities in the secretion of VEGF, BDNF, NGF, and NT-3. In conclusion cytokines secreted by hDPSCs may prove to be appropriate in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Ming Yan
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
| | - Ola A Nada
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, 21500, Egypt
| | - Ling-Ling Fu
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
| | - Dong-Zhen Li
- Department of Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, 054000, China
| | - Hong-Chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
| | - Li-Ming Chen
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
2
|
Claes M, De Groef L, Moons L. Target-Derived Neurotrophic Factor Deprivation Puts Retinal Ganglion Cells on Death Row: Cold Hard Evidence and Caveats. Int J Mol Sci 2019; 20:E4314. [PMID: 31484425 PMCID: PMC6747494 DOI: 10.3390/ijms20174314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Mysona BA, Zhao J, Bollinger KE. Role of BDNF/TrkB pathway in the visual system: Therapeutic implications for glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 12:69-81. [PMID: 28751923 DOI: 10.1080/17469899.2017.1259566] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Neuroprotective therapeutics are needed to treat glaucoma, an optic neuropathy that results in death of retinal ganglion cells (RGCs). AREAS COVERED The BDNF/TrkB pathway is important for RGC survival. Temporal and spatial alterations in the BDNF/TrkB pathway occur in development and in response to acute optic nerve injury and to glaucoma. In animal models, BDNF supplementation is successful at slowing RGC death after acute optic nerve injury and in glaucoma, however, the BDNF/TrkB signaling is not the only pathway supporting long term RGC survival. EXPERT COMMENTARY Much remains to be discovered about the interaction between retrograde, anterograde, and retinal BDNF/TrkB signaling pathways in both neurons and glia. An ideal therapeutic agent for glaucoma likely has several modes of action that target multiple mechanisms of neurodegeneration including the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- B A Mysona
- Augusta University Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute. Address: Augusta University Department of Cellular Biology and Anatomy, Health Sciences Campus, 1120 15th Street, Augusta, GA 30912, USA,
| | - J Zhao
- Medical College of Georgia, Department of Ophthalmology at Augusta University, James and Jean Culver Vision Discovery Institute. Address: Medical College of Georgia, Department of Ophthalmology at Augusta University, 1120 15th Street, Augusta, GA 30912, USA,
| | - K E Bollinger
- Medical College of Georgia, Department of Ophthalmology at Augusta University, Augusta University Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute. Address: Medical College of Georgia, Department of Ophthalmology at Augusta University, 1120 15th Street, Augusta, GA 30912, USA,
| |
Collapse
|
4
|
The Acquisition of Target Dependence by Developing Rat Retinal Ganglion Cells. eNeuro 2015; 2:eN-NWR-0044-14. [PMID: 26464991 PMCID: PMC4586937 DOI: 10.1523/eneuro.0044-14.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022] Open
Abstract
Similar to neurons in the peripheral nervous system, immature CNS-derived RGCs become dependent on target-derived neurotrophic support as their axons reach termination sites in the brain. To study the factors that influence this developmental transition we took advantage of the fact that rat RGCs are born, and target innervation occurs, over a protracted period of time. Early-born RGCs have axons in the SC by birth (P0), whereas axons from late-born RGCs do not innervate the SC until P4-P5. Birth dating RGCs using EdU allowed us to identify RGCs (1) with axons still growing toward targets, (2) transitioning to target dependence, and (3) entirely dependent on target-derived support. Using laser-capture microdissection we isolated ∼34,000 EdU+ RGCs and analyzed transcript expression by custom qPCR array. Statistical analyses revealed a difference in gene expression profiles in actively growing RGCs compared with target-dependent RGCs, as well as in transitional versus target-dependent RGCs. Prior to innervation RGCs expressed high levels of BDNF and CNTFR α but lower levels of neurexin 1 mRNA. Analysis also revealed greater expression of transcripts for signaling molecules such as MAPK, Akt, CREB, and STAT. In a supporting in vitro study, purified birth-dated P1 RGCs were cultured for 24-48 h with or without BDNF; lack of BDNF resulted in significant loss of early-born but not late-born RGCs. In summary, we identified several important changes in RGC signaling that may form the basis for the switch from target independence to dependence.
