1
|
Scavello F, Kharouf N, Lavalle P, Haikel Y, Schneider F, Metz-Boutigue MH. The antimicrobial peptides secreted by the chromaffin cells of the adrenal medulla link the neuroendocrine and immune systems: From basic to clinical studies. Front Immunol 2022; 13:977175. [PMID: 36090980 PMCID: PMC9452953 DOI: 10.3389/fimmu.2022.977175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing resistance to antibiotic treatments highlights the need for the development of new antimicrobial agents. Antimicrobial peptides (AMPs) have been studied to be used in clinical settings for the treatment of infections. Endogenous AMPs represent the first line defense of the innate immune system against pathogens; they also positively interfere with infection-associated inflammation. Interestingly, AMPs influence numerous biological processes, such as the regulation of the microbiota, wound healing, the induction of adaptive immunity, the regulation of inflammation, and finally express anti-cancer and cytotoxic properties. Numerous peptides identified in chromaffin secretory granules from the adrenal medulla possess antimicrobial activity: they are released by chromaffin cells during stress situations by exocytosis via the activation of the hypothalamo-pituitary axis. The objective of the present review is to develop complete informations including (i) the biological characteristics of the AMPs produced after the natural processing of chromogranins A and B, proenkephalin-A and free ubiquitin, (ii) the design of innovative materials and (iii) the involvement of these AMPs in human diseases. Some peptides are elective biomarkers for critical care medicine, may play an important role in the protection of infections (alone, or in combination with others or antibiotics), in the prevention of nosocomial infections, in the regulation of intestinal mucosal dynamics and of inflammation. They could play an important role for medical implant functionalization, such as catheters, tracheal tubes or oral surgical devices, in order to prevent infections after implantation and to promote the healing of tissues.
Collapse
Affiliation(s)
- Francesco Scavello
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- IRCCS Humanitas Research Hospital, Milan, Italy
- *Correspondence: Francesco Scavello,
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, Strasbourg, France
| | - Philippe Lavalle
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, Strasbourg, France
| | - Francis Schneider
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Médecine Intensive-Réanimation, Hautepierre Hospital, Hôpitaux Universitaires, Strasbourg, Federation of Translational Medicine, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Marie-Hélène Metz-Boutigue
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
| |
Collapse
|
2
|
Rose M, Duhamel M, Rodet F, Salzet M. The Role of Proprotein Convertases in the Regulation of the Function of Immune Cells in the Oncoimmune Response. Front Immunol 2021; 12:667850. [PMID: 33995401 PMCID: PMC8117212 DOI: 10.3389/fimmu.2021.667850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Proprotein convertases (PC) are a family of 9 serine proteases involved in the processing of cellular pro-proteins. They trigger the activation, inactivation or functional changes of many hormones, neuropeptides, growth factors and receptors. Therefore, these enzymes are essential for cellular homeostasis in health and disease. Nine PC subtilisin/kexin genes (PCSK1 to PCSK9) encoding for PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P and PCSK9 are known. The expression of PC1/3, PC2, PC5/6, Furin and PC7 in lymphoid organs such as lymph nodes, thymus and spleen has suggested a role for these enzymes in immunity. In fact, knock-out of Furin in T cells was associated with high secretion of pro-inflammatory cytokines and autoantibody production in mice. This suggested a key role for this enzyme in immune tolerance. Moreover, Furin through its proteolytic activity, regulates the suppressive functions of Treg and thus prevents chronic inflammation and autoimmune diseases. In macrophages, Furin is also involved in the regulation of their inflammatory phenotype. Similarly, PC1/3 inhibition combined with TLR4 stimulation triggers the activation of the NF-κB signaling pathway with an increased secretion of pro-inflammatory cytokines. Factors secreted by PC1/3 KD macrophages stimulated with LPS exert a chemoattractive effect on naive auxiliary T lymphocytes (Th0) and anti-tumoral activities. The link between TLR and PCs is thus very important in inflammatory response regulation. Furin regulates TL7 and TLR8 processing and trafficking whereas PC1/3 controls TLR4 and TLR9 trafficking. Since PC1/3 and Furin are key regulators of both the innate and adaptive immune responses their inhibition may play a major role in oncoimmune therapy. The role of PCs in the oncoimmune response and therapeutic strategies based on PCs inhibition are proposed in the present review.
