1
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
2
|
Simon PYR, Bus J, David R. [Alzheimer's disease, amyloid-b peptides and ubiquitin-proteasome system: Therapeutic perspectives]. Med Sci (Paris) 2023; 39:643-649. [PMID: 37695154 DOI: 10.1051/medsci/2023094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The Alzheimer's disease - an age-related neurodegenerative disorder leading to a progressive cognitive impairment - is characterized by an intracerebral accumulation of soluble β-amyloid (Aβ) oligomers, followed by the appearance of abnormally ubiquitinylated neurofibrillary tangles - a process associated with a chronic inflammation. The systematic presence of ubiquitinylated inclusions reflects a decrease in the proteasome activity due to (and contributing to) the presence of Aβ oligomers - a central dysfunction in the etiology of the disease. The involvement of the ubiquitin-proteasome system opens new therapeutic perspectives for both prevention and treatment.
Collapse
Affiliation(s)
| | - Johanna Bus
- Communication, hôpital d'instruction des armées Sainte-Anne, 83800 Toulon, France
| | - Renaud David
- Centre hospitalier universitaire de Nice, hôpital Cimiez, 06000 Nice, France
| |
Collapse
|
3
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
4
|
Ware CA, Buhimschi CS, Zhao G, El Helou Y, Buhimschi IA. Amniotic Fluid Proteasome and Immunoproteasome in the Setting of Intra-Amniotic Infection, Inflammation, and Preterm Birth. Reprod Sci 2021; 28:2562-2573. [PMID: 33665784 DOI: 10.1007/s43032-021-00512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/21/2021] [Indexed: 11/30/2022]
Abstract
Preterm birth is an important determinant of neonatal morbidity and mortality and intra-amniotic infection (IAI) and inflammation play a causative role. The constitutive proteasome and immunoproteasome are key players in maintenance of proteostasis and their alteration outside pregnancy has been linked to pathogenesis of numerous inflammatory diseases. Our goal was to evaluate the levels, activities, and potential origin of amniotic fluid (AF) proteasome in women with preterm birth induced by infection and/or inflammation. Total proteasome and immunoproteasome concentrations were measured in AF retrieved by trans-abdominal amniocentesis from 155 pregnant women. Proteasome activities were measured with fluorogenic substrates targeting caspase-like (CAS-L), trypsin-like (TRY-L), or chymotrypsin-like (CHE-L) lytic activities. We found that IAI significantly upregulated AF concentrations of total proteasome and of the immunoproteasome (P<0.001 for both) with no differences based on gestational age. Based on substrate preference and profile of pharmacologic inhibition, we identified the CHE-L activity of the immunoproteasome as the primary lytic activity upregulated in AF of pregnancies complicated by IAI. When compared with matched maternal blood and cord blood, proteasome activity was by far the highest in AF and this was further elevated in IAI. Western blot confirmed β5 (PSMB5) and β5i (PSMB8) subunits of the constitutive proteasome and immunoproteasome are present in AF and IHC staining of fetal membranes pointed to chorio-decidua as a potential source. In conclusion, IAI is associated with increased AF immunoproteasome activity that by analogy with other inflammatory diseases may generate antigenic oligopeptides and may play a role in triggering preterm birth.
Collapse
Affiliation(s)
- Courtney A Ware
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Catalin S Buhimschi
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Guomao Zhao
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, IL, 60612, USA.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Yara El Helou
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Irina A Buhimschi
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, IL, 60612, USA. .,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43215, USA.
| |
Collapse
|
5
|
Proteostasis Disturbances and Inflammation in Neurodegenerative Diseases. Cells 2020; 9:cells9102183. [PMID: 32998318 PMCID: PMC7601929 DOI: 10.3390/cells9102183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) disturbances and inflammation are evident in normal aging and some age-related neurodegenerative diseases. While the proteostasis network maintains the integrity of intracellular and extracellular functional proteins, inflammation is a biological response to harmful stimuli. Cellular stress conditions can cause protein damage, thus exacerbating protein misfolding and leading to an eventual overload of the degradation system. The regulation of proteostasis network is particularly important in postmitotic neurons due to their limited regenerative capacity. Therefore, maintaining balanced protein synthesis, handling unfolding, refolding, and degrading misfolded proteins are essential to preserve all cellular functions in the central nervous sysytem. Failing proteostasis may trigger inflammatory responses in glial cells, and the consequent release of inflammatory mediators may lead to disturbances in proteostasis. Here, we review the mechanisms of proteostasis and inflammatory response, emphasizing their role in the pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Furthermore, we discuss the interplay between proteostatic stress and excessive immune response that activates inflammation and leads to dysfunctional proteostasis.
