1
|
Park J, Choi S, Takatoh J, Zhao S, Harrahill A, Han BX, Wang F. Brainstem control of vocalization and its coordination with respiration. Science 2024; 383:eadi8081. [PMID: 38452069 PMCID: PMC11223444 DOI: 10.1126/science.adi8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024]
Abstract
Phonation critically depends on precise controls of laryngeal muscles in coordination with ongoing respiration. However, the neural mechanisms governing these processes remain unclear. We identified excitatory vocalization-specific laryngeal premotor neurons located in the retroambiguus nucleus (RAmVOC) in adult mice as being both necessary and sufficient for driving vocal cord closure and eliciting mouse ultrasonic vocalizations (USVs). The duration of RAmVOC activation can determine the lengths of both USV syllables and concurrent expiration periods, with the impact of RAmVOC activation depending on respiration phases. RAmVOC neurons receive inhibition from the preBötzinger complex, and inspiration needs override RAmVOC-mediated vocal cord closure. Ablating inhibitory synapses in RAmVOC neurons compromised this inspiration gating of laryngeal adduction, resulting in discoordination of vocalization with respiration. Our study reveals the circuits for vocal production and vocal-respiratory coordination.
Collapse
Affiliation(s)
- Jaehong Park
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Seonmi Choi
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Takatoh
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Andrew Harrahill
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Fan Wang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
González-García M, Carrillo-Franco L, Morales-Luque C, Dawid-Milner MS, López-González MV. Central Autonomic Mechanisms Involved in the Control of Laryngeal Activity and Vocalization. BIOLOGY 2024; 13:118. [PMID: 38392336 PMCID: PMC10886357 DOI: 10.3390/biology13020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
In humans, speech is a complex process that requires the coordinated involvement of various components of the phonatory system, which are monitored by the central nervous system. The larynx in particular plays a crucial role, as it enables the vocal folds to meet and converts the exhaled air from our lungs into audible sounds. Voice production requires precise and sustained exhalation, which generates an air pressure/flow that creates the pressure in the glottis required for voice production. Voluntary vocal production begins in the laryngeal motor cortex (LMC), a structure found in all mammals, although the specific location in the cortex varies in humans. The LMC interfaces with various structures of the central autonomic network associated with cardiorespiratory regulation to allow the perfect coordination between breathing and vocalization. The main subcortical structure involved in this relationship is the mesencephalic periaqueductal grey matter (PAG). The PAG is the perfect link to the autonomic pontomedullary structures such as the parabrachial complex (PBc), the Kölliker-Fuse nucleus (KF), the nucleus tractus solitarius (NTS), and the nucleus retroambiguus (nRA), which modulate cardiovascular autonomic function activity in the vasomotor centers and respiratory activity at the level of the generators of the laryngeal-respiratory motor patterns that are essential for vocalization. These cores of autonomic structures are not only involved in the generation and modulation of cardiorespiratory responses to various stressors but also help to shape the cardiorespiratory motor patterns that are important for vocal production. Clinical studies show increased activity in the central circuits responsible for vocalization in certain speech disorders, such as spasmodic dysphonia because of laryngeal dystonia.
Collapse
Affiliation(s)
- Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Carmen Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Manuel Víctor López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| |
Collapse
|
3
|
Veerakumar A, Head JP, Krasnow MA. A brainstem circuit for phonation and volume control in mice. Nat Neurosci 2023; 26:2122-2130. [PMID: 37996531 PMCID: PMC10689238 DOI: 10.1038/s41593-023-01478-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/02/2023] [Indexed: 11/25/2023]
Abstract
Mammalian vocalizations are critical for communication and are produced through the process of phonation, in which expiratory muscles force air through the tensed vocal folds of the larynx, which vibrate to produce sound. Despite the importance of phonation, the motor circuits in the brain that control it remain poorly understood. In this study, we identified a subpopulation of ~160 neuropeptide precursor Nts (neurotensin)-expressing neurons in the mouse brainstem nucleus retroambiguus (RAm) that are robustly activated during both neonatal isolation cries and adult social vocalizations. The activity of these neurons is necessary and sufficient for vocalization and bidirectionally controls sound volume. RAm Nts neurons project to all brainstem and spinal cord motor centers involved in phonation and activate laryngeal and expiratory muscles essential for phonation and volume control. Thus, RAm Nts neurons form the core of a brain circuit for making sound and controlling its volume, which are two foundations of vocal communication.
Collapse
Affiliation(s)
- Avin Veerakumar
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua P Head
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Concha-Miranda M, Tang W, Hartmann K, Brecht M. Large-Scale Mapping of Vocalization-Related Activity in the Functionally Diverse Nuclei in Rat Posterior Brainstem. J Neurosci 2022; 42:8252-8261. [PMID: 36113990 PMCID: PMC9653273 DOI: 10.1523/jneurosci.0813-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/20/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022] Open
Abstract
The identity and location of vocalization pattern generating (VPG) circuits in mammals is debated. Based on physiological experiments, investigators suggested anterior brainstem circuits in the reticular formation, and anatomic evidence suggested the nucleus retroambiguus (NRA) in the posterior brainstem, or combinations of these sites as the putative mammalian VPG. Additionally, vocalization loudness is a critical factor in acoustic communication. However, many of the underlying neuronal mechanisms are still unknown. Here, we evoked calls by stimulation of the periaqueductal gray in anesthetized male rats, performed a large-scale mapping of vocalization-related activity using the activity marker c-fos, and high-density recordings of brainstem circuits using Neuropixels probes. Both c-fos expression and recording of vocalization-related activity point to a participation of the NRA in vocalization. More important, among our recorded structures, we found that the NRA is the only brainstem area showing a strong correlation between unit activity and call intensity. In addition, we observed functionally diverse patterns of vocalization-related activity in a set of regions around NRA. Dorsal to NRA, we observed activity specific to the beginning and end of vocalizations in the posterior level of the medullary reticular nucleus, dorsal part, whereas medial and lateral to the NRA, we observed activity related to call initiation. No clear vocalization-related activity was observed at anterior brainstem sites. Our findings suggest a set of functionally heterogeneous regions around the NRA contribute to vocal pattern generation in rats.SIGNIFICANCE STATEMENT Vocalization patterns are shaped in the mammalian brainstem, but the identity and location of the circuits involved is debated. Additionally, the neuronal mechanisms of vocal intensity control are still unknown. This study consisted of a large-scale mapping of brainstem vocalization circuits based on the activity marker c-fos and high-density recordings with Neuropixels probes. The results confirm the role of nucleus retroambiguus in call production and point to a key role of neurons in this nucleus in loudness control. Dorsal to the nucleus retroambiguus and in the posterior medulla, the authors identify neurons with activity specific to the beginning and end of vocalizations. The results point to specific neural dials for various aspects of rat vocalization control in the posterior brainstem.
