1
|
Galbraith MD, Rachubinski AL, Smith KP, Araya P, Waugh KA, Enriquez-Estrada B, Worek K, Granrath RE, Kinning KT, Paul Eduthan N, Ludwig MP, Hsieh EW, Sullivan KD, Espinosa JM. Multidimensional definition of the interferonopathy of Down syndrome and its response to JAK inhibition. SCIENCE ADVANCES 2023; 9:eadg6218. [PMID: 37379383 PMCID: PMC10306300 DOI: 10.1126/sciadv.adg6218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Individuals with Down syndrome (DS) display chronic hyperactivation of interferon signaling. However, the clinical impacts of interferon hyperactivity in DS are ill-defined. Here, we describe a multiomics investigation of interferon signaling in hundreds of individuals with DS. Using interferon scores derived from the whole blood transcriptome, we defined the proteomic, immune, metabolic, and clinical features associated with interferon hyperactivity in DS. Interferon hyperactivity associates with a distinct proinflammatory phenotype and dysregulation of major growth signaling and morphogenic pathways. Individuals with the highest interferon activity display the strongest remodeling of the peripheral immune system, including increased cytotoxic T cells, B cell depletion, and monocyte activation. Interferon hyperactivity accompanies key metabolic changes, most prominently dysregulated tryptophan catabolism. High interferon signaling stratifies a subpopulation with elevated rates of congenital heart disease and autoimmunity. Last, a longitudinal case study demonstrated that JAK inhibition normalizes interferon signatures with therapeutic benefit in DS. Together, these results justify the testing of immune-modulatory therapies in DS.
Collapse
Affiliation(s)
- Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Keith P. Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A. Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Belinda Enriquez-Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kayleigh Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross E. Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kohl T. Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael P. Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elena W. Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Division of Allergy/Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Roy ER, Cao W. Antiviral Immune Response in Alzheimer's Disease: Connecting the Dots. Front Neurosci 2020; 14:577744. [PMID: 33132831 PMCID: PMC7561672 DOI: 10.3389/fnins.2020.577744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) represents an enormous public health challenge currently and with increasing urgency in the coming decades. Our understanding of the etiology and pathogenesis of AD is rather incomplete, which is manifested in stagnated therapeutic developments. Apart from the well-established Amyloid Hypothesis of AD, gaining traction in recent years is the Pathogen Hypothesis, which postulates a causal role of infectious agents in the development of AD. Particularly, infection by viruses, among a diverse range of microorganisms, has been implicated. Recently, we described a prominent antiviral immune response in human AD brains as well as murine amyloid beta models, which has consequential effects on neuropathology. Such findings expectedly allude to the question about viral infections and AD. In this Perspective, we would like to discuss the molecular mechanism underlying the antiviral immune response, highlight how such pathway directly promotes AD pathogenesis, and depict a multilayered connection between antiviral immune response and other agents and factors relevant to AD. By tying together these threads of evidence, we provide a cohesive perspective on the uprising of antiviral immune response in AD.
Collapse
Affiliation(s)
- Ethan R Roy
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Wei Cao
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Muraki M. Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS MEDICAL SCIENCE 2020. [DOI: 10.3934/medsci.2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
4
|
Aberrant Oligodendrogenesis in Down Syndrome: Shift in Gliogenesis? Cells 2019; 8:cells8121591. [PMID: 31817891 PMCID: PMC6953000 DOI: 10.3390/cells8121591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022] Open
Abstract
Down syndrome (DS), or trisomy 21, is the most prevalent chromosomal anomaly accounting for cognitive impairment and intellectual disability (ID). Neuropathological changes of DS brains are characterized by a reduction in the number of neurons and oligodendrocytes, accompanied by hypomyelination and astrogliosis. Recent studies mainly focused on neuronal development in DS, but underestimated the role of glial cells as pathogenic players. Aberrant or impaired differentiation within the oligodendroglial lineage and altered white matter functionality are thought to contribute to central nervous system (CNS) malformations. Given that white matter, comprised of oligodendrocytes and their myelin sheaths, is vital for higher brain function, gathering knowledge about pathways and modulators challenging oligodendrogenesis and cell lineages within DS is essential. This review article discusses to what degree DS-related effects on oligodendroglial cells have been described and presents collected evidence regarding induced cell-fate switches, thereby resulting in an enhanced generation of astrocytes. Moreover, alterations in white matter formation observed in mouse and human post-mortem brains are described. Finally, the rationale for a better understanding of pathways and modulators responsible for the glial cell imbalance as a possible source for future therapeutic interventions is given based on current experience on pro-oligodendroglial treatment approaches developed for demyelinating diseases, such as multiple sclerosis.