Collapse
|
6
|
Berryman K, Buhimschi CS, Zhao G, Axe M, Locke M, Buhimschi IA. Proteasome Levels and Activity in Pregnancies Complicated by Severe Preeclampsia and Hemolysis, Elevated Liver Enzymes, and Thrombocytopenia (HELLP) Syndrome. Hypertension 2019; 73:1308-1318. [PMID: 31067191 DOI: 10.1161/hypertensionaha.118.12437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Excessive accumulation of misfolded proteins was recently demonstrated in preeclampsia. We examined levels and activity of circulatory proteasome and immunoproteasome (inflammatory subtype) in preeclampsia and hemolysis, elevated liver enzymes, and thrombocytopenia (HELLP) syndrome. We analyzed samples from women with hypertensive pregnancy disorders (n=115), including preeclampsia with severe features (sPE) and HELLP syndrome, and normotensive controls (n=45). Plasma proteasome and immunoproteasome immunoreactivity were determined by quantifying the α-subunit of the 20S core and β5i (proteasome subunit beta 8 [PSMB8]), respectively. Plasma proteasome activity was analyzed with fluorogenic substrates. MG132, lactacystin, and ONX0914 were used to inhibit the circulating proteasome and immunoproteasome, respectively. Plasma cytokine profiles were evaluated by multiplex immunoassay. Placental expression of β5 (constitutive proteasome) and β5i (immunoproteasome) was interrogated by immunohistochemistry. Women with sPE had increased plasma 20S levels ( P<0.001) and elevated lytic activities (chymotrypsin-like 7-fold, caspase-like 4.2-fold, trypsin-like 2.2-fold; P <0.001 for all) compared with pregnant controls. Women with features of HELLP displayed the highest plasma proteasome levels and activity, which correlated with decreased IFN-γ (interferon-γ), and increased IL (interleukin)-8 and IL-10. In sPE and HELLP, chymotrypsin-like activity was suppressed by proteasome inhibitors including ONX0914. Compared with gestational age-matched controls, sPE placentas harbored increased β5 and β5i immunostaining in trophoblasts. β5i signal was elevated in HELLP with predominant staining in villous core, extravillous trophoblasts in placental islands, and extracellular vesicles in intervillous spaces. Pregnancy represents a state of increased proteostatic stress. sPE and HELLP were characterized by significant upregulation in circulating levels and lytic activity of the proteasome that was partially explained by placental immunoproteasome upregulation.
Collapse
Affiliation(s)
- Kathryn Berryman
- From the Department of Obstetrics and Gynecology (K.B., C.S.B.), The Ohio State University College of Medicine, Columbus
| | - Catalin S Buhimschi
- From the Department of Obstetrics and Gynecology (K.B., C.S.B.), The Ohio State University College of Medicine, Columbus.,Department of Pediatrics (C.S.B., I.A.B.), The Ohio State University College of Medicine, Columbus
| | - Guomao Zhao
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| | - Michelle Axe
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| | - Megan Locke
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| | - Irina A Buhimschi
- Department of Pediatrics (C.S.B., I.A.B.), The Ohio State University College of Medicine, Columbus.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| |
Collapse
|
7
|
Gorny X, Säring P, Bergado Acosta JR, Kahl E, Kolodziejczyk MH, Cammann C, Wernecke KEA, Mayer D, Landgraf P, Seifert U, Dieterich DC, Fendt M. Deficiency of the immunoproteasome subunit β5i/LMP7 supports the anxiogenic effects of mild stress and facilitates cued fear memory in mice. Brain Behav Immun 2019; 80:35-43. [PMID: 30797047 DOI: 10.1016/j.bbi.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/22/2018] [Accepted: 02/20/2019] [Indexed: 02/01/2023] Open
Abstract
Proteolysis as mediated by one of the major cellular protein degradation pathways, the ubiquitin-proteasome system (UPS), plays an essential role in learning and memory formation. However, the functional relevance of immunoproteasomes in the healthy brain and especially their impact on normal brain function including processes of learning and memory has not been investigated so far. In the present study, we analyzed the phenotypic effects of an impaired immunoproteasome formation using a β5i/LMP7-deficient mouse model in different behavioral paradigms focusing on locomotor activity, exploratory behavior, innate anxiety, startle response, prepulse inhibition, as well as fear and safety conditioning. Overall, our results demonstrate no strong effects of constitutive β5i/LMP7-deficiency on gross locomotor abilities and anxiety-related behavior in general. However, β5i/LMP7-deficient mice expressed more anxiety after mild stress and increased cued fear after fear conditioning. These findings indicate that the basal proper formation of immunoproteasomes and/or at least the expression of β5i/LMP7 in healthy mice seem to be involved in the regulation of anxiety and cued fear levels.
