1
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
2
|
Experimental Studies Indicate That ST-2223, the Antagonist of Histamine H3 and Dopamine D2/D3 Receptors, Restores Social Deficits and Neurotransmission Dysregulation in Mouse Model of Autism. Pharmaceuticals (Basel) 2022; 15:ph15080929. [PMID: 36015079 PMCID: PMC9414676 DOI: 10.3390/ph15080929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Altered regulation of neurotransmitters may lead to many pathophysiological changes in brain disorders including autism spectrum disorder (ASD). Given the fact that there are no FDA-approved effective treatments for the social deficits in ASD, the present study determined the effects of chronic systemic treatment of the novel multiple-active H3R/D2R/D3R receptor antagonist ST-2223 on ASD-related social deficits in a male Black and Tan Brachyury (BTBR) mice. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly and dose-dependently mitigated social deficits and disturbed anxiety levels of BTBR mice (p < 0.05) in comparison to the effects of aripiprazole (1 mg/kg, i.p.). Moreover, levels of monoaminergic neurotransmitters quantified by LC-MS/MS in four brain regions including the prefrontal cortex, cerebellum, striatum, and hippocampus unveiled significant elevation of histamine (HA) in the cerebellum and striatum; dopamine (DA) in the prefrontal cortex and striatum; as well as acetylcholine (ACh) in the prefrontal cortex, striatum, and hippocampus following ST-2223 (5 mg/kg) administration (all p < 0.05). These in vivo findings demonstrate the mitigating effects of a multiple-active H3R/D2R/D3R antagonist on social deficits of assessed BTBR mice, signifying its pharmacological potential to rescue core ASD-related behaviors and altered monoaminergic neurotransmitters. Further studies on neurochemical alterations in ASD are crucial to elucidate the early neurodevelopmental variations behind the core symptoms and heterogeneity of ASD, leading to new approaches for the future therapeutic management of ASD.
Collapse
|
3
|
Alhusaini M, Eissa N, Saad AK, Beiram R, Sadek B. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep-Wake Cycle Disorder. Front Pharmacol 2022; 13:861094. [PMID: 35721194 PMCID: PMC9198498 DOI: 10.3389/fphar.2022.861094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
A relationship appears to exist between dysfunction of brain histamine (HA) and various neuropsychiatric brain disorders. The possible involvement of brain HA in neuropathology has gained attention recently, and its role in many (patho)physiological brain functions including memory, cognition, and sleep-wake cycle paved the way for further research on the etiology of several brain disorders. Histamine H3 receptor (H3R) evidenced in the brains of rodents and humans remains of special interest, given its unique position as a pre- and postsynaptic receptor, controlling the synthesis and release of HA as well as different other neurotransmitters in different brain regions, respectively. Despite several disappointing outcomes for several H3R antagonists/inverse agonists in clinical studies addressing their effectiveness in Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCH), numerous H3R antagonists/inverse agonists showed great potentials in modulating memory and cognition, mood, and sleep-wake cycle, thus suggesting its potential role in neurocognitive and neurodegenerative diseases such as AD, PD, SCH, narcolepsy, and major depression in preclinical rodent models. In this review, we present preclinical applications of selected H3R antagonists/inverse agonists and their pharmacological effects on cognitive impairment, anxiety, depression, and sleep-wake cycle disorders. Collectively, the current review highlights the behavioral impact of developments of H3R antagonists/inverse agonists, aiming to further encourage researchers in the preclinical drug development field to profile the potential therapeutic role of novel antagonists/inverse agonists targeting histamine H3Rs.
Collapse
Affiliation(s)
- Mera Alhusaini
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ali K Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
The Novel Pimavanserin Derivative ST-2300 with Histamine H3 Receptor Affinity Shows Reduced 5-HT2A Binding, but Maintains Antidepressant- and Anxiolytic-like Properties in Mice. Biomolecules 2022; 12:biom12050683. [PMID: 35625611 PMCID: PMC9138994 DOI: 10.3390/biom12050683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023] Open
Abstract
The therapy of depression is challenging and still unsatisfactory despite the presence of many antidepressant drugs on the market. Consequently, there is a continuous need to search for new, safer, and more effective antidepressant therapeutics. Previous studies have suggested a potential association of brain histaminergic/serotoninergic signaling and antidepressant- and anxiolytic-like effects. Here, we evaluated the in vivo antidepressant- and anxiolytic-like effects of the newly developed multiple-active ligand ST-2300. ST-2300 was developed from 5-HT2A/2C inverse agonist pimavanserin (PIM, ACP-103) and incorporates a histamine H3 receptor (H3R) antagonist pharmacophore. Despite its parent compound, ST-2300 showed only moderate serotonin 5-HT2A antagonist/inverse agonist affinity (Ki value of 1302 nM), but excellent H3R affinity (Ki value of 14 nM). In vivo effects were examined using forced swim test (FST), tail suspension test (TST), and the open field test (OFT) in C57BL/6 mice. Unlike PIM, ST-2300 significantly increased the anxiolytic-like effects in OFT without altering general motor activity. In FST and TST, ST-2300 was able to reduce immobility time similar to fluoxetine (FLX), a recognized antidepressant drug. Importantly, pretreatment with the CNS-penetrant H3R agonist (R)-α-methylhistamine reversed the antidepressant-like effects of ST-2300 in FST and TST, but failed to reverse the ST-2300-provided anxiolytic effects in OFT. Present findings reveal critical structural features that are useful in a rational multiple-pharmacological approach to target H3R/5-HT2A/5-HT2C.
Collapse
|
5
|
Némethy Z, Kiss B, Lethbridge N, Chazot P, Hajnik T, Tóth A, Détári L, Schmidt É, Czurkó A, Kostyalik D, Oláh V, Hernádi I, Balázs O, Vizi ES, Ledneczki I, Mahó S, Román V, Lendvai B, Lévay G. Convergent cross-species pro-cognitive effects of RGH-235, a new potent and selective histamine H 3 receptor antagonist/inverse agonist. Eur J Pharmacol 2021; 916:174621. [PMID: 34965389 DOI: 10.1016/j.ejphar.2021.174621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
The histamine H3 receptor is a favourable target for the treatment of cognitive deficits. Here we report the in vitro and in vivo profile of RGH-235, a new potent, selective, and orally active H3 receptor antagonist/inverse agonist developed by Gedeon Richter Plc. Radioligand binding and functional assays were used for in vitro profiling. Procognitive efficacy was investigated in rodent cognitive tests, in models of attention deficit hyperactive disorder (ADHD) and in cognitive tests of high translational value (rat touch screen visual discrimination test, primate fixed-foreperiod visual reaction time task). Results were supported by pharmacokinetic studies, neurotransmitter release, sleep EEG and dipsogenia. RGH-235 displayed high affinity to H3 receptors (Ki = 3.0-9.2 nM, depending on species), without affinity to H1, H2 or H4 receptors and >100 other targets. RGH-235 was an inverse agonist ([35S] GTPγS binding) and antagonist (pERK1/2 ELISA), showing favourable kinetics, inhibition of the imetit-induced dipsogenia and moderate effects on sleep-wake EEG. RGH-235 stimulated neurotransmitter release both in vitro and in vivo. RGH-235 was active in spontaneously hypertensive rats (SHR), generally considered as a model of ADHD, and revealed a robust pro-cognitive profile both in rodent and primate tests (in 0.3-1 mg/kg) and in models of high translational value (e.g. in a rodent touch screen test and in non-human primates). The multiple and convergent procognitive effects of RGH-235 support the view that beneficial cognitive effects can be linked to antagonism/inverse agonism of H3 receptors.