Collapse
|
5
|
Gorlé N, Vandenbroucke RE. Interferons: A molecular switch between damage and repair in ageing and Alzheimer's disease. Mech Ageing Dev 2019; 183:111148. [PMID: 31541624 DOI: 10.1016/j.mad.2019.111148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease was first described over 100 years ago, yet it remains incurable and affects 44 million people worldwide. Traditionally, research has largely focused on the amyloid cascade hypothesis, but interest in the importance of inflammation in the progression of the disease has recently been increasing. Interferons, a large family of cytokines that trigger the immune system, are believed to play a crucial role in the pathology of Alzheimer's disease. This review focuses on how interferons affect the brain during ageing and whether they could be candidate therapeutic targets for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- N Gorlé
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - R E Vandenbroucke
- VIB Center for Inflammation Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
6
|
Wang N, Zhang Y, Xu L, Jin S. Relationship Between Alzheimer's Disease and the Immune System: A Meta-Analysis of Differentially Expressed Genes. Front Neurosci 2019; 12:1026. [PMID: 30705616 PMCID: PMC6344412 DOI: 10.3389/fnins.2018.01026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative diseases (neuro-diseases) which is prevalent in the elderly and seriously affects the lives of individuals. Many studies have discussed the relationship between immune system and AD pathogenesis. Here, the meta-analysis of differentially expressed (DE) genes based on microarray data was conducted to study the association between AD and immune system. 9519 target genes of hippocampus in 146 subjects (73 AD cases and 73 controls) from 4 microarray data sets were compiled and DE genes with p < 1.00E - 04 were selected to conduct the pathway-analysis. The results indicated that the DE genes were significantly enriched in the neuro-diseases as well as the immune system pathways.
Collapse
Affiliation(s)
- Nan Wang
- Department of Mathematics, Harbin Institute of Technology, Harbin, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Li Xu
- College of Computer Science and Technology, Harbin Engineering University, Harbin, China
| | - Shuilin Jin
- Department of Mathematics, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
7
|
Torres MD, Garcia O, Tang C, Busciglio J. Dendritic spine pathology and thrombospondin-1 deficits in Down syndrome. Free Radic Biol Med 2018; 114:10-14. [PMID: 28965914 PMCID: PMC7185223 DOI: 10.1016/j.freeradbiomed.2017.09.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 11/27/2022]
Abstract
Abnormal dendritic spine structure and function is one of the most prominent features associated with neurodevelopmental disorders including Down syndrome (DS). Defects in both spine morphology and spine density may underlie alterations in neuronal and synaptic plasticity, ultimately affecting cognitive ability. Here we briefly examine the role of astrocytes in spine alterations and more specifically the involvement of astrocyte-secreted thrombospondin 1 (TSP-1) deficits in spine and synaptic pathology in DS.
