1
|
Lu Y, Cui Y, Cao L, Dong Z, Cheng L, Wu W, Wang C, Liu X, Liu Y, Zhang B, Li D, Zhao B, Wang H, Li K, Ma L, Shi W, Li W, Ma Y, Du Z, Zhang J, Xiong H, Luo N, Liu Y, Hou X, Han J, Sun H, Cai T, Peng Q, Feng L, Wang J, Paxinos G, Yang Z, Fan L, Jiang T. Macaque Brainnetome Atlas: A multifaceted brain map with parcellation, connection, and histology. Sci Bull (Beijing) 2024; 69:2241-2259. [PMID: 38580551 DOI: 10.1016/j.scib.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made. In this study, we created a new whole-brain map, the Macaque Brainnetome Atlas (MacBNA), based on the anatomical connectivity profiles provided by high angular and spatial resolution ex vivo diffusion MRI data. The new atlas consists of 248 cortical and 56 subcortical regions as well as their structural and functional connections. The parcellation and the diffusion-based tractography were evaluated with invasive neuronal-tracing and Nissl-stained images. As a demonstrative application, the structural connectivity divergence between macaque and human brains was mapped using the Brainnetome atlases of those two species to uncover the genetic underpinnings of the evolutionary changes in brain structure. The resulting resource includes: (1) the thoroughly delineated Macaque Brainnetome Atlas (MacBNA), (2) regional connectivity profiles, (3) the postmortem high-resolution macaque diffusion and T2-weighted MRI dataset (Brainnetome-8), and (4) multi-contrast MRI, neuronal-tracing, and histological images collected from a single macaque. MacBNA can serve as a common reference frame for mapping multifaceted features across modalities and spatial scales and for integrative investigation and characterization of brain organization and function. Therefore, it will enrich the collaborative resource platform for nonhuman primates and facilitate translational and comparative neuroscience research.
Collapse
Affiliation(s)
- Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Cao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China; Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhenwei Dong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luqi Cheng
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Wen Wu
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Xinyi Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youtong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bokai Zhao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaixin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Zongchang Du
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoxiao Hou
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinglu Han
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Hongji Sun
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Cai
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Qiang Peng
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Linqing Feng
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - George Paxinos
- Neuroscience Research Australia and The University of New South Wales, Sydney NSW 2031, Australia
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China.
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China.
| |
Collapse
|
2
|
Fritzsch B, Elliott KL, Yamoah EN. Neurosensory development of the four brainstem-projecting sensory systems and their integration in the telencephalon. Front Neural Circuits 2022; 16:913480. [PMID: 36213204 PMCID: PMC9539932 DOI: 10.3389/fncir.2022.913480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Somatosensory, taste, vestibular, and auditory information is first processed in the brainstem. From the brainstem, the respective information is relayed to specific regions within the cortex, where these inputs are further processed and integrated with other sensory systems to provide a comprehensive sensory experience. We provide the organization, genetics, and various neuronal connections of four sensory systems: trigeminal, taste, vestibular, and auditory systems. The development of trigeminal fibers is comparable to many sensory systems, for they project mostly contralaterally from the brainstem or spinal cord to the telencephalon. Taste bud information is primarily projected ipsilaterally through the thalamus to reach the insula. The vestibular fibers develop bilateral connections that eventually reach multiple areas of the cortex to provide a complex map. The auditory fibers project in a tonotopic contour to the auditory cortex. The spatial and tonotopic organization of trigeminal and auditory neuron projections are distinct from the taste and vestibular systems. The individual sensory projections within the cortex provide multi-sensory integration in the telencephalon that depends on context-dependent tertiary connections to integrate other cortical sensory systems across the four modalities.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, The University of Iowa, Iowa City, IA, United States
- Department of Otolaryngology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch,
| | - Karen L. Elliott
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
3
|
Pedrosa LRR, Coimbra GDS, Corrêa MG, Dias IA, Bahia CP. Time Window of the Critical Period for Neuroplasticity in S1, V1, and A1 Sensory Areas of Small Rodents: A Systematic Review. Front Neuroanat 2022; 16:763245. [PMID: 35370567 PMCID: PMC8970055 DOI: 10.3389/fnana.2022.763245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/04/2022] [Indexed: 12/09/2022] Open
Abstract
The plasticity of the central nervous system (CNS) allows the change of neuronal organization and function after environmental stimuli or adaptation after sensory deprivation. The so-called critical period (CP) for neuroplasticity is the time window when each sensory brain region is more sensitive to changes and adaptations. This time window is usually different for each primary sensory area: somatosensory (S1), visual (V1), and auditory (A1). Several intrinsic mechanisms are also involved in the start and end of the CP for neuroplasticity; however, which is its duration in S1, VI, and A1? This systematic review evaluated studies on the determination of these time windows in small rodents. The careful study selection and methodological quality assessment indicated that the CP for neuroplasticity is different among the sensory areas, and the brain maps are influenced by environmental stimuli. Moreover, there is an overlap between the time windows of some sensory areas. Finally, the time window duration of the CP for neuroplasticity is predominant in S1.
Collapse
|
4
|
Ni H, Song M, Qin J, Jiang T. Individual Discriminative Ability of Resting Functional Brain Connectivity is Susceptible to the Time Span of MRI Scans. Neuroscience 2021; 482:43-52. [PMID: 34914970 DOI: 10.1016/j.neuroscience.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Recent studies have suggested that resting-state brain functional connectivity (RSFC) has the potential to discriminate among individuals in a population. These studies mostly utilized a pattern of RSFC obtained from one scan to identify a given individual from the set of patterns obtained from the second scan. However, it remains unclear whether the discriminative ability would change with the extension of the time span between the two brain scans. This study explores the variations in the discriminative ability of RSFC on eight time spans, including 6 hours, 12 hours, 1 day, 1 month, 3-6 months, 7-12 months, 1-2 years and 2-3 years. We first searched for a set of the most discriminative RSFCs using the data of 200 healthy adult subjects from the Human Connectome Project dataset, and we then utilized this set of RSFCs to identify individuals from a population. The variations in the discriminative accuracies over different time spans were evaluated on datasets from a total of 682 unseen adult subjects acquired from four different sites. We found that although the accuracies were detectable at above-chance levels, the discriminative accuracies showed a significant decrease (F = 17.87, p < 0.01) along with the extension of brain imaging time span, from over 90% within one month to 66% at 2-3 years. Furthermore, the decreasing trend was robust and not dependent on the training set or analysis method. Therefore, we suggest that the discriminative ability of RSFC in identifying individuals should be susceptible to the length of time between brain scans.
Collapse
Affiliation(s)
- Huangjing Ni
- Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiaolong Qin
- Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; The Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia.
| |
Collapse
|
5
|
Fernández M, Reyes-Pinto R, Norambuena C, Sentis E, Mpodozis J. A canonical interlaminar circuit in the sensory dorsal ventricular ridge of birds: The anatomical organization of the trigeminal pallium. J Comp Neurol 2021; 529:3410-3428. [PMID: 34176123 DOI: 10.1002/cne.25201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
The dorsal ventricular ridge (DVR), which is the largest component of the avian pallium, contains discrete partitions receiving tectovisual, auditory, and trigeminal ascending projections. Recent studies have shown that the auditory and the tectovisual regions can be regarded as complexes composed of three highly interconnected layers: an internal senso-recipient one, an intermediate afferent/efferent one, and a more external re-entrant one. Cells located in homotopic positions in each of these layers are reciprocally linked by an interlaminar loop of axonal processes, forming columnar-like local circuits. Whether this type of organization also extends to the trigemino-recipient DVR is, at present, not known. This question is of interest, since afferents forming this sensory pathway, exceptional among amniotes, are not thalamic but rhombencephalic in origin. We investigated this question by placing minute injections of neural tracers into selected locations of vital slices of the chicken telencephalon. We found that neurons of the trigemino-recipient nucleus basorostralis pallii (Bas) establish reciprocal, columnar and homotopical projections with cells located in the overlying ventral mesopallium (MV). "Column-forming" axons originated in B and MV terminate also in the intermediate strip, the fronto-trigeminal nidopallium (NFT), in a restricted manner. We also found that the NFT and an internal partition of B originate substantial, coarse-topographic projections to the underlying portion of the lateral striatum. We conclude that all sensory areas of the DVR are organized according to a common neuroarchitectonic motif, which bears a striking resemblance to that of the radial/laminar intrinsic circuits of the sensory cortices of mammals.