Collapse
Affiliation(s)
- Zsolt Némethy
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary.
| | - Béla Kiss
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | | | - Paul Chazot
- Department of Biosciences, Durham University, Durham, UK
| | - Tünde Hajnik
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Tóth
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - László Détári
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Schmidt
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - András Czurkó
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Diána Kostyalik
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Vilmos Oláh
- Department of Experimental Zoology and Neurobiology, Faculty of Sciences, Grastyán Translational Research Center and Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - István Hernádi
- Department of Experimental Zoology and Neurobiology, Faculty of Sciences, Grastyán Translational Research Center and Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Ottilia Balázs
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | | | | | - Sándor Mahó
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - Viktor Román
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - György Lévay
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
6
|
Falkenstein M, Elek M, Stark H. Chemical Probes for Histamine Receptor Subtypes. Curr Top Behav Neurosci 2021; 59:29-76. [PMID: 34595743 DOI: 10.1007/7854_2021_254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ligands with different properties and different selectivity are highly needed for in vitro and in vivo studies on the (patho)physiological influence of the chemical mediator histamine and its receptor subtypes. A selection of well-described ligands for the different receptor subtypes and different studies is shown with a particular focus on affinity and selectivity. In addition, compounds with radioactive or fluorescence elements will be presented with their beneficial use for other species or different investigations.
Collapse
Affiliation(s)
- Markus Falkenstein
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Milica Elek
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany.
| |
Collapse
|
7
|
The Dual-Active Histamine H 3 Receptor Antagonist and Acetylcholine Esterase Inhibitor E100 Alleviates Autistic-Like Behaviors and Oxidative Stress in Valproic Acid Induced Autism in Mice. Int J Mol Sci 2020; 21:ijms21113996. [PMID: 32503208 PMCID: PMC7312782 DOI: 10.3390/ijms21113996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
The histamine H3 receptor (H3R) functions as auto- and hetero-receptors, regulating the release of brain histamine (HA) and acetylcholine (ACh), respectively. The enzyme acetylcholine esterase (AChE) is involved in the metabolism of brain ACh. Both brain HA and ACh are implicated in several cognitive disorders like Alzheimer’s disease, schizophrenia, anxiety, and narcolepsy, all of which are comorbid with autistic spectrum disorder (ASD). Therefore, the novel dual-active ligand E100 with high H3R antagonist affinity (hH3R: Ki = 203 nM) and balanced AChE inhibitory effect (EeAChE: IC50 = 2 µM and EqBuChE: IC50 = 2 µM) was investigated on autistic-like sociability, repetitive/compulsive behaviour, anxiety, and oxidative stress in male C57BL/6 mice model of ASD induced by prenatal exposure to valproic acid (VPA, 500 mg/kg, intraperitoneal (i.p.)). Subchronic systemic administration with E100 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently attenuated sociability deficits of autistic (VPA) mice in three-chamber behaviour (TCB) test (all p < 0.05). Moreover, E100 significantly improved repetitive and compulsive behaviors by reducing the increased percentage of marbles buried in marble-burying behaviour (MBB) (all p < 0.05). Furthermore, pre-treatment with E100 (10 and 15 mg/kg, i.p.) corrected decreased anxiety levels (p < 0.05), however, failed to restore hyperactivity observed in elevated plus maze (EPM) test. In addition, E100 (10 mg/kg, i.p.) mitigated oxidative stress status by increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and decreasing the elevated levels of malondialdehyde (MDA) in the cerebellar tissues (all p < 0.05). Additionally, E100 (10 mg/kg, i.p.) significantly reduced the elevated levels of AChE activity in VPA mice (p < 0.05). These results demonstrate the promising effects of E100 on in-vivo VPA-induced ASD-like features in mice, and provide evidence that a potent dual-active H3R antagonist and AChE inhibitor (AChEI) is a potential drug candidate for future therapeutic management of autistic-like behaviours.
Collapse
|
8
|
Provensi G, Passani MB, Costa A, Izquierdo I, Blandina P. Neuronal histamine and the memory of emotionally salient events. Br J Pharmacol 2020; 177:557-569. [PMID: 30110713 PMCID: PMC7012950 DOI: 10.1111/bph.14476] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
In this review, we describe the experimental paradigms used in preclinical studies to unravel the histaminergic brain circuits that modulate the formation and retrieval of memories associated with aversive events. Emotionally arousing events, especially bad ones, are remembered more accurately, clearly and for longer periods of time than neutral ones. Maladaptive elaborations of these memories may eventually constitute the basis of psychiatric disorders such as generalized anxiety, obsessive-compulsive disorders and post-traumatic stress disorder. A better understanding of the role of the histaminergic system in learning and memory has not only a theoretical significance but also a translational value. Ligands of histamine receptors are among the most used drugs worldwide; hence, understanding the impact of these compounds on learning and memory may help improve their pharmacological profile and unravel unexplored therapeutic applications. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del BambinoUniversità degli Studi di FirenzeFlorenceItaly
| | | | - Alessia Costa
- Dipartimento di Scienze della SaluteUniversità degli Studi di FirenzeFlorenceItaly
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do SulPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreRSBrazil
- National Institute of Translational Neuroscience (INNT)National Research Council of BrazilBrasíliaBrazil
| | - Patrizio Blandina
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del BambinoUniversità degli Studi di FirenzeFlorenceItaly
| |
Collapse
|
9
|
Leffa DT, Panzenhagen AC, Salvi AA, Bau CHD, Pires GN, Torres ILS, Rohde LA, Rovaris DL, Grevet EH. Systematic review and meta-analysis of the behavioral effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 2019; 100:166-179. [PMID: 30826386 DOI: 10.1016/j.neubiorev.2019.02.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022]
Abstract
The spontaneously hypertensive rats (SHR) are the most widely used model for ADHD. While face and construct validity are consolidated, questions remain about the predictive validity of the SHR model. We aim at summarizing the evidence for the predictive validity of SHR by evaluating its ability to respond to methylphenidate (MPH), the most well documented treatment for ADHD. A systematic review was carried out to identify studies evaluating MPH effects on SHR behavior. Studies (n=36) were grouped into locomotion, attention, impulsivity or memory, and a meta-analysis was performed. Meta-regression, sensitivity, heterogeneity, and publication bias analyses were also conducted. MPH increased attentional and mnemonic performances in the SHR model and decreased impulsivity in a dose-dependent manner. However, MPH did not reduce hyperactivity in low and medium doses, while increased locomotor activity in high doses. Thus, since the paradoxical effect of stimulant in reducing hyperactivity was not observed in the SHR model, our study does not fully support the predictive validity of SHR, questioning their validity as an animal model for ADHD.
Collapse
Affiliation(s)
- Douglas T Leffa
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alana C Panzenhagen
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil
| | - Artur A Salvi
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel N Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit - GPPG - Hospital de Clínicas de Porto Alegre - Porto, Alegre, Brazil
| | - Luis A Rohde
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents, Brazil
| | - Diego L Rovaris
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Eugenio H Grevet
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Takahashi S, Ohmiya M, Honda S, Ni K. The KCNH3 inhibitor ASP2905 shows potential in the treatment of attention deficit/hyperactivity disorder. PLoS One 2018; 13:e0207750. [PMID: 30462746 PMCID: PMC6248980 DOI: 10.1371/journal.pone.0207750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
N-(4-fluorophenyl)-N'-phenyl-N"-(pyrimidin-2-ylmethyl)-1,3,5-triazine-2,4,6-triamine [ASP2905] is a potent and selective inhibitor of the potassium voltage-gated channel subfamily H member 3 (KCNH3) that was originally identified in our laboratory. KCNH3 is concentrated in the forebrain, and its overexpression in mice leads to cognitive deficits. In contrast, Kcnh3 knockout mice exhibit enhanced performance in cognitive tasks such as attention. These data suggest that KCNH3 plays important roles in cognition. Here we investigated the neurochemical and neurophysiological profiles of ASP2905 as well as its effects on cognitive function, focusing on attention. ASP2905 (0.0313 and 0.0625 mg/kg, po) improved the latent learning ability of mice, which reflects attention. Microdialysis assays in rats revealed that ASP2905 increased the efflux of dopamine and acetylcholine in the medial prefrontal cortex (0.03, 0.1 mg/kg, po; 0.1, 1 mg/kg, po, respectively). The activities of these neurotransmitters are closely associated with attention. We used a multiple-trial passive avoidance task to investigate the effects of ASP2905 on inattention and impulsivity in juvenile stroke-prone spontaneously hypertensive rats. ASP2905 (0.1 and 0.3 mg/kg, po) significantly prolonged cumulative latency as effectively as methylphenidate (0.1 and 0.3 mg/kg, sc), which is the gold standard for treating ADHD. Further, ASP2905, amphetamine, and methylphenidate significantly increased the alpha-band power of rats, suggesting that ASP2905 increases arousal, which is a pharmacologically important activity for treating ADHD. In contrast, atomoxetine and guanfacine did not significantly affect power. Together, these findings suggest that ASP2905, which acts through a novel mechanism, is as effective for treating ADHD as currently available drugs such as methylphenidate.