Collapse
Affiliation(s)
- Maria D Torres
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA 92697, United States
| | - Octavio Garcia
- Facultad de Psicología, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Cindy Tang
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA 92697, United States
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA 92697, United States.
| |
Collapse
|
8
|
Abstract
There is an increasing recognition that inflammation plays a critical role in neurodegenerative diseases of the CNS, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and the prototypic neuroinflammatory disease multiple sclerosis (MS). Differential immune responses involving the adaptive versus the innate immune system are observed at various stages of neurodegenerative diseases, and may not only drive disease processes but could serve as therapeutic targets. Ongoing investigations into the specific inflammatory mechanisms that play roles in disease causation and progression have revealed lessons about inflammation-driven neurodegeneration that can be applied to other neurodegenerative diseases. An increasing number of immunotherapeutic strategies that have been successful in MS are now being applied to other neurodegenerative diseases. Some approaches suppress CNS immune mechanisms, while others harness the immune system to clear deleterious products and cells. This Review focuses on the mechanisms by which inflammation, mediated either by the peripheral immune response or by endogenous CNS immune mechanisms, can affect CNS neurodegeneration.
Collapse
|
9
|
Brain interference: Revisiting the role of IFNγ in the central nervous system. Prog Neurobiol 2017; 156:149-163. [DOI: 10.1016/j.pneurobio.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023]
|
10
|
Synergistic effect of tanshinone IIA and mesenchymal stem cells on preventing learning and memory deficits via anti-apoptosis, attenuating tau phosphorylation and enhancing the activity of central cholinergic system in vascular dementia. Neurosci Lett 2017; 637:175-181. [DOI: 10.1016/j.neulet.2016.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
|
11
|
Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain. Neural Plast 2016; 2016:7434191. [PMID: 26881131 PMCID: PMC4737457 DOI: 10.1155/2016/7434191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain development involves meticulous regulation of various signaling pathways, and dysregulation may result in abnormal neurodevelopment. DS brain is characterized by an increased number of astrocytes with reduced number of neurons. In mouse models for DS, the pool of neural progenitor cells commits to glia rather than neuronal cell fate in the DS brain. However, the mechanism(s) and consequences of this slight neurogenic-to-gliogenic shift in DS brain are still poorly understood. To date, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling has been proposed to be crucial in various developmental pathways, especially in promoting astrogliogenesis. Since both human and mouse models of DS brain exhibit less neurons and a higher percentage of cells with astrocytic phenotypes, understanding the role of JAK-STAT signaling in DS brain development will provide novel insight into its role in the pathogenesis of DS brain and may serve as a potential target for the development of effective therapy to improve DS cognition.
Collapse
|
12
|
Monteiro S, Ferreira FM, Pinto V, Roque S, Morais M, de Sá-Calçada D, Mota C, Correia-Neves M, Cerqueira JJ. Absence of IFNγ promotes hippocampal plasticity and enhances cognitive performance. Transl Psychiatry 2016; 6:e707. [PMID: 26731444 PMCID: PMC5073154 DOI: 10.1038/tp.2015.194] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 01/31/2023] Open
Abstract
Cognitive functioning can be differentially modulated by components of the immune system. Interferon-γ (IFNγ) is a pro-inflammatory cytokine whose production is altered in many conditions displaying some degree of cognitive deficits, although its role in cognitive functioning is still unclear. Here we show that the absence of IFNγ selectively enhances cognitive behaviours in tasks in which the hippocampus is implicated. Moreover, the absence of IFNγ leads to volumetric and cell density changes that are restricted to the dorsal part of the hippocampus. In the dorsal hippocampus, the absence of this pro-inflammatory cytokine leads to an increase in the numbers of newly born neurons in the subgranular zone of the dentate gyrus (DG), an adult neurogenic niche known to support learning and memory, and to an enlargement of the dendritic arborization of DG granule and cornu ammonis (CA)1 pyramidal neurons. Moreover, it also modestly impacts synaptic plasticity, by decreasing the paired-pulse facilitation in the Schaffer collateral to CA1 pyramidal cell synapses. Taken together, our results provide evidence that IFNγ is a negative regulator of hippocampal functioning, as its absence positively impacts on dorsal hippocampus structure, cell density, neuronal morphology and synaptic plasticity. Importantly, these neuroplastic changes are associated with improved performance in learning and memory tasks. Therefore, blockage of the IFNγ signalling may present as promising therapeutic targets for the treatment of inflammation-associated cognitive dysfunction.
