1
|
Glockzin KM, Narindoshvili T, Raushel FM. Regiochemical Analysis of the ProTide Activation Mechanism. Biochemistry 2024; 63:1774-1782. [PMID: 38958242 PMCID: PMC11256751 DOI: 10.1021/acs.biochem.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
ProTides are nucleotide analogues used for the treatment of specific viral infections. These compounds consist of a masked nucleotide that undergoes in vivo enzymatic and spontaneous chemical transformations to generate a free mononucleotide that is ultimately transformed to the pharmaceutically active triphosphorylated drug. The three FDA approved ProTides are composed of a phosphoramidate (P-N) core coupled with a nucleoside analogue, phenol, and an l-alanyl carboxylate ester. The previously proposed mechanism of activation postulates the existence of an unstable 5-membered mixed anhydride cyclic intermediate formed from the direct attack of the carboxylate group of the l-alanyl moiety with expulsion of phenol. The mixed anhydride cyclic intermediate is further postulated to undergo spontaneous hydrolysis to form a linear l-alanyl phosphoramidate product. In the proposed mechanism of activation, the 5-membered mixed anhydride intermediate has been detected previously using mass spectrometry, but the specific site of nucleophilic attack by water (P-O versus C-O) has not been determined. To further interrogate the mechanism for hydrolysis of the putative 5-membered cyclic intermediate formed during ProTide activation, the reaction was conducted in 18O-labeled water using a ProTide analogue that could be activated by carboxypeptidase Y. Mass spectrometry and 31P NMR spectroscopy were used to demonstrate that the hydrolysis of the mixed anhydride 5-membered intermediate occurs with exclusive attack at the phosphorus center.
Collapse
Affiliation(s)
- Kyle M. Glockzin
- Department
of Biochemistry & Biophysics, Texas
A&M University, College Station, Texas 77843, United States
| | - Tamari Narindoshvili
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Frank M. Raushel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biochemistry & Biophysics, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Farrell RE, Steele H, Middleton RJ, Skropeta D, Liu GJ. Cytotoxicity of phosphoramidate, bis-amidate and cycloSal prodrug metabolites against tumour and normal cells. RSC Med Chem 2024; 15:1973-1981. [PMID: 38903945 PMCID: PMC11109934 DOI: 10.1039/d4md00115j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 06/22/2024] Open
Abstract
Phosphonate and phosphate prodrugs are integral to enhancing drug permeability, but the potential toxicity of their metabolites requires careful consideration. This study evaluates the impact of widely used phosphoramidate, bis-amidate, and cycloSal phosph(on)ate prodrug metabolites on BxPC3 pancreatic cancer cells, GL261-Luc glioblastoma cells, and primary cultured mouse astrocytes. 1-Naphthol and 2-naphthol demonstrated the greatest toxicity. Notably, 2-naphthol exhibited an ED50 of 21 μM on BxPC3 cells, surpassing 1-naphthol with an ED50 of 82 μM. Real-time xCELLigence experiments revealed notable activity for both metabolites at a low concentration of 16 μM. On primary cultured mouse astrocyte cells, all prodrugs exhibited reduced viability at 128 to 256 μM after only 4 hours of exposure. A cell-type-dependent sensitivity to phosph(on)ate prodrug metabolites was evident, with normal cells showing greater susceptibility than corresponding tumour cells. The results suggest it is essential to consider the potential cytotoxicity of phosph(on)ate prodrugs in the drug design and evaluation process.
Collapse
Affiliation(s)
- Rebecca E Farrell
- School of Chemistry & Molecular Bioscience and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong Wollongong NSW 2522 Australia
| | - Harrison Steele
- School of Chemistry & Molecular Bioscience and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong Wollongong NSW 2522 Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW 2234 Australia
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong Wollongong NSW 2522 Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW 2234 Australia
- Discipline of Medical Imaging Sciences, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2050 Australia
| |
Collapse
|
3
|
Kalčic F, Zgarbová M, Hodek J, Chalupský K, Dračínský M, Dvořáková A, Strmeň T, Šebestík J, Baszczyňski O, Weber J, Mertlíková-Kaiserová H, Janeba Z. Discovery of Modified Amidate (ProTide) Prodrugs of Tenofovir with Enhanced Antiviral Properties. J Med Chem 2021; 64:16425-16449. [PMID: 34713696 DOI: 10.1021/acs.jmedchem.1c01444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study describes the discovery of novel prodrugs bearing tyrosine derivatives instead of the phenol moiety present in FDA-approved tenofovir alafenamide fumarate (TAF). The synthesis was optimized to afford diastereomeric mixtures of novel prodrugs in one pot (yields up to 86%), and the epimers were resolved using a chiral HPLC column into fast-eluting and slow-eluting epimers. In human lymphocytes, the most efficient tyrosine-based prodrug reached a single-digit picomolar EC50 value against HIV-1 and nearly 300-fold higher selectivity index (SI) compared to TAF. In human hepatocytes, the most efficient prodrugs exhibited subnanomolar EC50 values for HBV and up to 26-fold higher SI compared to TAF. Metabolic studies demonstrated markedly higher cellular uptake of the prodrugs and substantially higher levels of released tenofovir inside the cells compared to TAF. These promising results provide a strong foundation for further evaluation of the reported prodrugs and their potential utility in the development of highly potent antivirals.
Collapse
Affiliation(s)
- Filip Kalčic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Karel Chalupský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Alexandra Dvořáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Timotej Strmeň
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Ondřej Baszczyňski
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
4
|
Wiemer AJ. Metabolic Efficacy of Phosphate Prodrugs and the Remdesivir Paradigm. ACS Pharmacol Transl Sci 2020; 3:613-626. [PMID: 32821882 PMCID: PMC7409933 DOI: 10.1021/acsptsci.0c00076] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/08/2023]
Abstract
![]()
Drugs that contain phosphates (and
phosphonates or phosphinates)
have intrinsic absorption issues and are therefore often delivered
in prodrug forms to promote their uptake. Effective prodrug forms
distribute their payload to the site of the intended target and release
it efficiently with minimal byproduct toxicity. The ability to balance
unwanted payload release during transit with desired release at the
site of action is critical to prodrug efficacy. Despite decades of
research on prodrug forms, choosing the ideal prodrug form remains
a challenge which is often solved empirically. The recent emergency
use authorization of the antiviral remdesivir for COVID-19 exemplifies
a new approach for delivery of phosphate prodrugs by parenteral dosing,
which minimizes payload release during transit and maximizes tissue
payload distribution. This review focuses on the role of metabolic
activation in efficacy during oral and parenteral dosing of phosphate,
phosphonate, and phosphinate prodrugs. Through examining prior structure–activity
studies on prodrug forms and the choices that led to development of
remdesivir and other clinical drugs and drug candidates, a better
understanding of their ability to distribute to the planned site of
action, such as the liver, plasma, PBMCs, or peripheral tissues, can
be gained. The structure–activity relationships described here
will facilitate the rational design of future prodrugs.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Sivala MR, Chintha V, Potla KM, Chinnam S, Chamarthi NR. In silico docking studies and synthesis of new phosphoramidate derivatives of 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole as potential antimicrobial agents. J Recept Signal Transduct Res 2020; 40:486-492. [DOI: 10.1080/10799893.2020.1752719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Venkataramaiah Chintha
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, India
- Department of Zoology, Sri Venkateswara Vedic University, Tirupati, India
| | - Krishna Murthy Potla
- Department of Chemistry, Bapatla Engineering College (Autonomous), Acharya Nagarjuna University Post Graduate Research Centre, Bapatla, India
| | - Sampath Chinnam
- Department of Chemistry, B.M.S. College of Engineering, Bengaluru, India
| | | |
Collapse
|
6
|
Slusarczyk M, Serpi M, Pertusati F. Phosphoramidates and phosphonamidates (ProTides) with antiviral activity. Antivir Chem Chemother 2018; 26:2040206618775243. [PMID: 29792071 PMCID: PMC5971382 DOI: 10.1177/2040206618775243] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Following the first report on the nucleoside phosphoramidate (ProTide) prodrug approach in 1990 by Chris McGuigan, the extensive investigation of ProTide technology has begun in many laboratories. Designed with aim to overcome limitations and the key resistance mechanisms associated with nucleoside analogues used in the clinic (poor cellular uptake, poor conversion to the 5'-monophosphate form), the ProTide approach has been successfully applied to a vast number of nucleoside analogues with antiviral and anticancer activity. ProTides consist of a 5'-nucleoside monophosphate in which the two hydroxyl groups are masked with an amino acid ester and an aryloxy component which once in the cell is enzymatically metabolized to deliver free 5'-monophosphate, which is further transformed to the active 5'-triphosphate form of the nucleoside analogue. In this review, the seminal contribution of Chris McGuigan's research to this field is presented. His technology proved to be extremely successful in drug discovery and has led to two Food and Drug Administration-approved antiviral agents.