Collapse
Affiliation(s)
- Shinji Takahashi
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Makoto Ohmiya
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Sokichi Honda
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Keni Ni
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Leffa DT, Castro Panzenhagen A, Luiz Rovaris D, Henrique Dotto Bau C, Rohde LA, Horacio Grevet E, Pires GN. Behavioural effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis protocol. BMJ OPEN SCIENCE 2018; 2:e000001. [PMID: 35047675 PMCID: PMC8715948 DOI: 10.1136/bmjos-2018-000001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Attention-deficit/hyperactivity disorder (ADHD) is a prevalent condition related to several negative outcomes, and its pathophysiology is still poorly understood. The spontaneously hypertensive rats (SHRs) are the most commonly used animal model of ADHD. How ever, its validity, and especially its predictive validity, has been questioned. Therefore, the current protocol discloses the background, aims and methods of a systematic review and meta-analysis of studies reporting the behavioural effects of methylphenidate (MPH), the most commonly prescribed treatment for ADHD, in the SHR. SEARCH STRATEGY Studies will be identified through a literature search using three different electronic databases: Medline, Embase and Web of Science. There will be no language restrictions. All s tudies that administered MPH to SHR and evaluated locomotion, attention, impulsivity or memory will be included. SCREENING AND ANNOTATION Studies will be prescreened based on title and abstract, and a full-text review will be performed if necessary. Screening will be performed by two authors, and any disagreement will be discussed with a third author. DATA MANAGEMENT AND REPORTING Data extraction will be performed by two independent authors according to a standardised form. Studies will be grouped according to the behavioural outcomes reported, and a meta-analysis will be performed for each group. The influence of predefined covariates on the effects of MPH will be evaluated using meta-regression and sensitivity analyses. Data will be reported following PRISMA guidelines.
Collapse
Affiliation(s)
- Douglas Teixeira Leffa
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alana Castro Panzenhagen
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diego Luiz Rovaris
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
12
|
The histamine H3R antagonist DL77 attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Sci Rep 2018; 8:13077. [PMID: 30166610 PMCID: PMC6117350 DOI: 10.1038/s41598-018-31385-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022] Open
Abstract
Autistic spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in social communication and restricted/repetitive behavior patterns or interests. Antagonists targeting histamine H3 receptor (H3R) are considered potential therapeutic agents for the therapeutic management of different brain disorders, e.g., cognitive impairments. Therefore, the effects of subchronic treatment with the potent and selective H3R antagonist DL77 (5, 10, or 15 mg/kg, i.p.) on sociability, social novelty, anxiety, and aggressive/repetitive behavior in male Tuck-Ordinary (TO) mice with ASD-like behaviors induced by prenatal exposure to valproic acid (VPA, 500 mg/kg, i.p.) were evaluated using the three-chamber test (TCT), marble burying test (MBT), nestlet shredding test (NST), and elevated plus maze (EPM) test. The results showed that VPA-exposed mice exhibited significantly lower sociability and social novelty preference compared to VPA-exposed mice that were pretreated with DL77 (10 or 15 mg/kg, i.p.). VPA-exposed mice presented a significantly higher percentage of buried marbles in MBT and shredded nestlet significantly more in NST compared to the control groups. However, VPA-exposed animals pretreated with DL77 (10 or 15 mg/kg, i.p.) buried a reduced percentage of marbles in MBT and presented a significantly lower percentage of shredding behavior in NST. On the other hand, pretreatment with DL77 (5, 10, or 15 mg/kg, i.p.) failed to restore the disturbed anxiety levels and hyperactivity observed in VPA-exposed animals in EPM, whereas the reference drug donepezil (DOZ, 1 mg/kg, i.p.) significantly palliated the anxiety and reduced the hyperactivity measures of VPA-exposed mice. Furthermore, pretreatment with DL77 (10 or 15 mg/kg, i.p.) modulated oxidative stress status by increasing GSH and decreasing MDA, and it attenuated the proinflammatory cytokines IL-1β, IL-6 and TNF-α exacerbated by lipopolysaccharide (LPS) challenge, in VPA-exposed mouse brain tissue. Taken together, these results provide evidence that modulation of brain histaminergic neurotransmission, such as by subchronic administration of the H3R antagonist DL77, may serve as an effective pharmacological therapeutic target to rescue ASD-like behaviors in VPA-exposed animals, although further investigations are necessary to corroborate and expand these initial data.
Collapse
|
13
|
Histamine H3 receptor antagonists ameliorate attention deficit/hyperactivity disorder-like behavioral changes caused by neonatal habenula lesion. Behav Pharmacol 2018; 29:71-78. [DOI: 10.1097/fbp.0000000000000343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Panayi F, Sors A, Bert L, Martin B, Rollin-Jego G, Billiras R, Carrié I, Albinet K, Danober L, Rogez N, Thomas JY, Pira L, Bertaina-Anglade V, Lestage P. In vivo pharmacological profile of S 38093, a novel histamine H3 receptor inverse agonist. Eur J Pharmacol 2017; 803:1-10. [DOI: 10.1016/j.ejphar.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022]
|
15
|
Ciproxifan, a histamine H 3 receptor antagonist, reversibly inhibits monoamine oxidase A and B. Sci Rep 2017; 7:40541. [PMID: 28084411 PMCID: PMC5233962 DOI: 10.1038/srep40541] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/07/2016] [Indexed: 12/17/2022] Open
Abstract
Ciproxifan is a well-investigated histamine H3 receptor (H3R) inverse agonist/antagonist, showing an exclusively high species-specific affinity at rodent compared to human H3R. It is well studied as reference compound for H3R in rodent models for neurological diseases connected with neurotransmitter dysregulation, e.g. attention deficit hyperactivity disorder or Alzheimer’s disease. In a screening for potential monoamine oxidase A and B inhibition ciproxifan showed efficacy on both enzyme isoforms. Further characterization of ciproxifan revealed IC50 values in a micromolar concentration range for human and rat monoamine oxidases with slight preference for monoamine oxidase B in both species. The inhibition by ciproxifan was reversible for both human isoforms. Regarding inhibitory potency of ciproxifan on rat brain MAO, these findings should be considered, when using high doses in rat models for neurological diseases. As the H3R and monoamine oxidases are all capable of affecting neurotransmitter modulation in brain, we consider dual targeting ligands as interesting approach for treatment of neurological disorders. Since ciproxifan shows only moderate activity at human targets, further investigations in animals are not of primary interest. On the other hand, it may serve as starting point for the development of dual targeting ligands.
Collapse
|
16
|
Spiegelstein O, Stevens J, Van Gerven J, Nathan PJ, Maynard JP, Mayleben DW, Hellriegel E, Yang R. Pharmacokinetics, pharmacodynamics and safety of CEP-26401, a high-affinity histamine-3 receptor antagonist, following single and multiple dosing in healthy subjects. J Psychopharmacol 2016; 30:983-93. [PMID: 27222271 DOI: 10.1177/0269881116645301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CEP-26401 is a novel orally active, brain-penetrant, high-affinity histamine H3 receptor (H3R) antagonist, with potential therapeutic utility in cognition enhancement. Two randomized, double-blind, placebo-controlled dose escalation studies with single (0.02 to 5 mg) or multiple administration (0.02 to 0.5 mg once daily) of CEP-26401 were conducted in healthy subjects. Plasma and urine samples were collected to investigate CEP-26401 pharmacokinetics. Pharmacodynamic endpoints included a subset of tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and nocturnal polysomnography. Population pharmacokinetic-pharmacodynamic modeling was conducted on one CANTAB and one polysomnography parameter of interest. CEP-26401 was slowly absorbed (median tmax range 3-6 hours) and the mean terminal elimination half-life ranged from 24-60 hours. Steady-state plasma concentrations were achieved within six days of dosing. CEP-26401 exhibits dose- and time-independent pharmacokinetics, and renal excretion is a major elimination pathway. CEP-26401 had a dose-dependent negative effect on sleep, with some positive effects on certain CANTAB cognitive parameters seen at lower concentrations. The derived three compartment population pharmacokinetic model, with first-order absorption and elimination, accurately described the available pharmacokinetic data. CEP-26401 was generally well tolerated up to 0.5 mg/day with most common treatment related adverse events being headache and insomnia. Further clinical studies are required to establish the potential of low-dose CEP-26401 in cognition enhancement.