Collapse
Affiliation(s)
- Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Wei Tang
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Konstantin Hartmann
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
5
|
Hartmann K, Brecht M. A Functionally and Anatomically Bipartite Vocal Pattern Generator in the Rat Brain Stem. iScience 2020; 23:101804. [PMID: 33299974 PMCID: PMC7702002 DOI: 10.1016/j.isci.2020.101804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 10/29/2022] Open
Abstract
The mammalian vocal pattern generator is situated in the brainstem but its exact structure is debated. We mapped these circuits in rats by cooling and microstimulation. Local cooling disrupted call production above an anterior and a posterior brainstem position. Anterior cooling affected predominantly high-frequency calls, whereas posterior cooling affected low-frequency calls. Electrical microstimulation of the anterior part led to modulated high-frequency calls, whereas microstimulation of the posterior part led to flat, low-frequency calls. At intermediate positions cooling did not affect calls and stimulation did not elicit calls. The anterior region corresponds to a subsection of the parvicellular reticular formation that we term the vocalization parvicellular reticular formation (VoPaRt). The posterior vocalization sites coincide with the nucleus retroambiguus (NRA). VoPaRt and NRA neurons were very small and the VoPaRt was highly myelinated, suggestive of high-speed processing. Our data suggest an anatomically and functionally bipartite vocal pattern generator.
Collapse
Affiliation(s)
- Konstantin Hartmann
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| |
Collapse
|
6
|
Lungova V, Thibeault SL. Mechanisms of larynx and vocal fold development and pathogenesis. Cell Mol Life Sci 2020; 77:3781-3795. [PMID: 32253462 PMCID: PMC7511430 DOI: 10.1007/s00018-020-03506-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
The larynx and vocal folds sit at the crossroad between digestive and respiratory tracts and fulfill multiple functions related to breathing, protection and phonation. They develop at the head and trunk interface through a sequence of morphogenetic events that require precise temporo-spatial coordination. We are beginning to understand some of the molecular and cellular mechanisms that underlie critical processes such as specification of the laryngeal field, epithelial lamina formation and recanalization as well as the development and differentiation of mesenchymal cell populations. Nevertheless, many gaps remain in our knowledge, the filling of which is essential for understanding congenital laryngeal disorders and the evaluation and treatment approaches in human patients. This review highlights recent advances in our understanding of the laryngeal embryogenesis. Proposed genes and signaling pathways that are critical for the laryngeal development have a potential to be harnessed in the field of regenerative medicine.
Collapse
Affiliation(s)
- Vlasta Lungova
- Department of Surgery, University of Wisconsin Madison, 5103 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Susan L Thibeault
- Department of Surgery, University of Wisconsin Madison, 5103 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
7
|
Barkan CL, Zornik E. Inspiring song: The role of respiratory circuitry in the evolution of vertebrate vocal behavior. Dev Neurobiol 2020; 80:31-41. [PMID: 32329162 DOI: 10.1002/dneu.22752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022]
Abstract
Vocalization is a common means of communication across vertebrates, but the evolutionary origins of the neural circuits controlling these behaviors are not clear. Peripheral mechanisms of sound production vary widely: fish produce sounds with a swimbladder or pectoral fins; amphibians, reptiles, and mammalians vocalize using a larynx; birds vocalize with a syrinx. Despite the diversity of vocal effectors across taxa, there are many similarities in the neural circuits underlying the control of these organs. Do similarities in vocal circuit structure and function indicate that vocal behaviors first arose in a single common ancestor, or have similar neural circuits arisen independently multiple times during evolution? In this review, we describe the hindbrain circuits that are involved in vocal production across vertebrates. Given that vocalization depends on respiration in most tetrapods, it is not surprising that vocal and respiratory hindbrain circuits across distantly related species are anatomically intermingled and functionally linked. Such vocal-respiratory circuit integration supports the hypothesis that vocal evolution involved the expansion and functional diversification of breathing circuits. Recent phylogenetic analyses, however, suggest vocal behaviors arose independently in all major tetrapod clades, indicating that similarities in vocal control circuits are the result of repeated co-options of respiratory circuits in each lineage. It is currently unknown whether vocal circuits across taxa are made up of homologous neurons, or whether vocal neurons in each lineage arose from developmentally and evolutionarily distinct progenitors. Integrative comparative studies of vocal neurons across brain regions and taxa will be required to distinguish between these two scenarios.
Collapse
Affiliation(s)
| | - Erik Zornik
- Biology Department, Reed College, Portland, OR, USA
| |
Collapse
|
8
|
Zhang YS, Ghazanfar AA. A Hierarchy of Autonomous Systems for Vocal Production. Trends Neurosci 2020; 43:115-126. [PMID: 31955902 PMCID: PMC7213988 DOI: 10.1016/j.tins.2019.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Vocal production is hierarchical in the time domain. These hierarchies build upon biomechanical and neural dynamics across various timescales. We review studies in marmoset monkeys, songbirds, and other vertebrates. To organize these data in an accessible and across-species framework, we interpret the different timescales of vocal production as belonging to different levels of an autonomous systems hierarchy. The first level accounts for vocal acoustics produced on short timescales; subsequent levels account for longer timescales of vocal output. The hierarchy of autonomous systems that we put forth accounts for vocal patterning, sequence generation, dyadic interactions, and context dependence by sequentially incorporating central pattern generators, intrinsic drives, and sensory signals from the environment. We then show the framework's utility by providing an integrative explanation of infant vocal production learning in which social feedback modulates infant vocal acoustics through the tuning of a drive signal.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
9
|
Sliwa J, Takahashi D, Shepherd S. Mécanismes neuronaux pour la communication chez les primates. REVUE DE PRIMATOLOGIE 2018. [DOI: 10.4000/primatologie.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Genetic identification of a hindbrain nucleus essential for innate vocalization. Proc Natl Acad Sci U S A 2017; 114:8095-8100. [PMID: 28698373 DOI: 10.1073/pnas.1702893114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vocalization in young mice is an innate response to isolation or mechanical stimulation. Neuronal circuits that control vocalization and breathing overlap and rely on motor neurons that innervate laryngeal and expiratory muscles, but the brain center that coordinates these motor neurons has not been identified. Here, we show that the hindbrain nucleus tractus solitarius (NTS) is essential for vocalization in mice. By generating genetically modified newborn mice that specifically lack excitatory NTS neurons, we show that they are both mute and unable to produce the expiratory drive required for vocalization. Furthermore, the muteness of these newborns results in maternal neglect. We also show that neurons of the NTS directly connect to and entrain the activity of spinal (L1) and nucleus ambiguus motor pools located at positions where expiratory and laryngeal motor neurons reside. These motor neurons control expiratory pressure and laryngeal tension, respectively, thereby establishing the essential biomechanical parameters used for vocalization. In summary, our work demonstrates that the NTS is an obligatory component of the neuronal circuitry that transforms breaths into calls.