Collapse
Affiliation(s)
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Abstract
The ProTide technology is a prodrug approach developed for the efficient intracellular delivery of nucleoside analogue monophosphates and monophosphonates. In this approach, the hydroxyls of the monophosphate or monophosphonate groups are masked by an aromatic group and an amino acid ester moiety, which are enzymatically cleaved-off inside cells to release the free nucleoside monophosphate and monophosphonate species. Structurally, this represents the current end-point of an extensive medicinal chemistry endeavor that spans almost three decades. It started from the masking of nucleoside monophosphate and monophosphonate groups by simple alkyl groups and evolved into the sophisticated ProTide system as known today. This technology has been extensively employed in drug discovery, and it has already led to the discovery of two FDA-approved (antiviral) ProTides. In this work, we will review the development of the ProTide technology, its application in drug discovery, and its role in the improvement of drug delivery and efficacy.
Collapse
Affiliation(s)
- Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences , Cardiff University , Redwood Building , Cardiff CF10 3NB , U.K
| | - Hardeep S Rattan
- School of Pharmacy, College of Medical and Dental Sciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy , Rega Institute for Medical Research , Herestraat 49 , 3000 Leuven , Belgium
| |
Collapse
|
8
|
Mcguigan C, Velázquez S, De Clercq E, Balzarini J. Synthesis and Evaluation of 5-Halo 2′,3′-Didehydro-2′,3′-Dideoxynucleosides and their Blocked Phosphoramidates as Potential Anti-Human Immunodeficiency virus Agents: An Example of ‘Kinase Bypass’. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/095632029700800605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- C Mcguigan
- Welsh School of Pharmacy, University of Wales Cardiff, Redwood Building, King Edward VII Avenue, Cardiff CF1 3XF, UK
| | - S Velázquez
- Welsh School of Pharmacy, University of Wales Cardiff, Redwood Building, King Edward VII Avenue, Cardiff CF1 3XF, UK
| | - E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000, Leuven, Belgium
| | - J Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000, Leuven, Belgium
| |
Collapse
|
9
|
Choy CJ, Ley CR, Davis AL, Backer BS, Geruntho JJ, Clowers BH, Berkman CE. Second-Generation Tunable pH-Sensitive Phosphoramidate-Based Linkers for Controlled Release. Bioconjug Chem 2016; 27:2206-13. [DOI: 10.1021/acs.bioconjchem.6b00422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Cindy J. Choy
- Washington State University, Department
of Chemistry, P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Corinne R. Ley
- Washington State University, Department
of Chemistry, P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Austen L. Davis
- Washington State University, Department
of Chemistry, P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Brian S. Backer
- Washington State University, Department
of Chemistry, P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Jonathan J. Geruntho
- Washington State University, Department
of Chemistry, P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Brian H. Clowers
- Washington State University, Department
of Chemistry, P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Clifford E. Berkman
- Washington State University, Department
of Chemistry, P.O. Box 644630, Pullman, Washington 99164-4630, United States
| |
Collapse
|
10
|
Munichandra Reddy S, Subba Rao D, Sudhamani H, Gnana Kumari P, Naga Raju C. New Phosphoramidate Derivatives of 5-Nitroquinolin-8-ol: Synthesis, Spectral Characterization, and Evaluation of Biological Activity. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2015.1054484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. Munichandra Reddy
- Department of Chemistry, SPW Degree and PG College, Tirupati, Andhra Pradesh, India
| | - D. Subba Rao
- Research & Development Center, API Division, Micro Labs Ltd., Jigani-Bommasandra Link Road, Bangalore, Karnataka, India
| | - H. Sudhamani
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - P. Gnana Kumari
- Department of Chemistry, SPW Degree and PG College, Tirupati, Andhra Pradesh, India
| | - C. Naga Raju
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
11
|
Chinnam S, Raju CN, Rao CV. Synthesis, Spectroscopic Characterization, Antimicrobial and Antioxidant Activities of Novel Phosphorylated Derivatives of Amlodipine. PHOSPHORUS SULFUR 2014. [DOI: 10.1080/10426507.2014.909429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sampath Chinnam
- Department of Chemistry, Sri Venkateswara University, Tirupati, India
| | | | | |
Collapse
|
12
|
Pradere U, Garnier-Amblard E, Coats SJ, Amblard F, Schinazi RF. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem Rev 2014; 114:9154-218. [PMID: 25144792 PMCID: PMC4173794 DOI: 10.1021/cr5002035] [Citation(s) in RCA: 391] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Ugo Pradere
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | | | | | - Franck Amblard
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | - Raymond F. Schinazi
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
Subramanyam C, Ramana KV, Rasheed S, Adam S, Raju CN. Synthesis and Biological Activity of Novel Diphenyl N- Substituted Carbamimidoylphosphoramidate Derivatives. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2012.745075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ch. Subramanyam
- a Department of Chemistry , Sri Venkateswara University , Tirupati , Andhra Pradesh , India
| | - K. Venkata Ramana
- a Department of Chemistry , Sri Venkateswara University , Tirupati , Andhra Pradesh , India
| | - S. Rasheed
- a Department of Chemistry , Sri Venkateswara University , Tirupati , Andhra Pradesh , India
| | - S. Adam
- b Department of Biochemistry , Sree Vidyanikethan P.G. College , Tirupati , Andhra Pradesh , India
| | - C. Naga Raju
- a Department of Chemistry , Sri Venkateswara University , Tirupati , Andhra Pradesh , India
| |
Collapse
|
14
|
Wang P, Rachakonda S, Zennou V, Keilman M, Niu C, Bao D, Ross BS, Furman PA, Otto MJ, Sofia MJ. Phosphoramidate prodrugs of (-)-β-D-(2R,4R)-dioxolane-thymine (DOT) as potent anti-HIV agents. Antivir Chem Chemother 2012; 22:217-38. [PMID: 22358223 DOI: 10.3851/imp2079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2012] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Nucleoside reverse transcriptase inhibitors (NRTIs) are an effective class of agents that has played a vital role in the treatment of HIV infections. (-)-β-D-(2R,4R)-dioxolane-thymine (DOT) is a thymidine analogue that is active against wild-type and NRTI-resistant HIV-1 mutants. It has been shown that the anti-HIV activity of DOT is limited due to poor monophosphorylation. METHODS To further enhance the anti-HIV activity of DOT, an extensive structure-activity relationship analysis of phosphoramidate prodrugs of DOT monophosphate was undertaken. These prodrugs were evaluated for anti-HIV activity using Hela CD4 β-gal reporter cells (P4-CCR5 luc cells). RESULTS Among the synthesized prodrugs, the 4-bromophenyl benzyloxy l-alanyl phosphate derivative of DOT was the most potent, with a 50% effective concentration of 0.089 μM corresponding to a 75-fold increase in activity relative to the parent nucleoside DOT with no increased cytotoxicity. The metabolic stability of a selected number of potent DOT phosphoramidates was also evaluated in simulated gastric fluid, simulated intestinal fluid, human plasma and liver S9 fractions. CONCLUSIONS A series of new phosphoramidate prodrugs of DOT were prepared and evaluated as inhibitors of HIV replication in vitro. Metabolic stability studies indicated that these DOT phosphoramidate derivatives have the potential to show acceptable stability in the gastrointestinal tract, but they metabolize rapidly in the liver.