Collapse
Affiliation(s)
| | | | | | - Pradeep J Nathan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | | | - Edward Hellriegel
- Research and Development Teva Pharmaceuticals, West Chester, PA, USA
| | - Ronghua Yang
- Research and Development Teva Pharmaceuticals, West Chester, PA, USA
| |
Collapse
|
17
|
Ligand autoradiographical quantification of histamine H 3 receptor in human dementia with Lewy bodies. Pharmacol Res 2016; 113:245-256. [PMID: 27592250 PMCID: PMC5113906 DOI: 10.1016/j.phrs.2016.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 01/21/2023]
Abstract
Dementia with Lewy bodies (DLB) is a serious age-dependent human neurodegenerative disease, with multiple debilitating symptoms, including dementia, psychosis and significant motor deficits, but with little or no effective treatments. This comparative ligand autoradiographical study has quantified histamine H3 receptors (H3R) in a series of major cortical and basal ganglia structures in human DLB and Alzheimer’s (AD) post-mortem cases using the highly selective radioligand, [3H] GSK189254. In the main, the levels of H3 receptor were largely preserved in DLB cases when compared with aged-matched controls. However, we provide new evidence showing variable levels in the globus pallidus, and, moreover, raised levels of Pallidum H3 correlated with positive psychotic symptoms, in particular delusions and visual hallucinations, but not symptoms associated with depression. Furthermore, no correlation was detected for H3 receptor levels to MMSE or IUPRS symptom severity. This study suggests that H3R antagonists have scope for treating the psychotic symptomologies in DLB and other human brain disorders.
Collapse
|
18
|
Abstract
Children/adolescents with attention-deficit/hyperactivity disorder (ADHD) may have a poor or inadequate response to psychostimulants or be unable to tolerate their side-effects; furthermore, stimulants may be inappropriate because of co-existing conditions. Only one non-stimulant ADHD pharmacotherapy, the noradrenaline transporter inhibitor atomoxetine, is currently approved for use in Europe. We review recent advances in understanding of the pathophysiology of ADHD with a focus on the roles of catecholamine receptors in context of the α2A-adrenergic receptor agonist guanfacine extended release (GXR), a new non-stimulant treatment option in Europe. Neuroimaging studies of children/adolescents with ADHD show impaired brain maturation, and structural and functional anomalies in brain regions and networks. Neurobiological studies in ADHD and medication response patterns support involvement of monoaminergic neurotransmitters (primarily dopamine and noradrenaline). Guanfacine is a selective α2A-adrenergic receptor agonist that has been shown to improve prefrontal cortical cognitive function, including working memory. The hypothesized mode of action of guanfacine centres on direct stimulation of post-synaptic α2A-adrenergic receptors to enhance noradrenaline neurotransmission. Preclinical data suggest that guanfacine also influences dendritic spine growth and maturation. Clinical trials have demonstrated the efficacy of GXR in ADHD, and it is approved as monotherapy or adjunctive therapy to stimulants in Canada and the USA (for children and adolescents). GXR was approved recently in Europe for the treatment of ADHD in children and adolescents for whom stimulants are not suitable, not tolerated or have been shown to be ineffective. GXR may provide particular benefit for children/adolescents who have specific co-morbidities such as chronic tic disorders or oppositional defiant disorder (or oppositional symptoms) that have failed to respond to first-line treatment options.
Collapse
|
19
|
Sadek B, Saad A, Subramanian D, Shafiullah M, Łażewska D, Kieć-Kononowiczc K. Anticonvulsant and procognitive properties of the non-imidazole histamine H3 receptor antagonist DL77 in male adult rats. Neuropharmacology 2015; 106:46-55. [PMID: 26525191 DOI: 10.1016/j.neuropharm.2015.10.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
It has become clear that histamine H3 receptors (H3Rs) are implicated in modulating epilepsy and memory in laboratory animals. The new non-imidazole H3R antagonist DL77 has excellent selectivity profile and shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 values of 2.1 ± 0.2 mg/kg and 8.4 ± 1.3 [nM], respectively. In the present study, the anticonvulsant effects of DL77 on maximal electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced seizure models were investigated. Moreover, the procognitive properties of DL77 were tested on acquisition, consolidation and retrieval processes in a one-trial inhibitory avoidance task in male Wistar rats. The results indicate that DL77 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently reduced MES-induced seizure duration, whereas no protection was observed in PTZ- or STR-induced seizures. Importantly, the protective action observed for DL77 in MES-induced seizure was comparable to that of the reference antiepileptic drug (AED) phenytoin (PHT), and was also reversed when rats were pretreated with the CNS penetrant pyrilamine (PYR) (10 mg/kg, i.p.), or with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg, i.p.). Furthermore, the procognitive studies indicate that acute pre-training systemic administration of DL77 (2.5 mg/kg, i.p.) facilitated acquisition, whereas pre-testing acute administration of DL77 (5 and 10 mg/kg, i.p.) improved retrieval. Interestingly, the procognitive effect of DL77 on retrieval was completely abrogated when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL) but not the centrally acting H1R antagonist PYR, indicating that histaminergic pathways through activation of H2Rs appear to be participating in neuronal circuits involved in retrieval processes. Taken together, our results show that DL77 demonstrates anticonvulsant properties in the MES-induced seizure model and improves cognitive performance through actions on different memory stages. Therefore, H3Rs may have implications for the treatment of degenerative disorders associated with impaired memory function and may represent a novel therapeutic pharmacological target to tackle cognitive problems associated with the chronic use of antiepileptic drugs. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Ali Saad
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dhanasekaran Subramanian
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Shafiullah
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łażewska
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowiczc
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| |
Collapse
|
20
|
Kawaura K, Karasawa JI, Chaki S, Hikichi H. Stimulation of postsynapse adrenergic α2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder. Behav Brain Res 2014; 270:349-56. [PMID: 24882610 DOI: 10.1016/j.bbr.2014.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
A 5-trial inhibitory avoidance test using spontaneously hypertensive rat (SHR) pups has been used as an animal model of attention deficit hyperactivity disorder (ADHD). However, the roles of noradrenergic systems, which are involved in the pathophysiology of ADHD, have not been investigated in this model. In the present study, the effects of adrenergic α2 receptor stimulation, which has been an effective treatment for ADHD, on attention/cognition performance were investigated in this model. Moreover, neuronal mechanisms mediated through adrenergic α2 receptors were investigated. We evaluated the effects of both clonidine, a non-selective adrenergic α2 receptor agonist, and guanfacine, a selective adrenergic α2A receptor agonist, using a 5-trial inhibitory avoidance test with SHR pups. Juvenile SHR exhibited a shorter transfer latency, compared with juvenile Wistar Kyoto (WKY) rats. Both clonidine and guanfacine significantly prolonged the transfer latency of juvenile SHR. The effects of clonidine and guanfacine were significantly blocked by pretreatment with an adrenergic α2A receptor antagonist. In contrast, the effect of clonidine was not attenuated by pretreatment with an adrenergic α2B receptor antagonist, or an adrenergic α2C receptor antagonist, while it was attenuated by a non-selective adrenergic α2 receptor antagonist. Furthermore, the effects of neither clonidine nor guanfacine were blocked by pretreatment with a selective noradrenergic neurotoxin. These results suggest that the stimulation of the adrenergic α2A receptor improves the attention/cognition performance of juvenile SHR in the 5-trial inhibitory avoidance test and that postsynaptic, rather than presynaptic, adrenergic α2A receptor is involved in this effect.