Collapse
|
5
|
Neurotrophic factors and the regeneration of adult retinal ganglion cell axons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:1-33. [PMID: 23211458 DOI: 10.1016/b978-0-12-407178-0.00002-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adult central nervous system (CNS) has only a limited capacity to regenerate axons after injury. This is due to a number of factors including the presence of extrinsic inhibitory factors that limit plasticity, lack of effective trophic support, and intrinsic changes in neuronal responsiveness. In this review, we describe the expression and role of neurotrophins in retinal ganglion cells (RGCs) during development and adulthood, and the receptors and miscellaneous signaling systems that influence axonal regeneration after injury. The impact of exogenous neurotrophic factors on adult RGCs injured at different sites in the visual pathway is described for several modes of delivery, including recombinant factors, viral vectors, cell transplantation, as well as combinatorial treatments involving other pharmacotherapeutic agents. Indirect, off-target effects of neurotrophic factors on RGC axonal regeneration are also considered. There remain unresolved issues relating to optimal delivery of neurotrophic factors, and we emphasize the need to develop safe, reliable methods for the regulation of exogenous supply of these factors to the injured CNS.
Collapse
|
6
|
Dallimore EJ, Park KK, Pollett MA, Taylor JS, Harvey AR. The life, death and regenerative ability of immature and mature rat retinal ganglion cells are influenced by their birthdate. Exp Neurol 2010; 225:353-65. [DOI: 10.1016/j.expneurol.2010.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 06/30/2010] [Accepted: 07/12/2010] [Indexed: 11/17/2022]
|
7
|
Pérez-Rico C, de la Villa P, Reinoso-Suárez F, Gómez-Ramos P. Kainic acid intraocular injections during the postnatal critical period induce plastic changes in the visual system. Neurosci Res 2009; 63:244-50. [PMID: 19167438 DOI: 10.1016/j.neures.2008.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 12/24/2008] [Accepted: 12/26/2008] [Indexed: 11/26/2022]
Abstract
Changes in the retino-collicular projection and in the number of optic nerve (ON) axons in adult rats were analyzed after partial loss of retinal ganglion cells (RGCs), induced by intravitreal injections of kainic acid (KA) on postnatal days 2-3 (P2-P3) or 10-12 (P10-P12). KA injected at P2-P3 decreased the volume of the adult contralateral superior colliculus (SC) and the density of the retino-collicular contralateral projection, but maintained the neonatal pattern in the ipsilateral projection from the un-injected eye. ON axon number was significantly increased in the un-injected eye but decreased in the KA-injected eye. Thus, restriction of the ipsilateral retino-collicular projection and RGC death in the un-injected eye are modified by KA at P2-P3, during the postnatal critical period, but not at P10-P12, after it is over. We suggest that, in the SC contralateral to the KA-injected eye, the disappearance of axon terminals belonging to RGC killed by KA would decrease competition between ipsilateral and contralateral terminals, thus contributing to maintaining the neonatal pattern in the ipsilateral retino-collicular projection. The reduction in RGC death in the un-injected eye could also be related to the disappearance of RGC terminals in the contralateral SC, which would have increased neurotrophic factor availability.
Collapse
|
8
|
Calamusa M, Pattabiraman PP, Pozdeyev N, Iuvone PM, Cellerino A, Domenici L. Specific alterations of tyrosine hydroxylase immunopositive cells in the retina of NT-4 knock out mice. Vision Res 2007; 47:1523-36. [PMID: 17350071 DOI: 10.1016/j.visres.2007.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 11/23/2022]
Abstract
To assess the effect of NT-4 deprivation on maturation of retinal circuitry, we investigated a mouse with targeted deletion of the gene encoding nt-4 (nt-4(-/-)). In particular, we studied neurons immunostained by an antibody recognizing tyrosine hydroxylase (TH), the rate limiting enzyme for dopamine (DA) synthesis. We found that TH immunopositive processes were altered in the retina of nt-4(-/-). Alteration of TH immunopositive processes in nt-4(-/-) mice resulted in changes of DA turnover, as assessed by high-pressure liquid chromatography measurements. These findings suggest that retinal NT-4 plays a role in the morphological maturation of dopaminergic retinal cells.