Collapse
Affiliation(s)
- Máximo Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosana Reyes-Pinto
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carolina Norambuena
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elisa Sentis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Lee SY, Han JH, Song HK, Kim NJ, Yi N, Kyong JS, Choi BY. Central auditory maturation and behavioral outcomes after cochlear implantation in prelingual auditory neuropathy spectrum disorder related to OTOF variants (DFNB9): Lessons from pilot study. PLoS One 2021; 16:e0252717. [PMID: 34097718 PMCID: PMC8183996 DOI: 10.1371/journal.pone.0252717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/20/2021] [Indexed: 11/26/2022] Open
Abstract
The cortical auditory evoked potential (CAEP)-based P1 component acts as a biomarker for cochlear implantation (CI) outcomes in children with auditory neuropathy spectrum disorder (ANSD). To date, early intervention primarily before the age of two years and six months of CI usage is necessary and sufficient to achieve age-appropriate cortical maturation and good prognosis. However, varying degrees of neural dyssynchrony, resulting from the etiological heterogeneity of ANSD, may preclude uniform application of this hypothesis to ensure auditory cortical maturation. Thus, a focused evaluation of those carrying OTOF variants, which may be the salient molecular etiology of prelingual ANSD, would circumvent the issue of heterogeneity. Here, we sought to provide a much better understanding of the brain perspectives (i.e., P1 maturation) in OTOF-associated ANSD subjects and set the stage for an optimal strategy to enhance language development. We conducted a preliminary study comprising 10 subjects diagnosed with OTOF-related ANSD who underwent CI by a single surgeon and subsequently underwent measurements of the P1 component. We observed that DFNB9 subjects who received CI after 2 years of age exhibited “absent” or “anomalous” P1 components that correspond to delayed language development. However, timely implantation, as early as 12 months of age per se, might be insufficient to achieve age-appropriate cortical maturation of DFNB9 in cases with six to seven months of device use. This suggests the importance of sustained rehabilitation in DFNB9 than in other etiologies. Indeed, an additional follow-up study showed that a reduction in P1 latency was linked to an improvement in auditory performance. Collectively, our results suggest that central auditory maturation and successful outcome of CI in DFNB9 may have more demanding requirements, that is, earlier implantation and more sustained rehabilitation. We believe that the current study opens a new path toward genome-based neuroimaging in the field of hearing research.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hoo-Kang Song
- Department of Audiology and Speech Language Pathology, HUGS Center for Hearing and Speech Research, Hallym University of Graduate Studies, Seoul, South Korea
| | - Namju Justin Kim
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nayoung Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jeong-Sug Kyong
- Department of Audiology and Speech Language Pathology, HUGS Center for Hearing and Speech Research, Hallym University of Graduate Studies, Seoul, South Korea
- * E-mail: (JSK); (BYC)
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- * E-mail: (JSK); (BYC)
| |
Collapse
|
7
|
Germann J, Chakravarty MM, Collins DL, Petrides M. Tight Coupling between Morphological Features of the Central Sulcus and Somatomotor Body Representations: A Combined Anatomical and Functional MRI Study. Cereb Cortex 2020; 30:1843-1854. [PMID: 31711125 PMCID: PMC7132904 DOI: 10.1093/cercor/bhz208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/18/2023] Open
Abstract
Pioneering research established the concept of somatotopic organization of the primary motor and somatosensory cortex along the central sulcus as depicted in the widely known schematic illustration (the "homunculus") by Penfield and colleagues. With the exception of the hand, however, a precise relationship between morphological features of the central sulcus and the representation of various parts of the body has not been addressed. To investigate whether such relations between anatomical features and functional body representations exist, we first examined central sulcus morphology in detail and then conducted a functional magnetic resonance imaging experiment to establish somatomotor representations. This study established that the central sulcus is composed of five distinct sulcal segments and demonstrated that each segment relates systematically to the sensorimotor representation of distinct parts of the body. Thus, local morphology predicts the localization of body representations with precision, raising fundamental questions regarding functional and morphological differentiation.
Collapse
Affiliation(s)
- Jürgen Germann
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada
| | - M Mallar Chakravarty
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada
- CIC, Douglas Mental Health Institute, McGill University, Montreal, H4H 1R3, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada
| |
Collapse
|
8
|
Abstract
Developmental pathoconnectomics is an emerging field that aims to unravel the events leading to and outcome from disrupted brain connectivity development. Advanced magnetic resonance imaging (MRI) technology enables the portrayal of human brain connectivity before birth and has the potential to offer novel insights into normal and pathological human brain development. This review gives an overview of the currently used MRI techniques for connectomic imaging, with a particular focus on recent studies that have successfully translated these to the in utero or postmortem fetal setting. Possible mechanisms of how pathologies, maternal, or environmental factors may interfere with the emergence of the connectome are considered. The review highlights the importance of advanced image post processing and the need for reproducibility studies for connectomic imaging. Further work and novel data-sharing efforts would be required to validate or disprove recent observations from in utero connectomic studies, which are typically limited by low case numbers and high data drop out. Novel knowledge with regard to the ontogenesis, architecture, and temporal dynamics of the human brain connectome would lead to the more precise understanding of the etiological background of neurodevelopmental and mental disorders. To achieve this goal, this review considers the growing evidence from advanced fetal connectomic imaging for the increased vulnerability of the human brain during late gestation for pathologies that might lead to impaired connectome development and subsequently interfere with the development of neural substrates serving higher cognition.
Collapse
|
9
|
Adebimpe A, Routier L, Wallois F. Preterm Modulation of Connectivity by Endogenous Generators: The Theta Temporal Activities in Coalescence with Slow Waves. Brain Topogr 2019; 32:762-772. [DOI: 10.1007/s10548-019-00713-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
|
10
|
Dall'Orso S, Steinweg J, Allievi AG, Edwards AD, Burdet E, Arichi T. Somatotopic Mapping of the Developing Sensorimotor Cortex in the Preterm Human Brain. Cereb Cortex 2018; 28:2507-2515. [PMID: 29901788 PMCID: PMC5998947 DOI: 10.1093/cercor/bhy050] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/13/2018] [Indexed: 01/26/2023] Open
Abstract
In the mature mammalian brain, the primary somatosensory and motor cortices are known to be spatially organized such that neural activity relating to specific body parts can be somatopically mapped onto an anatomical "homunculus". This organization creates an internal body representation which is fundamental for precise motor control, spatial awareness and social interaction. Although it is unknown when this organization develops in humans, animal studies suggest that it may emerge even before the time of normal birth. We therefore characterized the somatotopic organization of the primary sensorimotor cortices using functional MRI and a set of custom-made robotic tools in 35 healthy preterm infants aged from 31 + 6 to 36 + 3 weeks postmenstrual age. Functional responses induced by somatosensory stimulation of the wrists, ankles, and mouth had a distinct spatial organization as seen in the characteristic mature homunculus map. In comparison to the ankle, activation related to wrist stimulation was significantly larger and more commonly involved additional areas including the supplementary motor area and ipsilateral sensorimotor cortex. These results are in keeping with early intrinsic determination of a somatotopic map within the primary sensorimotor cortices. This may explain why acquired brain injury in this region during the preterm period cannot be compensated for by cortical reorganization and therefore can lead to long-lasting motor and sensory impairment.
Collapse
Affiliation(s)
- S Dall'Orso
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - J Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - A G Allievi
- Department of Bioengineering, Imperial College London, London, UK
| | - A D Edwards
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - E Burdet
- Department of Bioengineering, Imperial College London, London, UK
| | - T Arichi
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, London, UK
| |
Collapse
|
11
|
Henschke JU, Oelschlegel AM, Angenstein F, Ohl FW, Goldschmidt J, Kanold PO, Budinger E. Early sensory experience influences the development of multisensory thalamocortical and intracortical connections of primary sensory cortices. Brain Struct Funct 2018; 223:1165-1190. [PMID: 29094306 PMCID: PMC5871574 DOI: 10.1007/s00429-017-1549-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Abstract
The nervous system integrates information from multiple senses. This multisensory integration already occurs in primary sensory cortices via direct thalamocortical and corticocortical connections across modalities. In humans, sensory loss from birth results in functional recruitment of the deprived cortical territory by the spared senses but the underlying circuit changes are not well known. Using tracer injections into primary auditory, somatosensory, and visual cortex within the first postnatal month of life in a rodent model (Mongolian gerbil) we show that multisensory thalamocortical connections emerge before corticocortical connections but mostly disappear during development. Early auditory, somatosensory, or visual deprivation increases multisensory connections via axonal reorganization processes mediated by non-lemniscal thalamic nuclei and the primary areas themselves. Functional single-photon emission computed tomography of regional cerebral blood flow reveals altered stimulus-induced activity and higher functional connectivity specifically between primary areas in deprived animals. Together, we show that intracortical multisensory connections are formed as a consequence of sensory-driven multisensory thalamocortical activity and that spared senses functionally recruit deprived cortical areas by an altered development of sensory thalamocortical and corticocortical connections. The functional-anatomical changes after early sensory deprivation have translational implications for the therapy of developmental hearing loss, blindness, and sensory paralysis and might also underlie developmental synesthesia.