Collapse
Affiliation(s)
- Kazuaki Kawaura
- Pharmacology I, Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Jun-ichi Karasawa
- Pharmacology I, Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Shigeyuki Chaki
- Pharmacology I, Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Hirohiko Hikichi
- Pharmacology I, Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan.
| |
Collapse
|
21
|
A combined α7 nicotinic acetylcholine receptor agonist and monoamine reuptake inhibitor, NS9775, represents a novel profile with potential benefits in emotional and cognitive disturbances. Neuropharmacology 2013; 73:183-91. [DOI: 10.1016/j.neuropharm.2013.04.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 12/23/2022]
|
22
|
Hudzik TJ, Basso A, Boyce-Rustay JM, Bracken W, Browman KE, Drescher K, Esbenshade TA, Loberg LI, Lynch JJ, Brioni JD. Assessment of the abuse liability of ABT-288, a novel histamine H₃ receptor antagonist. Psychopharmacology (Berl) 2013; 228:187-97. [PMID: 23455597 DOI: 10.1007/s00213-013-3027-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
Abstract
RATIONALE Histamine H3 receptor antagonists, such as ABT-288, have been shown to possess cognitive-enhancing and wakefulness-promoting effects. On the surface, this might suggest that H3 antagonists possess psychomotor stimulant-like effects and, as such, may have the potential for abuse. OBJECTIVES The aim of the present study was to further characterize whether ABT-288 possesses stimulant-like properties and whether its pharmacology gives rise to abuse liability. METHODS The locomotor-stimulant effects of ABT-288 were measured in mice and rats, and potential development of sensitization was addressed. Drug discrimination was used to assess amphetamine-like stimulus properties, and drug self-administration was used to evaluate reinforcing effects of ABT-288. The potential development of physical dependence was also studied. RESULTS ABT-288 lacked locomotor-stimulant effects in both rats and mice. Repeated administration of ABT-288 did not result in cross-sensitization to the stimulant effects of d-amphetamine in mice, suggesting that there is little overlap in circuitries upon which the two drugs interact for motor activity. ABT-288 did not produce amphetamine-like discriminative stimulus effects in drug discrimination studies nor was it self-administered by rats trained to self-administer cocaine. There were no signs of physical dependence upon termination of repeated administration of ABT-288 for 30 days. CONCLUSIONS The sum of these preclinical data, the first of their kind applied to H3 antagonists, indicates that ABT-288 is unlikely to possess a high potential for abuse in the human population and suggests that H3 antagonists, as a class, are similar in this regard.
Collapse
Affiliation(s)
- Thomas J Hudzik
- Department of Preclinical Safety-Development Sciences, AbbVie, Inc., 1 N. Waukegan Rd., North Chicago, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Safety of atomoxetine in combination with intravenous cocaine in cocaine-experienced participants. J Addict Med 2013; 6:265-73. [PMID: 22987022 DOI: 10.1097/adm.0b013e31826b767f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Atomoxetine has been considered as an agonist replacement therapy for cocaine. We investigated the safety of the interaction of atomoxetine with cocaine and also whether cognitive function was affected by atomoxetine during short-term administration. METHODS In a double-blind placebo-controlled inpatient study of 20 cocaine-dependent volunteers, participants received atomoxetine 80 mg daily followed by 100 mg daily for 5 days each. On the fourth and fifth day at each dose, cocaine (20 and 40 mg) was infused intravenously in sequential daily sessions. RESULTS Preinfusion mean systolic pressures showed a small but statistically significant difference between placebo and both doses of atomoxetine. Preinfusion mean diastolic pressures were significant between placebo and atomoxetine 80 mg only. The diastolic pressure response to 40 mg cocaine was statistically significant only between the 80- and 100-mg atomoxetine doses. All electrocardiogram parameters were unchanged. Visual Analog Scale (VAS) scores for "bad effect" in the atomoxetine group were significantly higher at baseline, then declined, and for "likely to use" declined with atomoxetine treatment. On the Addiction Research Center Inventory, the atomoxetine group scored significantly lower on amphetamine, euphoria, and energy subscales (P < 0.0001). Other VAS descriptors, Brief Substance Craving Scale, Profile of Moods State, and Brief Psychiatric Rating Scale showed no differences. Atomoxetine did not affect cocaine pharmacokinetics. In tests of working memory, sustained attention, cognitive flexibility, and decision-making, atomoxetine improved performance on the visual n-back task. There were no differences in any pharmacokinetic parameters for cocaine with atomoxetine. CONCLUSIONS Atomoxetine was tolerated safely by all participants. Certain cognitive improvements and a dampening effect on VAS scores after cocaine were observed, but should be weighed against small but significant differences in hemodynamic responses after atomoxetine.
Collapse
|
24
|
Therapeutic potential of histaminergic compounds in the treatment of addiction and drug-related cognitive disorders. Behav Brain Res 2013; 237:357-68. [DOI: 10.1016/j.bbr.2012.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 12/21/2022]
|
25
|
Vohora D, Bhowmik M. Histamine H3 receptor antagonists/inverse agonists on cognitive and motor processes: relevance to Alzheimer's disease, ADHD, schizophrenia, and drug abuse. Front Syst Neurosci 2012; 6:72. [PMID: 23109919 PMCID: PMC3478588 DOI: 10.3389/fnsys.2012.00072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 10/04/2012] [Indexed: 12/18/2022] Open
Abstract
Histamine H3 receptor (H3R) antagonists/inverse agonists possess potential to treat diverse disease states of the central nervous system (CNS). Cognitive dysfunction and motor impairments are the hallmark of multifarious neurodegenerative and/or psychiatric disorders. This review presents the various neurobiological/neurochemical evidences available so far following H3R antagonists in the pathophysiology of Alzheimer's disease (AD), attention-deficit hyperactivity disorder (ADHD), schizophrenia, and drug abuse each of which is accompanied by deficits of some aspects of cognitive and/or motor functions. Whether the H3R inverse agonism modulates the neurochemical basis underlying the disease condition or affects only the cognitive/motor component of the disease process is discussed with the aim to provide a rationale for their use in diverse disease states that are interlinked and are accompanied by some common motor, cognitive and attentional deficits.
Collapse
Affiliation(s)
- Divya Vohora
- Faculty of Pharmacy, Department of Pharmacology, Jamia Hamdard (Hamdard University) New Delhi, India
| | | |
Collapse
|
26
|
Esbenshade TA, Browman KE, Miller TR, Krueger KM, Komater-Roderwald V, Zhang M, Fox GB, Rueter L, Robb HM, Radek RJ, Drescher KU, Fey TA, Bitner RS, Marsh K, Polakowski JS, Zhao C, Cowart MD, Hancock AA, Sullivan JP, Brioni JD. Pharmacological properties and procognitive effects of ABT-288, a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther 2012; 343:233-45. [PMID: 22815533 DOI: 10.1124/jpet.112.194126] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blockade of the histamine H(3) receptor (H(3)R) enhances central neurotransmitter release, making it an attractive target for the treatment of cognitive disorders. Here, we present in vitro and in vivo pharmacological profiles for the H(3)R antagonist 2-[4'-((3aR,6aR)-5-methyl-hexahydro-pyrrolo[3,4-b]pyrrol-1-yl)-biphenyl-4-yl]-2H-pyridazin-3-one (ABT-288). ABT-288 is a competitive antagonist with high affinity and selectivity for human and rat H(3)Rs (K(i) = 1.9 and 8.2 nM, respectively) that enhances the release of acetylcholine and dopamine in rat prefrontal cortex. In rat behavioral tests, ABT-288 improved acquisition of a five-trial inhibitory avoidance test in rat pups (0.001-0.03 mg/kg), social recognition memory in adult rats (0.03-0.1 mg/kg), and spatial learning and reference memory in a rat water maze test (0.1-1.0 mg/kg). ABT-288 attenuated methamphetamine-induced hyperactivity in mice. In vivo rat brain H(3)R occupancy of ABT-288 was assessed in relation to rodent doses and exposure levels in behavioral tests. ABT-288 demonstrated a number of other favorable attributes, including good pharmacokinetics and oral bioavailability of 37 to 66%, with a wide central nervous system and cardiovascular safety margin. Thus, ABT-288 is a selective H(3)R antagonist with broad procognitive efficacy in rodents and excellent drug-like properties that support its advancement to the clinical area.