Collapse
|
11
|
Hage SR, Nieder A. Dual Neural Network Model for the Evolution of Speech and Language. Trends Neurosci 2016; 39:813-829. [DOI: 10.1016/j.tins.2016.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022]
|
12
|
Abstract
This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and be more integrative. For voice production, a separation of the nonhuman vocalization system from the human learned voice production system has been posited based primarily on studies of nonhuman primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production have shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech involve a common integrative system. However, recent studies of nonhuman primates have provided evidence that some cortical activity vocalization and cortical changes occur with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and nonhuman primates.
Collapse
|
13
|
Poliva O. From where to what: a neuroanatomically based evolutionary model of the emergence of speech in humans. F1000Res 2015; 4:67. [PMID: 28928931 PMCID: PMC5600004 DOI: 10.12688/f1000research.6175.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 03/28/2024] Open
Abstract
In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobule (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and audio-visual integration. I propose that the primary role of the ADS in monkeys/apes is the perception and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Perception of contact calls occurs by the ADS detecting a voice, localizing it, and verifying that the corresponding face is out of sight. The auditory cortex then projects to parieto-frontal visuospatial regions (visual dorsal stream) for searching the caller, and via a series of frontal lobe-brainstem connections, a contact call is produced in return. Because the human ADS processes also speech production and repetition, I further describe a course for the development of speech in humans. I propose that, due to duplication of a parietal region and its frontal projections, and strengthening of direct frontal-brainstem connections, the ADS converted auditory input directly to vocal regions in the frontal lobe, which endowed early Hominans with partial vocal control. This enabled offspring to modify their contact calls with intonations for signaling different distress levels to their mother. Vocal control could then enable question-answer conversations, by offspring emitting a low-level distress call for inquiring about the safety of objects, and mothers responding with high- or low-level distress calls. Gradually, the ADS and the direct frontal-brainstem connections became more robust and vocal control became more volitional. Eventually, individuals were capable of inventing new words and offspring were capable of inquiring about objects in their environment and learning their names via mimicry.
Collapse
|
14
|
Poliva O. From where to what: a neuroanatomically based evolutionary model of the emergence of speech in humans. F1000Res 2015; 4:67. [PMID: 28928931 PMCID: PMC5600004 DOI: 10.12688/f1000research.6175.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 12/28/2022] Open
Abstract
In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobe (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and integration of calls with faces. I propose that the primary role of the ADS in non-human primates is the detection and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Detection of contact calls occurs by the ADS identifying a voice, localizing it, and verifying that the corresponding face is out of sight. Once a contact call is detected, the primate produces a contact call in return via descending connections from the frontal lobe to a network of limbic and brainstem regions. Because the ADS of present day humans also performs speech production, I further propose an evolutionary course for the transition from contact call exchange to an early form of speech. In accordance with this model, structural changes to the ADS endowed early members of the genus Homo with partial vocal control. This development was beneficial as it enabled offspring to modify their contact calls with intonations for signaling high or low levels of distress to their mother. Eventually, individuals were capable of participating in yes-no question-answer conversations. In these conversations the offspring emitted a low-level distress call for inquiring about the safety of objects (e.g., food), and his/her mother responded with a high- or low-level distress call to signal approval or disapproval of the interaction. Gradually, the ADS and its connections with brainstem motor regions became more robust and vocal control became more volitional. Speech emerged once vocal control was sufficient for inventing novel calls.
Collapse
|
15
|
Poliva O. From where to what: a neuroanatomically based evolutionary model of the emergence of speech in humans. F1000Res 2015; 4:67. [PMID: 28928931 PMCID: PMC5600004.2 DOI: 10.12688/f1000research.6175.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2016] [Indexed: 03/28/2024] Open
Abstract
In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobe (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and integration of calls with faces. I propose that the primary role of the ADS in non-human primates is the detection and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Detection of contact calls occurs by the ADS identifying a voice, localizing it, and verifying that the corresponding face is out of sight. Once a contact call is detected, the primate produces a contact call in return via descending connections from the frontal lobe to a network of limbic and brainstem regions. Because the ADS of present day humans also performs speech production, I further propose an evolutionary course for the transition from contact call exchange to an early form of speech. In accordance with this model, structural changes to the ADS endowed early members of the genus Homo with partial vocal control. This development was beneficial as it enabled offspring to modify their contact calls with intonations for signaling high or low levels of distress to their mother. Eventually, individuals were capable of participating in yes-no question-answer conversations. In these conversations the offspring emitted a low-level distress call for inquiring about the safety of objects (e.g., food), and his/her mother responded with a high- or low-level distress call to signal approval or disapproval of the interaction. Gradually, the ADS and its connections with brainstem motor regions became more robust and vocal control became more volitional. Speech emerged once vocal control was sufficient for inventing novel calls.
Collapse
|
16
|
Abstract
Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine-mediated inspiratory off-switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that "learning to breathe" is necessary to adjust to changing internal and external states to maintain homeostasis and survival.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
17
|
Arriaga G, Jarvis ED. Mouse vocal communication system: are ultrasounds learned or innate? BRAIN AND LANGUAGE 2013; 124:96-116. [PMID: 23295209 PMCID: PMC3886250 DOI: 10.1016/j.bandl.2012.10.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 05/20/2023]
Abstract
Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production. Here we discuss the available data to assess whether male mouse song behavior and the supporting brain circuits resemble those of known vocal non-learning or vocal learning species. Recent neurobiology studies have demonstrated that the mouse USV brain system includes motor cortex and striatal regions, and that the vocal motor cortex sends a direct sparse projection to the brainstem vocal motor nucleus ambiguous, a projection previously thought be unique to humans among mammals. Recent behavioral studies have reported opposing conclusions on mouse vocal plasticity, including vocal ontogeny changes in USVs over early development that might not be explained by innate maturation processes, evidence for and against a role for auditory feedback in developing and maintaining normal mouse USVs, and evidence for and against limited vocal imitation of song pitch. To reconcile these findings, we suggest that the trait of vocal learning may not be dichotomous but encompass a broad spectrum of behavioral and neural traits we call the continuum hypothesis, and that mice possess some of the traits associated with a capacity for limited vocal learning.