Collapse
Affiliation(s)
- Xenia Gorny
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany
| | - Paula Säring
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Jorge R Bergado Acosta
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | | | - Clemens Cammann
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany; Friedrich Loeffler Institute for Medical Microbiology, University Medicine, University Greifswald, Greifswald, Germany
| | - Kerstin E A Wernecke
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| | - Dana Mayer
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Ulrike Seifert
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany; Friedrich Loeffler Institute for Medical Microbiology, University Medicine, University Greifswald, Greifswald, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
8
|
Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity. Int J Mol Sci 2019; 20:ijms20092197. [PMID: 31060234 PMCID: PMC6538995 DOI: 10.3390/ijms20092197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, functional interconnections emerged between synaptic transmission, inflammatory/immune mediators, and central nervous system (CNS) (patho)-physiology. Such interconnections rose up to a level that involves synaptic plasticity, both concerning its molecular mechanisms and the clinical outcomes related to its behavioral abnormalities. Within this context, synaptic plasticity, apart from being modulated by classic CNS molecules, is strongly affected by the immune system, and vice versa. This is not surprising, given the common molecular pathways that operate at the cross-road between the CNS and immune system. When searching for a common pathway bridging neuro-immune and synaptic dysregulations, the two major cell-clearing cell clearing systems, namely the ubiquitin proteasome system (UPS) and autophagy, take center stage. In fact, just like is happening for the turnover of key proteins involved in neurotransmitter release, antigen processing within both peripheral and CNS-resident antigen presenting cells is carried out by UPS and autophagy. Recent evidence unravelling the functional cross-talk between the cell-clearing pathways challenged the traditional concept of autophagy and UPS as independent systems. In fact, autophagy and UPS are simultaneously affected in a variety of CNS disorders where synaptic and inflammatory/immune alterations concur. In this review, we discuss the role of autophagy and UPS in bridging synaptic plasticity with neuro-immunity, while posing a special emphasis on their interactions, which may be key to defining the role of immunity in synaptic plasticity in health and disease.
Collapse
|
9
|
Limanaqi F, Biagioni F, Gaglione A, Busceti CL, Fornai F. A Sentinel in the Crosstalk Between the Nervous and Immune System: The (Immuno)-Proteasome. Front Immunol 2019; 10:628. [PMID: 30984192 PMCID: PMC6450179 DOI: 10.3389/fimmu.2019.00628] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
The wealth of recent evidence about a bi-directional communication between nerve- and immune- cells revolutionized the traditional concept about the brain as an “immune-privileged” organ while opening novel avenues in the pathophysiology of CNS disorders. In fact, altered communication between the immune and nervous system is emerging as a common hallmark in neuro-developmental, neurodegenerative, and neuro-immunological diseases. At molecular level, the ubiquitin proteasome machinery operates as a sentinel at the crossroad between the immune system and brain. In fact, the standard proteasome and its alternative/inducible counterpart, the immunoproteasome, operate dynamically and coordinately in both nerve- and immune- cells to modulate neurotransmission, oxidative/inflammatory stress response, and immunity. When dysregulations of the proteasome system occur, altered amounts of standard- vs. immune-proteasome subtypes translate into altered communication between neurons, glia, and immune cells. This contributes to neuro-inflammatory pathology in a variety of neurological disorders encompassing Parkinson's, Alzheimer's, and Huntingtin's diseases, brain trauma, epilepsy, and Multiple Sclerosis. In the present review, we analyze those proteasome-dependent molecular interactions which sustain communication between neurons, glia, and brain circulating T-lymphocytes both in baseline and pathological conditions. The evidence here discussed converges in that upregulation of immunoproteasome to the detriment of the standard proteasome, is commonly implicated in the inflammatory- and immune- biology of neurodegeneration. These concepts may foster additional studies investigating the role of immunoproteasome as a potential target in neurodegenerative and neuro-immunological disorders.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,I.R.C.C.S Neuromed, Pozzilli, Italy
| |
Collapse
|
10
|
Peroxynitrite: From interception to signaling. Arch Biochem Biophys 2016; 595:153-60. [PMID: 27095233 DOI: 10.1016/j.abb.2015.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022]
Abstract
Peroxynitrite is a strong oxidant and nitrating species that mediates certain biological effects of superoxide and nitrogen monoxide. These biological effects include oxidative damage to proteins as well as the formation of 3-nitrotyrosyl moieties in proteins. As a consequence, such proteins may lose their activity, gain altered function, or become prone to proteolytic degradation - resulting in modulation of cellular protein turnover and in the modulation of signaling cascades. In analogy to hydrogen peroxide, peroxynitrite may be scavenged by selenoproteins like glutathione peroxidase-1 (GPx-1) or by selenocompounds with a GPx-like activity, such as ebselen; in further analogy to H2O2, peroxiredoxins have also been established as contributors to peroxynitrite reduction. This review covers three aspects of peroxynitrite biochemistry, (i) the interaction of selenocompounds/-proteins with peroxynitrite, (ii) peroxynitrite-induced modulation of cellular proteolysis, and (iii) peroxynitrite-induced modulation of cellular signaling.