Collapse
Affiliation(s)
- Timothy A Esbenshade
- Global Pharmaceutical Research Division, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tamburella A, Micale V, Mazzola C, Salomone S, Drago F. The selective norepinephrine reuptake inhibitor atomoxetine counteracts behavioral impairments in trimethyltin-intoxicated rats. Eur J Pharmacol 2012; 683:148-54. [PMID: 22426162 DOI: 10.1016/j.ejphar.2012.02.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/17/2012] [Accepted: 02/26/2012] [Indexed: 12/17/2022]
Abstract
This study was carried out to assess the behavioral effects of the non-psychostimulant drug atomoxetine, in rats prenatally-exposed to the organic compound trimethyltin chloride (TMT) and in spontaneously hypertensive rat (SHR), two rodent models of Attention Deficit/Hyperactivity Disorder (ADHD). At birth, neonatal reflexes (righting, cliff aversion, forelimb placing, forelimb grasping, bar holding and startle) had an earlier onset (i.e. percent of appearance) and completion (maximum appearance, i.e. 100% of the brood exhibiting each reflex) in prenatally TMT-exposed and SHR pups as compared to control groups. Two months after birth, TMT-exposed and SHR rats showed impaired cognitive performances in both the step-through passive avoidance test and the shuttle box active avoidance test. Atomoxetine (1, 3 and 6 mg/kg, i.p.), already at the lowest dose tested, improved learning and memory capacity of prenatally TMT-exposed rats and SHR; while methylphenidate (1, 3 and 6 mg/kg, i.p.), used here as positive control, elicited a significant cognitive enhancing effect only at the higher doses. In the open field test, both TMT-exposed rats and SHR displayed enhanced locomotor activity. Methylphenidate further increased locomotor activity in all groups, whereas atomoxetine reduced the enhanced locomotor activity of TMT-exposed rats and SHR down to the level of controls. These results suggest that prenatal TMT-exposure could be considered as a putative experimental model of ADHD and further support the effectiveness of atomoxetine in the ADHD pharmacotherapy. Furthermore, despite the similar effect of the two drugs on cognitive tasks, they exhibit distinct profiles of activity on locomotion, in ADHD models.
Collapse
Affiliation(s)
- Alessandra Tamburella
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, Catania University, Catania, Italy
| | | | | | | | | |
Collapse
|
28
|
Histaminergic mechanisms for modulation of memory systems. Neural Plast 2011; 2011:328602. [PMID: 21876818 PMCID: PMC3160014 DOI: 10.1155/2011/328602] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/29/2011] [Indexed: 12/31/2022] Open
Abstract
Encoding for several memory types requires neural changes and the activity of distinct regions across the brain. These areas receive broad projections originating in nuclei located in the brainstem which are capable of modulating the activity of a particular area. The histaminergic system is one of the major modulatory systems, and it regulates basic homeostatic and higher functions including arousal, circadian, and feeding rhythms, and cognition. There is now evidence that histamine can modulate learning in different types of behavioral tasks, but the exact course of modulation and its mechanisms are controversial. In the present paper we review the involvement of the histaminergic system and the effects histaminergic receptor agonists/antagonists have on the performance of tasks associated with the main memory types as well as evidence provided by studies with knockout models. Thus, we aim to summarize the possible effects histamine has on modulation of circuits involved in memory formation.
Collapse
|
29
|
Andersen SL, Navalta CP. Annual Research Review: New frontiers in developmental neuropharmacology: can long-term therapeutic effects of drugs be optimized through carefully timed early intervention? J Child Psychol Psychiatry 2011; 52:476-503. [PMID: 21309771 PMCID: PMC3115525 DOI: 10.1111/j.1469-7610.2011.02376.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our aim is to present a working model that may serve as a valuable heuristic to predict enduring effects of drugs when administered during development. Our primary tenet is that a greater understanding of neurodevelopment can lead to improved treatment that intervenes early in the progression of a given disorder and prevents symptoms from manifesting. The immature brain undergoes significant changes during the transitions between childhood, adolescence, and adulthood. Such changes in innervation, neurotransmitter levels, and their respective signaling mechanisms have profound and observable changes on typical behavior, but also increase vulnerability to psychiatric disorders when the maturational process goes awry. Given the remarkable plasticity of the immature brain to adapt to its external milieu, preventive interventions may be possible. We intend for this review to initiate a discussion of how currently used psychotropic agents can influence brain development. Drug exposure during sensitive periods may have beneficial long-term effects, but harmful delayed consequences may be possible as well. Regardless of the outcome, this information needs to be used to improve or develop alternative approaches for the treatment of childhood disorders. With this framework in mind, we present what is known about the effects of stimulants, antidepressants, and antipsychotics on brain maturation (including animal studies that use more clinically-relevant dosing paradigms or relevant animal models). We endeavor to provocatively set the stage for altering treatment approaches for improving mental health in non-adult populations.
Collapse
Affiliation(s)
- Susan L. Andersen
- Laboratory for Developmental Neuropharmacology, Department of Psychiatry, McLean Hospital, Harvard Medical School
| | - Carryl P. Navalta
- Program for Behavioral Science, Department of Psychiatry, Children’s Hospital Boston, Harvard Medical School
| |
Collapse
|
30
|
Savage DD, Rosenberg MJ, Wolff CR, Akers KG, El-Emawy A, Staples MC, Varaschin RK, Wright CA, Seidel JL, Caldwell KK, Hamilton DA. Effects of a novel cognition-enhancing agent on fetal ethanol-induced learning deficits. Alcohol Clin Exp Res 2010; 34:1793-802. [PMID: 20626729 PMCID: PMC3654805 DOI: 10.1111/j.1530-0277.2010.01266.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Drinking during pregnancy has been associated with learning disabilities in affected offspring. At present, there are no clinically effective pharmacotherapeutic interventions for these learning deficits. Here, we examined the effects of ABT-239, a histamine H₃ receptor antagonist, on fetal ethanol-induced fear conditioning and spatial memory deficits. METHODS AND RESULTS Long-Evans rat dams stably consumed a mean of 2.82 g ethanol/kg during a 4-hour period each day during pregnancy. This voluntary drinking pattern produced a mean peak serum ethanol level of 84 mg/dl. Maternal weight gain, litter size and birth weights were not different between the ethanol-consuming and control groups. Female adult offspring from the control and fetal alcohol-exposed (FAE) groups received saline or 1 mg ABT-239/kg 30 minutes prior to fear conditioning training. Three days later, freezing time to the context was significantly reduced in saline-treated FAE rats compared to control. Freezing time in ABT-239-treated FAE rats was not different than that in controls. In the spatial navigation study, adult male offspring received a single injection of saline or ABT-239 30 minutes prior to 12 training trials on a fixed platform version of the Morris Water Task. All rats reached the same performance asymptote on Trials 9 to 12 on Day 1. However, 4 days later, first-trial retention of platform location was significantly worse in the saline-treated FAE rats compared control offspring. Retention by ABT-239-treated FAE rats was similar to that by controls. ABT-239's effect on spatial memory retention in FAE rats was dose dependent. CONCLUSIONS These results suggest that ABT-239 administered prior to training can improve retention of acquired information by FAE offspring on more challenging versions of hippocampal-sensitive learning tasks. Further, the differential effects of ABT-239 in FAE offspring compared to controls raises questions about the impact of fetal ethanol exposure on histaminergic neurotransmission in affected offspring.