Collapse
Affiliation(s)
- Martina Calamusa
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Via G. Moruzzi 1, 56100 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Spalding KL, Cui Q, Dharmarajan AM, Harvey AR. Injury-induced retinal ganglion cell loss in the neonatal rat retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:447-51. [PMID: 17249608 DOI: 10.1007/0-387-32442-9_62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Kirsty L Spalding
- School of Anatomy & Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | |
Collapse
|
10
|
Lönngren U, Näpänkangas U, Lafuente M, Mayor S, Lindqvist N, Vidal-Sanz M, Hallböök F. The growth factor response in ischemic rat retina and superior colliculus after brimonidine pre-treatment. Brain Res Bull 2006; 71:208-18. [PMID: 17113948 DOI: 10.1016/j.brainresbull.2006.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/08/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
The alpha-2-adrenergic receptor agonist brimonidine has been shown to increase survival of retinal ganglion cells following ischemic injury to the rat retina. Increased expression of growth factors has been suggested to be involved in this action. We investigated expressional changes of growth factors and their receptors following transient retinal ischemia induced by selective ligature of ophthalmic vessels in rats pre-treated with vehicle or 0.5% brimonidine. In addition, analysis of expression in retinal samples following unilateral administration of brimonidine to normal tissue was performed. Tissue samples of retina and superior colliculus were collected at time points between 6h and 14 days of retinal reperfusion. Analysis of mRNA levels of the ligands BDNF, NT3, CNTF, FGF1, FGF2, FGF9 and HGF; as well as the receptors TrkB, TrkC, p75(NTR), CNTFRalpha, FGFR1, FGFR3, FGFR4 and HGFR were performed using qRT-PCR. The cell specific markers Thy1 and GFAP were analysed. We report transiently increased retinal levels of BDNF, NT3, p75(NTR), FGFR1 and HGFR and decreased levels of FGF9, HGF, TrkB, TrkC, FGFR4 and Thy1 following ischemia. The decreases were counteracted by brimonidine. Brimonidine treatment gave an increase in BDNF, NT3 and CNTF levels compared to the vehicle treated group. In superior colliculus increased levels of growth factor mRNA were found. In conclusion, transient ischemia has a profound effect on gene expression in rat retina. Alterations can also be seen in the superior colliculus but are smaller. Brimonidine pre-treatment attenuates an acute injury-induced response by decreasing the expression of several genes, among them p75(NTR). Brimonidine also causes a prolonged increase of several growth factors as well as receptors in retina and superior colliculus compared to the ischemic situation. The increased expression of several growth factors represents a coordinated growth factor system response that differs from the ischemia-induced changes and is likely part of the neuroprotective activity that is elicited by BMD pre-treatment.
Collapse
Affiliation(s)
- Ulrika Lönngren
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Cui Q. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 2006; 33:155-79. [PMID: 16603794 DOI: 10.1385/mn:33:2:155] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 11/30/1999] [Accepted: 08/15/2005] [Indexed: 02/05/2023]
Abstract
Adult axons in the mammalian central nervous system do not elicit spontaneous regeneration after injury, although many affected neurons have survived the neurotrauma. However, axonal regeneration does occur under certain conditions. These conditions include: (a) modification of regrowth environment, such as supply of peripheral nerve bridges and transplantation of Schwann cells or olfactory ensheathing glia to the injury site; (b) application of neurotrophic factors at the cell soma and axon tips; (c) blockade of growth-inhibitory molecules such as Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein; (d) prevention of chondroitin-sulfate-proteoglycans-related scar tissue formation at the injury site using chondroitinase ABC; and (e) elevation of intrinsic growth potential of injured neurons via increasing intracellular cyclic adenosine monophosphate level. A large body of evidence suggests that these conditions achieve enhanced neuronal survival and axonal regeneration through sometimes overlapping and sometimes distinct signal transduction mechanisms, depending on the targeted neuronal populations and intervention circumstances. This article reviews the available information on signal transduction pathways underlying neurotrophic-factor-mediated neuronal survival and neurite outgrowth/axonal regeneration. Better understanding of signaling transduction is important in helping us develop practical therapeutic approaches for encouraging neuronal survival and axonal regeneration after traumatic injury in clinical context.