Collapse
|
11
|
Rao G, Croft B, Teng C, Awasthi V. Ubiquitin-Proteasome System in Neurodegenerative Disorders. JOURNAL OF DRUG METABOLISM & TOXICOLOGY 2015; 6:187. [PMID: 30761219 PMCID: PMC6370320 DOI: 10.4172/2157-7609.1000187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular proteostasis is a highly dynamic process and is primarily carried out by the degradation tools of ubiquitin-proteasome system (UPS). Abnormalities in UPS function result in the accumulation of damaged or misfolded proteins which can form intra- and extracellular aggregated proteinaceous deposits leading to cellular dysfunction and/or death. Deposition of abnormal protein aggregates and the cellular inability to clear them have been implicated in the pathogenesis of a number of neurodegenerative disorders such as Alzheimer's and Parkinson's. Contrary to the upregulation of proteasome function in oncogenesis and the use of proteasome inhibition as a therapeutic strategy, activation of proteasome function would serve therapeutic objectives of treatment of neurodegenerative diseases. This review describes the current understanding of the role of the proteasome in neurodegenerative disorders and potential utility of proteasomal modulation therein.
Collapse
Affiliation(s)
- Geeta Rao
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Brandon Croft
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Chengwen Teng
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
12
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
13
|
Tylicka M, Matuszczak E, Dębek W, Hermanowicz A, Ostrowska H. Circulating proteasome activity following mild head injury in children. Childs Nerv Syst 2014; 30:1191-6. [PMID: 24700339 PMCID: PMC4072065 DOI: 10.1007/s00381-014-2409-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/24/2014] [Indexed: 01/04/2023]
Abstract
PURPOSE The aim of the study is to characterize changes in circulating proteasome (c-proteasome) activity following mild traumatic brain injury in children. METHODS Fifty children managed at the Department of Pediatric Surgery because of concussion-mild head injury was randomly included into the study. The children were aged 11 months to 17 years (median = 10.07 + -1.91 years). Plasma proteasome activity was assessed using Suc-Leu-Leu-Val-Tyr-AMC peptide substrate, 2-6 h, 12-16 h, and 2 days after injury. Twenty healthy children admitted for planned inguinal hernia repair served as controls. RESULTS Statistically significant elevation of plasma c-proteasome activity was noted in children with mild head injury 2-6 h, 12-16 h, and 2 days after the injury. CONCLUSIONS Authors observed a statistically significant upward trend in the c-proteasome activity between 2-6 and 12-16 h after the mild head injury, consistent with the onset of the symptoms of cerebral concussion and a downward trend in the c-proteasome activity in the plasma of children with mild head injury between 12-16 h and on the second day after the injury, consistent with the resolving of the symptoms of cerebral concussion. Further studies are needed to demonstrate that the proteasome activity could be a prognostic factor, which can help in further diagnostic and therapeutic decisions in patients with head injury.
Collapse
Affiliation(s)
- Marzena Tylicka
- Department of Biophysics, Medical University of Białystok, Mickiewicza 2A, 15-089 Białystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Białystok, 15-274 Białystok, Poland
| | - Wojciech Dębek
- Department of Pediatric Surgery, Medical University of Białystok, 15-274 Białystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Białystok, 15-274 Białystok, Poland
| | - Halina Ostrowska
- Department of Pediatric Surgery, Medical University of Białystok, 15-274 Białystok, Poland
| |
Collapse
|
14
|
F. El-Orab N, H. Abd-Elk O, D. Schwart D. Differential Expression of Hippocampal Genes under Heat Stress. INT J PHARMACOL 2013. [DOI: 10.3923/ijp.2013.430.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Park JE, Ao L, Miller Z, Kim K, Wu Y, Jang ER, Lee EY, Kim KB, Lee W. PSMB9 codon 60 polymorphisms have no impact on the activity of the immunoproteasome catalytic subunit B1i expressed in multiple types of solid cancer. PLoS One 2013; 8:e73732. [PMID: 24040045 PMCID: PMC3767749 DOI: 10.1371/journal.pone.0073732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/20/2013] [Indexed: 11/18/2022] Open
Abstract
The proteasome is a key regulator of cellular protein homeostasis and is a clinically validated anticancer target. The immunoproteasome, a subtype of proteasome expressed mainly in hematopoietic cells, was initially recognized for its role in antigen presentation during the immune response. Recently, the immunoproteasome has been implicated in several disease conditions including cancer and autoimmune disorders, but many of the factors contributing to these pathological processes remain unknown. In particular, the codon 60 polymorphism of the PSMB9 gene encoding the β1i immunoproteasome catalytic subunit has been investigated in the context of a variety of diseases. Despite this, previous studies have so far reported inconsistent findings regarding the impact of this polymorphism on proteasome activity. Thus, we set out to investigate the impact of the PSMB9 codon 60 polymorphism on the expression and activity of the β1i immunoproteasome subunit in a panel of human cancer cell lines. The β1i-selective fluorogenic substrate Acetyl-Pro-Ala-Leu-7-amino-4-methylcoumarin was used to specifically measure β1i catalytic activity. Our results indicate that the codon 60 Arg/His polymorphism does not significantly alter the expression and activity of β1i among the cell lines tested. Additionally, we also examined the expression of β1i in clinical samples from colon and pancreatic cancer patients. Our immunohistochemical analyses showed that ∼70% of clinical colon cancer samples and ∼53% of pancreatic cancer samples have detectable β1i expression. Taken together, our results indicate that the β1i subunit of the immunoproteasome is frequently expressed in colon and pancreatic cancers but that the codon 60 genetic variants of β1i display similar catalytic activities and are unlikely to contribute to the significant inter-cell-line and inter-individual variabilities in the immunoproteasome activity.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lin Ao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zachary Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kyungbo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ying Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eun Ryoung Jang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eun Young Lee
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wooin Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
16
|
Poly-Ub-substrate-degradative activity of 26S proteasome is not impaired in the aging rat brain. PLoS One 2013; 8:e64042. [PMID: 23667697 PMCID: PMC3646778 DOI: 10.1371/journal.pone.0064042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/11/2013] [Indexed: 12/21/2022] Open
Abstract
Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young) and 24 month old (aged) rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process.