Collapse
Affiliation(s)
- Daniel D Savage
- Department of Neurosciences, MSC08 4740, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Motawaj M, Burban A, Davenas E, Gbahou F, Faucard R, Morisset S, Arrang JM. Le système histaminergique : une cible pour de nouveaux traitements des deficits cognitifs. Therapie 2010; 65:415-22. [DOI: 10.2515/therapie/2010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
|
32
|
Blandina P, Munari L, Giannoni P, Mariottini C, Passani MB. Histamine neuronal system as a therapeutic target for the treatment of cognitive disorders. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Much has been learned over the past 20 years about the role of histamine as a neurotransmitter. This brief article attempts to evaluate the progress accomplished in this field, and discusses the therapeutic potential of the H3 receptor (H3R). All histaminergic neurons are localized in the tuberomammillary nucleus of the posterior hypothalamus and project to almost all regions of the CNS. Histamine exerts its effect via interaction with specific receptors (H1R, H2R, H3R and H4R). Antagonists of both H1R and H2R have been successful as blockbuster drugs for treating allergic conditions and gastric ulcers. H4R is still awaiting better functional characterization, but the H3R is an attractive target for potential therapies of CNS disorders. Indeed, considerable interest was raised by reports that pharmacological blockade of H3Rs exerted procognitive effects in a variety of animal tasks analyzing different types of memory. In addition, blockade of H3Rs increased wakefulness and reduced bodyweight in animal models. Such findings hint at the potential use of H3R antagonists/inverse agonists for the treatment of Alzheimer’s disease and other dementias, attention-deficit hyperactivity disorder, obesity and sleep disorders. As a result, an increasing number of H3R antagonists/inverse agonists progress through the clinic for the treatment of a variety of conditions, including attention-deficit hyperactivity disorder, cognitive disorders, narcolepsy and schizophrenia. Moreover, the use of H3R antagonists/inverse agonists that weaken traumatic memories may alleviate disorders such as post-traumatic stress syndrome, panic attacks, specific phobias and generalized anxiety. The use of H3R ligands for the treatment of neurodegenerative disorders is demonstrated in several studies, indicating a role of the histamine neurons and H3Rs in neuroprotection. Recently, direct evidence demonstrated that histaminergic neurons are organized into functionally distinct circuits, impinging on different brain regions, and displaying selective control mechanisms. This could imply independent functions of subsets of histaminergic neurons according to their respective origin and terminal projections. The possibility that H3Rs control only some of those functions implies that H3R-directed therapies may achieve selective effects, with minimal side effects, and this may increase the interest regarding this class of drugs.
Collapse
Affiliation(s)
| | - Leonardo Munari
- Dipartimento di Farmacologia Preclinica e Clinica, Universitá di Firenze, Italy
| | | | | | | |
Collapse
|
33
|
Cole DC, Gross JL, Comery TA, Aschmies S, Hirst WD, Kelley C, Kim JI, Kubek K, Ning X, Platt BJ, Robichaud AJ, Solvibile WR, Stock JR, Tawa G, Williams MJ, Ellingboe JW. Benzimidazole- and indole-substituted 1,3′-bipyrrolidine benzamides as histamine H3 receptor antagonists. Bioorg Med Chem Lett 2010; 20:1237-40. [DOI: 10.1016/j.bmcl.2009.11.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 11/24/2022]
|
34
|
Jin CY, Anichtchik O, Panula P. Altered histamine H3 receptor radioligand binding in post-mortem brain samples from subjects with psychiatric diseases. Br J Pharmacol 2009; 157:118-29. [PMID: 19413576 DOI: 10.1111/j.1476-5381.2009.00149.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Histamine is a modulatory neurotransmitter in the brain. Auto- and hetero-histamine H3 receptors are present in human brain and are potential targets of antipsychotics. These receptors may also display disease-related abnormalities in psychiatric disorders. Here we have assessed how histamine H3 receptors in human brain may be affected in schizophrenia, bipolar disorder, major depression. EXPERIMENTAL APPROACH Histamine H3 receptor radioligand binding assays were applied to frozen post-mortem prefrontal and temporal cortical sections and anterior hippocampal sections from subjects with schizophrenia, bipolar disorder, major depression and matched controls. KEY RESULTS Compared with the controls, increased H3 receptor radioligand binding was found in dorsolateral prefrontal cortex of schizophrenic subjects (especially the ones who were treated with atypical antipsychotics), and bipolar subjects with psychotic symptoms. No differences in H3 receptor radioligand binding were found in the temporal cortex. In hippocampal formation of control subjects, H3 receptor radioligand binding was prominent in dentate gyrus, subiculum, entorhinal cortex and parasubiculum. Decreased H3 binding was found in the CA4 area of bipolar subjects. Decreased H3 binding in CA2 and presubiculum of medication-free bipolar subjects was also seen. CONCLUSIONS AND IMPLICATIONS The results suggest that histamine H3 receptors in the prefrontal cortex take part in the modulation of cognition, which is impaired in schizophrenic subjects and bipolar subjects with psychotic symptoms. Histamine H3 receptors probably regulate connections between hippocampus and various cortical and subcortical regions and could also be involved in the neuropathology of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- C Y Jin
- Department of Biology, Abo Akademi University, Biocity, Turku, Finland
| | | | | |
Collapse
|
35
|
Miller TR, Milicic I, Bauch J, Du J, Surber B, Browman KE, Marsh K, Cowart M, Brioni JD, Esbenshade TA. Use of the H3 receptor antagonist radioligand [3H]-A-349821 to reveal in vivo receptor occupancy of cognition enhancing H3 receptor antagonists. Br J Pharmacol 2009; 157:139-49. [PMID: 19413577 DOI: 10.1111/j.1476-5381.2009.00239.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The histamine H3 receptor antagonist radioligand [3H]-A-349821 was characterized as a radiotracer for assessing in vivo receptor occupancy by H3 receptor antagonists that affect behaviour. This model was established as an alternative to ex vivo binding methods, for relating antagonist H3 receptor occupancy to blood levels and efficacy in preclinical models. EXPERIMENTAL APPROACH In vivo cerebral cortical H3 receptor occupancy by [3H]-A-349821 was determined in rats from differences in [3H]-A-349821 levels in the isolated cortex and cerebellum, a brain region with low levels of H3 receptors. Comparisons were made to relate antagonist H3 receptor occupancy to blood levels and efficacy in a preclinical model of cognition, the five-trial inhibitory avoidance response in rat pups. KEY RESULTS In adult rats, [3H]-A-349821, 1.5 microg x kg(-1), penetrated into the brain and cleared more rapidly from cerebellum than cortex; optimally, [3H]-A-349821 levels were twofold higher in the latter. With increasing [3H]-A-349821 doses, cortical H3 receptor occupancy was saturable with a binding capacity consistent with in vitro binding in cortex membranes. In studies using tracer [3H]-A-349821 doses, ABT-239 and other H3 receptor antagonists inhibited H3 receptor occupancy by [3H]-A-349821 in a dose-dependent manner. Blood levels of the antagonists corresponding to H3 receptor occupancy were consistent with blood levels associated with efficacy in the five-trial inhibitory avoidance response. CONCLUSIONS AND IMPLICATIONS When employed as an occupancy radiotracer, [3H]-A-349821 provided valid measurements of in vivo H3 receptor occupancy, which may be helpful in guiding and interpreting clinical studies of H3 receptor antagonists.
Collapse
Affiliation(s)
- T R Miller
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jacobsen JPR, Redrobe JP, Hansen HH, Petersen S, Bond CT, Adelman JP, Mikkelsen JD, Mirza NR. Selective cognitive deficits and reduced hippocampal brain-derived neurotrophic factor mRNA expression in small-conductance calcium-activated K+ channel deficient mice. Neuroscience 2009; 163:73-81. [PMID: 19482064 DOI: 10.1016/j.neuroscience.2009.05.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/13/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
Small-conductance calcium-activated K(+) channels 1-3 (SK1-3) are important for neuronal firing regulation and are considered putative CNS drug targets. For instance non-selective SK blockers improve performance in animal models of cognition. The SK subtype(s) involved herein awaits identification and the question is difficult to address pharmacologically due to the lack of subtype-selective SK-channel modulators. In this study, we used doxycycline-induced conditional SK3-deficient (T/T) mice to address the cognitive consequences of selective SK3 deficiency. In T/T mice SK3 protein is near-eliminated from the brain following doxycycline treatment. We tested T/T and wild type (WT) littermate mice in five distinct learning and memory paradigms. In Y-maze spontaneous alternations and five-trial inhibitory avoidance the performance of T/T mice was markedly inferior to WT mice. In contrast, T/T and WT mice performed equally well in passive avoidance, object recognition and the Morris water maze. Thus, some aspects of working/short-term memory are disrupted in T/T mice. Using in situ hybridization, we further found the cognitive deficits in T/T mice to be paralleled by reduced brain-derived neurotrophic factor (BDNF) mRNA expression in the dentate gyrus and CA3 of the hippocampus. BDNF mRNA levels in the frontal cortex were not affected. BDNF has been crucially implicated in many cognitive processes. Hence, the biological substrate for the cognitive impairments in T/T mice could conceivably entail reduced trophic support of the hippocampus.