Collapse
|
15
|
Yang S, Pannecouque C, Lescrinier E, Giraut A, Herdewijn P. Synthesis and in vitro enzymatic and antiviral evaluation of phosphoramidate d4T derivatives as chain terminators. Org Biomol Chem 2012; 10:146-53. [DOI: 10.1039/c1ob06214j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
McGuigan C, Madela K, Aljarah M, Bourdin C, Arrica M, Barrett E, Jones S, Kolykhalov A, Bleiman B, Bryant KD, Ganguly B, Gorovits E, Henson G, Hunley D, Hutchins J, Muhammad J, Obikhod A, Patti J, Walters CR, Wang J, Vernachio J, Ramamurty CVS, Battina SK, Chamberlain S. Phosphorodiamidates as a Promising New Phosphate Prodrug Motif for Antiviral Drug Discovery: Application to Anti-HCV Agents. J Med Chem 2011; 54:8632-45. [DOI: 10.1021/jm2011673] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher McGuigan
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Karolina Madela
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Mohamed Aljarah
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Claire Bourdin
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Maria Arrica
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Emma Barrett
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Sarah Jones
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | | | - Blair Bleiman
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - K. Dawn Bryant
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Babita Ganguly
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Elena Gorovits
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Geoffrey Henson
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Damound Hunley
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Jeff Hutchins
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Jerry Muhammad
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Aleksandr Obikhod
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Joseph Patti
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - C. Robin Walters
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Jin Wang
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - John Vernachio
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | | | | | - Stanley Chamberlain
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| |
Collapse
|
17
|
Vande Voorde J, Liekens S, McGuigan C, Murziani PG, Slusarczyk M, Balzarini J. The cytostatic activity of NUC-3073, a phosphoramidate prodrug of 5-fluoro-2′-deoxyuridine, is independent of activation by thymidine kinase and insensitive to degradation by phosphorolytic enzymes. Biochem Pharmacol 2011; 82:441-52. [DOI: 10.1016/j.bcp.2011.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 11/29/2022]
|
18
|
Quintiliani M, Persoons L, Solaroli N, Karlsson A, Andrei G, Snoeck R, Balzarini J, McGuigan C. Design, synthesis and biological evaluation of 2'-deoxy-2',2'-difluoro-5-halouridine phosphoramidate ProTides. Bioorg Med Chem 2011; 19:4338-45. [PMID: 21696963 PMCID: PMC7127735 DOI: 10.1016/j.bmc.2011.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/13/2011] [Accepted: 05/19/2011] [Indexed: 11/28/2022]
Abstract
We report the synthesis of a series of novel 2′-deoxy-2′,2′-difluoro-5-halouridines and their corresponding phosphoramidate ProTides. All compounds were evaluated for antiviral activity and for cellular toxicity. Interestingly, 2′-deoxy-2′,2′-difluoro-5-iodo- and -5-bromo-uridines showed selective activity against feline herpes virus replication in cell culture due to a specific recognition (activation) by the virus-encoded thymidine kinase.
Collapse
Affiliation(s)
- Maurizio Quintiliani
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pedrosa LF, de Souza MC, Faustino MAF, Neves MGPMS, Silva AMS, Tomé AC, Ferreira VF, Cavaleiro JAS. Porphyrin - Phosphoramidate Conjugates: Synthesis, Photostability and Singlet Oxygen Generation. Aust J Chem 2011. [DOI: 10.1071/ch11013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
meso-Tetrakis(pentafluorophenyl)porphyrin reacts with aminoalkylphosphoramidates to afford porphyrins substituted with one or four phosphoramidate groups in the 4-position of the meso-aryl groups. The new porphyrin derivatives show high photostability and some are better singlet oxygen generators than meso-tetrakis(1-methylpyridinium-4-yl)porphyrin, a well known good singlet oxygen producer.
Collapse
|
20
|
Roman CA, Balzarini J, Meier C. Diastereoselective synthesis of aryloxy phosphoramidate prodrugs of 3'-deoxy-2',3'-didehydrothymidine monophosphate. J Med Chem 2010; 53:7675-81. [PMID: 20945915 DOI: 10.1021/jm100817f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first diastereoselective synthesis of aryloxy phosphoramidate prodrugs of 3'-deoxy-2',3'-didehydrothymidine monophosphate (d4TMP) is reported. In our approach, (S)-4-isopropylthiazolidine-2-thione 1 was used as a chiral auxiliary to introduce the stereochemistry at the phosphorus atom. In the last step of the developed reaction sequence, the nucleoside analogue d4T was introduced to a stereochemically pure phosphordiamidate which led to the formation of the almost diastereomerically pure phosphoramidate prodrugs 8a-d (≥95% de). As expected, the individually prepared diastereomers of the phosphoramidate prodrugs showed significant differences in the antiviral activity. Moreover, the difference was strongly dependent on the aryl substituent attached to the phosphoramidate moiety.