Collapse
Affiliation(s)
- S Monteiro
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal,Life and Health Sciences Research Institute, 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - F M Ferreira
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal,Life and Health Sciences Research Institute, 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - V Pinto
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal,Life and Health Sciences Research Institute, 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - S Roque
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal,Life and Health Sciences Research Institute, 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - M Morais
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal,Life and Health Sciences Research Institute, 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - D de Sá-Calçada
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal,Life and Health Sciences Research Institute, 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - C Mota
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal,Life and Health Sciences Research Institute, 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - M Correia-Neves
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal,Life and Health Sciences Research Institute, 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J J Cerqueira
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal,Life and Health Sciences Research Institute, 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, ICVS/3B's - PT Government Associate Laboratory, 4710-057 Braga, Portugal. E-mail:
| |
Collapse
|
13
|
Wong F, Rayner-Hartley E, Byrne MF. Extraintestinal manifestations of Helicobacter pylori: A concise review. World J Gastroenterol 2014; 20:11950-11961. [PMID: 25232230 PMCID: PMC4161781 DOI: 10.3748/wjg.v20.i34.11950] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/28/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection has been clearly linked to peptic ulcer disease and some gastrointestinal malignancies. Increasing evidence demonstrates possible associations to disease states in other organ systems, known as the extraintestinal manifestations of H. pylori. Different conditions associated with H. pylori infection include those from hematologic, cardiopulmonary, metabolic, neurologic, and dermatologic systems. The aim of this article is to provide a concise review of the evidence that supports or refutes the associations of H. pylori and its proposed extraintestinal manifestations. Based on data from the literature, PUD, mucosal associated lymphoid tumors lymphoma, and gastric adenocarcinoma has well-established links. Current evidence most supports extraintestinal manifestations with H. pylori in immune thrombocytopenic purpura, iron deficiency anemia, urticaria, Parkinson’s, migraines and rosacea; however, there is still plausible link with other diseases that requires further research.
Collapse
|
14
|
Prokosch V, Chiwitt C, Rose K, Thanos S. Deciphering proteins and their functions in the regenerating retina. Expert Rev Proteomics 2014; 7:775-95. [DOI: 10.1586/epr.10.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Garcia O, Torres M, Helguera P, Coskun P, Busciglio J. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down's syndrome. PLoS One 2010; 5:e14200. [PMID: 21152035 PMCID: PMC2996288 DOI: 10.1371/journal.pone.0014200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Down's syndrome (DS) is the most common genetic cause of mental retardation. Reduced number and aberrant architecture of dendritic spines are common features of DS neuropathology. However, the mechanisms involved in DS spine alterations are not known. In addition to a relevant role in synapse formation and maintenance, astrocytes can regulate spine dynamics by releasing soluble factors or by physical contact with neurons. We have previously shown impaired mitochondrial function in DS astrocytes leading to metabolic alterations in protein processing and secretion. In this study, we investigated whether deficits in astrocyte function contribute to DS spine pathology. METHODOLOGY/PRINCIPAL FINDINGS Using a human astrocyte/rat hippocampal neuron coculture, we found that DS astrocytes are directly involved in the development of spine malformations and reduced synaptic density. We also show that thrombospondin 1 (TSP-1), an astrocyte-secreted protein, possesses a potent modulatory effect on spine number and morphology, and that both DS brains and DS astrocytes exhibit marked deficits in TSP-1 protein expression. Depletion of TSP-1 from normal astrocytes resulted in dramatic changes in spine morphology, while restoration of TSP-1 levels prevented DS astrocyte-mediated spine and synaptic alterations. Astrocyte cultures derived from TSP-1 KO mice exhibited similar deficits to support spine formation and structure than DS astrocytes. CONCLUSIONS/SIGNIFICANCE These results indicate that human astrocytes promote spine and synapse formation, identify astrocyte dysfunction as a significant factor of spine and synaptic pathology in the DS brain, and provide a mechanistic rationale for the exploration of TSP-1-based therapies to treat spine and synaptic pathology in DS and other neurological conditions.