Collapse
Affiliation(s)
- Gustavo Arriaga
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
18
|
Abstract
Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience.
Collapse
Affiliation(s)
- Gregory J Basura
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Inst., The University of Michigan, 1100W Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
19
|
Abstract
Speech production is one of the most complex and rapid motor behaviors, and it involves a precise coordination of more than 100 laryngeal, orofacial, and respiratory muscles. Yet we lack a complete understanding of laryngeal motor cortical control during production of speech and other voluntary laryngeal behaviors. In recent years, a number of studies have confirmed the laryngeal motor cortical representation in humans and have provided some information about its interactions with other cortical and subcortical regions that are principally involved in vocal motor control of speech production. In this review, the authors discuss the organization of the peripheral and central laryngeal control based on neuroimaging and electrical stimulation studies in humans and neuroanatomical tracing studies in nonhuman primates. It is hypothesized that the location of the laryngeal motor cortex in the primary motor cortex and its direct connections with the brain stem laryngeal motoneurons in humans, as opposed to its location in the premotor cortex with only indirect connections to the laryngeal motoneurons in nonhuman primates, may represent one of the major evolutionary developments in humans toward the ability to speak and vocalize voluntarily.
Collapse
Affiliation(s)
- Kristina Simonyan
- Departments of Neurology and Otolaryngology, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
20
|
Koehler SD, Pradhan S, Manis PB, Shore SE. Somatosensory inputs modify auditory spike timing in dorsal cochlear nucleus principal cells. Eur J Neurosci 2010; 33:409-20. [PMID: 21198989 DOI: 10.1111/j.1460-9568.2010.07547.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In addition to auditory inputs, dorsal cochlear nucleus (DCN) pyramidal cells in the guinea pig receive and respond to somatosensory inputs and perform multisensory integration. DCN pyramidal cells respond to sounds with characteristic spike-timing patterns that are partially controlled by rapidly inactivating potassium conductances. Deactivating these conductances can modify both spike rate and spike timing of responses to sound. Somatosensory pathways are known to modify response rates to subsequent acoustic stimuli, but their effect on spike timing is unknown. Here, we demonstrate that preceding tonal stimulation with spinal trigeminal nucleus (Sp5) stimulation significantly alters the first spike latency, the first interspike interval and the average discharge regularity of firing evoked by the tone. These effects occur whether the neuron is excited or inhibited by Sp5 stimulation alone. Our results demonstrate that multisensory integration in DCN alters spike-timing representations of acoustic stimuli in pyramidal cells. These changes likely occur through synaptic modulation of intrinsic excitability or synaptic inhibition.
Collapse
Affiliation(s)
- Seth D Koehler
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
21
|
Cuneate and spinal trigeminal nucleus projections to the cochlear nucleus are differentially associated with vesicular glutamate transporter-2. Neuroscience 2010; 176:142-51. [PMID: 21167260 DOI: 10.1016/j.neuroscience.2010.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/23/2022]
Abstract
There are distinct distributions and associations with vesicular glutamate transporters (VGLUTs) for auditory nerve and specific somatosensory projections in the cochlear nucleus (CN). Auditory nerve fibers project primarily to the magnocellular areas of the ventral cochlear nucleus and deepest layer of the dorsal cochlear nucleus and predominantly colabel with VGLUT1; whereas the spinal trigeminal nucleus (Sp5) projections terminate primarily in the granule cell domains (GCD) of CN and predominantly colabel with VGLUT2. Here, we demonstrate that the terminals of another somatosensory pathway, originating in the cuneate nucleus (Cu), also colabel with VGLUT2. Cu projections in cochlear nucleus exhibited a bilateral distribution pattern with ipsilateral dominance, with 30% of these classified as putative mossy fibers (MFs) and 70% as small boutons (SBs). Cu anterograde endings had a more prominent distribution in the GCD than Sp5, with a higher percentage of MF terminals throughout the CN and higher MF/SB ratio in GCD. 56% of Cu endings and only 25% of Sp5 endings colabeled with VGLUT2. In both cases these were mostly MFs with only 43% of Cu SBs and 18% of Sp5 SBs colabeled with VGLUT2. The few Cu and Sp5 terminals that colabeled with VGLUT1 (11% vs. 1%), were evenly distributed between MFs and SBs. The high number of VGLUT2-positive Cu MFs predominantly located in the GCD, may reflect a faster-acting pathway that activates primarily dorsal cochlear nucleus cells via granule cell axons. In contrast, the higher percentage of Sp5-labeled SB terminals and a greater number of projections outside the GCD suggest a slower-acting pathway that activates both dorsal and ventral cochlear nucleus principal cells. Both projections, with their associations to VGLUT2 likely play a role in the enhancement of VGLUT2 after unilateral deafness [Zeng C, Nannapaneni N, Zhou J, Hughes LF, Shore S (2009) J Neurosci 29:4210-4217] that may be associated with tinnitus.
Collapse
|
22
|
Graham K, Burghardt G. Current Perspectives on the Biological Study of Play: Signs of Progress. QUARTERLY REVIEW OF BIOLOGY 2010; 85:393-418. [DOI: 10.1086/656903] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Kameyama S, Masuda H, Murakami H. Ictogenesis and symptomatogenesis of gelastic seizures in hypothalamic hamartomas: An ictal SPECT study. Epilepsia 2010; 51:2270-9. [DOI: 10.1111/j.1528-1167.2010.02739.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Simões CS, Vianney PVR, de Moura MM, Freire MAM, Mello LE, Sameshima K, Araújo JF, Nicolelis MAL, Mello CV, Ribeiro S. Activation of frontal neocortical areas by vocal production in marmosets. Front Integr Neurosci 2010; 4:123. [PMID: 20953246 PMCID: PMC2955454 DOI: 10.3389/fnint.2010.00123] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 09/06/2010] [Indexed: 11/20/2022] Open
Abstract
Primates often rely on vocal communication to mediate social interactions. Although much is known about the acoustic structure of primate vocalizations and the social context in which they are usually uttered, our knowledge about the neocortical control of audio-vocal interactions in primates is still incipient, being mostly derived from lesion studies in squirrel monkeys and macaques. To map the neocortical areas related to vocal control in a New World primate species, the common marmoset, we employed a method previously used with success in other vertebrate species: Analysis of the expression of the immediate early gene Egr-1 in freely behaving animals. The neocortical distribution of Egr-1 immunoreactive cells in three marmosets that were exposed to the playback of conspecific vocalizations and vocalized spontaneously (H/V group) was compared to data from three other marmosets that also heard the playback but did not vocalize (H/n group). The anterior cingulate cortex, the dorsomedial prefrontal cortex and the ventrolateral prefrontal cortex presented a higher number of Egr-1 immunoreactive cells in the H/V group than in H/n animals. Our results provide direct evidence that the ventrolateral prefrontal cortex, the region that comprises Broca's area in humans and has been associated with auditory processing of species-specific vocalizations and orofacial control in macaques, is engaged during vocal output in marmosets. Altogether, our results support the notion that the network of neocortical areas related to vocal communication in marmosets is quite similar to that of Old world primates. The vocal production role played by these areas and their importance for the evolution of speech in primates are discussed.