Collapse
Affiliation(s)
- Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases Within the Helmholtz Association, Leipziger Str. 44, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuropharmacology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Institute of Anatomy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, German Center for Neurodegenerative Diseases Within the Helmholtz Association, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany.
| |
Collapse
|
12
|
Cardon GJ. Neural Correlates of Sensory Abnormalities Across Developmental Disabilities. INTERNATIONAL REVIEW OF RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 55:83-143. [PMID: 31799108 PMCID: PMC6889889 DOI: 10.1016/bs.irrdd.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abnormalities in sensory processing are a common feature of many developmental disabilities (DDs). Sensory dysfunction can contribute to deficits in brain maturation, as well as many vital functions. Unfortunately, while some patients with DD benefit from the currently available treatments for sensory dysfunction, many do not. Deficiencies in clinical practice surrounding sensory dysfunction may be related to lack of understanding of the neural mechanisms that underlie sensory abnormalities. Evidence of overlap in sensory symptoms between diagnoses suggests that there may be common neural mechanisms that mediate many aspects of sensory dysfunction. Thus, the current manuscript aims to review the extant literature regarding the neural correlates of sensory dysfunction across DD in order to identify patterns of abnormality that span diagnostic categories. Such anomalies in brain structure, function, and connectivity may eventually serve as targets for treatment.
Collapse
Affiliation(s)
- Garrett J Cardon
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
13
|
Ho NTT, Kutzner A, Heese K. Brain plasticity, cognitive functions and neural stem cells: a pivotal role for the brain-specific neural master gene |-SRGAP2-FAM72-|. Biol Chem 2017; 399:55-61. [PMID: 28822221 DOI: 10.1515/hsz-2017-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Due to an aging society with an increased dementia-induced threat to higher cognitive functions, it has become imperative to understand the molecular and cellular events controlling the memory and learning processes in the brain. Here, we suggest that the novel master gene pair |-SRGAP2-FAM72-| (SLIT-ROBO Rho GTPase activating the protein 2, family with sequence similarity to 72) reveals a new dogma for the regulation of neural stem cell (NSC) gene expression and is a distinctive player in the control of human brain plasticity. Insight into the specific regulation of the brain-specific neural master gene |-SRGAP2-FAM72-| may essentially contribute to novel therapeutic approaches to restore or improve higher cognitive functions.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
14
|
McVea DA, Murphy TH, Mohajerani MH. Large Scale Cortical Functional Networks Associated with Slow-Wave and Spindle-Burst-Related Spontaneous Activity. Front Neural Circuits 2016; 10:103. [PMID: 28066190 PMCID: PMC5174115 DOI: 10.3389/fncir.2016.00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
Cortical sensory systems are active with rich patterns of activity during sleep and under light anesthesia. Remarkably, this activity shares many characteristics with those present when the awake brain responds to sensory stimuli. We review two specific forms of such activity: slow-wave activity (SWA) in the adult brain and spindle bursts in developing brain. SWA is composed of 0.5-4 Hz resting potential fluctuations. Although these fluctuations synchronize wide regions of cortex, recent large-scale imaging has shown spatial details of their distribution that reflect underlying cortical structural projections and networks. These networks are regulated, as prior awake experiences alter both the spatial and temporal features of SWA in subsequent sleep. Activity patterns of the immature brain, however, are very different from those of the adult. SWA is absent, and the dominant pattern is spindle bursts, intermittent high frequency oscillations superimposed on slower depolarizations within sensory cortices. These bursts are driven by intrinsic brain activity, which act to generate peripheral inputs, for example via limb twitches. They are present within developing sensory cortex before they are mature enough to exhibit directed movements and respond to external stimuli. Like in the adult, these patterns resemble those evoked by sensory stimulation when awake. It is suggested that spindle-burst activity is generated purposefully by the developing nervous system as a proxy for true external stimuli. While the sleep-related functions of both slow-wave and spindle-burst activity may not be entirely clear, they reflect robust regulated phenomena which can engage select wide-spread cortical circuits. These circuits are similar to those activated during sensory processing and volitional events. We highlight these two patterns of brain activity because both are prominent and well-studied forms of spontaneous activity that will yield valuable insights into brain function in the coming years.
Collapse
Affiliation(s)
- David A. McVea
- Department of Psychiatry, University of British ColumbiaVancouver, BC, Canada
- Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| | - Timothy H. Murphy
- Department of Psychiatry, University of British ColumbiaVancouver, BC, Canada
- Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| | - Majid H. Mohajerani
- Canadian Center for Behavioural Neuroscience, University of LethbridgeLethbridge, AB, Canada
| |
Collapse
|
15
|
Campbell J, Sharma A. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children. Front Hum Neurosci 2016; 10:277. [PMID: 27445738 PMCID: PMC4923113 DOI: 10.3389/fnhum.2016.00277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5-7, 8-10, and 11-15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance.
Collapse
Affiliation(s)
- Julia Campbell
- Central Sensory Processes Laboratory, Department of Communication Sciences and Disorders, University of Texas at Austin, Austin, TXUSA
| | - Anu Sharma
- Brain and Behavior Laboratory, Department of Speech, Language and Hearing Science, Institute of Cognitive Science, University of Colorado Boulder, Boulder, COUSA
| |
Collapse
|
16
|
Regional Specificity of GABAergic Regulation of Cross-Modal Plasticity in Mouse Visual Cortex after Unilateral Enucleation. J Neurosci 2015; 35:11174-89. [PMID: 26269628 DOI: 10.1523/jneurosci.3808-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED In adult mice, monocular enucleation (ME) results in an immediate deactivation of the contralateral medial monocular visual cortex. An early restricted reactivation by open eye potentiation is followed by a late overt cross-modal reactivation by whiskers (Van Brussel et al., 2011). In adolescence (P45), extensive recovery of cortical activity after ME fails as a result of suppression or functional immaturity of the cross-modal mechanisms (Nys et al., 2014). Here, we show that dark exposure before ME in adulthood also prevents the late cross-modal reactivation component, thereby converting the outcome of long-term ME into a more P45-like response. Because dark exposure affects GABAergic synaptic transmission in binocular V1 and the plastic immunity observed at P45 is reminiscent of the refractory period for inhibitory plasticity reported by Huang et al. (2010), we molecularly examined whether GABAergic inhibition also regulates ME-induced cross-modal plasticity. Comparison of the adaptation of the medial monocular and binocular cortices to long-term ME or dark exposure or a combinatorial deprivation revealed striking differences. In the medial monocular cortex, cortical inhibition via the GABAA receptor α1 subunit restricts cross-modal plasticity in P45 mice but is relaxed in adults to allow the whisker-mediated reactivation. In line, in vivo pharmacological activation of α1 subunit-containing GABAA receptors in adult ME mice specifically reduces the cross-modal aspect of reactivation. Together with region-specific changes in glutamate acid decarboxylase (GAD) and vesicular GABA transporter expression, these findings put intracortical inhibition forward as an important regulator of the age-, experience-, and cortical region-dependent cross-modal response to unilateral visual deprivation. SIGNIFICANCE STATEMENT In adult mice, vision loss through one eye instantly reduces neuronal activity in the visual cortex. Strengthening of remaining eye inputs in the binocular cortex is followed by cross-modal adaptations in the monocular cortex, in which whiskers become a dominant nonvisual input source to attain extensive cortical reactivation. We show that the cross-modal component does not occur in adolescence because of increased intracortical inhibition, a phenotype that was mimicked in adult enucleated mice when treated with indiplon, a GABAA receptor α1 agonist. The cross-modal versus unimodal responses of the adult monocular and binocular cortices also mirror regional specificity in inhibitory alterations after visual deprivation. Understanding cross-modal plasticity in response to sensory loss is essential to maximize patient susceptibility to sensory prosthetics.