Collapse
Affiliation(s)
- Octavio Garcia
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory (CNLM), University of California Irvine, Irvine, California, United States of America
| | - Maria Torres
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory (CNLM), University of California Irvine, Irvine, California, United States of America
| | - Pablo Helguera
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory (CNLM), University of California Irvine, Irvine, California, United States of America
| | - Pinar Coskun
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory (CNLM), University of California Irvine, Irvine, California, United States of America
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory (CNLM), University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
16
|
The multifaceted profile of activated microglia. Mol Neurobiol 2009; 40:139-56. [PMID: 19629762 DOI: 10.1007/s12035-009-8077-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/17/2009] [Indexed: 12/17/2022]
Abstract
Although relatively neglected previously, research efforts in the past decade or so have identified a pivotal role for glial cells in regulating neuronal function. Particular emphasis has been placed on increasing our understanding of the function of microglia because a change from the ramified "resting" state of these cells has been associated with the pathogenesis of several neurodegenerative diseases, notably Alzheimer's disease. However, it is not clear whether activation of microglia and the associated inflammatory changes play a part in triggering disease processes or whether cell activation is a response to the early changes associated with the disease. In either case, the possibility exists that modulation of microglial activation may be beneficial in some circumstances, underlying the need to pursue research in this area. The original morphological categorization of microglia by Del Rio Hortega into ameboid, ramified, and intermediate forms, must now be elaborated to encompass a functional description. The evidence which has been generated recently suggests that microglia are probably never in a "resting" state and that several intermediate transitional states, based on function and morphology, probably exist. A more complete understanding of these states and the triggers which lead to a change from one to another state, and the factors which modulate the molecular switch that determines the persistence of the "activated" state remain to be identified.
Collapse
|
17
|
Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer’s disease. J Neurol 2009; 256:758-67. [DOI: 10.1007/s00415-009-5011-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/26/2008] [Accepted: 12/10/2008] [Indexed: 12/13/2022]
|
18
|
Baron R, Nemirovsky A, Harpaz I, Cohen H, Owens T, Monsonego A. IFN‐γ enhances neurogenesis in wild‐type mice and in a mouse model of Alzheimer's disease. FASEB J 2008; 22:2843-52. [DOI: 10.1096/fj.08-105866] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rona Baron
- The Shraga Segal Department of Microbiology and ImmunologyBen-Gurion University of the NegevBeer-ShevaIsrael
- The National Institute of Biotechnology in the NegevBen-Gurion University of the NegevBeer-ShevaIsrael
| | - Anna Nemirovsky
- The Shraga Segal Department of Microbiology and ImmunologyBen-Gurion University of the NegevBeer-ShevaIsrael
- The National Institute of Biotechnology in the NegevBen-Gurion University of the NegevBeer-ShevaIsrael
| | - Idan Harpaz
- The Shraga Segal Department of Microbiology and ImmunologyBen-Gurion University of the NegevBeer-ShevaIsrael
- Ministry of Health, Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health SciencesBen-Gurion University of the NegevBeer-ShevaIsrael
- The National Institute of Biotechnology in the NegevBen-Gurion University of the NegevBeer-ShevaIsrael
| | - Hagit Cohen
- Ministry of Health, Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health SciencesBen-Gurion University of the NegevBeer-ShevaIsrael
| | - Trevor Owens
- Medical Biotechnology CenterUniversity of Southern DenmarkOdenseDenmark
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology and ImmunologyBen-Gurion University of the NegevBeer-ShevaIsrael