Collapse
Affiliation(s)
- Mélanie Rose
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Marie Duhamel
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Franck Rodet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Michel Salzet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| |
Collapse
|
3
|
Esch T, Kream RM, Stefano GB. Emerging regulatory roles of opioid peptides, endogenous morphine, and opioid receptor subtypes in immunomodulatory processes: Metabolic, behavioral, and evolutionary perspectives. Immunol Lett 2020; 227:28-33. [DOI: 10.1016/j.imlet.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/06/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022]
|
4
|
Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med Res Rev 2017; 38:101-146. [PMID: 28094448 PMCID: PMC7168463 DOI: 10.1002/med.21435] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune defense mechanism of many organisms. Due to the alarming increase of resistance to antimicrobial therapeutics, a growing interest in alternative antimicrobial agents has led to the exploitation of AMPs, both synthetic and isolated from natural sources. Thus, many peptide-based drugs have been the focus of increasing attention by many researchers not only in identifying novel AMPs, but in defining mechanisms of antimicrobial peptide activity as well. Herein, we review the available strategies for the identification of AMPs in human body fluids and their mechanism(s) of action. In addition, an overview of the distribution of AMPs across different human body fluids is provided, as well as its relation with microorganisms and infectious conditions.
Collapse
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João da Costa
- Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Boidin-Wichlacz C, Vergote D, Slomianny C, Jouy N, Salzet M, Tasiemski A. Morphological and functional characterization of leech circulating blood cells: role in immunity and neural repair. Cell Mol Life Sci 2012; 69:1717-31. [PMID: 22159559 PMCID: PMC11115165 DOI: 10.1007/s00018-011-0897-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 11/26/2022]
Abstract
Unlike most invertebrates, annelids possess a closed vascular system distinct from the coelomic liquid. The morphology and the function of leech blood cells are reported here. We have demonstrated the presence of a unique cell type which participates in various immune processes. In contrast to the mammalian spinal cord, the leech CNS is able to regenerate and restore function after injury. The close contact of the blood with the nerve cord also led us to explore the participation of blood in neural repair. Our data evidenced that, in addition to exerting peripheral immune functions, leech blood optimizes CNS neural repair through the release of neurotrophic substances. Circulating blood cells also appeared able to infiltrate the injured CNS where, in conjunction with microglia, they limit the formation of a scar. In mammals, CNS injury leads to the generation of a glial scar that blocks the mechanism of regeneration by preventing axonal regrowth. The results presented here constitute the first description of neuroimmune functions of invertebrate blood cells. Understanding the basic function of the peripheral circulating cells and their interactions with lesioned CNS in the leech would allow us to acquire insights into the complexity of the neuroimmune response of the injured mammalian brain.