Collapse
|
17
|
Launay N, Ruiz M, Fourcade S, Schlüter A, Guilera C, Ferrer I, Knecht E, Pujol A. Oxidative stress regulates the ubiquitin-proteasome system and immunoproteasome functioning in a mouse model of X-adrenoleukodystrophy. Brain 2013; 136:891-904. [PMID: 23436506 DOI: 10.1093/brain/aws370] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative damage is a pivotal aetiopathogenic factor in X-linked adrenoleukodystrophy. This is a neurometabolic disease characterized by the accumulation of very-long-chain fatty acids owing to the loss of function of the peroxisomal transporter Abcd1. Here, we used the X-linked adrenoleukodystrophy mouse model and patient's fibroblasts to detect malfunctioning of the ubiquitin-proteasome system resulting from the accumulation of oxidatively modified proteins, some involved in bioenergetic metabolism. Furthermore, the immunoproteasome machinery appears upregulated in response to oxidative stress, in the absence of overt inflammation. i-Proteasomes are recruited to mitochondria when fibroblasts are exposed to an excess of very-long-chain fatty acids in response to oxidative stress. Antioxidant treatment regulates proteasome expression, prevents i-proteasome induction and translocation of i-proteasomes to mitochondria. Our findings support a key role of i-proteasomes in quality control in mitochondria during oxidative damage in X-linked adrenoleukodystrophy, and perhaps in other neurodegenerative conditions with similar pathogeneses.
Collapse
Affiliation(s)
- Nathalie Launay
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The proteasome and the degradation of oxidized proteins: Part I-structure of proteasomes. Redox Biol 2013; 1:178-82. [PMID: 24024151 PMCID: PMC3757679 DOI: 10.1016/j.redox.2013.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 01/30/2023] Open
Abstract
The main machinery responsible for cellular protein maintenance is the ubiquitin-proteasomal system, with its core particle the 20S proteasome. The main task of the system is a fast and efficient degradation of proteins not needed anymore in cellular metabolism. For this aim a complex system of regulators evolved, modifying the function of the 20S core proteasome. Here we summarize shortly the structure of the 20S proteasome as well as its associated regulator proteins.
Collapse
|
19
|
Höhn A, König J, Grune T. Protein oxidation in aging and the removal of oxidized proteins. J Proteomics 2013; 92:132-59. [PMID: 23333925 DOI: 10.1016/j.jprot.2013.01.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are generated constantly within cells at low concentrations even under physiological conditions. During aging the levels of ROS can increase due to a limited capacity of antioxidant systems and repair mechanisms. Proteins are among the main targets for oxidants due to their high rate constants for several reactions with ROS and their abundance in biological systems. Protein damage has an important influence on cellular viability since most protein damage is non-repairable, and has deleterious consequences on protein structure and function. In addition, damaged and modified proteins can form cross-links and provide a basis for many senescence-associated alterations and may contribute to a range of human pathologies. Two proteolytic systems are responsible to ensure the maintenance of cellular functions: the proteasomal (UPS) and the lysosomal system. Those degrading systems provide a last line of antioxidative protection, removing irreversible damaged proteins and recycling amino acids for the continuous protein synthesis. But during aging, both systems are affected and their proteolytic activity declines significantly. Here we highlight the recent advantages in the understanding of protein oxidation and the fate of these damaged proteins during aging. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Annika Höhn
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
20
|
Ebstein F, Kloetzel PM, Krüger E, Seifert U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci 2012; 69:2543-58. [PMID: 22382925 PMCID: PMC11114860 DOI: 10.1007/s00018-012-0938-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 01/09/2023]
Abstract
The proteasome is a multi-catalytic protein complex whose primary function is the degradation of abnormal or foreign proteins. Upon exposure of cells to interferons (IFNs), the β1i/LMP2, β2i/MECL-1, and β5i/LMP7 subunits are induced and incorporated into newly synthesized immunoproteasomes (IP), which are thought to function solely as critical players in the optimization of the CD8(+) T-cell response. However, the observation that IP are present in several non-immune tissues under normal conditions and/or following pathological events militates against the view that its role is limited to MHC class I presentation. In support of this concept, the recent use of genetic models deficient for β1i/LMP2, β2i/MECL-1, or β5i/LMP7 has uncovered unanticipated functions for IP in innate immunity and non-immune processes. Herein, we review recent data in an attempt to clarify the role of IP beyond MHC class I epitope presentation with emphasis on its involvement in the regulation of protein homeostasis, cell proliferation, and cytokine gene expression.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Peter-Michael Kloetzel