Collapse
|
17
|
Sharma A, Cardon G. Cortical development and neuroplasticity in Auditory Neuropathy Spectrum Disorder. Hear Res 2015; 330:221-32. [PMID: 26070426 DOI: 10.1016/j.heares.2015.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/27/2015] [Accepted: 06/01/2015] [Indexed: 11/28/2022]
Abstract
Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. This article is part of a Special Issue entitled <Auditory Synaptology>.
Collapse
Affiliation(s)
- Anu Sharma
- University of Colorado at Boulder, Speech, Language, and Hearing Sciences Department, Institute of Cognitive Science and Center for Neuroscience, 2501 Kittredge Loop Rd, Boulder, CO 80309, USA.
| | - Garrett Cardon
- University of Colorado at Boulder, Speech, Language, and Hearing Sciences Department, Institute of Cognitive Science and Center for Neuroscience, 2501 Kittredge Loop Rd, Boulder, CO 80309, USA
| |
Collapse
|
18
|
Nys J, Scheyltjens I, Arckens L. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss. Front Syst Neurosci 2015; 9:60. [PMID: 25972788 PMCID: PMC4412011 DOI: 10.3389/fnsys.2015.00060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research.
Collapse
Affiliation(s)
- Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven Leuven, Belgium
| | | | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven Leuven, Belgium
| |
Collapse
|
19
|
Finlay BL, Uchiyama R. Developmental mechanisms channeling cortical evolution. Trends Neurosci 2015; 38:69-76. [DOI: 10.1016/j.tins.2014.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
|
20
|
Driscoll C. Constructive criticism: An evaluation of Buller and Hardcastle's genetic and neuroscientific arguments against Evolutionary Psychology. PHILOSOPHICAL PSYCHOLOGY 2014. [DOI: 10.1080/09515089.2013.785068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Chen X, Li X, Du Z, Shi W, Yao Y, Wang C, He K, Hao A. Melatonin promotes the acquisition of neural identity through extracellular-signal-regulated kinases 1/2 activation. J Pineal Res 2014; 57:168-76. [PMID: 24942200 DOI: 10.1111/jpi.12153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022]
Abstract
Melatonin, a major pineal secretory product, exerts a range of physiological and neuroprotective effects. However, the functional significance of melatonin in determining neural identity, and the mechanisms by which this may occur, is unknown. In this study, P19 cells were used as a model system and cell behavior was monitored. Our data show that melatonin plays an important role in determining cell fate during neural commitment and promoting the differentiation of pluripotent P19 cells (Oct4(+) Sox2(+) ) into neural stem cells (Oct4(-) Sox2(+) ). This promotion appears to coincide with the activation of the MT1 receptor and phosphorylation of extracellular-signal-regulated kinases 1/2 (ERK1/2). Furthermore, our results show that melatonin regulates neural fate specification of P19 cells through two distinct mechanisms: the promotion of nuclear localization of ERK1/2 and upregulation of Sox2 transcription, and suppression of Smad1-induced expression of mesodermal-specific genes, such as Bra.
Collapse
Affiliation(s)
- Xueran Chen
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bohlken MM, Brouwer RM, Mandl RC, van Haren NE, Brans RG, van Baal GCM, de Geus EJ, Boomsma DI, Kahn RS, Hulshoff Pol HE. Genes contributing to subcortical volumes and intellectual ability implicate the thalamus. Hum Brain Mapp 2014; 35:2632-42. [PMID: 24038793 PMCID: PMC6869799 DOI: 10.1002/hbm.22356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 12/31/2022] Open
Abstract
It has been shown that brain volume and general intellectual ability are to a significant extent influenced by the same genetic factors. Several cortical regions of the brain also show a genetic correlation with intellectual ability, demonstrating that intellectual functioning is probably represented in a heritable distributed network of cortical regions throughout the brain. This study is the first to investigate a genetic association between subcortical volumes and intellectual ability, taking into account the thalamus, caudate nucleus, putamen, globus pallidus, hippocampus, amygdala, and nucleus accumbens using an extended twin design. Genetic modeling was performed on a healthy adult twin sample consisting of 106 twin pairs and 30 of their siblings, IQ data was obtained from 132 subjects. Our results demonstrate that of all subcortical volumes measured, only thalamus volume is significantly correlated with intellectual functioning. Importantly, the association found between thalamus volume and intellectual ability is significantly influenced by a common genetic factor. This genetic factor is also implicated in cerebral brain volume. The thalamus, with its widespread cortical connections, may thus play a key role in human intelligence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - René S. Kahn
- Department of PsychiatryUMC UtrechtThe Netherlands
| | | |
Collapse
|
23
|
Sharma A, Campbell J, Cardon G. Developmental and cross-modal plasticity in deafness: evidence from the P1 and N1 event related potentials in cochlear implanted children. Int J Psychophysiol 2014; 95:135-44. [PMID: 24780192 DOI: 10.1016/j.ijpsycho.2014.04.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/15/2022]
Abstract
Cortical development is dependent on extrinsic stimulation. As such, sensory deprivation, as in congenital deafness, can dramatically alter functional connectivity and growth in the auditory system. Cochlear implants ameliorate deprivation-induced delays in maturation by directly stimulating the central nervous system, and thereby restoring auditory input. The scenario in which hearing is lost due to deafness and then reestablished via a cochlear implant provides a window into the development of the central auditory system. Converging evidence from electrophysiologic and brain imaging studies of deaf animals and children fitted with cochlear implants has allowed us to elucidate the details of the time course for auditory cortical maturation under conditions of deprivation. Here, we review how the P1 cortical auditory evoked potential (CAEP) provides useful insight into sensitive period cut-offs for development of the primary auditory cortex in deaf children fitted with cochlear implants. Additionally, we present new data on similar sensitive period dynamics in higher-order auditory cortices, as measured by the N1 CAEP in cochlear implant recipients. Furthermore, cortical re-organization, secondary to sensory deprivation, may take the form of compensatory cross-modal plasticity. We provide new case-study evidence that cross-modal re-organization, in which intact sensory modalities (i.e., vision and somatosensation) recruit cortical regions associated with deficient sensory modalities (i.e., auditory) in cochlear implanted children may influence their behavioral outcomes with the implant. Improvements in our understanding of developmental neuroplasticity in the auditory system should lead to harnessing central auditory plasticity for superior clinical technique.
Collapse
Affiliation(s)
- Anu Sharma
- Brain and Behavior Laboratory, Speech Language and Hearing Sciences, University of Colorado at Boulder, United States; Institute of Cognitive Science, University of Colorado at Boulder, United States.
| | - Julia Campbell
- Brain and Behavior Laboratory, Speech Language and Hearing Sciences, University of Colorado at Boulder, United States
| | - Garrett Cardon
- Brain and Behavior Laboratory, Speech Language and Hearing Sciences, University of Colorado at Boulder, United States
| |
Collapse
|
24
|
Sun JQ, Sun JW, Hou XY. Cochlear implantation with round window insertion in children less than 2 years. Acta Otolaryngol 2014; 134:286-9. [PMID: 24369766 DOI: 10.3109/00016489.2013.867455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS Cochlear implantation (CI) with round window insertion could be performed safely and effectively in children less than 2 years old, but it is a more challenging operation. OBJECTIVE To discuss the key surgical techniques of CI in children less than 2 years old with profound sensorineural hearing loss. METHODS This was a retrospective study of data collected from patients undergoing CI. CI was performed with round window insertion in children less than 2 years old in Anhui Provincial Hospital between January 2003 and May 2013. RESULTS CI was performed in a total of 85 children. Of these, 80 children (90%) had round window insertion. All children had full insertions of the electrode array, in which the CI went normally and the electrode array was protected well. All implant devices worked normally and all patients performed well during an average follow-up period of 6-36 months. No major or minor complications occurred, and there was no perioperative anesthetic complication.