Collapse
Affiliation(s)
- Cristina Arbelo Roman
- Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | |
Collapse
|
21
|
McGuigan C, Gilles A, Madela K, Aljarah M, Holl S, Jones S, Vernachio J, Hutchins J, Ames B, Bryant KD, Gorovits E, Ganguly B, Hunley D, Hall A, Kolykhalov A, Liu Y, Muhammad J, Raja N, Walters R, Wang J, Chamberlain S, Henson G. Phosphoramidate ProTides of 2'-C-methylguanosine as highly potent inhibitors of hepatitis C virus. Study of their in vitro and in vivo properties. J Med Chem 2010; 53:4949-57. [PMID: 20527890 DOI: 10.1021/jm1003792] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus infection constitutes a serious health problem in need of more effective therapies. Nucleoside analogues with improved exposure, efficacy, and selectivity are recognized as likely key components of future HCV therapy. 2'-C-Methylguanosine triphosphate has been known as a potent inhibitor of HCV RNA polymerase for some time, but the parent nucleoside is only moderately active due to poor intracellular phosphorylation. We herein report the application of phosphoramidate ProTide technology to bypass the rate-limiting initial phosphorylation of this nucleoside. Over 30 novel ProTides are reported, with variations in the aryl, ester, and amino acid regions. l-Alanine compounds are recognized as potent and selective inhibitors of HCV in replicon assay but lack rodent plasma stability despite considerable ester variation. Amino acid variation retaining the lead benzyl ester moiety gives an increase in rodent stability but at the cost of potency. Finally l-valine esters with ester variation lead to potent, stable compounds. Pharmacokinetic studies on these agents in the mouse reveal liver exposure to the bioactive triphosphate species following single oral dosing. Systemic exposure of the ProTide and parent nucleoside are low, indicating possible low toxicity in vivo, while liver concentrations of the active species may be predictive of efficacy in the clinic. This represents one of the most thorough cross-species studies of ProTides to date.
Collapse
Affiliation(s)
- Christopher McGuigan
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Younis Y, Hunter R, Muhanji CI, Hale I, Singh R, Bailey CM, Sullivan TJ, Anderson KS. [d4U]-spacer-[HI-236] double-drug inhibitors of HIV-1 reverse-transcriptase. Bioorg Med Chem 2010; 18:4661-73. [PMID: 20605472 DOI: 10.1016/j.bmc.2010.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 11/17/2022]
Abstract
Four double-drug HIV NRTI/NNRTI inhibitors 15a-d of the type [d4U]-spacer-[HI-236] in which the spacer is varied as 1-butynyl (15a), propargyl-1-PEG (15b), propargyl-2-PEG (15c) and propargyl-4-PEG (15d) have been synthesized and biologically evaluated as RT inhibitors against HIV-1. The key step in their synthesis involved a Sonogashira coupling of 5-iodo d4U's benzoate with an alkynylated tethered HI-236 precursor followed by introduction of the HI-236 thiourea functionality. Biological evaluation in both cell-culture (MT-2 cells) as well as using an in vitro RT assay revealed 15a-c to be all more active than d4T. However, overall the results indicate the derivatives are acting as chain-extended NNRTIs in which for 15b-d the nucleoside component is likely situated outside of the pocket but with no evidence for any synergistic double binding between the NRTI and NNRTI sites. This is attributed, in part, to the lack of phosphorylation of the nucleoside component of the double-drug as a result of kinase recognition failure, which is not improved upon with the phosphoramidate of 15d incorporating a 4-PEG spacer.
Collapse
Affiliation(s)
- Yassir Younis
- Department of Chemistry, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mehellou Y, Balzarini J, McGuigan C. The design, synthesis and antiviral evaluation of a series of 5-trimethylsilyl-1-beta-D-(arabinofuranosyl)uracil phosphoramidate ProTides. Antivir Chem Chemother 2010; 20:153-60. [PMID: 20231780 DOI: 10.3851/imp1476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Nucleoside analogues always require phosphorylation to be active. This appears to be a particular limitation for uridine-based nucleosides. Our ProTide method allows the direct use of masked membrane-soluble preformed nucleoside phosphates, bypassing the need for the initial phosphorylation step. We herein applied it to some novel 5-trimethylsilyl arabinosyl uridines. METHODS 5-Trimethylsilyl-1-beta-D-(arabinofuranosyl)uracil was prepared in six steps starting from uridine, and five phosphoramidate ProTide derivatives were synthesized. These compounds were investigated for activity against a range of DNA and RNA viruses, including herpes simplex virus type-1 and type-2, vaccinia virus and HIV. RESULTS Overall, these compounds did not show significant antiviral activity against any of the viruses tested. CONCLUSIONS The inactivity of the ProTides of this nucleoside could correspond with poor ProTide activation in vitro, poor onward metabolism or low activity of the putative monophosphate metabolite.
Collapse
|
24
|
Leisvuori A, Aiba Y, Lönnberg T, Poijärvi-Virta P, Blatt L, Beigelman L, Lönnberg H. Chemical and enzymatic stability of amino acid derived phosphoramidates of antiviral nucleoside 5'-monophosphates bearing a biodegradable protecting group. Org Biomol Chem 2010; 8:2131-41. [PMID: 20401390 DOI: 10.1039/b924321f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ribavirin and 2'-O-methylcytidine 5'-phosphoramidates derived from L-alanine methyl ester bearing either an O-phenyl or a biodegradable O-[3-(acetyloxy)-2,2-bis(ethoxycarbonyl)propyl] or O-[3-(acetyloxymethoxy)-2,2-bis(ethoxycarbonyl)propyl] protecting group were prepared. The kinetics of the deprotection of these pro-drugs by porcine liver esterase and by a whole cell extract of human prostate carcinoma was studied by HPLC-ESI-MS/MS. The 3-(acetyloxymethoxy)-2,2-bis(ethoxycarbonyl)propyl and 3-(acetyloxy)-2,2-bis(ethoxycarbonyl)propyl groups were readily removed releasing the l-alanine methyl ester phosphoramidate nucleotide, the deprotection of the 3-(acetyloxymethoxy) derivative being approximately 20 times faster. The chemical stability of the 2'-O-methylcytidine pro-drugs was additionally determined over a pH range from 7.5 to 10.
Collapse
Affiliation(s)
- Anna Leisvuori
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
25
|
Mehellou Y, Valente R, Mottram H, Walsby E, Mills KI, Balzarini J, McGuigan C. Phosphoramidates of 2'-beta-D-arabinouridine (AraU) as phosphate prodrugs; design, synthesis, in vitro activity and metabolism. Bioorg Med Chem 2010; 18:2439-46. [PMID: 20299228 PMCID: PMC7125968 DOI: 10.1016/j.bmc.2010.02.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 11/06/2022]
Abstract
2′-β-d-Arabinouridine (AraU), the uridine analogue of the anticancer agent AraC, was synthesized and evaluated for antiviral activity and cytotoxicity. In addition, a series of AraU monophosphate prodrugs in the form of triester phosphoramidates (ProTides) were also synthesized and tested against a range of viruses, leukaemia and solid tumour cell lines. Unfortunately, neither the parent compound (AraU) nor any of its ProTides showed antiviral activity, nor potent inhibitory activity against any of the cancer cell lines. Therefore, the metabolism of AraU phosphoramidates to release AraU monophosphate was investigated. The results showed carboxypeptidase Y, hog liver esterase and crude CEM tumor cell extracts to hydrolyse the ester motif of phosphoramidates with subsequent loss of the aryl group, while molecular modelling studies suggested that the AraU l-alanine aminoacyl phosphate derivative might not be a good substrate for the phosphoramidase enzyme Hint-1. These findings are in agreement with the observed disappearance of intact prodrug and concomitant appearance of the corresponding phosphoramidate intermediate derivative in CEM cell extracts without measurable formation of araU monophosphate. These findings may explain the poor antiviral/cytostatic potential of the prodrugs.