Collapse
Affiliation(s)
- Céline Boidin-Wichlacz
- Laboratoire de Neuroimmunologie et Neurochimie Evolutive, CNRS, FRE3249, Université de Lille 1, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
6
|
Meriaux C, Arafah K, Tasiemski A, Wisztorski M, Bruand J, Boidin-Wichlacz C, Desmons A, Debois D, Laprévote O, Brunelle A, Gaasterland T, Macagno E, Fournier I, Salzet M. Multiple changes in peptide and lipid expression associated with regeneration in the nervous system of the medicinal leech. PLoS One 2011; 6:e18359. [PMID: 21526169 PMCID: PMC3081291 DOI: 10.1371/journal.pone.0018359] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The adult medicinal leech central nervous system (CNS) is capable of regenerating specific synaptic circuitry after a mechanical lesion, displaying evidence of anatomical repair within a few days and functional recovery within a few weeks. In the present work, spatiotemporal changes in molecular distributions during this phenomenon are explored. Moreover, the hypothesis that neural regeneration involves some molecular factors initially employed during embryonic neural development is tested. RESULTS Imaging mass spectrometry coupled to peptidomic and lipidomic methodologies allowed the selection of molecules whose spatiotemporal pattern of expression was of potential interest. The identification of peptides was aided by comparing MS/MS spectra obtained for the peptidome extracted from embryonic and adult tissues to leech transcriptome and genome databases. Through the parallel use of a classical lipidomic approach and secondary ion mass spectrometry, specific lipids, including cannabinoids, gangliosides and several other types, were detected in adult ganglia following mechanical damage to connected nerves. These observations motivated a search for possible effects of cannabinoids on neurite outgrowth. Exposing nervous tissues to Transient Receptor Potential Vanilloid (TRPV) receptor agonists resulted in enhanced neurite outgrowth from a cut nerve, while exposure to antagonists blocked such outgrowth. CONCLUSION The experiments on the regenerating adult leech CNS reported here provide direct evidence of increased titers of proteins that are thought to play important roles in early stages of neural development. Our data further suggest that endocannabinoids also play key roles in CNS regeneration, mediated through the activation of leech TRPVs, as a thorough search of leech genome databases failed to reveal any leech orthologs of the mammalian cannabinoid receptors but revealed putative TRPVs. In sum, our observations identify a number of lipids and proteins that may contribute to different aspects of the complex phenomenon of leech nerve regeneration, establishing an important base for future functional assays.
Collapse
Affiliation(s)
- Céline Meriaux
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Karim Arafah
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Aurélie Tasiemski
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Maxence Wisztorski
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Jocelyne Bruand
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Céline Boidin-Wichlacz
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Annie Desmons
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Delphine Debois
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, Gif-sur-Yvette, France
| | - Olivier Laprévote
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, Gif-sur-Yvette, France
- Chimie Toxicologie Analytique et Cellulaire, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, Gif-sur-Yvette, France
| | - Terry Gaasterland
- Marine Biology Research Division, Scripps Institution of Oceanography, Division of Biological Sciences, Institute of Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Eduardo Macagno
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Isabelle Fournier
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Michel Salzet
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
7
|
Abstract
Skin responds to environmental stressors via coordinated actions of the local neuroimmunoendocrine system. Although some of these responses involve opioid receptors, little is known about cutaneous proenkephalin expression, its environmental regulation, and alterations in pathology. The objective of this study was to assess regulated expression of proenkephalin in normal and pathological skin and in isolated melanocytes, keratinocytes, fibroblasts, and melanoma cells. The proenkephalin gene and protein were expressed in skin and cultured cells, with significant expression in fibroblasts and keratinocytes. Mass spectroscopy confirmed Leu- and Met-enkephalin in skin. UVR, Toll-like receptor (TLR)4, and TLR2 agonists stimulated proenkephalin gene expression in melanocytes and keratinocytes in a time- and dose-dependent manner. In situ Met/Leu-enkephalin peptides were expressed in differentiating keratinocytes of the epidermis in the outer root sheath of the hair follicle, in myoepithelial cells of the eccrine gland, and in the basement membrane/basal lamina separating epithelial and mesenchymal components. Met/Leu-enkephalin expression was altered in pathological skin, increasing in psoriasis and decreasing in melanocytic tumors. Not only does human skin express proenkephalin, but this expression is upregulated by stressful stimuli and can be altered by pathological conditions.