Collapse
Affiliation(s)
- Jia-Qiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Anhui Provincial Hospital , Hefei , China
| | | | | |
Collapse
|
25
|
Nash-Kille A, Sharma A. Inter-trial coherence as a marker of cortical phase synchrony in children with sensorineural hearing loss and auditory neuropathy spectrum disorder fitted with hearing aids and cochlear implants. Clin Neurophysiol 2013; 125:1459-70. [PMID: 24360131 DOI: 10.1016/j.clinph.2013.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Although brainstem dys-synchrony is a hallmark of children with auditory neuropathy spectrum disorder (ANSD), little is known about how the lack of neural synchrony manifests at more central levels. We used time-frequency single-trial EEG analyses (i.e., inter-trial coherence; ITC), to examine cortical phase synchrony in children with normal hearing (NH), sensorineural hearing loss (SNHL) and ANSD. METHODS Single trial time-frequency analyses were performed on cortical auditory evoked responses from 41 NH children, 91 children with ANSD and 50 children with SNHL. The latter two groups included children who received intervention via hearing aids and cochlear implants. ITC measures were compared between groups as a function of hearing loss, intervention type, and cortical maturational status. RESULTS In children with SNHL, ITC decreased as severity of hearing loss increased. Children with ANSD revealed lower levels of ITC relative to children with NH or SNHL, regardless of intervention. Children with ANSD who received cochlear implants showed significant improvements in ITC with increasing experience with their implants. CONCLUSIONS Cortical phase coherence is significantly reduced as a result of both severe-to-profound SNHL and ANSD. SIGNIFICANCE ITC provides a window into the brain oscillations underlying the averaged cortical auditory evoked response. Our results provide a first description of deficits in cortical phase synchrony in children with SNHL and ANSD.
Collapse
MESH Headings
- Audiometry, Pure-Tone
- Child, Preschool
- Cochlear Implants
- Cortical Synchronization
- Evoked Potentials, Auditory
- Female
- Hearing Aids
- Hearing Loss, Central/diagnosis
- Hearing Loss, Central/physiopathology
- Hearing Loss, Central/rehabilitation
- Hearing Loss, Sensorineural/diagnosis
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/rehabilitation
- Humans
- Infant
- Infant, Newborn
- Linear Models
- Male
- Multivariate Analysis
- Pattern Recognition, Physiological
- Reaction Time
- Reproducibility of Results
- Retrospective Studies
Collapse
Affiliation(s)
- Amy Nash-Kille
- University of Colorado at Boulder, Speech, Language and Hearing Sciences Department, USA
| | - Anu Sharma
- University of Colorado at Boulder, Speech, Language and Hearing Sciences Department, USA.
| |
Collapse
|
26
|
Abstract
In primary sensory neocortical areas of mammals, the distribution of sensory receptors is mapped with topographic precision and amplification in proportion to the peripheral receptor density. The visual, somatosensory and auditory cortical maps are established during a critical period in development. Throughout this window in time, the developing cortical maps are vulnerable to deleterious effects of sense organ damage or sensory deprivation. The rodent barrel cortex offers an invaluable model system with which to investigate the mechanisms underlying the formation of topographic maps and their plasticity during development. Five rows of mystacial vibrissa (whisker) follicles on the snout and an array of sinus hairs are represented by layer IV neural modules ('barrels') and thalamocortical axon terminals in the primary somatosensory cortex. Perinatal damage to the whiskers or the sensory nerve innervating them irreversibly alters the structural organization of the barrels. Earlier studies emphasized the role of the sensory periphery in dictating whisker-specific brain maps and patterns. Recent advances in molecular genetics and analyses of genetically altered mice allow new insights into neural pattern formation in the neocortex and the mechanisms underlying critical period plasticity. Here, we review the development and patterning of the barrel cortex and the critical period plasticity.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201-1075, USA.
| | | |
Collapse
|
27
|
Cardon G, Campbell J, Sharma A. Plasticity in the developing auditory cortex: evidence from children with sensorineural hearing loss and auditory neuropathy spectrum disorder. J Am Acad Audiol 2012; 23:396-411; quiz 495. [PMID: 22668761 DOI: 10.3766/jaaa.23.6.3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The developing auditory cortex is highly plastic. As such, the cortex is both primed to mature normally and at risk for reorganizing abnormally, depending upon numerous factors that determine central maturation. From a clinical perspective, at least two major components of development can be manipulated: (1) input to the cortex and (2) the timing of cortical input. Children with sensorineural hearing loss (SNHL) and auditory neuropathy spectrum disorder (ANSD) have provided a model of early deprivation of sensory input to the cortex and demonstrated the resulting plasticity and development that can occur upon introduction of stimulation. In this article, we review several fundamental principles of cortical development and plasticity and discuss the clinical applications in children with SNHL and ANSD who receive intervention with hearing aids and/or cochlear implants.
Collapse
Affiliation(s)
- Garrett Cardon
- Speech, Language and Hearing Sciences Department, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
28
|
Kotak VC, Péndola LM, Rodríguez-Contreras A. Spontaneous activity in the developing gerbil auditory cortex in vivo involves GABAergic transmission. Neuroscience 2012; 226:130-44. [PMID: 22986170 DOI: 10.1016/j.neuroscience.2012.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
A salient feature of the developing brain is that spontaneous oscillations (SOs) and waves may influence the emergence of synaptic connections. While GABA produces depolarization and may support SOs in the neurons of developing rodents, it elicits hyperpolarization and diminishes SOs in developing gerbil auditory cortex (ACx). Therefore, we asked whether SOs exist in developing gerbil ACx in vivo and if GABAergic involvement can be manipulated. In vivo extracellular recordings in P3-5 ACx revealed SOs with longer burst durations and shorter inter-event intervals compared to ACx SOs in slices. ACx was then validated by gross anatomical features and lesions created at the in vivo recording site that corresponded with the electrophysiological coordinates of thalamorecipient ACx in slices. Further, NeuroVue Red, a lipophilic dye loaded at the in vivo recording sites, stained anatomically identifiable fiber tracks between the ACx and the auditory thalamus, medial geniculate body (MG). Separately, to chronically perturb GABAergic role in SOs, P2-5 pups were administered daily with GABA(A) receptor blocker, bicuculline (BIC). We then recorded from P14-17 ACx neurons in slices generated after hearing onset. ACx neurons from BIC-administered pups exhibited spontaneous action potentials in contrast to subthreshold synaptic potentials in neurons from sham-injected animals. Finally, to elucidate whether the gap junction blocker mefloquine (MFQ) previously shown to dampen ACx SOs in slices affected GABAergic transmission, MFQ was acutely applied in P3-5 slices while spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded. Whereas MFQ increased the amplitude and frequency of sIPSCs in ACx neurons, the broad-spectrum gap junction blocker carbenoxolone decreased sIPSC amplitudes only. Together, we show that P2-5 gerbil ACx can endogenously generate SOs in vivo. Persistence of activity in ACx in P14-17 slices from pups administered with BIC at P2-5 implies that inhibitory GABAergic activity linked with gap-junction participates in the maturation of ACx.
Collapse
Affiliation(s)
- V C Kotak
- Center for Neural Science, 4 Washington Place, New York, NY 10003, USA.
| | | | | |
Collapse
|
29
|
Cloutman LL, Lambon Ralph MA. Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography. Front Neuroanat 2012; 6:34. [PMID: 22952459 PMCID: PMC3429885 DOI: 10.3389/fnana.2012.00034] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/28/2012] [Indexed: 01/17/2023] Open
Abstract
The parcellation of the cortex via its anatomical properties has been an important research endeavor for over a century. To date, however, a universally accepted parcellation scheme for the human brain still remains elusive. In the current review, we explore the use of in vivo diffusion imaging and white matter tractography as a non-invasive method for the structural and functional parcellation of the human cerebral cortex, discussing the strengths and limitations of the current approaches. Cortical parcellation via white matter connectivity is based on the premise that, as connectional anatomy determines functional organization, it should be possible to segregate functionally-distinct cortical regions by identifying similarities and differences in connectivity profiles. Recent studies have provided initial evidence in support of the efficacy of this connectional parcellation methodology. Such investigations have identified distinct cortical subregions which correlate strongly with functional regions identified via fMRI and meta-analyses. Furthermore, a strong parallel between the cortical regions defined via tractographic and more traditional cytoarchitectonic parcellation methods has been observed. However, the degree of correspondence and relative functional importance of cytoarchitectonic- versus connectivity-derived parcellations still remains unclear. Diffusion tractography remains one of the only methods capable of visualizing the structural networks of the brain in vivo. As such, it is of vital importance to continue to improve the accuracy of the methodology and to extend its potential applications in the study of cognition in neurological health and disease.
Collapse
Affiliation(s)
- Lauren L Cloutman
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester Manchester, UK
| | | |
Collapse
|
30
|
Heman-Ackah SE, Roland JT, Waltzman SB. Cochlear implantation in late childhood and adolescence: is there such a thing as 'too late'? Expert Rev Med Devices 2012; 9:201-4. [PMID: 22702249 DOI: 10.1586/erd.12.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Cortical GABAergic interneurons in cross-modal plasticity following early blindness. Neural Plast 2012; 2012:590725. [PMID: 22720175 PMCID: PMC3377178 DOI: 10.1155/2012/590725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/04/2012] [Indexed: 11/30/2022] Open
Abstract
Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA) play an important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity, in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future research in the field.