Collapse
Affiliation(s)
- Qi Cui
- Laboratory for Neural Repair, Shantou University Medical College, China.
| |
Collapse
|
12
|
Zhi Y, Lu Q, Zhang CW, Yip HK, So KF, Cui Q. Different optic nerve injury sites result in different responses of retinal ganglion cells to brain-derived neurotrophic factor but not neurotrophin-4/5. Brain Res 2005; 1047:224-32. [PMID: 15904902 DOI: 10.1016/j.brainres.2005.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 04/15/2005] [Accepted: 04/15/2005] [Indexed: 02/05/2023]
Abstract
In this study, we investigated whether brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5) can achieve prolonged protection on retinal ganglion cells (RGCs) and whether site of axon injury modulates RGC response to neurotrophins. Two optic nerve (ON) injury paradigms, proximal and distal transections, were used. Autologous sciatic nerves were grafted onto ON stump in some animals to provide a suitable environment for axons to regrow. Multiple intravitreal injections of saline, BDNF, or NT-4/5 were performed. Immunohistochemistry was used to determine the proportion of RGCs that were expressing trkB. Twenty days after proximal injury, both BDNF and NT-4/5 promoted RGC survival; this protection diminished 30 days after injury. One month after distal injury, BDNF, but not NT-4/5, promoted RGC survival (by 2-fold). No difference in the proportion of trkB expressing RGCs among the viable ones was seen between the two injury models or after BDNF treatment. Interestingly, the mean size of RGC somata was larger after proximal injury than distal injury. This study demonstrates that (1) RGCs respond differently to neurotrophins under different injury conditions, (2) BDNF but not NT-4/5 significantly enhances survival of distally but not proximally injured RGCs over a prolonged period.
Collapse
Affiliation(s)
- Ye Zhi
- Laboratory for Neural Repair, Shantou University Medical College, 22 Xinling Road, Shantou 515031, China
| | | | | | | | | | | |
Collapse
|
13
|
Spalding KL, Dharmarajan AM, Harvey AR. Caspase-independent retinal ganglion cell death after target ablation in the neonatal rat. Eur J Neurosci 2005; 21:33-45. [PMID: 15654841 DOI: 10.1111/j.1460-9568.2004.03826.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In neonatal rats, superior colliculus (SC) ablation results in a massive and rapid increase in retinal ganglion cell (RGC) death that peaks about 24 h post-lesion (PL). Naturally occurring cell death during normal development, and RGC death after axonal injury in neonatal and adult rats, has primarily been ascribed to apoptosis. Given that normal developmental cell death is reported to involve caspase 3 activation, and blocking caspase activity in adults reduces axotomy-induced death, we examined whether blocking caspases in vivo reduces RGC death after neonatal SC lesions. Neither general nor specific caspase inhibitors increased neonatal RGC survival 6 and 24 h PL. These inhibitors were, however, effective in blocking caspases in another well-defined in vitro apoptosis model, the corpus luteum. Caspase 3 protein and mRNA levels in retinas from normal and SC-lesioned neonatal rats were assessed 3, 6 and 24 h after SC removal using immunohistochemistry, western and northern blots and quantitative real-time polymerase chain reaction. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) was used to independently monitor retinal cell death. The polymerase chain reaction data showed a small but insignificant increase in caspase 3 mRNA in retinas 24 h PL. Western blot analysis did not reveal a significant shift to cleaved (activated) caspase 3 protein. There was a small increase in the number of cleaved caspase 3 immunolabelled cells in the ganglion cell layer 24 h PL but this represented only a fraction of the death revealed by TUNEL. Together, these data indicate that, unlike the situation in adults, most lesion-induced RGC death in neonatal rats occurs independently of caspase activation.