- The National Institute of Biotechnology in the NegevBen-Gurion University of the NegevBeer-ShevaIsrael
| |
Collapse
|
19
|
Yamamoto M, Kiyota T, Horiba M, Buescher JL, Walsh SM, Gendelman HE, Ikezu T. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:680-92. [PMID: 17255335 PMCID: PMC1851864 DOI: 10.2353/ajpath.2007.060378] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/07/2006] [Indexed: 02/05/2023]
Abstract
Reactive astrocytes and microglia in Alzheimer's disease surround amyloid plaques and secrete proinflammatory cytokines that affect neuronal function. Relationship between cytokine signaling and amyloid-beta peptide (Abeta) accumulation is poorly understood. Thus, we generated a novel Swedish beta-amyloid precursor protein mutant (APP) transgenic mouse in which the interferon (IFN)-gamma receptor type I was knocked out (APP/GRKO). IFN-gamma signaling loss in the APP/GRKO mice reduced gliosis and amyloid plaques at 14 months of age. Aggregated Abeta induced IFN-gamma production from co-culture of astrocytes and microglia, and IFN-gamma elicited tumor necrosis factor (TNF)-alpha secretion in wild type (WT) but not GRKO microglia co-cultured with astrocytes. Both IFN-gamma and TNF-alpha enhanced Abeta production from APP-expressing astrocytes and cortical neurons. TNF-alpha directly stimulated beta-site APP-cleaving enzyme (BACE1) expression and enhanced beta-processing of APP in astrocytes. The numbers of reactive astrocytes expressing BACE1 were increased in APP compared with APP/GRKO mice in both cortex and hippocampus. IFN-gamma and TNF-alpha activation of WT microglia suppressed Abeta degradation, whereas GRKO microglia had no changes. These results support the idea that glial IFN-gamma and TNF-alpha enhance Abeta deposition through BACE1 expression and suppression of Abeta clearance. Taken together, these observations suggest that proinflammatory cytokines are directly linked to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Masaru Yamamoto
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kountouras J, Gavalas E, Zavos C, Stergiopoulos C, Chatzopoulos D, Kapetanakis N, Gisakis D. Alzheimer's disease and Helicobacter pylori infection: Defective immune regulation and apoptosis as proposed common links. Med Hypotheses 2006; 68:378-88. [PMID: 16979298 DOI: 10.1016/j.mehy.2006.06.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 06/21/2006] [Indexed: 11/20/2022]
Abstract
Although degenerative diseases of the central nervous system, including Alzheimer's disease (AD), have an increasingly high impact on aged population their association with Helicobacter pylori (H. pylori) infection has not as yet been thoroughly researched. Current H. pylori infection appears to induce irregular humoral and cellular immune responses that, owing to the sharing of homologous epitopes (molecular mimicry), cross-react with components of nerves, thereby contributing and possibly perpetuating the apoptotic neural tissue damage observed in neurodegenerative diseases including AD. An association between AD and H. pylori infection has been recently addressed by two studies. A higher seropositivity for anti-H. pylori immunoglobulin G antibodies in 30 patients with AD than in 30 age-matched controls was reported in one study; this serological test, however, has limitations because it does not discriminate between current and old infections. In the other study, by introducing the histological method (the actual gold standard) for diagnosis of H. pylori infection, we reported a higher prevalence of H. pylori infection in 50 AD patients than in 30 anemic controls. This pathogen may influence the pathophysiology of AD by promoting platelet and platelet-leukocyte aggregation; releasing various pro-inflammatory and vasoactive substances; developing cross-mimicry with host antigens; producing reactive oxygen metabolites and circulating lipid peroxides; influencing the apoptotic process; and increasing, through induction of atrophic gastritis, homocysteine, which contributes to vascular disorders implicated in endothelial damage and neurodegeneration.