Collapse
|
32
|
Seelke AMH, Dooley JC, Krubitzer LA. The emergence of somatotopic maps of the body in S1 in rats: the correspondence between functional and anatomical organization. PLoS One 2012; 7:e32322. [PMID: 22393398 PMCID: PMC3290658 DOI: 10.1371/journal.pone.0032322] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/25/2012] [Indexed: 11/29/2022] Open
Abstract
Most of what we know about cortical map development and plasticity comes from studies in mice and rats, and for the somatosensory cortex, almost exclusively from the whisker-dominated posteromedial barrel fields. Whiskers are the main effector organs of mice and rats, and their representation in cortex and subcortical pathways is a highly derived feature of murine rodents. This specialized anatomical organization may therefore not be representative of somatosensory cortex in general, especially for species that utilize other body parts as their main effector organs, like the hands of primates. For these reasons, we examined the emergence of whole body maps in developing rats using electrophysiological recording techniques. In P5, P10, P15, P20 and adult rats, multiple recordings were made in the medial portion of S1 in each animal. Subsequently, these functional maps were related to anatomical parcellations of S1 based on a variety of histological stains. We found that at early postnatal ages (P5) medial S1 was composed almost exclusively of the representation of the vibrissae. At P10, other body part representations including the hindlimb and forelimb were present, although these were not topographically organized. By P15, a clear topographic organization began to emerge coincident with a reduction in receptive field size. By P20, body maps were adult-like. This study is the first to describe how topography of the body develops in S1 in any mammal. It indicates that anatomical parcellations and functional maps are initially incongruent but become tightly coupled by P15. Finally, because anatomical and functional specificity of developing barrel cortex appears much earlier in postnatal life than the rest of the body, the entire primary somatosensory cortex should be considered when studying general topographic map formation in development.
Collapse
Affiliation(s)
- Adele M. H. Seelke
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - James C. Dooley
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Leah A. Krubitzer
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
- Department of Psychology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
33
|
Sharma A, Campbell J. A sensitive period for cochlear implantation in deaf children. J Matern Fetal Neonatal Med 2012; 24 Suppl 1:151-3. [PMID: 21942615 DOI: 10.3109/14767058.2011.607614] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The absence of hearing, as in congenital deafness, affects normal development of the auditory brain resulting in deficits in spoken language. Cochlear implants provide direct stimulation to the central auditory nervous system of hearing impaired children allowing cortical development to progress. However, implantation needs to take place within a brief window in early childhood for it to be maximally effective to allow children to acquire speech and oral language. In this review, we describe age cut-offs for a sensitive period for central auditory development in children who receive cochlear implants. We review consequences for cortical re-organization and cortical de-coupling when children receive cochlear implants after the end of the sensitive period.
Collapse
Affiliation(s)
- Anu Sharma
- Department of Speech, Language, and Hearing Sciences, University of Colorado at Boulder, CO, USA.
| | | |
Collapse
|
34
|
Dye CA, Abbott CW, Huffman KJ. Bilateral enucleation alters gene expression and intraneocortical connections in the mouse. Neural Dev 2012; 7:5. [PMID: 22289655 PMCID: PMC3347983 DOI: 10.1186/1749-8104-7-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/30/2012] [Indexed: 02/08/2023] Open
Abstract
Background Anatomically and functionally distinct sensory and motor neocortical areas form during mammalian development through a process called arealization. This process is believed to be reliant on both activity-dependent and activity-independent mechanisms. Although both mechanisms are thought to function concurrently during arealization, the nature of their interaction is not understood. To examine the potential interplay of extrinsic activity-dependent mechanisms, such as sensory input, and intrinsic activity-independent mechanisms, including gene expression in mouse neocortical development, we performed bilateral enucleations in newborn mice and conducted anatomical and molecular analyses 10 days later. In this study, by surgically removing the eyes of the newborn mouse, we examined whether early enucleation would impact normal gene expression and the development of basic anatomical features such as intraneocortical connections and cortical area boundaries in the first 10 days of life, before natural eye opening. We examined the acute effects of bilateral enucleation on the lateral geniculate nucleus of the thalamus and the neocortical somatosensory-visual area boundary through detailed analyses of intraneocortical connections and gene expression of six developmentally regulated genes at postnatal day 10. Results Our results demonstrate short-term plasticity on postnatal day 10 resulting from the removal of the eyes at birth, with changes in nuclear size and gene expression within the lateral geniculate nucleus as well as a shift in intraneocortical connections and ephrin A5 expression at the somatosensory-visual boundary. In this report, we highlight the correlation between positional shifts in ephrin A5 expression and improper refinement of intraneocortical connections observed at the somatosensory-visual boundary in enucleates on postnatal day 10. Conclusions Bilateral enucleation induces a positional shift of both ephrin A5 expression and intraneocortical projections at the somatosensory-visual border in only 10 days. These changes occur prior to natural eye opening, suggesting a possible role of spontaneous retinal activity in area border formation within the neocortex. Through these analyses, we gain a deeper understanding of how extrinsic activity-dependent mechanisms, particularly input from sensory organs, are integrated with intrinsic activity-independent mechanisms to regulate neocortical arealization and plasticity.
Collapse
Affiliation(s)
- Catherine A Dye
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
35
|
Reciprocal anatomical relationship between primary sensory and prefrontal cortices in the human brain. J Neurosci 2011; 31:9472-80. [PMID: 21715612 DOI: 10.1523/jneurosci.0308-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human brain exhibits remarkable interindividual variability in cortical architecture. Despite extensive evidence for the behavioral consequences of such anatomical variability in individual cortical regions, it is unclear whether and how different cortical regions covary in morphology. Using a novel approach that combined noninvasive cortical functional mapping with whole-brain voxel-based morphometric analyses, we investigated the anatomical relationship between the functionally mapped visual cortices and other cortical structures in healthy humans. We found a striking anticorrelation between the gray matter volume of primary visual cortex and that of anterior prefrontal cortex, independent from individual differences in overall brain volume. Notably, this negative correlation formed along anatomically separate pathways, as the dorsal and ventral parts of primary visual cortex showed focal anticorrelation with the dorsolateral and ventromedial parts of anterior prefrontal cortex, respectively. Moreover, a similar inverse correlation was found between primary auditory cortex and anterior prefrontal cortex, but no anatomical relationship was observed between other visual cortices and anterior prefrontal cortex. Together, these findings indicate that an anatomical trade-off exists between primary sensory cortices and anterior prefrontal cortex as a possible general principle of human cortical organization. This new discovery challenges the traditional view that the sizes of different brain areas simply scale with overall brain size and suggests the existence of shared genetic or developmental factors that contributes to the formation of anatomically and functionally distant cortical regions.
Collapse
|
36
|
Finlay BL, Hinz F, Darlington RB. Mapping behavioural evolution onto brain evolution: the strategic roles of conserved organization in individuals and species. Philos Trans R Soc Lond B Biol Sci 2011; 366:2111-23. [PMID: 21690129 PMCID: PMC3130365 DOI: 10.1098/rstb.2010.0344] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pattern of individual variation in brain component structure in pigs, minks and laboratory mice is very similar to variation across species in the same components, at a reduced scale. This conserved pattern of allometric scaling resembles robotic architectures designed to be robust to changes in computing power and task demands, and may reflect the mechanism by which both growing and evolving brains defend basic sensory, motor and homeostatic functions at multiple scales. Conserved scaling rules also have implications for species-specific sensory and social communication systems, motor competencies and cognitive abilities. The role of relative changes in neuron number in the central nervous system in producing species-specific behaviour is thus highly constrained, while changes in the sensory and motor periphery, and in motivational and attentional systems increase in probability as the principal loci producing important changes in functional neuroanatomy between species. By their nature, these loci require renewed attention to development and life history in the initial organization and production of species-specific behavioural abilities.