Collapse
Affiliation(s)
- Kirsty L Spalding
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
14
|
Spalding KL, Cui Q, Harvey AR. Retinal ganglion cell neurotrophin receptor levels and trophic requirements following target ablation in the neonatal rat. Neuroscience 2005; 131:387-95. [PMID: 15708481 DOI: 10.1016/j.neuroscience.2004.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2004] [Indexed: 02/06/2023]
Abstract
Superior colliculus (SC) ablation in neonatal rats results in a rapid increase in retinal ganglion cell (RGC) death. This injury-induced death is reduced by exogenous brain-derived neurotrophic factor or neurotrophin-4/5 (NT-4/5), but the protective effect of these molecules is transient, delaying but not preventing neuronal loss. We sought to discover why neurotrophins only temporarily reduce RGC death after target ablation, focusing on changes in neurotrophin receptor expression and possible changes in growth factor dependency. In unlesioned rats, receptor tyrosine kinase B (trkB) immunohistochemistry revealed no change in the number of trkB positive cells in the RGC layer 24 h after intraocular NT-4/5 injection. However, after SC lesions there were significantly less immunoreactive cells and, surprisingly, even fewer immunoreactive cells in NT-4/5 injected eyes. Semi-quantitative confocal analysis of immunofluorescence intensity revealed an increase in trkB staining in the RGC layer in unlesioned rats 24 h after NT-4/5 injection, whereas in SC-lesioned animals exposed to NT-4/5 there was a significant decrease in staining. To determine whether injured neonatal RGCs can switch their trophic requirements, different doses of ciliary neurotrophic factor were given intraocularly, either alone or combined with NT-4/5. We also tested an SC-derived chondroitin sulfate proteoglycan that has been reported to promote neonatal RGC survival. None of these interventions reduced lesion-induced RGC death 24 or 36 h after SC ablation. In summary, we show that developing RGCs do not shift their trophic dependence to other survival factors following injury; rather, the application of neurotrophins causes a down-regulation of the cognate trkB receptor, presumably altering the long-term responsiveness of neonatal RGCs to exogenous neurotrophins. These data highlight the difficulty in promoting long-term neuronal survival when using one-off administration of recombinant growth factors.
Collapse
Affiliation(s)
- K L Spalding
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | | | |
Collapse
|
15
|
Hawkes EL, Krueger-Naug AMR, Nickerson PEB, Myers TL, Currie RW, Clarke DB. Expression of Hsp27 in retinal ganglion cells of the rat during postnatal development. J Comp Neurol 2004; 478:143-8. [PMID: 15349975 DOI: 10.1002/cne.20266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The small heat shock protein Hsp27 has been shown to protect neurons from apoptosis. We have recently shown the expression of Hsp27 in a subset of injured adult retinal ganglion cells (RGCs), a response that is muted by the administration of brain-derived neurotrophic factor. This work has suggested a role for Hsp27 in the long-term survival of RGCs following injury. The purpose of this study was to investigate the expression of Hsp27 during postnatal retinal development, based on Hsp27's role as a neuronal survival factor and on its up-regulation in the adult injured retina. Expression of Hsp27 in the developing retina was examined at various times postnatally (between P0 and P24) by using immunohistochemical techniques. We report that Hsp27 expression peaks in the ganglion cell layer between P6 and P12 and is not detected at earlier (P0-P3) or later (P15-P24) times. Double labeling of the Hsp27-positive cells with Fluorogold applied to the superior colliculus confirmed that Hsp27-positive cells in the ganglion cell layer are RGCs. We have shown developmentally regulated expression of Hsp27 in RGCs of the postnatal rat. The retinal expression of Hsp27 correlates temporally with innervation of the tectum by late-born RGCs and with onset of spontaneous retinotectal activity. We propose that the expression of Hsp27 may play an important role in retinal development during a critical period of RGC functional connectivity with the superior colliculus.