Collapse
Affiliation(s)
- Cristiano S. Simões
- Edmond and Lily Safra - International Institute of Neuroscience of NatalNatal, Rio Grande do Norte, Brazil
- Department of Physiology, Federal University of Rio Grande do NorteNatal, Rio Grande do Norte, Brazil
| | - Paulo V. R. Vianney
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| | - Marco Marcondes de Moura
- Department of Physiology, University of Brasília, BrasíliaDistrito Federal, Brazil
- Laboratory of Brain Studies, Juquery Hospital, Franco da RochaSão Paulo, Brazil
| | - Marco A. M. Freire
- Edmond and Lily Safra - International Institute of Neuroscience of NatalNatal, Rio Grande do Norte, Brazil
| | - Luiz E. Mello
- Department of Physiology, Federal University of São PauloSão Paulo, São Paulo, Brazil
| | - Koichi Sameshima
- Cesar Timo-Iaria Laboratory, Instituto de Ensino e Pesquisa, Hospital Sírio-LibanêsSão Paulo, São Paulo, Brazil
- Department of Radiology, University of São PauloSão Paulo, São Paulo, Brazil
| | - John F. Araújo
- Department of Physiology, Federal University of Rio Grande do NorteNatal, Rio Grande do Norte, Brazil
| | - Miguel A. L. Nicolelis
- Edmond and Lily Safra - International Institute of Neuroscience of NatalNatal, Rio Grande do Norte, Brazil
- Cesar Timo-Iaria Laboratory, Instituto de Ensino e Pesquisa, Hospital Sírio-LibanêsSão Paulo, São Paulo, Brazil
- Center for Neuroengineering, Department of Neurobiology, Duke University Medical CenterDurham, NC, USA
- Department of Biomedical Engineering, Duke UniversityDurham, NC, USA
- Department of Psychological and Brain Sciences, Duke UniversityDurham, NC, USA
| | - Claudio V. Mello
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| | - Sidarta Ribeiro
- Edmond and Lily Safra - International Institute of Neuroscience of NatalNatal, Rio Grande do Norte, Brazil
- Department of Physiology, Federal University of Rio Grande do NorteNatal, Rio Grande do Norte, Brazil
| |
Collapse
|
25
|
|
26
|
Evolution of the communication brain in control of mammalian vocalization. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374593-4.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Hage SR. Localization of the central pattern generator for vocalization. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374593-4.00031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
28
|
Thomas LB, Stemple JC, Andreatta RD, Andrade FH. Establishing a new animal model for the study of laryngeal biology and disease: an anatomic study of the mouse larynx. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2009; 52:802-811. [PMID: 18806215 DOI: 10.1044/1092-4388(2008/08-0087)] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
PURPOSE Animal models have contributed greatly to the study of voice, permitting the examination of laryngeal biology and the testing of surgical, medical, and behavioral interventions. Various models have been used. However, until recently, the mouse (Mus musculus) has not been used in laryngeal research, and features of the mouse larynx have not been defined. Therefore, the purpose of this study was to qualitatively describe mouse laryngeal anatomy in relation to known human anatomy. METHODS Larynges of 7 C57BL mice were examined and photographed under stereotactic and light microscopy. RESULTS The authors found that mouse laryngeal organization was similar to that of humans. The hyoid bone and epiglottal, thyroid, cricoid, and arytenoid cartilages were identified. An additional cartilage was present ventrally. Thyroarytenoid, posterior cricoarytenoid, lateral cricoarytenoid, and cricothyroid muscles were grossly positioned as in humans. Interarytenoid muscles were not present; however, a functional counterpart was identified. CONCLUSIONS The authors provide an initial description of mouse laryngeal anatomy. Because of its amenability to genetic engineering, the mouse is the premiere model for the study of disease and the testing of interventions. Introduction of the mouse model for laryngeal study offers a tool for the study of normal laryngeal cell biology and tissue response to disease processes.
Collapse
Affiliation(s)
- Lisa B Thomas
- Department of Communication Disorders, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | | | | | | |
Collapse
|
29
|
Wild JM, Kubke MF, Mooney R. Avian nucleus retroambigualis: cell types and projections to other respiratory-vocal nuclei in the brain of the zebra finch (Taeniopygia guttata). J Comp Neurol 2009; 512:768-83. [PMID: 19067354 DOI: 10.1002/cne.21932] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In songbirds song production requires the intricate coordination of vocal and respiratory muscles under the executive influence of the telencephalon, as for speech in humans. In songbirds the site of this coordination is suspected to be the nucleus retroambigualis (RAm), because it contains premotor neurons projecting upon both vocal motoneurons and spinal motoneurons innervating expiratory muscles, and because it receives descending inputs from the telencephalic vocal control nucleus robustus archopallialis (RA). Here we used tract-tracing techniques to provide a more comprehensive account of the projections of RAm and to identify the different populations of RAm neurons. We found that RAm comprises diverse projection neuron types, including: 1) bulbospinal neurons that project, primarily contralaterally, upon expiratory motoneurons; 2) a separate group of neurons that project, primarily ipsilaterally, upon vocal motoneurons in the tracheosyringeal part of the hypoglossal nucleus (XIIts); 3) neurons that project throughout the ipsilateral and contralateral RAm; 4) another group that sends reciprocal, ascending projections to all the brainstem sources of afferents to RAm, namely, nucleus parambigualis, the ventrolateral nucleus of the rostral medulla, nucleus infra-olivarus superior, ventrolateral parabrachial nucleus, and dorsomedial nucleus of the intercollicular complex; and 5) a group of relatively large neurons that project their axons into the vagus nerve. Three morphological classes of RAm cells were identified by intracellular labeling, the dendritic arbors of which were confined to RAm, as defined by the terminal field of RA axons. Together the ascending and descending projections of RAm confirm its pivotal role in the mediation of respiratory-vocal control.