Collapse
Affiliation(s)
- Youcef Mehellou
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Derudas M, Carta D, Brancale A, Vanpouille C, Lisco A, Margolis L, Balzarini J, McGuigan C. The application of phosphoramidate protide technology to acyclovir confers anti-HIV inhibition. J Med Chem 2009; 52:5520-30. [PMID: 19645484 DOI: 10.1021/jm9007856] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, it has been reported that phosphorylated acyclovir (ACV) inhibits human immunodeficiency virus type 1 (HIV-1) reverse transcriptase in a cell-free system. To deliver phosphorylated ACV inside cells, we designed ACV monophosphorylated derivatives using ProTide technology. We found that the L-alanine derived ProTides show anti-HIV activity at noncytotoxic concentrations; ester and aryl variation was tolerated. ACV ProTides with other amino acids, other than L-phenylalanine, showed no detectable activity against HIV in cell culture. The inhibitory activity of the prodrugs against herpes simplex virus (HSV) types -1 and -2 and thymidine kinase-deficient HSV-1 revealed different structure-activity relationships but was again consistent with successful nucleoside kinase bypass. Enzymatic and molecular modeling studies have been performed in order to better understand the antiviral behavior of these compounds. ProTides showing diminished carboxypeptidase lability translated to poor anti-HIV agents and vice versa, so the assay became predictive.
Collapse
Affiliation(s)
- Marco Derudas
- Welsh School of Pharmacy, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Peterson LW, McKenna CE. Prodrug approaches to improving the oral absorption of antiviral nucleotide analogues. Expert Opin Drug Deliv 2009; 6:405-20. [PMID: 19382883 DOI: 10.1517/17425240902824808] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nucleotide analogues have been well accepted as therapeutic agents active against a number of viruses. However, their use as antiviral agents is limited by the need for phosphorylation by endogenous enzymes, and if the analogue is orally administered, by low bioavailability due to the presence of an ionizable diacid group. To circumvent these limitations, a number of prodrug approaches have been proposed. The ideal prodrug achieves delivery of a parent drug by attachment of a non-toxic moiety that is stable during transport and delivery, but is readily cleaved to release the parent drug once at the target. Here, a brief overview of several promising prodrug strategies currently under development is given.
Collapse
Affiliation(s)
- Larryn W Peterson
- University of Southern California, Department of Chemistry, Los Angeles, CA 90089-0744, USA.
| | | |
Collapse
|
28
|
Mehellou Y, Balzarini J, McGuigan C. An investigation into the anti-HIV activity of 2′,3′-didehydro-2′,3′-dideoxyuridine (d4U) and 2′,3′-dideoxyuridine (ddU) phosphoramidate ‘ProTide’ derivatives. Org Biomol Chem 2009; 7:2548-53. [DOI: 10.1039/b904276h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Affiliation(s)
- Scott J. Hecker
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037
| | - Mark D. Erion
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
30
|
Kamel AM, Munson B. Collisionally-induced dissociation of substituted pyrimidine antiviral agents: mechanisms of ion formation using gas phase hydrogen/deuterium exchange and electrospray ionization tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1477-92. [PMID: 17583534 DOI: 10.1016/j.jasms.2007.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 05/04/2007] [Accepted: 05/05/2007] [Indexed: 05/15/2023]
Abstract
ESI and CID mass spectra were obtained for four pyrimidine nucleoside antiviral agents and the corresponding compounds in which the labile hydrogens were replaced by deuterium using gas-phase exchange. The number of labile hydrogens, x, was determined from a comparison of ESI spectra obtained with N(2) and with ND(3) as the nebulizer gas. CID mass spectra were obtained for [M + H](+) and [M - H](-) ions and the exchanged analogs, [M(D(x)) + D](+) and [M(D(x)) - D](-), produced by ESI using a SCIEX API-III(plus) mass spectrometer. Protonated pyrimidine antiviral agents dissociate through rearrangement decompositions of base-protonated [M + H](+) ions by cleavage of the glycosidic bonds to give the protonated bases with a sugar moiety as the neutral fragment. Cleavage of the glycosidic bonds with charge retention on the sugar moiety eliminates the base moiety as a neutral molecule and produces characteristic sugar ions. CID of protonated pyrimidine bases, [B + H](+), occurs through three major pathways: (1) elimination of NH(3) (ND(3)), (2) loss of H(2)O (D(2)O), and (3) elimination of HNCO (DNCO). Protonated trifluoromethyl uracil, however, dissociates primarily through elimination of HF followed by the loss of HNCO. CID mass spectra of [M - H](-) ions of all four antiviral agents show NCO(-) as the principal decomposition product. A small amount of deprotonated base is also observed, but no sugar ions. Elimination of HNCO, HN(3), HF, CO, and formation of iodide ion are minor dissociation pathways from [M - H](-) ions.
Collapse
Affiliation(s)
- Amin M Kamel
- Department of Exploratory Medical Sciences, Pfizer Global Research and Development, Groton Laboratories, Groton, Connecticut 06340, USA.
| | | |
Collapse
|
31
|
Mehellou Y, McGuigan C, Brancale A, Balzarini J. Design, synthesis, and anti-HIV activity of 2',3'-didehydro-2',3'-dideoxyuridine (d4U), 2',3'-dideoxyuridine (ddU) phosphoramidate 'ProTide' derivatives. Bioorg Med Chem Lett 2007; 17:3666-9. [PMID: 17485204 DOI: 10.1016/j.bmcl.2007.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 04/13/2007] [Accepted: 04/15/2007] [Indexed: 11/20/2022]
Abstract
We report the synthesis of 2',3'-didehydro-2',3'-dideoxyuridine (d4U) and 2',3'-dideoxyuridine (ddU) phosphoramidate 'ProTide' derivatives and their evaluation against HIV-1 and HIV-2. In addition, we conducted molecular modeling studies on both d4U and ddU monophosphates to investigate their second phosphorylation process. The findings from the modeling studies provide compelling evidence for the lack of anti-HIV activity of d4U phosphoramidates, in contrast with the corresponding ddU phosphoramidates.
Collapse
Affiliation(s)
- Youcef Mehellou
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, UK
| | | | | | | |
Collapse
|
32
|
Perrone P, Luoni GM, Kelleher MR, Daverio F, Angell A, Mulready S, Congiatu C, Rajyaguru S, Martin JA, Levêque V, Le Pogam S, Najera I, Klumpp K, Smith DB, McGuigan C. Application of the Phosphoramidate ProTide Approach to 4‘-Azidouridine Confers Sub-micromolar Potency versus Hepatitis C Virus on an Inactive Nucleoside. J Med Chem 2007; 50:1840-9. [PMID: 17367121 DOI: 10.1021/jm0613370] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the application of our phosphoramidate ProTide technology to the ribonucleoside analogue 4'-azidouridine to generate novel antiviral agents for the inhibition of hepatitis C virus (HCV). 4'-Azidouridine did not inhibit HCV, although 4'-azidocytidine was a potent inhibitor of HCV replication under similar assay conditions. However 4'-azidouridine triphosphate was a potent inhibitor of RNA synthesis by HCV polymerase, raising the question as to whether our phosphoramidate ProTide approach could effectively deliver 4'-azidouridine monophosphate to HCV replicon cells and unleash the antiviral potential of the triphosphate. Twenty-two phosphoramidates were prepared, including variations in the aryl, ester, and amino acid regions. A number of compounds showed sub-micromolar inhibition of HCV in cell culture without detectable cytotoxicity. These results confirm that phosphoramidate ProTides can deliver monophosphates of ribonucleoside analogues and suggest a potential path to the generation of novel antiviral agents against HCV infection. The generic message is that ProTide synthesis from inactive parent nucleosides may be a warranted drug discovery strategy.