Collapse
Affiliation(s)
- Erin L Hawkes
- Neuron Survival and Regeneration Laboratory, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Spalding KL, Rush RA, Harvey AR. Target-derived and locally derived neurotrophins support retinal ganglion cell survival in the neonatal rat retina. ACTA ACUST UNITED AC 2004; 60:319-27. [PMID: 15281070 DOI: 10.1002/neu.20028] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5) protein and mRNA are found in the neonatal rat retina and also in target sites such as the superficial layers of the superior colliculus. Both neurotrophins support neonatal retinal ganglion cell survival in vitro. In vivo, injections of recombinant BDNF and NT-4/5 reduce naturally occurring cell death as well as death induced by removal of the contralateral superior colliculus. In the latter case, the peak of retinal ganglion cell death occurs about 24 h postlesion. We wished to determine: whether a similar time-course of degeneration occurs after selective removal of target cells or depletion of target-derived trophic factors, and whether ganglion cell viability also depends on intraretinally derived neurotrophins. Retinal ganglion cell death was measured 24 and 48 h following injections of kainic acid or a mixture of BDNF and NT-4/5 blocking antibodies into the superior colliculus and 24 h after intraocular injection of the same antibodies. Retinotectally projecting ganglion cells were identified by retrograde labeling with the nucleophilic dye diamidino yellow. We show that collicular injections of either kainic acid or BDNF and NT-4/5 blocking antibodies significantly increased retinal ganglion cell death in the neonatal rat 24 h postinjection, death rates returning to normal by 48 h. This increase in death was greatest following collicular injections; however, death was also significantly increased 24 h following intravitreal antibody injection. Thus retinal ganglion cell survival during postnatal development is not only dependent upon trophic factors produced by central targets but may also be influenced by local intraretinal neurotrophin release.
Collapse
Affiliation(s)
- Kirsty L Spalding
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
17
|
Spalding KL, Tan MML, Hendry IA, Harvey AR. Anterograde transport and trophic actions of BDNF and NT-4/5 in the developing rat visual system. Mol Cell Neurosci 2002; 19:485-500. [PMID: 11988017 DOI: 10.1006/mcne.2001.1097] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During development the viability of immature neurons may depend upon retrograde, anterograde, or paracrine trophic support. Using (125)I-labeled peptides we show that there is substantial and rapid anterograde transport of brain-derived neurotrophic factor (BDNF) and, to a lesser extent, neurotrophin-4/5 (NT-4/5) to central visual target areas in the neonatal rat brain. Six hours after unilateral intraocular injection, all retinorecipient regions in the thalamus and midbrain are heavily labeled. Intraocular application of physiologically relevant doses of neurotrophin has a marked effect on cells in the developing superior colliculus (SC): 24 h postinjection of BDNF or NT-4/5, the number of pyknotic profiles in the contralateral superficial SC significantly decreases, while total cell numbers increase relative to ipsilateral SC. This increase is primarily associated with neurons. The data support the hypothesis that BDNF and NT-4/5 are anterograde survival factors for postsynaptic cells in the developing rat SC.
Collapse
Affiliation(s)
- Kirsty L Spalding
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
| | | | | | | |
Collapse
|
18
|
Loh NK, Woerly S, Bunt SM, Wilton SD, Harvey AR. The regrowth of axons within tissue defects in the CNS is promoted by implanted hydrogel matrices that contain BDNF and CNTF producing fibroblasts. Exp Neurol 2001; 170:72-84. [PMID: 11421585 DOI: 10.1006/exnr.2001.7692] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study we demonstrate the potential for combining biocompatible polymers with genetically engineered cells to elicit axon regrowth across tissue defects in the injured CNS. Eighteen- to 21-day-old rats received implants of poly N-(2-hydroxypropyl)-methacrylamide (HPMA) hydrogels containing RGD peptide sequences that had been infiltrated with control (untransfected) fibroblasts (n = 8), fibroblasts engineered to express brain-derived neurotrophic factor (BDNF) (n = 5), ciliary neurotrophic factor (CNTF) (n = 5), or a mixture of BDNF and CNTF expressing fibroblasts (n = 11). Fibroblasts were prelabeled with Hoechst 33342. Cell/polymer constructs were inserted into cavities made in the left optic tract, between thalamus and superior colliculus. After 4-8 weeks, retinal projections were analyzed by injecting right eyes with cholera toxin (B-subunit). Rats were perfused 24 h later and sections were immunoreacted to visualize retinal axons, other axons (RT97 antibody), host astrocytes and macrophages, donor fibroblasts, and extracellular matrix molecules. The volume fraction (VF) of each gel that was occupied by RT97(+) axons was quantified. RT-PCR confirmed expression of the transgenes prior to, and 5 weeks after, transplantation. Compared to control rats (mean VF = 0.02 +/- 0.01% SEM) there was increased ingrowth of RT97(+) axons into implants in CNTF (mean VF = 0.33 +/- 0.19%) and BDNF (mean VF = 0.62 +/-0.19%) groups. Axon growth into hydrogels in the mixed BDNF/CNTF group (mean VF = 3.58 +/- 0.92%) was significantly greater (P < 0.05) than in the BDNF or CNTF fibroblast groups. Retinal axons exhibited a complex branching pattern within gels containing BDNF or BDNF/CNTF fibroblasts; however, they regrew the greatest distances within implants containing both BDNF and CNTF expressing cells.