Collapse
Affiliation(s)
- J M Wild
- Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
30
|
Dehmel S, Cui YL, Shore SE. Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness. Am J Audiol 2008; 17:S193-209. [PMID: 19056923 PMCID: PMC2760229 DOI: 10.1044/1059-0889(2008/07-0045)] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE This review outlines the anatomical and functional bases of somatosensory influences on auditory processing in the normal brainstem and midbrain. It then explores how interactions between the auditory and somatosensory system are modified through deafness, and their impact on tinnitus is discussed. METHOD Literature review, tract tracing, immunohistochemistry, and in vivo electrophysiological recordings were used. RESULTS Somatosensory input originates in the dorsal root ganglia and trigeminal ganglia, and is transmitted directly and indirectly through 2nd-order nuclei to the ventral cochlear nucleus, dorsal cochlear nucleus (DCN), and inferior colliculus. The glutamatergic somatosensory afferents can be segregated from auditory nerve inputs by the type of vesicular glutamate transporters present in their terminals. Electrical stimulation of the somatosensory input results in a complex combination of excitation and inhibition, and alters the rate and timing of responses to acoustic stimulation. Deafness increases the spontaneous rates of those neurons that receive excitatory somatosensory input and results in a greater sensitivity of DCN neurons to trigeminal stimulation. CONCLUSIONS Auditory-somatosensory bimodal integration is already present in 1st-order auditory nuclei. The balance of excitation and inhibition elicited by somatosensory input is altered following deafness. The increase in somatosensory influence on auditory neurons when their auditory input is diminished could be due to cross-modal reinnervation or increased synaptic strength, and may contribute to mechanisms underlying somatic tinnitus.
Collapse
Affiliation(s)
- S Dehmel
- Kresge Hearing Research Institute, 1150 West Medical Center Drive, Room 5434A, Ann Arbor, MI 48109-5616, USA
| | | | | |
Collapse
|
31
|
Jürgens U. The neural control of vocalization in mammals: a review. J Voice 2008; 23:1-10. [PMID: 18207362 DOI: 10.1016/j.jvoice.2007.07.005] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
The review describes a model of vocal control, based mainly on research in the squirrel monkey, which consists of two hierarchically organized pathways. One runs from the anterior cingulate cortex via the periaqueductal gray (PAG) into the reticular formation of pons and medulla oblongata, and from there to the phonatory motoneurons. This pathway controls the readiness to vocalize. Although the anterior cingulate cortex in this pathway plays a role in voluntary initiation of vocal behavior, the PAG is involved in vocal gating at a more elementary level. The second pathway runs from the motor cortex via the reticular formation to the phonatory motoneurons and includes two feedback loops providing the motor cortex with preprocessed information needed by the latter to generate the final motor commands. One of these feedback loops involves the basal ganglia and the other the cerebellum. The motor cortex together with its feedback loops is involved in the production of learned vocal patterns. These structures seem to be dispensable, however, for the production of innate vocal patterns, such as the nonverbal emotional vocal utterances of humans and most nonhuman mammalian vocalizations. These innate vocal patterns seem to be generated in the pontine and medullary reticular formation.
Collapse
Affiliation(s)
- U Jürgens
- German Primate Center, Neurobiology, Kellnerweg 4, Göttingen, Germany.
| |
Collapse
|
32
|
Jürgens U, Hage SR. On the role of the reticular formation in vocal pattern generation. Behav Brain Res 2006; 182:308-14. [PMID: 17173983 DOI: 10.1016/j.bbr.2006.11.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
This review is an attempt to localize the brain region responsible for pattern generation of species-specific vocalizations. A catalogue is set up, listing the criteria considered to be essential for a vocal pattern generator. According to this catalogue, a vocal pattern generator should show vocalization-correlated activity, starting before vocal onset and reflecting specific acoustic features of the vocalization. Artificial activation by electrical or glutamatergic stimulation should produce artificially sounding vocalization. Lesioning is expected to have an inhibitory or deteriorating effect on vocalization. Anatomically, a vocal pattern generator can be assumed to have direct or, at least, oligosynaptic connections with all the motoneuron pools involved in phonation. A survey of the literature reveals that the only area meeting all these criteria is a region, reaching from the parvocellular pontine reticular formation just above the superior olive through the lateral reticular formation around the facial nucleus and nucleus ambiguus down to the caudalmost medulla, including the dorsal and ventral reticular nuclei and nucleus retroambiguus. It is proposed that vocal pattern generation takes place within this whole region.
Collapse
Affiliation(s)
- Uwe Jürgens
- Department of Neurobiology, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
| | | |
Collapse
|
33
|
Abstract
During the 25 years since a motivational systems model was proposed to explain the brain mechanisms of aggressive behavior (D.B. Adams. Brain mechanisms for offense, defense, and submission. Behav. Brain. Sci. 2, (1979a) 200-241) considerable research has been carried out. Updating the model in the light of this research requires several changes. A previous distinction between submission and defense systems is abandoned and, instead, it is proposed that two distinct subsets of the defense motivational mechanism may be recognized, one for anti-predator defense and the other for consociate defense. Similarly, the offense motivational mechanism is now considered to have at least two subsets, one mediating territorial and the other competitive fighting. Data continue to indicate that the defense motivational mechanism is located in the midbrain central gray and adjoining tissue. Also data tend to support the hypothesis that the offense motivational mechanism is located in the hypothalamus at the level of the anterior hypothalamus. Consideration is also given to a motivational system for patrol/marking which is related to aggressive behavior. Research is reviewed that bears on the neural structure of motivating and releasing/directing stimuli and motor patterning mechanisms of offense, defense and patrol/marking, as well as the location of learning and hormonal effects, and attention is given to how the model can be tested.