Collapse
Affiliation(s)
- Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
21
|
Chong YH, Shin SA, Lee HJ, Kang JHL, Suh YH. Molecular mechanisms underlying cyclic AMP inhibition of macrophage dependent TNF-alpha production and neurotoxicity in response to amyloidogenic C-terminal fragment of Alzheimer's amyloid precursor protein. J Neuroimmunol 2002; 133:160-74. [PMID: 12446019 DOI: 10.1016/s0165-5728(02)00349-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we characterized the intracellular pathway involved in the macrophage production of tumor necrosis factor-alpha (TNF-alpha) and the molecular mechanisms by which cyclic AMP (cAMP) regulates the neurotoxic inflammatory signaling cascade in response to the 105 amino acid carboxyl-terminal fragment (CT105) of amyloid precursor protein, a candidate of alternative toxic elements in Alzheimer's disease (AD) pathology. CT105 in combination with interferon-gamma (IFN-gamma) elicited a robust and sustained increase of TNF-alpha production due to enhanced TNF-alpha mRNA transcription, mediated via increased nuclear factor-kappaB (NF-kappaB) in human macrophages derived from monocytic THP-1 cells. A mechanistic analysis revealed that the cAMP analog, dibutyryl cyclic AMP (dbcAMP), or the adenyl cyclase activator, forskolin, effectively suppressed the stimulant-induced TNF-alpha production by reducing the nuclear translocation and DNA binding activity of NF-kappaB. The inhibitory mechanisms manifested by dbcAMP included the decreased phosphorylation/degradation of NF-kappaB inhibitor (IkappaB) followed by its increased synthesis/stability. Importantly, this macrophage derived TNF-alpha appears to be a key pathological mediator of the resultant neurotoxicity, which was attenuated by increased cAMP levels during macrophage stimulation with CT105. These findings provide evidence, which supports an important role of CT105 as a potent macrophage stimulator eliciting NF-kappaB-mediated inflammatory signals for excess TNF-alpha production, which in turn ultimately leads to the neurotoxicity. In addition, the detailed inhibitory mechanism of cAMP action implies that an increased cAMP level could be benefit against AD progression.
Collapse
Affiliation(s)
- Young Hae Chong
- Department of Microbiology, College of Medicine, Division of Molecular Biology and Neuroscience, Medical Research Center, Ewha Womans University, 911-1, Mok-6-dong, Yangcheonku, 158-710, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
22
|
Häusler KG, Prinz M, Nolte C, Weber JR, Schumann RR, Kettenmann H, Hanisch UK. Interferon-gamma differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages. Eur J Neurosci 2002; 16:2113-22. [PMID: 12473079 DOI: 10.1046/j.1460-9568.2002.02287.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During bacterial infections of the CNS, activated microglia could support leucocyte recruitment to the brain through the synthesis of cyto- and chemokines. In turn, invading leucocytes may feedback on microglial cells to influence their chemokine release pattern. Here, we analyzed the capacity of interferon-gamma (IFNgamma) to serve as such a leucocyte-to-microglia signal. Production of cyto- and chemokines was stimulated in mouse microglia cultures by treatments with lipopolysaccharide (LPS) from Gram-negative Escherichia coli or cell walls from Gram-positive Streptococcus pneumoniae (PCW). IFNgamma presence during the stimulation (0.1-100 ng/mL) modulated the patterns of LPS- and PCW-induced cyto- and chemokine release in a dose-dependent, potent and complex manner. While amounts of TNFalpha and IL-6 remained nearly unchanged, IFNgamma enhanced the production of IL-12, MCP-1 and RANTES, but attenuated that of KC, MIP-1alpha and MIP-2. Release modulation was obtained with IFNgamma preincubation (treatment of cells before LPS or PCW administration), coincubation and even delayed addition to an ongoing LPS or PCW stimulation. Together the changes observed for the microglial chemokine release under IFNgamma would shift the chemoattractive profile from favouring neutrophils to a preferential attraction of monocytes and T lymphocyte populations--as actually seen during the course of bacterial meningitis. The findings support the view of activated microglia as a major intrinsic source for an instant production of a variety of chemokines and suggest that leucocyte-derived IFNgamma could potentially regulate the microglial chemokine release pattern.