Collapse
Affiliation(s)
- Plinio Perrone
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McGuigan C, Hassan-Abdallah A, Srinivasan S, Wang Y, Siddiqui A, Daluge SM, Gudmundsson KS, Zhou H, McLean EW, Peckham JP, Burnette TC, Marr H, Hazen R, Condreay LD, Johnson L, Balzarini J. Application of phosphoramidate ProTide technology significantly improves antiviral potency of carbocyclic adenosine derivatives. J Med Chem 2007; 49:7215-26. [PMID: 17125274 DOI: 10.1021/jm060776w] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the application of phosphoramidate pronucleotide (ProTide) technology to the antiviral agent carbocyclic L-d4A (L-Cd4A). The phenyl methyl alaninyl parent ProTide of L-Cd4A was prepared by Grignard-mediated phosphorochloridate reaction and resulted in a compound with significantly improved anti-HIV (2600-fold) and HBV activity. We describe modifications of the aryl, ester, and amino acid regions of the ProTide and how these changes affect antiviral activity and metabolic stability. Separate and distinct SARs were noted for HIV and HBV. Additionally, ProTides were prepared from the D-nucleoside D-Cd4A and the dideoxy analogues L-CddA and D-CddA. These compounds showed more modest potency improvements over the parent drug. In conclusion, the ProTide approach is highly successful when applied to L-Cd4A with potency improvements in vitro as high as 9000-fold against HIV. With a view to preclinical candidate selection we carried out metabolic stability studies using cynomolgus monkey liver and intestinal S9 fractions.
Collapse
Affiliation(s)
- Christopher McGuigan
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liotard JF, Mehiri M, Di Giorgio A, Boggetto N, Reboud-Ravaux M, Aubertin AM, Condom R, Patino N. AZT and AZT-monophosphate prodrugs incorporating HIV-protease substrate fragment: synthesis and evaluation as specific drug delivery systems. Antivir Chem Chemother 2006; 17:193-213. [PMID: 17066898 DOI: 10.1177/095632020601700404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the view to deliver anti-HIV nucleoside and nucleoside-monophosphate (MP) analogues specifically into HIV-infected cells, we synthesized a series of ester and phosphoramidate peptide conjugates of zidovudine (AZT) and of AZT-MP, respectively, wherein the peptide sequences derive from a HIV-protease (PR) hydrolysable substrate. Their in vitro stability with respect to hydrolysis, anti-HIV activity and cytotoxicity, and ability to inhibit the HIV-PR activity were investigated. Concerning the ester AZT-peptide conjugates, their antiviral activity level in thymidine kinase-expressing (TK+) CEM-SS and MT-4 cells was in most cases closely correlated to their hydrolysis rate: the faster the hydrolysis, the closer the anti-HIV activity to that of AZT. None of them was a HIV-PR substrate, indicating that their antiviral activity was not related to their intracellular hydrolysis by this enzyme. None of them inhibited HIV in TK-deficient (TK-) CEM cells, demonstrating that they probably act as prodrugs of AZT. Most of the phosphoramidate peptide conjugates of AZT-MP were rapidly degraded in a physiological buffer into several metabolites including AZT. Their anti-HIV activity in TK+ CEM-SS and MT-4 cells was much lower than that of AZT, indicating that only low amounts of AZT or AZT-MP were released into cells during incubation. Antiviral activities measured on TK- CEM cells for some phosphoramidates suggest that low amounts of AZT-MP could be released intracellularly. However, this AZT-MP release was not initiated by a HIV-PR hydrolysis, as no evidence for peptide cleavage was obtained by HPLC analysis of one representative compound after incubation with HIV-PR.
Collapse
Affiliation(s)
- Jean-François Liotard
- Laboratoire de Chimie des Molecules Bioactives et des Arômes, UMR-CNRS 6001, Institut de Chimie de Nice, Université de Nice-Sophia Antipolis, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ladurée D, Fossey C, Delbederi Z, Sugeac E, Schmidt S, Laumond G, Aubertin AM. Synthesis and antiviral activity of aryl phosphoramidate derivatives of beta-D- and beta-L-C-5-substituted 2',3'-didehydro-2',3'-dideoxy-uridine bearing linker arms. J Enzyme Inhib Med Chem 2006; 20:533-49. [PMID: 16408789 DOI: 10.1080/14756360500220343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We have previously reported the synthesis and evaluation of potent anti-human immunodeficiency virus compounds based on beta-D-d4T analogues bearing a tether attached at the C-5 position and their beta-L-counterparts. Initial study revealed a requirement for an alkyl side-chain with an optimal length of 12 carbons for a weak antiviral activity. As a continuation of that work, we have now prepared the corresponding phosphoramidate derivatives as possible membrane-permeable prodrugs. Phosphorochloridate chemistry gave the target phosphoramidates which were tested for anti-human immunodeficiency virus type 1 activity; unfortunately, they were devoid of anti-HIV activity.
Collapse
Affiliation(s)
- Daniel Ladurée
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, U. F. R. des Sciences Pharmaceutiques, 5, Rue Vaubénard, F-14032, Caen Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
McGuigan C, Harris SA, Daluge SM, Gudmundsson KS, McLean EW, Burnette TC, Marr H, Hazen R, Condreay LD, Johnson L, De Clercq E, Balzarini J. Application of Phosphoramidate Pronucleotide Technology to Abacavir Leads to a Significant Enhancement of Antiviral Potency. J Med Chem 2005; 48:3504-15. [PMID: 15887959 DOI: 10.1021/jm0491400] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the first application of pronucleotide (ProTide) technology to the antiviral agent abacavir (Ziagen), used for the treatment of HIV infection. The phenylmethoxyalaninyl phosphoramidate of abacavir was prepared in good yield in one step. Also prepared was the corresponding phosphoramidate of the guanine nucleoside analogue "carbovir". The antiviral profile of each of the parent nucleosides was compared to that of the phosphoramidate ProTides. A significant (28- to 60-fold) increase in anti-HIV potency was noted for the ProTide of abacavir but not for that of carbovir. These findings were in agreement with the markedly higher (ca. 37-fold) levels of carbovir triphosphate that are formed in CEM cells upon response to the abacavir ProTide compared with the parent abacavir compound. In contrast the anti-HBV potency of both abacavir and carbovir were improved (10- and 20-fold, respectively) by ProTide formation. As in CEM cells, the abacavir ProTide provided significantly enhanced carbovir triphosphate levels in HepG2 2.2.15 cells over that of the parent nucleoside. On the basis of these data, a series of phosphoramidate analogues with structural variation in the ester and amino acid regions were prepared and their antiviral profiles described. In addition, the pharmacokinetic disposition of the abacavir phenylethoxyalaninyl phosphoramidate was evaluated in Cynomolgus monkeys.