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Elke Krüger
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Ulrike Seifert
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
- Institut für Molekulare und Klinische Immunologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
21
|
Huang Y, Halliday GM. Aspects of innate immunity and Parkinson's disease. Front Pharmacol 2012; 3:33. [PMID: 22408621 PMCID: PMC3296959 DOI: 10.3389/fphar.2012.00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/19/2012] [Indexed: 12/21/2022] Open
Abstract
Genetic studies on PARK genes have identified dysfunction in proteasomal, lysosomal, and mitochondrial enzymes as pathogenic for Parkinson’s disease (PD). We review the role of these and similar enzymes in mediating innate immune signaling. In particular, we have identified that a number of PARK gene products as well as other enzymes have roles in innate immune signaling as well as DNA repair and regulation, ubiquitination, mitochondrial functioning, and synaptic trafficking. PD enzymatic dysfunction is likely to contribute to inadequate innate immune responses to a variety of extra- and intra-cellular stimuli, with a number of the innate immunity related enzymes found in the characteristic Lewy body pathology of PD. The decrease in innate immunity in PD is associated with an increase in markers of adaptive immunity, and recent GWAS studies have identified variants in human leukocyte antigen region as associated with late-onset sporadic PD (Hamza et al., 2010; Hill-Burns et al., 2011). Intriguing new data also suggest that peripheral immune responses may be involved, giving some potential to alleviate such peripheral dysfunction more directly in patients with PD. It is now important to identify the cell type specific immune responses contributing to the initial changes that occur in PD, as well as to the propagating immune responses important for the progression of PD pathology between cells and within the brain. Overall, a complex interplay between different types of immunity appear to be involved in the underlying pathology of PD.
Collapse
Affiliation(s)
- Yue Huang
- Neuroscience Research Australia Sydney, NSW, Australia
| | | |
Collapse
|
22
|
Abstract
The ubiquitin-proteasomal system is an essential element of the protein quality control machinery in cells. The central part of this system is the 20S proteasome. The proteasome is a barrel-shaped multienzyme complex, containing several active centers hidden at the inner surface of the hollow cylinder. So, the regulation of the substrate entry toward the inner proteasomal surface is a key control mechanism of the activity of this protease. This chapter outlines the knowledge on the structure of the subunits of the 20S proteasome, the binding and structure of some proteasomal regulators and inducible proteasomal subunits. Therefore, this chapter imparts the knowledge on proteasomal structure which is required for the understanding of the following chapters.
Collapse
|
23
|
Kremer M, Henn A, Kolb C, Basler M, Moebius J, Guillaume B, Leist M, Van den Eynde BJ, Groettrup M. Reduced immunoproteasome formation and accumulation of immunoproteasomal precursors in the brains of lymphocytic choriomeningitis virus-infected mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:5549-60. [PMID: 20881186 DOI: 10.4049/jimmunol.1001517] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissue inflammation is accompanied by the cytokine-mediated replacement of constitutive proteasomes by immunoproteasomes that finally leads to an optimized generation of MHC class I restricted epitopes for Ag presentation. The brain is considered an immunoprivileged organ, where both the special anatomy as well as active tolerance mechanisms repress the development of inflammatory responses and help to prevent immunopathological damage. We analyzed the immunoproteasome expression in the brain after an infection with lymphocytic choriomeningitis virus (LCMV) and could show that LCMV-infection of mice leads to the transcriptional induction of inducible proteasome subunits in the brain. However, compared with other organs, i.p. and even intracranial infection with LCMV only led to a faint expression of mature immunoproteasome in the brain and resulted in the accumulation of immunoproteasomal precursors. By immunohistology, we could identify microglia-like cells as the main producers of immunoproteasome, whereas in astrocytes immunoproteasome expression was almost exclusively restricted to nuclei. Neither the immunoproteasome subunits low molecular mass polypeptide 2 nor multicatalytic endopeptidase complex-like-1 were detected in neurons or oligodendrocytes. In vitro studies of IFN-γ-stimulated primary astrocytes suggested that the observed accumulation of immunoproteasomal precursor complexes takes place in this cell population. Functionally, the lack of immunoproteasomes protracted and lowered the severity of LCMV-induced meningitis in LMP7(-/-) mice suggesting a contribution of immunoproteasomes in microglia to exacerbate immunopathological damage. We postulate a posttranslationally regulated mechanism that prevents abundant and inappropriate immunoproteasome assembly in the brain and may contribute to the protection of poorly regenerating cells of the CNS from immunopathological destruction.