Collapse
Affiliation(s)
- Karl Georg Häusler
- Max Delbrück Center for Molecular Medicine, Cellular Neurosciences, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The expression of interferon gamma (IFNgamma) increases after neural injury, and it is sustained in chronic inflammatory conditions such as multiple sclerosis and infection with human immunodeficiency virus. To understand how exposure to this proinflammatory cytokine might affect neural function, we examined its effects on cultures of neurons derived from the central and peripheral nervous systems. IFNgamma inhibits initial dendritic outgrowth in cultures of embryonic rat sympathetic and hippocampal neurons, and this inhibitory effect on process growth is associated with a decrease in the rate of synapse formation. In addition, in older cultures of sympathetic neurons, IFNgamma also selectively induces retraction of existing dendrites, ultimately leading to an 88% decrease in the size of the arbor. Dendritic retraction induced by IFNgamma represents a specific cellular response because it occurs without affecting axonal outgrowth or cell survival, and it is not observed with tumor necrosis factor alpha or other inflammatory cytokines. IFNgamma-induced dendritic retraction is associated with the phosphorylation and nuclear translocation of signal transducer and activator of transcription 1 (STAT1), and expression of a dominant-negative STAT1 construct attenuates the inhibitory effect of IFNgamma. Moreover, retrograde dendritic retraction is observed when distal axons are selectively exposed to IFNgamma. These data imply that IFNgamma-mediated STAT1 activation induces both dendritic atrophy and synaptic loss and that this occurs both at the sites of IFNgamma release and at remote loci. Regressive actions of IFNgamma on dendrites may contribute to the neuropathology of inflammatory diseases.
Collapse
|
24
|
Cairns NJ. Molecular neuropathology of transgenic mouse models of Down syndrome. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2002:289-301. [PMID: 11771752 DOI: 10.1007/978-3-7091-6262-0_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Down syndrome (DS) is a complex, clinically heterogeneous disorder which shows both impairment of neurodevelopement and the neurodegenerative changes of Alzheimer's disease (AD). The phenotype of DS is caused by triplication of chromosome 21 and transgenic mouse models have been developed, and are being created, that carry single genes and chromosomal segments to excess. For example, transgenic mice containing additional copies of the amyloid precursor protein (APP) gene, have been useful in producing the Abeta deposition characteristic of AD and DS, but not the cytoskeletal changes that are the hallmarks of these human disorders. Such models are useful in replicating aspects of pathogenesis and allow for the testing of therapeutic agents to restore impaired function. Segmental trisomic mouse models, which survive to adulthood and possess three copies of multiple genes responsible for the DS phenotype, such as Ts1Cje and Ts65Dn, have been used to explore aspects of neurodevelopment and neurodegeneration. These animal models show some but not all the pathological, biochemical, and transcriptional changes seen in DS. They also have the advantage of allowing for the testing of therapeutic agents to restore impaired function. Analysis of the transcriptome and proteome of fetal and adult DS indicates that there is a complex relationship between gene dosage, gene and protein expression, and that data from animal models will need to be compared and evaluated in the light of data obtained from DS tissue.
Collapse
Affiliation(s)
- N J Cairns
- Department of Neuropathology, Institute of Psychiatry, King's College London, United Kingdom.
| |
Collapse
|
25
|
Blasko I, Ransmayr G, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B. Does IFNgamma play a role in neurodegeneration? J Neuroimmunol 2001; 116:1-4. [PMID: 11311323 DOI: 10.1016/s0165-5728(01)00279-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- I Blasko
- Department of Neurology, University Hospital of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|