Collapse
|
8
|
Tasiemski A, Salzet M. Leech Immunity: From Brain to Peripheral Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 708:80-104. [DOI: 10.1007/978-1-4419-8059-5_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 2009; 38:D774-80. [PMID: 19923233 PMCID: PMC2808926 DOI: 10.1093/nar/gkp1021] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are gaining popularity as better substitute to antibiotics. These peptides are shown to be active against several bacteria, fungi, viruses, protozoa and cancerous cells. Understanding the role of primary structure of AMPs in their specificity and activity is essential for their rational design as drugs. Collection of Anti-Microbial Peptides (CAMP) is a free online database that has been developed for advancement of the present understanding on antimicrobial peptides. It is manually curated and currently holds 3782 antimicrobial sequences. These sequences are divided into experimentally validated (patents and non-patents: 2766) and predicted (1016) datasets based on their reference literature. Information like source organism, activity (MIC values), reference literature, target and non-target organisms of AMPs are captured in the database. The experimentally validated dataset has been further used to develop prediction tools for AMPs based on the machine learning algorithms like Random Forests (RF), Support Vector Machines (SVM) and Discriminant Analysis (DA). The prediction models gave accuracies of 93.2% (RF), 91.5% (SVM) and 87.5% (DA) on the test datasets. The prediction and sequence analysis tools, including BLAST, are integrated in the database. CAMP will be a useful database for study of sequence-activity and -specificity relationships in AMPs. CAMP is freely available at http://www.bicnirrh.res.in/antimicrobial.
Collapse
Affiliation(s)
- Shaini Thomas
- Biomedical Informatics Center of Indian Council of Medical Research, National Institute for Research in Reproductive Health, Mumbai, India.
| | | | | | | | | |
Collapse
|
10
|
Modlin IM, Champaneria MC, Bornschein J, Kidd M. Evolution of the diffuse neuroendocrine system--clear cells and cloudy origins. Neuroendocrinology 2006; 84:69-82. [PMID: 17106184 DOI: 10.1159/000096997] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/01/2006] [Indexed: 01/02/2023]
Abstract
As early as the 2nd century, Galen proposed that 'vital spirits' in the blood regulated human bodily functions. However, the concept of hormonal activity required a further 18 centuries to develop and relied upon the identification of 'ductless glands', Schwann's cell and the recognition by Bayliss and Starling of chemical messengers. Bernard's introduction of 'internal secretion' and its role in homeostasis laid a physiological basis for the development of endocrinology. Kocher and Addison recognized the consequences of ablation of glands by disease or surgery and identified their necessary role in life. Detailed descriptions of the endocrine cells of the gut and pancreas and their putative function were provided by Heidenhain, Langerhans, Laguesse and Sharpey-Schafer. Despite the dominant 19th century concept of nervism (Pavlov), in 1902, Starling and Bayliss using Hardy's term 'hormonos' described secretin and in so doing, established the gut as an endocrine organ. Thus, nervism was supplanted by hormonal regulation of function and thereafter numerous bioactive gut peptides and amines were identified. At virtually the same time (1892), Ramón y Cajal of Madrid reported the existence of a group of specialized intestinal cells that he referred to as 'interstitial cells'. Cajal postulated that they might function as an interface between the neural system and the smooth muscles of the gut. Some 22 years later, Keith suggested that their function might be analogous to the electroconductive system of the heart and proposed their role as components of an intestinal pacemaker system. This prescient hypothesis was subsequently confirmed in 1982 by Thuneberg and a decade later Maede identified c-Kit as a critical molecular regulator in the development and function of the interstitial cells of Cajal and further confirmed the commonality of neural and endocrine cells. The additional characterization of the endocrine regulatory system of the GI tract was implemented when Feyrter (1938) using Masson's staining techniques, identified 'helle Zellen' within the pancreatic ductal system and the intestinal epithelium and proposed the concept of a diffuse neuroendocrine system. Pearse subsequently grouped the various cells belonging to that system under the rubric of a unifying APUD series. Currently, the gut neuroendocrine system is viewed as a syncytium of neural and endocrine cells sharing a common cell lineage whose phenotypic regulation is as yet unclear. Their key role in the regulation of gastrointestinal function is, however, indubitable.