Collapse
Affiliation(s)
- N K Loh
- Department of Anatomy and Human Biology, The University of Western Australia, Crawley, Perth, WA 6009, Australia
| | | | | | | | | |
Collapse
|
19
|
Cui Q, Harvey AR. NT-4/5 reduces cell death in inner nuclear as well as ganglion cell layers in neonatal rat retina. Neuroreport 2000; 11:3921-4. [PMID: 11117515 DOI: 10.1097/00001756-200011270-00062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using the TUNEL method, we examined the effect of intraocular NT-4/5 injections on cell death in ganglion and non-ganglion cell layers in 5-day-old rat retinas. NT-4/5 reduced the level of naturally occurring cell death in all retinal layers. Twenty-four hours after superior colliculus (SC) lesions there was a significant increase in the density of TUNEL+ profiles in the RGC layer (6.43/mm2 in normal vs (8.89/mm2 after lesions) which was ameliorated by intraocular NT-4/5 injections (8.79/mm2). Surprisingly, after SC ablation a significant increase in TUNEL+ profiles was also seen in non-ganglion cell layers (52.25/mm2 in normal vs 89.35/mm2 after lesions), mostly in the developing inner nuclear layer. Death in non-ganglion cell layers was also significantly reduced (43.09/mm2) after NT-4/5 eye injections.
Collapse
Affiliation(s)
- Q Cui
- Department of Anatomy and Human Biology, The University of Western Australia, Perth, Australia
| | | |
Collapse
|
20
|
Rothe T, Bähring R, Carroll P, Grantyn R. Repetitive firing deficits and reduced sodium current density in retinal ganglion cells developing in the absence of BDNF. JOURNAL OF NEUROBIOLOGY 1999; 40:407-19. [PMID: 10440740 DOI: 10.1002/(sici)1097-4695(19990905)40:3<407::aid-neu12>3.0.co;2-t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous work by Cellerino et al. has shown that chronic absence of brain-derived neurotrophic factor (BDNF) resulted in hypomyelination of the optic nerve. Since myelination is influenced by neuronal activity, it is possible that a deficiency in BDNF during early development could alter the firing properties of retinal neurons. To test this hypothesis, patch-clamp recordings were performed in retinal whole mounts from BDNF-deficient (bdnf-/-), heterozygote (bdnf+/-) or wild-type control mice (bdnf+/+). Ganglion cell layer neurons (RGNs) were tested at different age [postnatal day (P)1-11] for their ability to encode graded depolarization with variable action potential frequency. At all developmental ages examined, RGNs exhibiting frequency coding were less frequently encountered in bdnf-/- than in bdnf+/+ mice. At P1, none of the RGNs from bdnf-/- mice displayed repetitive firing compared to 50% in bdnf+/+ mice, and by P7-11, only 50% of bdnf-/- RGNs exhibited repetitive firing compared to 100% in bdnf+/+ mice. Moreover, in bdnf-/- RGNs repetitive discharge was characterized by a reduced frequency increment per current change. Acquisition of repetitive firing was paralleled by a decrease in input resistance and a steep increase of sodium current density. In bdnf-/- mice, the onset of this increase occurred at later stages of development than in wild-type controls (bdnf-/-: P6-11; bdnf+/+: P2-6). The discharge pattern of P7-11 bdnf-/- RGNs resembled that of RGNs in neonatal wild-type mice and was mimicked by acute application of a Ca(2+) channel blocker. We conclude that BDNF plays an important role in the ontogeny of repetitive firing of RGNs.
Collapse
Affiliation(s)
- T Rothe
- Developmental Physiology, Institute for Physiology, Humboldt University, Tucholskystr. 2, D-10117 Berlin
| | | | | | | |
Collapse
|