Collapse
Affiliation(s)
- Barbara L Finlay
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
37
|
Sharma A, Cardon G, Henion K, Roland P. Cortical maturation and behavioral outcomes in children with auditory neuropathy spectrum disorder. Int J Audiol 2011; 50:98-106. [PMID: 21265637 DOI: 10.3109/14992027.2010.542492] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED OBJECTIVE. Auditory neuropathy spectrum disorder (ANSD) affects approximately 10% of patients with sensorineural hearing loss. While many studies report abnormalities at the level of the cochlea, auditory nerve, and brainstem in children with ANSD, much less is known about their cortical development. We examined central auditory maturation in 21 children with ANSD. DESIGN. Morphology, latency and amplitude of the P1 cortical auditory evoked potential (CAEP) were used to assess auditory cortical maturation. Children's scores on a measure of auditory skill development (IT-MAIS) were correlated with CAEPs. Study Sample. Participants were 21 children with ANSD. All were hearing aid users. RESULT Children with ANSD exhibited differences in central auditory maturation. Overall, two-thirds of children revealed present P1 CAEP responses. Of these, just over one third (38%) showed normal P1 response morphology, latency and amplitude, while another third (33%) showed delayed P1 response latencies and significantly smaller amplitudes. The remaining children (29%) revealed abnormal or absent P1 responses. Overall, P1 responses were significantly correlated with auditory skill development. CONCLUSION Our results suggest that P1 CAEP responses may be: (i) A useful indicator of the extent to which neural dys-synchrony disrupts cortical development, (ii) A good predictor of behavioral outcome in children with ANSD.
Collapse
Affiliation(s)
- Anu Sharma
- Department of Speech, Language and Hearing Sciences, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
38
|
Cardon G, Sharma A. Cortical Auditory Evoked Potentials in Auditory Neuropathy Spectrum Disorder: Clinical Implications. ACTA ACUST UNITED AC 2011. [DOI: 10.1044/hhdc21.1.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Standard clinical audiologic assessments have proven useful in the detection and diagnosis of auditory neuropathy spectrum disorder (ANSD). However, beyond initial diagnosis, clinicians have fewer tools to appropriately manage infants and young children with ANSD. While cortical auditory evoked potentials (CAEP) are not currently used routinely in the management of children with ANSD, mounting evidence suggests that they are not only recordable in this population, but that they may provide useful information regarding treatment and behavioral outcomes in children with ANSD. The report discusses the potential clinical utility of CAEPs in children with ANSD, using a case illustration.
Collapse
Affiliation(s)
- Garrett Cardon
- Department of Speech, Language, and Hearing Science (Science or Sciences? See bio info at end of article), University of Colorado at Boulder Boulder, CO
| | - Anu Sharma
- Department of Speech, Language, and Hearing Science (Science or Sciences? See bio info at end of article), University of Colorado at Boulder Boulder, CO
| |
Collapse
|
39
|
González JJ, Mañas S, De Vera L, Méndez LD, López S, Garrido JM, Pereda E. Assessment of electroencephalographic functional connectivity in term and preterm neonates. Clin Neurophysiol 2011; 122:696-702. [DOI: 10.1016/j.clinph.2010.08.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 07/14/2010] [Accepted: 08/11/2010] [Indexed: 10/18/2022]
|
40
|
Kanai R, Rees G. The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci 2011; 12:231-42. [PMID: 21407245 DOI: 10.1038/nrn3000] [Citation(s) in RCA: 706] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inter-individual variability in perception, thought and action is frequently treated as a source of 'noise' in scientific investigations of the neural mechanisms that underlie these processes, and discarded by averaging data from a group of participants. However, recent MRI studies in the human brain show that inter-individual variability in a wide range of basic and higher cognitive functions - including perception, motor control, memory, aspects of consciousness and the ability to introspect - can be predicted from the local structure of grey and white matter as assessed by voxel-based morphometry or diffusion tensor imaging. We propose that inter-individual differences can be used as a source of information to link human behaviour and cognition to brain anatomy.
Collapse
Affiliation(s)
- Ryota Kanai
- The UCL Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AR, UK.
| | | |
Collapse
|
41
|
Kupers R, Pietrini P, Ricciardi E, Ptito M. The nature of consciousness in the visually deprived brain. Front Psychol 2011; 2:19. [PMID: 21713178 PMCID: PMC3111253 DOI: 10.3389/fpsyg.2011.00019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/25/2011] [Indexed: 11/16/2022] Open
Abstract
Vision plays a central role in how we represent and interact with the world around us. The primacy of vision is structurally imbedded in cortical organization as about one-third of the cortical surface in primates is involved in visual processes. Consequently, the loss of vision, either at birth or later in life, affects brain organization and the way the world is perceived and acted upon. In this paper, we address a number of issues on the nature of consciousness in people deprived of vision. Do brains from sighted and blind individuals differ, and how? How does the brain of someone who has never had any visual perception form an image of the external world? What is the subjective correlate of activity in the visual cortex of a subject who has never seen in life? More in general, what can we learn about the functional development of the human brain in physiological conditions by studying blindness? We discuss findings from animal research as well from recent psychophysical and functional brain imaging studies in sighted and blind individuals that shed some new light on the answers to these questions.
Collapse
Affiliation(s)
- Ron Kupers
- Institute of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen Copenhagen, Denmark
| | | | | | | |
Collapse
|
42
|
Cahalane DJ, Clancy B, Kingsbury MA, Graf E, Sporns O, Finlay BL. Network structure implied by initial axon outgrowth in rodent cortex: empirical measurement and models. PLoS One 2011; 6:e16113. [PMID: 21264302 PMCID: PMC3019165 DOI: 10.1371/journal.pone.0016113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 12/13/2010] [Indexed: 01/21/2023] Open
Abstract
The developmental mechanisms by which the network organization of the adult cortex is established are incompletely understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability distribution. The networks generated are described by a number of graph theoretic measurements including graph efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network efficiency and robustness. Future work will test the model's predictions for connectivity in larger cortices to gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient and economical connectivity in larger brains.
Collapse
Affiliation(s)
- Diarmuid J Cahalane
- Center for Applied Mathematics, Cornell University, Ithaca, New York, United States of America.
| | | | | | | | | | | |
Collapse
|
43
|
Kupers R, Ptito M. Insights from darkness: what the study of blindness has taught us about brain structure and function. PROGRESS IN BRAIN RESEARCH 2011; 192:17-31. [PMID: 21763516 DOI: 10.1016/b978-0-444-53355-5.00002-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vision plays a central role in how we represent and interact with the world around us. Roughly, one-third of the cortical surface in primates is involved in visual processes. The loss of vision, either at birth or later in life, must therefore have profound consequences on brain organization and on the way the world is perceived and acted upon. In this chapter, we formulate a number of critical questions. Do blind individuals indeed develop supra-normal capacities for the remaining senses in order to compensate for their loss of vision? Do brains from sighted and blind individuals differ, and how? How does the brain of someone who has never had any visual perception form an image of the external world? We discuss findings from animal research as well from recent psychophysical and functional brain imaging studies in sighted and blind individuals that shed some new light on the answers to these questions.
Collapse
Affiliation(s)
- Ron Kupers
- Institute of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
44
|
Hasan A, McIntosh AM, Droese UA, Schneider-Axmann T, Lawrie SM, Moorhead TW, Tepest R, Maier W, Falkai P, Wobrock T. Prefrontal cortex gyrification index in twins: an MRI study. Eur Arch Psychiatry Clin Neurosci 2011; 261:459-65. [PMID: 21336867 PMCID: PMC3182317 DOI: 10.1007/s00406-011-0198-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/03/2011] [Indexed: 11/30/2022]
Abstract
Cortical development and folding seems to be under environmental as well as genetic control. The aim of our study was to estimate the genetic influence on gyrification and cortical volumes, comparing prefrontal gyrification index (GI) in monozygotic (MZ) and dizygotic (DZ) twin pairs, and unrelated pairs. Twenty-four subjects (6 pairs of MZ and 6 pairs of DZ twins) were included in this study. Prefrontal cortical folding (gyrification) was measured by an automated and manual version of the gyrification index (A-GI, M-GI) according to previously published protocols. MR-imaging was performed and 3 representative slices were selected from coronar MR-imaging scans. The volumes of the total brain, temporal lobes, prefrontal lobes, and cerebellum were analyzed, too. To evaluate similarity in GI, absolute differences in GI, and brain volumes as well as intraclass correlations of twin pairs were compared with regard to twin status. Finally, a control group of unrelated pairs was assembled from the first two study groups and analyzed. Compared to unrelated pairs, twin pairs exhibited more similarity concerning different brain volumes and a trend to more similarity concerning A-GI. MZ twins did not present more similarity concerning GI (automatically and manually measured) and volume measurements compared to DZ twins. Different factors, like intrauterine factors, postnatal development conditions, and especially environmental factors might account for the differences between related and unrelated pairs. The nonexistence of a pronounced similarity in MZ twins compared to DZ twins concerning prefrontal GI raises questions about the extent of genetic influence on GI.