Collapse
Affiliation(s)
- Irvin M Modlin
- Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
11
|
Lansac G, Dong W, Dubois CM, Benlarbi N, Afonso C, Fournier I, Salzet M, Day R. Lipopolysaccharide mediated regulation of neuroendocrine associated proprotein convertases and neuropeptide precursor processing in the rat spleen. J Neuroimmunol 2005; 171:57-71. [PMID: 16337011 DOI: 10.1016/j.jneuroim.2005.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Within the secretory pathway, the family of proprotein convertases cleave inactive precursors at paired basic residues to generate a myriad of biologically active peptides. Within the PC family, PC1/3 and PC2 are well known for their preferential expression within neuroendocrine cells. However, various data now indicate their potential expression in immune cells. The aim of our study was two fold: (1) survey PC expression in immune tissues, with emphasis on PC1/3 and PC2 and (2) examine PC expression under conditions that mimic an infectious state using lipopolysaccharide, known to activate immune cells via toll-like receptors. Spatial and temporal analyses of tissues from control and lipopolysaccharide treated rats were carried out using in situ hybridization histochemistry, Northern blot, mass spectrometry and antibacterial assays. Our tissue survey showed the basal expression of all PCs in the lymph nodes, thymus and spleen including PC1/3 and PC2. Focusing on the spleen, basal expression of PC1/3 was seen in the red pulp/marginal zone areas, suggesting expression within macrophages. Lipopolysaccharide treatment produced significant changes in PC1/3 expression and notably an induction in B lymphocytes within germinal centers. Similarly, PC2, which was undetectable in control spleens, was induced in germinal centers following lipopolysaccharide treatment. The PC1/3 and PC2 substrate proenkephalin was also induced following lipopolysaccharide treatment in the marginal zone, where PC1/3 expression was also found. Mass spectrometry analysis of spleen extracts demonstrated the presence of the antibacterial peptide enkelytin. Our studies confirmed that PC1/3 and PC2 expression was not restricted to neurons and endocrine cells, but was also found under basal conditions in both macrophage and lymphocytes. Additionally, plasticity of PC expression in immune cells was observed under conditions that mimic pathogen-like infections, suggesting a mechanistic link through Toll-like receptors. Collectively, these data clearly implicate PCs in immune responses, both innate and acquired.
Collapse
Affiliation(s)
- Guillaume Lansac
- Département de Pharmacologie, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Metz-Boutigue MH, Kieffer AE, Goumon Y, Aunis D. Innate immunity: involvement of new neuropeptides. Trends Microbiol 2004; 11:585-92. [PMID: 14659691 DOI: 10.1016/j.tim.2003.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Secretory granules of chromaffin cells from the adrenal medulla store catecholamines and a variety of peptides that are secreted in the extracellular medium during exocytosis. Among these fragments, several natural peptides displaying antimicrobial activities at the micromolar range have been isolated and characterized. We have shown that these peptides, derived from the natural processing of chromogranins (CGs), proenkephalin-A (PEA) and free ubiquitin (Ub), are released into the circulation and display antibacterial and antifungal activities. In this review we focus on three naturally secreted antimicrobial peptides corresponding to CGA1-76 (vasostatin-I), the bisphosphorylated form of PEA209-237 (enkelytin) and Ub. In addition, the antimicrobial properties of the synthetic active domains of vasostatin-I (CGA47-66 or chromofungin) and Ub (Ub65-76 or ubifungin) are reported.
Collapse
Affiliation(s)
- M H Metz-Boutigue
- Unité Inserm U 575 "Physiopathologie du Système Nerveux", IFR 37, 5 rue Blaise Pascal, 67084 Cedex, Strasbourg, France.