Collapse
Affiliation(s)
- David B Adams
- Psychology Department, Wesleyan University Department of Psychology, Middletown, CT 06459, USA.
| |
Collapse
|
34
|
Kubke MF, Yazaki-Sugiyama Y, Mooney R, Wild JM. Physiology of neuronal subtypes in the respiratory-vocal integration nucleus retroamigualis of the male zebra finch. J Neurophysiol 2005; 94:2379-90. [PMID: 15928060 DOI: 10.1152/jn.00257.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Learned vocalizations, such as bird song, require intricate coordination of vocal and respiratory muscles. Although the neural basis for this coordination remains poorly understood, it likely includes direct synaptic interactions between respiratory premotor neurons and vocal motor neurons. In birds, as in mammals, the medullary nucleus retroambigualis (RAm) receives synaptic input from higher level respiratory and vocal control centers and projects to a variety of targets. In birds, these include vocal motor neurons in the tracheosyringeal part of the hypoglossal motor nucleus (XIIts), other respiratory premotor neurons, and expiratory motor neurons in the spinal cord. Although various cell types in RAm are distinct in their anatomical projections, their electrophysiological properties remain unknown. Furthermore, although prior studies have shown that RAm provides both excitatory and inhibitory input onto XIIts motor neurons, the identity of the cells in RAm providing either of these inputs remains to be established. To characterize the different RAm neuron types electrophysiologically, we used intracellular recordings in a zebra finch brain stem slice preparation. Based on numerous differences in intrinsic electrophysiological properties and a principal components analysis, we identified two distinct RAm neuron types (types I and II). Antidromic stimulation methods and intracellular staining revealed that type II neurons, but not type I neurons, provide bilateral synaptic input to XIIts. Paired intracellular recordings in RAm and XIIts further indicated that type II neurons with a hyperpolarization-dependent bursting phenotype are a potential source of inhibitory input to XIIts motor neurons. These results indicate that electrically distinct cell types exist in RAm, affording physiological heterogeneity that may play an important role in respiratory-vocal signaling.
Collapse
Affiliation(s)
- M F Kubke
- Division of Anatomy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | | | | | | |
Collapse
|
35
|
Düsterhöft F, Häusler U, Jürgens U. Neuronal activity in the periaqueductal gray and bordering structures during vocal communication in the squirrel monkey. Neuroscience 2004; 123:53-60. [PMID: 14667441 DOI: 10.1016/j.neuroscience.2003.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In seven freely moving squirrel monkeys (Saimiri sciureus), the neuronal activity in the periaqueductal gray (PAG) and bordering structures was registered during vocal communication, using a telemetric single-unit recording technique. In 9.3% of the PAG neurons, a vocalization-correlated activity was found. Four reaction types could be distinguished: a) neurons, showing an activity burst immediately before vocalization onset; b) neurons, firing during vocalization, and starting shortly before vocalization onset; c) neurons, firing exclusively during vocalization; d) neurons, firing in the interval between perceived vocalizations (i.e. vocalizations produced by group mates) and self-produced vocal response. All PAG neurons showed a marked vocalization-type specificity. None of the neurons reflected simple acoustic parameters, such as fundamental frequency or amplitude, in its discharge rate. None of the neurons reacted to vocalizations of other animals not responded to by the experimental animal. All four reaction types found in the PAG were also found in the reticular formation bordering the PAG, though in lower density.
Collapse
Affiliation(s)
- F Düsterhöft
- German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | | | | |
Collapse
|
36
|
Bauer JJ, Larson CR. Audio-vocal responses to repetitive pitch-shift stimulation during a sustained vocalization: improvements in methodology for the pitch-shifting technique. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 114:1048-1054. [PMID: 12942983 PMCID: PMC1698961 DOI: 10.1121/1.1592161] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The pitch-shift reflex is a sophisticated system that produces a "compensatory" response in voice F0 that is opposite in direction to a change in voice pitch feedback (pitch-shift stimulus), thus correcting for the discrepancy between the intended voice F0 and the feedback pitch. In order to more fully exploit the pitch-shift reflex as a tool for studying the influence of sensory feedback mechanisms underlying voice control, the optimal characteristics of the pitch-shift stimulus must be understood. The present study was undertaken to assess the effects of altering the duration of the interstimulus interval (ISI) and the number of trials comprising an average on measures of the pitch-shift reflex. Pitch-shift stimuli were presented to vocalizing subjects with ISI of 5.0, 2.5, 1.0, and 0.5 s to determine if an increase in ISI altered response properties. With each ISI, measures of event-related averages of the first 10, 15, 20, or 30 pitch-shift reflex responses were compared to see if increases in the number of responses comprising an event-related average altered response properties. Measures of response latency, peak time, magnitude, and prevalence were obtained for all ISI and average conditions. While quantitative measures were similar across ISI and averaging conditions, we observed more instances of "non-responses" with averages of ten trials as well as at an ISI of 0.5 s. These findings suggest an ISI of 1.0 s and an average consisting of at least 15 trials produce optimal results. Future studies using these stimulus parameters may produce more reliable data due to the fivefold decrease in subject participation time and a concomitant decrease in fatigue, boredom, and inattention.
Collapse
Affiliation(s)
- Jay J Bauer
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
37
|
Simonyan K, Jürgens U. Efferent subcortical projections of the laryngeal motorcortex in the rhesus monkey. Brain Res 2003; 974:43-59. [PMID: 12742623 DOI: 10.1016/s0006-8993(03)02548-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to better understand the descending voluntary vocal control pathway, the efferent subcortical projections of the laryngeal motorcortex were studied in the rhesus monkey (Macaca mulatta). For this purpose, the left motorcortex was exposed in three animals under narcosis. By electrical brain stimulation, sites were identified yielding vocal fold adduction. Effective sites were injected with the anterograde tracer biotin dextran amine. Subcortical projections could be traced within the forebrain to the putamen, caudate nucleus, claustrum, zona incerta, field H of Forel and a number of thalamic nuclei, with the heaviest projections to the nuclei ventralis lateralis, ventralis posteromedialis, including its parvocellular part, medialis dorsalis, centralis medialis, centrum medianum and reuniens. In the midbrain, labeling was found in the deep mesencephalic nucleus. In the lower brainstem, fibers terminated in the pontine and medullary reticular formation, locus coeruleus, nucleus subcoeruleus, medial parabrachial nucleus, nucleus of the spinal trigeminal tract, solitary tract nucleus and facial nucleus. No projections were found to the nucl. ambiguus. The fact that monkeys, in contrast to humans, lack a direct connection of the motorcortex with the laryngeal motoneurons suggests that this connection has evolved in the last few million years and might represent one of the factors that made speech evolution possible.
Collapse
Affiliation(s)
- Kristina Simonyan
- Department of Neurobiology, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
| | | |
Collapse
|
38
|
The effect of amygdala lesions on conditional and unconditional vocalizations in rats. Neurobiol Learn Mem 2003; 79:212-25. [PMID: 12676520 DOI: 10.1016/s1074-7427(03)00002-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Electrolytic lesions centered on the amygdaloid central nucleus (ACe) resulted in the inability of rats to acquire a Pavlovian conditional vocalization response. Conditioning consisted of pairing a light conditional stimulus with a tailshock unconditional stimulus (US). The thresholds of three unconditional responses (URs) to tailshock were assessed prior to conditioning. These URs are organized at spinal (spinal motor reflexes), medullary (vocalizations during shock), and forebrain (vocalization afterdischarges, VADs) levels of the neuraxis. Compared to sham-lesioned controls, rats with amygdala lesions exhibited a selective elevation in the threshold of VADs. During conditioning the amplitude and duration of VADs were selectively reduced in amygdala-lesioned rats. These findings support earlier observations of that elicitation of VADs by tailshock correlates with the capacity of this US to support fear conditioning. The ACe may be involved in both associative and non-associative aspects of fear conditioning, but for progress in our understanding it is essential to evaluate its role in the generation of conditioning relevant URs.