Collapse
Affiliation(s)
- Marcel Kremer
- Division of Immunology, Department of Biology, Constance University, Konstanz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lebid' I, Dosenko VI, Skybo HH. Expression of proteasome subunits PSMB5 and PSMB9 mRNA in hippocampal neurons in experimental diabetes mellitus: link with apoptosis and necrosis. ACTA ACUST UNITED AC 2010. [DOI: 10.15407/fz56.04.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Kim KB, Crews CM. Chemical genetics: exploring the role of the proteasome in cell biology using natural products and other small molecule proteasome inhibitors. J Med Chem 2008; 51:2600-5. [PMID: 18393403 PMCID: PMC2556560 DOI: 10.1021/jm070421s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536-0082, USA.
| | | |
Collapse
|
26
|
Ho YK, Bargagna-Mohan P, Wehenkel M, Mohan R, Kim KB. LMP2-specific inhibitors: chemical genetic tools for proteasome biology. ACTA ACUST UNITED AC 2007; 14:419-30. [PMID: 17462577 PMCID: PMC5541682 DOI: 10.1016/j.chembiol.2007.03.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 02/09/2007] [Accepted: 03/01/2007] [Indexed: 11/16/2022]
Abstract
The immunoproteasome, having been linked to neurodegenerative diseases and hematological cancers, has been shown to play an important role in MHC class I antigen presentation. However, its other pathophysiological functions are still not very well understood. This can be attributed mainly to a lack of appropriate molecular probes that can selectively modulate the immunoproteasome catalytic subunits. Herein, we report the development of molecular probes that selectively inhibit the major catalytic subunit, LMP2, of the immunoproteasome. We show that these compounds irreversibly modify the LMP2 subunit with high specificity. Importantly, LMP2-rich cancer cells compared to LMP2-deficient cancer cells are more sensitive to growth inhibition by the LMP2-specific inhibitor, implicating an important role of LMP2 in regulating cell growth of malignant tumors that highly express LMP2.
Collapse
Affiliation(s)
- Yik Khuan Ho
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
27
|
Yao X, Liu J, McCabe JT. Alterations of cerebral cortex and hippocampal proteasome subunit expression and function in a traumatic brain injury rat model. J Neurochem 2007; 104:353-63. [PMID: 17944870 DOI: 10.1111/j.1471-4159.2007.04970.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following cellular stress or tissue injury, the proteasome plays a critical role in protein degradation and signal transduction. The present study examined the beta-subunit expression of constitutive proteasomes (beta1, beta2, and beta5), immunoproteasomes (beta1i, beta2i, and beta5i) and the 11S proteasome activator, PA28alpha, in the rat CNS after traumatic brain injury (TBI). Concomitant measures assessed changes in proteasome activities. Quantitative real time PCR results indicated that beta1 and beta2 mRNA levels were not changed, while beta5 mRNA levels were significantly decreased in injured CNS following TBI. However, beta1i, beta2i, beta5i, and PA28alpha mRNA levels were significantly increased in the injured CNS. Western blotting studies found that beta1, beta2, beta5, beta2i, and beta5i subunit protein levels remained unchanged in the injured CNS, but beta1i and PA28alpha protein levels were significantly elevated in ipsilateral cerebral cortex and hippocampus. Proteasome activity assays found that peptidyl glutamyl peptide hydrolase-like and chymotrypsin-like activity were significantly reduced in the CNS after TBI, and that trypsin-like proteasome activity was increased in the injured cerebral cortex. Our results demonstrated that both proteasome composition and function in the CNS were affected by trauma. Treatments that preserve proteasome function following CNS injury may be beneficial as an approach to cerebral neuroprotection.
Collapse
Affiliation(s)
- Xianglan Yao
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA.
| | | | | |
Collapse
|
28
|
Mishto M, Bellavista E, Santoro A, Stolzing A, Ligorio C, Nacmias B, Spazzafumo L, Chiappelli M, Licastro F, Sorbi S, Pession A, Ohm T, Grune T, Franceschi C. Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains. Neurobiol Aging 2006; 27:54-66. [PMID: 16298241 DOI: 10.1016/j.neurobiolaging.2004.12.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 11/23/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
In this study, we investigated the presence and role of immunoproteasome and its LMP2 subunit polymorphism at codon 60 in Alzheimer's disease (AD). Immunoproteasome was present in brain areas such as hippocampus and cerebellum and localized in neurons, astrocytes and endothelial cells. A higher expression of immunoproteasome was found in brain of AD patients than in brain of non-demented elderly, being its expression in young brain negligible or absent. Furthermore, AD affected regions showed a partial decrease in proteasome trypsin-like activity. The study of LMP2 polymorphism (R/H) showed that it does not influence LMP2 expression (neither the mRNA nor mature protein) in brain tissue. However, control brain areas of AD patients carrying the RR genotype showed an increased proteasome activity in comparison with RH carriers. To test whether this effect of the genotype might be related to AD onset we performed a genetic study, which allowed us to exclude an association of LMP2 codon 60 polymorphism with AD onset, despite its influence on the proteasome activity in human brain.