| | | | | | | |
Collapse
|
13
|
Tasiemski A, Hammad H, Vandenbulcke F, Breton C, Bilfinger TJ, Pestel J, Salzet M. Presence of chromogranin-derived antimicrobial peptides in plasma during coronary artery bypass surgery and evidence of an immune origin of these peptides. Blood 2002; 100:553-9. [PMID: 12091348 DOI: 10.1182/blood.v100.2.553] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromogranin A (CGA) and chromogranin B (CGB) are acidic proteins stored in secretory organelles of endocrine cells and neurons. In addition to their roles as helper proteins in the packaging of peptides, they may serve as prohormones to generate biologically active peptides such as vasostatin-1 and secretolytin. These molecules derived from CGA and CGB, respectively, possess antimicrobial properties. The present study demonstrates that plasmatic levels of both vasostatin-1 and secretolytin increase during surgery in patients undergoing cardiopulmonary bypass (CPB). Vasostatin-1 and secretolytin, initially present in plasma at low levels, are released just after skin incision. Consequently, they can be added to enkelytin, an antibacterial peptide derived from proenkephalin A, for the panoply of components acting as a first protective barrier against hypothetical invasion of pathogens, which may occur during surgery. CGA and CGB, more commonly viewed as markers for endocrine and neuronal cells, were also found to have an immune origin. RNA messengers coding for CGB were amplified by reverse transcription-polymerase chain reaction in human monocytes, and immunocytochemical analysis by confocal microscopy revealed the presence of CGA or CGB or both in monocytes and neutrophils. A combination of techniques including confocal microscopic analysis, mass spectrometry measurement, and antibacterial tests allowed for the identification of the positive role of interleukin 6 (IL-6) in the secretolytin release from monocytes in vitro. Because IL-6 release is known to be strongly enhanced during CPB, we suggest a possible relationship between IL-6 and the increased level of secretolytin in patients undergoing CPB.
Collapse
Affiliation(s)
- Aurélie Tasiemski
- Laboratoire de Neuroimmunologie des Annélides, Université des Sciences et Technologies de Lille, Villeneuve d'ascq, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This paper is the twenty-third installment of the annual review of research concerning the opiate system. It summarizes papers published during 2000 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; learning, memory, and reward; eating and drinking; alcohol and other drugs of abuse; sexual activity, pregnancy, and development; mental illness and mood; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; gastrointestinal, renal, and hepatic function; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|
15
|
Salzet M, Tasiemski A. Involvement of pro-enkephalin-derived peptides in immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:177-185. [PMID: 11164883 DOI: 10.1016/s0145-305x(00)00047-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is widely accepted that all organisms have processes that maintain their state of health. Failure of these processes, such as those involving the naturally occurring antibacterial peptides, may lead to pathological events. Recent results demonstrate that these peptides, such as peptide B, appear in invertebrates and vertebrates (including humans) immediately after tissue trauma, and maintain themselves for long durations (over 4h). Their degradation products lead to other inflammatory peptides, such as Met-enkephalin-Arg-Phe. These newly described antibacterial peptides, which are released and not induced, are present on neuropeptide precursors such as proenkephalin. This is a new field of research, in that the same protein contains proposed neuropeptides, antibacterial peptides, and immune stimulatory peptides. The focus of this review is to describe how the pro-enkephalin derived peptides participate in immune processes.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, UPRESA CNRS 8017, SN3, Université des Sciences et Technologies de Lille, 59650 Villeneuve d'Ascq Cedex, France.
| | | |
Collapse
|
16
|
Salzet M, Vieau D, Day R. Crosstalk between nervous and immune systems through the animal kingdom: focus on opioids. Trends Neurosci 2000; 23:550-5. [PMID: 11074264 DOI: 10.1016/s0166-2236(00)01642-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the course of evolution invertebrates and vertebrates have maintained common signaling molecules, such as neuropeptides. For example, complete hormonal-enzymatic systems for the biosynthesis of opioid peptides have been found in both the CNS and immune systems of these animals. These signaling molecules have been found in the blood circulation and act as immunomodulators. In vertebrates, release of the signaling molecules occurs during stress (cognitive or pathogens), which triggers the hypothalamo-hypophysial-adrenal axis. Similarly, these neuropeptides are used as messengers to initiate and stimulate the innate immune response in invertebrates. Thus, the crosstalk between nervous and immune systems has an ancient evolutionary origin and the messengers used have been conserved during the course of evolution reflecting their vital importance.
Collapse
Affiliation(s)
- M Salzet
- The Laboratoire d'Endocrinologie des Annélides, UPRES-A CNRS 8017, SN3, Université des Sciences et Technologies de Lille, 59655, Villeneuve d'Ascq, France
| | | | | |
Collapse
|