Collapse
|
39
|
Siebert S, Jürgens U. Vocalization after periaqueductal grey inactivation with the GABA agonist muscimol in the squirrel monkey. Neurosci Lett 2003; 340:111-4. [PMID: 12668249 DOI: 10.1016/s0304-3940(03)00071-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to specify the role of the periaqueductal grey (PAG) in vocal production, we tested the effect of PAG inactivation on the electrical elicitability of vocalization from various brain structures in the squirrel monkey. For this purpose, we implanted stimulation electrodes at 64 vocalization-eliciting sites throughout the brain and compared the elicitability of vocalization before and after muscimol injection into the PAG. It turned out that only vocalization sites in the forebrain (cingulate cortex, hypothalamus) and rostralmost mesencephalic reticular formation could be blocked by PAG inactivation, whereas all vocalization sites in the caudal midbrain, pons and medulla remained unaffected. It is concluded that the PAG is not the site of vocal pattern generation, but rather serves gating functions.
Collapse
Affiliation(s)
- S Siebert
- German Primate Centre, Kellnerweg 4, 37077 Göttingen, Germany
| | | |
Collapse
|
40
|
Reilly KJ, Moore CA. Respiratory sinus arrhythmia during speech production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2003; 46:164-177. [PMID: 12647896 PMCID: PMC3976417 DOI: 10.1044/1092-4388(2003/013)] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The amplitude of the respiratory sinus arrhythmia (RSA) was investigated during a reading aloud task to determine whether alterations in respiratory control during speech production affect the amplitude of RSA. Changes in RSA amplitude associated with speech were evaluated by comparing RSA amplitudes during reading aloud with those obtained during rest breathing. A third condition, silent reading, was included to control for potentially confounding effects of cardiovascular responses to cognitive processes involved in the process of reading. Calibrated respiratory kinematics, electrocardiograms (ECGs), and speech audio signals were recorded from 18 adults (9 men, 9 women) during 5-min trials of each condition. The results indicated that the increases in respiratory duration, lung volume, and inspiratory velocity associated with reading aloud were accompanied by similar increases in the amplitude of RSA. This finding provides support for the premise that sensorimotor pathways mediating metabolic respiration are actively modulated during speech production.
Collapse
Affiliation(s)
- Kevin J Reilly
- Department of Speech and Hearing Sciences, University of Washington, Seattle 98105-6246, USA.
| | | |
Collapse
|
41
|
Jürgens U, Ehrenreich L, De Lanerolle NC. 2-Deoxyglucose uptake during vocalization in the squirrel monkey brain. Behav Brain Res 2002; 136:605-10. [PMID: 12429422 DOI: 10.1016/s0166-4328(02)00202-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the squirrel monkey (Saimiri sciureus), the cerebral 2-deoxyglucose uptake was compared between animals made to vocalize by electrical stimulation of the periaqueductal grey and animals stimulated in the same structure, but sub-threshold for vocalization. A significantly higher 2-deoxyglucose uptake in the vocalizers than the non-vocalizers was found in the dorsolateral prefrontal cortex, supplementary and pre-supplementary motor area, anterior and posterior cingulate cortex, primary motor cortex, claustrum, centrum medianum, perifornical hypothalamus, periaqueductal grey, intercollicular region, dorsal mesencephalic reticular formation, peripeduncular nucleus, substantia nigra, nucl. ruber, paralemniscal area, trigeminal motor, principal and spinal nuclei, solitary tract nucleus, nucl. ambiguus, nucl. retroambiguus, nucl. hypoglossus, ventral raphe and large parts of the medullary reticular formation. The study makes clear that vocalization, even in the case of genetically pre-programmed patterns, depends upon an extensive network, beyond the well-known periaqueductal grey, nucl. retroambiguus and cranial motor nuclei pathway.
Collapse
Affiliation(s)
- Uwe Jürgens
- German Primate Centre, Kellnerweg 4, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
42
|
Abstract
Vocalization is a complex behaviour pattern, consisting of essentially three components: laryngeal activity, respiratory movements and supralaryngeal (articulatory) activity. The motoneurones controlling this behaviour are located in various nuclei in the pons (trigeminal motor nucleus), medulla (facial nucleus, nucl. ambiguus, hypoglossal nucleus) and ventral horn of the spinal cord (cervical, thoracic and lumbar region). Coordination of the different motoneurone pools is carried out by an extensive network comprising the ventrolateral parabrachial area, lateral pontine reticular formation, anterolateral and caudal medullary reticular formation, and the nucl. retroambiguus. This network has a direct access to the phonatory motoneurone pools and receives proprioceptive input from laryngeal, pulmonary and oral mechanoreceptors via the solitary tract nucleus and principal as well as spinal trigeminal nuclei. The motor-coordinating network needs a facilitatory input from the periaqueductal grey of the midbrain and laterally bordering tegmentum in order to be able to produce vocalizations. Voluntary control of vocalization, in contrast to completely innate vocal reactions, such as pain shrieking, needs the intactness of the forebrain. Voluntary control over the initiation and suppression of vocal utterances is carried out by the mediofrontal cortex (including anterior cingulate gyrus and supplementary as well as pre-supplementary motor area). Voluntary control over the acoustic structure of vocalizations is carried out by the motor cortex via pyramidal/corticobulbar as well as extrapyramidal pathways. The most important extrapyramidal pathway seems to be the connection motor cortex-putamen-substantia nigra-parvocellular reticular formation-phonatory motoneurones. The motor cortex depends upon a number of inputs for fulfilling its task. It needs a cerebellar input via the ventrolateral thalamus for allowing a smooth transition between consecutive vocal elements. It needs a proprioceptive input from the phonatory organs via nucl. ventralis posterior medialis thalami, somatosensory cortex and inferior parietal cortex. It needs an input from the ventral premotor and prefrontal cortex, including Broca's area, for motor planning of longer purposeful utterances. And it needs an input from the supplementary and pre-supplementary motor area which give rise to the motor commands executed by the motor cortex.
Collapse
Affiliation(s)
- Uwe Jürgens
- German Primate Centre, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|