Collapse
Affiliation(s)
- Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Georg-August-University, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
| | - Andrew M. McIntosh
- Department of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Uta-Aglaia Droese
- Department of Psychiatry and Psychotherapy, Georg-August-University, Von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, Georg-August-University, Von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Stephen M. Lawrie
- Department of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ralf Tepest
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, German
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Georg-August-University, Von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Thomas Wobrock
- Department of Psychiatry and Psychotherapy, Georg-August-University, Von-Siebold-Str. 5, 37075 Göttingen, Germany
| |
Collapse
|
45
|
Dye CA, El Shawa H, Huffman KJ. A lifespan analysis of intraneocortical connections and gene expression in the mouse I. ACTA ACUST UNITED AC 2010; 21:1311-30. [PMID: 21060110 DOI: 10.1093/cercor/bhq212] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A hallmark of mammalian evolution is the structural and functional complexity of the cerebral cortex. Within the cerebral cortex, the neocortex, or isocortex, is a 6-layered complexly organized structure that is comprised of multiple interconnected sensory and motor areas. These areas and their precise patterns of connections arise during development, through a process termed arealization. Intrinsic, activity-independent and extrinsic, activity-dependent mechanisms are involved in the development of neocortical areas and their connections. The intrinsic molecular mechanisms involved in the establishment of this sophisticated network are not fully understood. In this report (I) and the companion report (II), we present the first lifespan analysis of ipsilateral intraneocortical connections (INCs) among multiple sensory and motor regions, from the embryonic period to adulthood in the mouse. Additionally, we characterize the neocortical expression patterns of several developmentally regulated genes that are of central importance to studies investigating the molecular control of arealization from embryonic day 13.5 to postnatal day (P) 3 (I) and P6 to 50 (II). In this analysis, we utilize novel methods to correlate the boundaries of gene expression with INCs and developing areal boundaries, in order to better understand the nature of gene-areal relationships during development.
Collapse
Affiliation(s)
- Catherine A Dye
- Department of Psychology and Interdepartmental Neuroscience Program, University of California-Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | |
Collapse
|
46
|
Desgent S, Boire D, Ptito M. Altered expression of parvalbumin and calbindin in interneurons within the primary visual cortex of neonatal enucleated hamsters. Neuroscience 2010; 171:1326-40. [PMID: 20937364 DOI: 10.1016/j.neuroscience.2010.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 01/08/2023]
Abstract
In the present study, we tested the hypothesis that the expression of calcium binding proteins (CaBPs), parvalbumin (PV), calretinin (CR) and calbindin (CB), is dependent upon sensory experience as emphasized in visual deprivation and deafferentation studies. The expression of CaBPs was studied in interneurons within the primary and extrastriate visual cortices (V1, V2M, V2L) and auditory cortex (AC) of adult hamsters enucleated at birth. The effects of enucleation were mainly confined to area V1 where there was a significant volume reduction (26%) and changes in the laminar distribution of PV and CB immunoreactive (IR) cells. The density of PV-IR cell bodies was significantly increased in layer IV and reduced in layer V. Moreover, the density of CB-IR neurons was inferior in layer V of V1 in enucleated hamsters (EH) compared to controls. These results suggest that some features of the laminar distribution of specific CaBPs, in primary sensory cortices, are dependent upon or modulated by sensory input.
Collapse
Affiliation(s)
- S Desgent
- École d'Optométrie, Université de Montréal, Québec, Canada, H3C 3J7
| | | | | |
Collapse
|
47
|
Sherwood CC, Raghanti MA, Stimpson CD, Spocter MA, Uddin M, Boddy AM, Wildman DE, Bonar CJ, Lewandowski AH, Phillips KA, Erwin JM, Hof PR. Inhibitory interneurons of the human prefrontal cortex display conserved evolution of the phenotype and related genes. Proc Biol Sci 2009; 277:1011-20. [PMID: 19955152 DOI: 10.1098/rspb.2009.1831] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inhibitory interneurons participate in local processing circuits, playing a central role in executive cognitive functions of the prefrontal cortex. Although humans differ from other primates in a number of cognitive domains, it is not currently known whether the interneuron system has changed in the course of primate evolution leading to our species. In this study, we examined the distribution of different interneuron subtypes in the prefrontal cortex of anthropoid primates as revealed by immunohistochemistry against the calcium-binding proteins calbindin, calretinin and parvalbumin. In addition, we tested whether genes involved in the specification, differentiation and migration of interneurons show evidence of positive selection in the evolution of humans. Our findings demonstrate that cellular distributions of interneuron subtypes in human prefrontal cortex are similar to other anthropoid primates and can be explained by general scaling rules. Furthermore, genes underlying interneuron development are highly conserved at the amino acid level in primate evolution. Taken together, these results suggest that the prefrontal cortex in humans retains a similar inhibitory circuitry to that in closely related primates, even though it performs functional operations that are unique to our species. Thus, it is likely that other significant modifications to the connectivity and molecular biology of the prefrontal cortex were overlaid on this conserved interneuron architecture in the course of human evolution.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vanhatalo S, Jousmäki V, Andersson S, Metsäranta M. An easy and practical method for routine, bedside testing of somatosensory systems in extremely low birth weight infants. Pediatr Res 2009; 66:710-3. [PMID: 19730159 DOI: 10.1203/pdr.0b013e3181be9d66] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study was set out to develop and describe a novel, simple, and safe method for routine bedside testing of somatosensory system in very early preterm infants. We recorded electroencephalogram (EEG) activity after tactile stimulation of hand (palm) and foot (sole) by a soft hairbrush stimulator in extremely low birth weight infants (n = 10; GA, 24-28, recording at conceptional age 30-32 wk) and compared with the raw EEG responses to those seen by one- or two-channel brain monitors. In every subject, single tactile stimuli produced prominent (100-350 microV) somatosensory evoked responses (SERs) that were readily identified in the ongoing EEG signal. The maximal SER was in the contralateral hemisphere at around the corresponding somatosensory representation areas. Conventional EEG filtering did significantly reduce the SERs, but they could still be identified in the routine brain monitor setting widely available in NICUs. The method described here is directly applicable to assessment of integrity of somatosensory system in the early preterm period. It needs minimal training and requires an EEG system or a brain monitor device that is available in most units. Thus, the technique is likely to open a novel window to neurologic assessment of these babies.
Collapse
Affiliation(s)
- Sampsa Vanhatalo
- Department of Clinical Neurophysiology, Helsinki University Central Hospital, P.O. Box 280, FIN-00029 HUS, Finland.
| | | | | | | |
Collapse
|
49
|
Vanhatalo S, Hellström-Westas L, De Vries LS. Bumetanide for neonatal seizures: Based on evidence or enthusiasm? Epilepsia 2009; 50:1292-3. [PMID: 19496810 DOI: 10.1111/j.1528-1167.2008.01894.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Karlen SJ, Krubitzer L. Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain. Cereb Cortex 2008; 19:1360-71. [PMID: 18842663 DOI: 10.1093/cercor/bhn176] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alterations in the activity of one sensory system can affect the development of cortical and subcortical structures in all sensory systems. In this study, we characterize the changes that occur in visual and nonvisual areas of the brain following bilateral enucleation in short-tailed opossums. We demonstrate that bilateral enucleation early in development can significantly decrease brain size. This change is driven primarily by a decrease in the size of the thalamus, midbrain, and hindbrain, rather than a decrease in the size of the cortical hemispheres. We also found a significant decrease in the size of the lateral geniculate nucleus in bilaterally enucleated animals. Although the overall size of the neocortex was the same, the percentage of neocortex devoted to visual areas V1 (primary visual area) and caudotemporal area were significantly smaller in bilaterally enucleated opossums and the percentage of neocortex devoted to the primary somatosensory area (S1) was significantly larger, although S1 did not change in size to the same extent as V1. Our data suggest that during development the relative activity patterns between sensory systems, which are driven by activity from unique sets of sensory receptor arrays, play a major role in determining the relative size and organization of cortical and subcortical areas.
Collapse
Affiliation(s)
- Sarah J Karlen
- Center for Neuroscience, University of California-Davis, Davis, CA 95618, USA
| | | |
Collapse
|