Collapse
Affiliation(s)
- Michele Mishto
- Department of Experimental Pathology, University of Bologna, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Storstein A, Knudsen A, Vedeler CA. Proteasome antibodies in paraneoplastic cerebellar degeneration. J Neuroimmunol 2005; 165:172-8. [PMID: 15964637 DOI: 10.1016/j.jneuroim.2005.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 04/05/2005] [Indexed: 11/29/2022]
Abstract
Antibodies to proteasome have been detected in several autoimmune diseases, including multiple sclerosis. We have investigated the presence of such antibodies in patients with paraneoplastic neurological syndromes, by Western blotting and immunohistochemistry. Antibodies to 20S proteasome were detected in the majority of patients with paraneoplastic cerebellar degeneration (PCD), but in only one of nine sera from patients with paraneoplastic encephalomyelitis/sensory neuronopathy (PEM/SN), and were not found in cancer patients in general. The results suggest that the immune responses in PCD differ from those of PEM/SN, whereas the functional significance of proteasome antibodies in PCD is yet to be determined.
Collapse
Affiliation(s)
- Anette Storstein
- Department of Neurology, Haukeland University Hospital, N-5021 Bergen, Norway.
| | | | | |
Collapse
|
30
|
Abstract
In contrast to the classically described "in bulk" lysosomal degradation, the first evidence for selective degradation of cytosolic proteins in lysosomes was presented more than 20 years ago. Throughout this time, we have gained a better understanding about this process, now known as chaperone-mediated autophagy (CMA). The identification of new substrates for CMA and novel components, in both the cytosol and the lysosomes, along with better insights on how CMA is regulated, have all helped to shape the possible physiological roles of CMA. We review here different intracellular functions of CMA that arise from its unique characteristics when compared to other forms of autophagy. In view of these functions, we discuss the relevance of the changes in CMA activity in aging and in different pathological conditions.
Collapse
Affiliation(s)
- Ashish Massey
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Ullmann Building Room 614, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
31
|
Ferrington DA, Husom AD, Thompson LV. Altered proteasome structure, function, and oxidation in aged muscle. FASEB J 2005; 19:644-6. [PMID: 15677694 DOI: 10.1096/fj.04-2578fje] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proteasome is the main protease for degrading oxidized proteins. We asked whether altered proteasome function contributes to the accumulation of oxidized muscle proteins with aging. Proteasome structure, function, and oxidation state were compared in young and aged F344BN rat fast-twitch skeletal muscle. In proteasome-enriched homogenates from aged muscle, we observed a two- to threefold increase in content of the 20S proteasome that was due to a corresponding increase in immunoproteasome. Content of the regulatory proteins, PA700 and PA28, relative to the 20S were reduced 75% with aging. Upon addition of exogenous PA700, there was a twofold increase in peptide hydrolysis in aged muscle, suggesting the endogenous content of PA700 is inadequate for complete activation of the 20S. Measures of catalytic activity showed a 50% reduction in specific activity for proteasome-enriched homogenates with aging. With purification of the 20S, proteasome specific activity was equivalent between ages, indicating that endogenous regulators inhibit proteasome in aged muscle. Significantly less degradation of oxidized calmodulin by the 20S from aged muscle was observed. Partial rescue of activity for aged 20S by DTT implies oxidation of functionally significant cysteines. These results demonstrate significant age-related changes in proteasome structure, function, and oxidation state that could inhibit removal of oxidized proteins.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology, 380 Lions Research Bldg., 2001 6th Street SE, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
32
|
Husom AD, Peters EA, Kolling EA, Fugere NA, Thompson LV, Ferrington DA. Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys 2004; 421:67-76. [PMID: 14678786 DOI: 10.1016/j.abb.2003.10.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myofibrillar protein degradation is mediated through the ubiquitin-proteasome pathway. To investigate if altered proteasome activity plays a role in age-related muscle atrophy, we examined muscle size and proteasome function in young and aged F344BN rats. Significant age-related muscle atrophy was confirmed by the 38% decrease in cross-sectional area of type 1 fibers in soleus muscle. Determination of proteasome function showed hydrolysis of fluorogenic peptides was equivalent between ages. However, when accounting for the 3-fold increase in content of the 20S catalytic core in aged muscle, the lower specific activity suggests a functional loss in individual proteins with aging. Comparing the composition of the catalytic beta-subunits showed an age-related 4-fold increase in the cytokine-inducible subunits, LMP2 and LMP7. Additionally, the content of the activating complexes, PA28 and PA700, relative to the 20S proteasome was reduced 50%. These results suggest significant alterations in the intrinsic activity, the percentage of immunoproteasome, and the regulation of the 20S proteasome by PA28 and PA700 in aged muscle.
Collapse
Affiliation(s)
- Aimee D Husom
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|