Collapse
Affiliation(s)
- Christopher McGuigan
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, U.K.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mackman RL, Cihlar T. Prodrug Strategies in the Design of Nucleoside and Nucleotide Antiviral Therapeutics. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2004. [DOI: 10.1016/s0065-7743(04)39023-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
38
|
Egron D, Imbach JL, Gosselin G, Aubertin AM, Périgaud C. S-Acyl-2-thioethyl Phosphoramidate Diester Derivatives as Mononucleotide Prodrugs. J Med Chem 2003; 46:4564-71. [PMID: 14521418 DOI: 10.1021/jm0308444] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and in vitro anti-HIV activity of phosphoramidate diester derivatives of 3'-azido-2',3'-dideoxythymidine (AZT) bearing one S-pivaloyl-2-thioethyl (tBuSATE) group and various amino residues are reported. These compounds were obtained from an H-phosphonate strategy using an amidative oxidation step. Most of these derivatives appeared to inhibit HIV-1 replication, with EC(50) values at micromolar concentration in thymidine kinase-deficient (TK-) cells, revealing a less restrictive intracellular decomposition process than previously reported for other phosphoramidate prodrugs. The proposed decomposition pathway of this new series of mixed pronucleotides may successively involve an esterase and a phosphoramidase hydrolysis.
Collapse
Affiliation(s)
- David Egron
- UMR 5625 CNRS-UM II, Université Montpellier II, case courrier 008, place E. Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
39
|
Abstract
Bioactivatable protecting groups represent an enormously powerful tool to increase bioavailability or to generally help deliver drugs to cells. This approach is particularly valuable in the case of biologically active phosphates because of the high intrinsic hydrophilicity and the multitude of biological functions phosphate esters exhibit inside cells. Here, the most prominent masking groups used so far are introduced. The stability and toxicology of the resulting prodrugs is discussed. Finally, this review tries to cover briefly some of the work that describes the usefulness and efficiency of the approach in various application areas.
Collapse
Affiliation(s)
- Carsten Schultz
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
40
|
Uckun FM, Pendergrass S, Venkatachalam TK, Qazi S, Richman D. Stampidine is a potent inhibitor of Zidovudine- and nucleoside analog reverse transcriptase inhibitor-resistant primary clinical human immunodeficiency virus type 1 isolates with thymidine analog mutations. Antimicrob Agents Chemother 2002; 46:3613-6. [PMID: 12384373 PMCID: PMC128707 DOI: 10.1128/aac.46.11.3613-3616.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2002] [Revised: 06/19/2002] [Accepted: 07/15/2002] [Indexed: 11/20/2022] Open
Abstract
We report the antiretroviral activity of stavudine-5'-(p-bromophenyl methoxyalaninyl phosphate) (stampidine [STAMP]), a novel aryl phosphate derivative of stavudine, against primary clinical human immunodeficiency virus type 1 (HIV-1) isolates. STAMP inhibited each one of nine clinical HIV-1 isolates of non-B envelope subtype and 20 genotypically and phenotypically nucleoside analog reverse transcriptase inhibitor-resistant HIV-1 isolates at subnanomolar to low-nanomolar concentrations.
Collapse
Affiliation(s)
- Fatih M Uckun
- Drug Discovery Program, Departments of Virology, Bioinformatics, Immunology, and Chemistry, Parker Hughes Institute, St. Paul. Parker Hughes Center for Clinical Immunology, Roseville, Minnesota 55113, USA.
| | | | | | | | | |
Collapse
|
41
|
Lehsten DM, Baehr DN, Lobl TJ, Vaino AR. An Improved Procedure for the Synthesis of Nucleoside Phosphoramidates. Org Process Res Dev 2002. [DOI: 10.1021/op025562c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Abstract
Virtually all the compounds that are currently used or are subject of advanced clinical trials for the treatment of HIV infections, belong to one of the following classes: (i) nucleoside reverse transcriptase inhibitors (NRTIs): i.e., zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir, emtricitabine and nucleotide reverse transcriptase inhibitors (NtRTIs) (i.e., tenofovir disoproxil fumarate); (ii) non-nucleoside reverse transcriptase inhibitors (NNRTIs): i.e., nevirapine, delavirdine, efavirenz, emivirine; and (iii) protease inhibitors (PIs): i.e., saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, and lopinavir. In addition to the reverse transcriptase and protease reaction, various other events in the HIV replicative cycle can be considered as potential targets for chemotherapeutic intervention: (i) viral adsorption, through binding to the viral envelope glycoprotein gp120 (polysulfates, polysulfonates, polycarboxylates, polyoxometalates, polynucleotides, and negatively charged albumins); (ii) viral entry, through blockade of the viral coreceptors CXCR4 (i.e., bicyclam (AMD3100) derivatives) and CCR5 (i.e., TAK-779 derivatives); (iii) virus-cell fusion, through binding to the viral envelope glycoprotein gp41 (T-20, T-1249); (iv) viral assembly and disassembly, through NCp7 zinc finger-targeted agents [2,2'-dithiobisbenzamides (DIBAs), azadicarbonamide (ADA)]; (v) proviral DNA integration, through integrase inhibitors such as 4-aryl-2,4-dioxobutanoic acid derivatives; (vi) viral mRNA transcription, through inhibitors of the transcription (transactivation) process (flavopiridol, fluoroquinolones). Also, various new NRTIs, NNRTIs, and PIs have been developed that possess, respectively: (i) improved metabolic characteristics (i.e., phosphoramidate and cyclosaligenyl pronucleotides by-passing the first phosphorylation step of the NRTIs), (ii) increased activity ["second" or "third" generation NNRTIs ( i.e., TMC-125, DPC-083)] against those HIV strains that are resistant to the "first" generation NNRTIs, or (iii), as in the case of PIs, a different, modified peptidic (i.e., azapeptidic (atazanavir)) or non-peptidic scaffold (i.e., cyclic urea (mozenavir), 4-hydroxy-2-pyrone (tipranavir)). Non-peptidic PIs may be expected to inhibit HIV mutant strains that have become resistant to peptidomimetic PIs.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
43
|
Abstract
Virtually all the compounds that are currently used, or are subject of advanced clinical trials, for the treatment of human immunodeficiency virus (HIV) infections, belong to one of the following classes: (i) nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs): i.e. zidovudine (AZT), didanosine (ddI), zalcitabine (ddC), stavudine (d4T), lamivudine (3TC), abacavir (ABC), emtricitabine [(-)FTC], tenofovir disoproxil fumarate; (ii) non-nucleoside reverse transcriptase inhibitors (NNRTIs): i.e. nevirapine, delavirdine, efavirenz, emivirine; and (iii) protease inhibitors (PIs): i.e. saquinavir, ritonavir, indinavir, nelfinavir, amprenavir and lopinavir. In addition to the reverse transcriptase (RT) and protease reaction, various other events in the HIV replicative cycle can be considered as potential targets for chemotherapeutic intervention: (i) viral adsorption, through binding to the viral envelope glycoprotein gp120 (polysulfates, polysulfonates, polycarboxylates, polyoxometalates, polynucleotides, and negatively charged albumins); (ii) viral entry, through blockade of the viral coreceptors CXCR4 [bicyclam (AMD3100) derivatives] and CCR5 (TAK-779 derivatives); (iii) virus-cell fusion, through binding to the viral envelope glycoprotein gp41 (T-20, T-1249); (iv) viral assembly and disassembly, through NCp7 zinc finger-targeted agents [2,2'-dithiobisbenzamides (DIBAs), azadicarbonamide (ADA)]; (v) proviral DNA integration, through integrase inhibitors such as 4-aryl-2,4-dioxobutanoic acid derivatives; (vi) viral mRNA transcription, through inhibitors of the transcription (transactivation) process (flavopiridol, fluoroquinolones). Also, various new NRTIs, NNRTIs and PIs have been developed that possess, respectively: (i) improved metabolic characteristics (i.e. phosphoramidate and cyclosaligenyl pronucleotides by-passing the first phosphorylation step of the NRTIs), (ii) increased activity ["second" or "third" generation NNRTIs (i.e. TMC-125, DPC-083)] against those HIV strains that are resistant to the "first" generation NNRTIs, or (iii) as in the case of PIs, a different, nonpeptidic scaffold [i.e. cyclic urea (mozenavir), 4-hydroxy-2-pyrone (tipranavir)]. Nonpeptidic PIs may be expected to inhibit HIV mutant strains that have become resistant to peptidomimetic PIs. Given the multitude of molecular targets with which anti-HIV agents can interact, one should be cautious in extrapolating the mode of action of these agents from cell-free enzymatic assays to intact cells. Two examples in point are L-chicoric acid and the nonapeptoid CGP64222, which were initially described as an integrase inhibitor or Tat antagonist, respectively, but later shown to primarily act as virus adsorption/entry inhibitors, the latter through blockade of CXCR4.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven, Belgium.
| |
Collapse
|
44
|
Abstract
In order to overcome restrictions imposed by activation (phosphorylation) mechanism of antiviral and antitumor nucleoside analogues several prodrug approaches have been designed. Lipophilic pronucleotides are capable of intracellular delivery of monophosphates of nucleoside analogues, thus circumventing the limitations of enzymic phosphorylation. One of the successful approaches employs lipophilic amino acid ester (alanine) phenyl phosphoramidates as pronucleotides. This approach was applied to AIDS drugs such as AZT, d4T and related analogues but also to nonclassical nucleoside analogues based on allenic and methylenecyclopropane structure. Antiviral effects of the parent analogues were in many cases increased by conversion to phenyl phosphoralaninate (PPA) pronucleotides. Although cytotoxicity increase frequently accompanies antiviral effects of these pronucleotides, a favorable selectivity index can be obtained by manipulation of the parent structure as shown, e.g., for 2,6-diaminopurine methylenecyclopropane pronucleotide 15c. A lack of in vivo toxicity was demonstrated for 2-amino-6-methoxypurine methylenecyclopropane pronucleotide 15e in mice. The PPA pronucleotides can overcome deficiency of phosphorylating enzymes and offer favorable cross-resistance patterns when compared with other antiviral drugs.
Collapse
Affiliation(s)
- Jiri Zemlicka
- Department of Chemistry, Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 E. Warren Ave., Detroit, MI 48201-1379, USA.
| |
Collapse
|
45
|
Lee HJ, Cooperwood JS, You Z, Ko DH. Prodrug and antedrug: two diametrical approaches in designing safer drugs. Arch Pharm Res 2002; 25:111-36. [PMID: 12009024 DOI: 10.1007/bf02976552] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The prodrug and antedrug concepts, which were developed to overcome the physical and pharmacological shortcomings of various therapeutic classes of agents, employ diametrically different metabolic transformations. The prodrug undergoes a predictable metabolic activation prior to exhibiting its pharmacological effects in a target tissue while the antedrug undergoes metabolic deactivation in the systemic circulation upon leaving a target tissue. An increased therapeutic index is the aspiration for both approaches in designing as well as evaluation criteria. The recent research endeavors of prodrugs include the gene-directed and antibody-directed enzymatic activation of a molecule in a targeted tissue, organ specific delivery, improved bioavailabilities of nucleosides and cellular penetration of nucleotides. As for antedrugs, emphasis in research has been based upon the design and synthesis of systemically inactive molecule by incorporating a metabolically labile functional group into an active molecule.
Collapse
Affiliation(s)
- Henry J Lee
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Virtually all the compounds that are currently used, or under advanced clinical trial, for the treatment of HIV infections, belong to one of the following classes: (i) nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs): i.e. zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir, emtricitabine, tenofovir (PMPA) disoproxil fumarate; (ii) non-nucleoside reverse transcriptase inhibitors (NNRTIs): i.e. nevirapine, delavirdine, efavirenz, emivirine; and (iii) protease inhibitors (PIs): i.e. saquinavir, ritonavir, indinavir, nelfinavir and amprenavir. In addition, various other events in the HIV replicative cycle are potential targets for chemotherapeutic intervention: (i) viral adsorption, through binding to the viral envelope glycoprotein gp120; (ii) viral entry, through blockade of the viral coreceptors CXCR4 and CCR5; (iii) virus-cell fusion; (iv) viral assembly and disassembly; (v) proviral DNA integration; (vi) viral mRNA transcription. Also, new NRTIs, NNRTIs and PIs have been developed that possess respectively improved metabolic characteristics, or increased activity against NNRTI-resistant HIV strains or, as in the case of PIs, a different, non-peptidic scaffold. Given the multitude of molecular targets with which anti-HIV agents can interact, one should be cautious in extrapolating from cell-free enzymatic assays to the mode of action of these agents in intact cells.
Collapse
Affiliation(s)
- E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| |
Collapse
|
47
|
Harris SA, McGuigan C, Andrei G, Snoeck R, De Clercq E, Balzarini J. Synthesis and antiviral evaluation of phosphoramidate derivatives of (E)-5-(2-bromovinyl)-2'-deoxyuridine. Antivir Chem Chemother 2001; 12:293-300. [PMID: 11900348 DOI: 10.1177/095632020101200504] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report the design, synthesis and antiviral evaluation of a number of lipophilic, masked phosphoramidate derivatives of the antiherpetic agent (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), designed to act as membrane soluble prodrugs of the free nucleotide. The phosphoramidate derivatives of BVDU that contain L-alanine exhibited potent anti herpes simplex virus type 1 and varicella-zoster virus activity but lost marked activity against thymidine kinase-deficient virus strains. The phosphoramidate derivative bearing the amino acid alpha,alpha-dimethylglycine showed poor activity in all cell lines tested. It appears that successful kinase bypass by phosphoramidates is highly dependent on the nucleoside analogue, amino acid and ester structure, as well as the cell line to which the drugs are exposed.
Collapse
Affiliation(s)
- S A Harris
- Welsh School of Pharmacy, Cardiff University, UK
| | | | | | | | | | | |
Collapse
|
48
|
Separation of individual antiviral nucleotide prodrugs from synthetic mixtures using cross-reactivity of a molecularly imprinted stationary phase. Anal Chim Acta 2001. [DOI: 10.1016/s0003-2670(00)01369-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Chapman H, Kernan M, Prisbe E, Rohloff J, Sparacino M, Terhorst T, Yu R. Practical synthesis, separation, and stereochemical assignment of the PMPA pro-drug GS-7340. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:621-8. [PMID: 11563079 DOI: 10.1081/ncn-100002338] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The practical synthesis of a mixed phenoxy-amidate derivative of PMPA with high oral bioavailability and favorable pharmacokinetics is described. The non-stereoselective synthetic route produces a 1:1 mixture of two diastereomers at phosphorous. Simulated moving bed chromatography using Chiralpak AS enabled kilo-scale isolation of the more potent diastereomer (GS-7340). The GS-7340 phosphorous chiral center was found to be (S) by X-ray crystallography.
Collapse
Affiliation(s)
- H Chapman
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Novel antiviral agents: phosphoramidates or mono/di/tri-phosphate esters of carbocyclic adenosine analogues. Expert Opin Ther Pat 2001. [DOI: 10.1517/13543776.11.2.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|