Collapse
Affiliation(s)
- J P R Jacobsen
- Department of In Vivo Pharmacology, Neurosearch A/S, Ballerup, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Adenosine receptor antagonists improve short-term object-recognition ability of spontaneously hypertensive rats: a rodent model of attention-deficit hyperactivity disorder. Behav Pharmacol 2009; 20:134-45. [DOI: 10.1097/fbp.0b013e32832a80bf] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Cunha RA, Ferré S, Vaugeois JM, Chen JF. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des 2008; 14:1512-24. [PMID: 18537674 DOI: 10.2174/138161208784480090] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interest on targeting adenosine A(2A) receptors in the realm of psychiatric diseases first arose based on their tight physical and functional interaction with dopamine D(2) receptors. However, the role of central A(2A) receptors is now viewed as much broader than just controlling D(2) receptor function. Thus, there is currently a major interest in the ability of A(2A) receptors to control synaptic plasticity at glutamatergic synapses. This is due to a combined ability of A(2A) receptors to facilitate the release of glutamate and the activation of NMDA receptors. Therefore, A(2A) receptors are now conceived as a normalizing device promoting adequate adaptive responses in neuronal circuits, a role similar to that fulfilled, in essence, by dopamine. This makes A(2A) receptors particularly attractive targets to manage psychiatric disorders since adenosine may act as go-between glutamate and dopamine, two of the key players in mood processing. Furthermore, A(2A) receptors also control glia function and brain metabolic adaptation, two other emerging mechanisms to understand abnormal processing of mood, and A(2A) receptors are important players in controlling the demise of neurodegeneration, considered an amplificatory loop in psychiatric disorders. Current data only provide an indirect confirmation of this putative role of A(2A) receptors, based on the effects of caffeine (an antagonist of both A(1) and A(2A) receptors) in psychiatric disorders. However, the introduction of A(2A) receptors antagonists in clinics as anti-parkinsonian agents is hoped to bolster our knowledge on the role of A(2A) receptors in mood disorders in the near future.
Collapse
Affiliation(s)
- Rodrigo A Cunha
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Portugal.
| | | | | | | |
Collapse
|
39
|
The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br J Pharmacol 2008; 154:1166-81. [PMID: 18469850 DOI: 10.1038/bjp.2008.147] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The histamine H3 receptor, first described in 1983 as a histamine autoreceptor and later shown to also function as a heteroreceptor that regulates the release of other neurotransmitters, has been the focus of research by numerous laboratories as it represents an attractive drug target for a number of indications including cognition. The purpose of this review is to acquaint the reader with the current understanding of H3 receptor localization and function as a modulator of neurotransmitter release and its effects on cognitive processes, as well as to provide an update on selected H3 antagonists in various states of preclinical and clinical advancement. Blockade of centrally localized H3 receptors by selective H3 receptor antagonists has been shown to enhance the release of neurotransmitters such as histamine, ACh, dopamine and norepinephrine, among others, which play important roles in cognitive processes. The cognitive-enhancing effects of H3 antagonists across multiple cognitive domains in a wide number of preclinical cognition models also bolster confidence in this therapeutic approach for the treatment of attention deficit hyperactivity disorder, Alzheimer's disease and schizophrenia. However, although a number of clinical studies examining the efficacy of H3 receptor antagonists for a variety of cognitive disorders are currently underway, no clinical proof of concept for an H3 receptor antagonist has been reported to date. The discovery of effective H3 antagonists as therapeutic agents for the novel treatment of cognitive disorders will only be accomplished through continued research efforts that further our insights into the functions of the H3 receptor.
Collapse
|
40
|
Liu LL, Yang J, Lei GF, Wang GJ, Wang YW, Sun RP. Atomoxetine increases histamine release and improves learning deficits in an animal model of attention-deficit hyperactivity disorder: the spontaneously hypertensive rat. Basic Clin Pharmacol Toxicol 2008; 102:527-32. [PMID: 18346050 DOI: 10.1111/j.1742-7843.2008.00230.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substantial development in the pharmacological treatment for attention-deficit hyperactivity disorder (ADHD) has been made recently including approval of new non-stimulant agents targeting noradrenergic, histaminergic and dopaminergic systems. Among such, atomoxetine has been widely used, although its mechanism of action is poorly understood. It is known that central nervous system histamine is closely associated with cognition and it was recently shown that both atomoxetine and methylphenidate enhance cortical histamine release in rats. To that end, the aim of our study was to investigate the effect of atomoxetine (2 mg/kg, intraperitoneally) on histamine release using the microdialysis technique in the spontaneously hypertensive rat (SHR), a suitable genetic model for ADHD. Our data confirmed that atomoxetine increases extracellular levels of histamine in the prefrontal cortex, a brain region that is implicated in the pathophysiology of ADHD. Given the tie between histamine neurotransmission and treatment of cognitive dysfunction, we also assessed the effects of atomoxetine on learning and memory as measured by the Morris water maze in SHR. The results indicated that atomoxetine significantly ameliorated performance in the Morris water maze, consistent with its histamine-enhancing profile. In conclusion, the current study provides further support for the notion that the therapeutic effect of atomoxetine could involve activation of histamine neurotransmission within the prefrontal cortex.
Collapse
Affiliation(s)
- Li-Li Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
41
|
Glutamate-stimulated release of norepinephrine in hippocampal slices of animal models of attention-deficit/hyperactivity disorder (spontaneously hypertensive rat) and depression/anxiety-like behaviours (Wistar–Kyoto rat). Brain Res 2008; 1200:107-15. [DOI: 10.1016/j.brainres.2008.01.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/22/2022]
|
42
|
Tietje KR, Anderson DJ, Bitner RS, Blomme EA, Brackemeyer PJ, Briggs CA, Browman KE, Bury D, Curzon P, Drescher KU, Frost JM, Fryer RM, Fox GB, Gronlien JH, Håkerud M, Gubbins EJ, Halm S, Harris R, Helfrich RJ, Kohlhaas KL, Law D, Malysz J, Marsh KC, Martin RL, Meyer MD, Molesky AL, Nikkel AL, Otte S, Pan L, Puttfarcken PS, Radek RJ, Robb HM, Spies E, Thorin-Hagene K, Waring JF, Ween H, Xu H, Gopalakrishnan M, Bunnelle WH. Preclinical Characterization of A-582941: A Novel α7 Neuronal Nicotinic Receptor Agonist with Broad Spectrum Cognition-Enhancing Properties. CNS Neurosci Ther 2008. [DOI: 10.1111/j.1755-5949.2008.00037.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Tietje KR, Anderson DJ, Bitner RS, Blomme EA, Brackemeyer PJ, Briggs CA, Browman KE, Bury D, Curzon P, Drescher KU, Frost JM, Fryer RM, Fox GB, Gronlien JH, Håkerud M, Gubbins EJ, Halm S, Harris R, Helfrich RJ, Kohlhaas KL, Law D, Malysz J, Marsh KC, Martin RL, Meyer MD, Molesky AL, Nikkel AL, Otte S, Pan L, Puttfarcken PS, Radek RJ, Robb HM, Spies E, Thorin‐Hagene K, Waring JF, Ween H, Xu H, Gopalakrishnan M, Bunnelle WH. Preclinical characterization of A-582941: a novel alpha7 neuronal nicotinic receptor agonist with broad spectrum cognition-enhancing properties. CNS Neurosci Ther 2008; 14:65-82. [PMID: 18482100 PMCID: PMC6494002 DOI: 10.1111/j.1527-3458.2008.00037.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Among the diverse sets of nicotinic acetylcholine receptors (nAChRs), the alpha7 subtype is highly expressed in the hippocampus and cortex and is thought to play important roles in a variety of cognitive processes. In this review, we describe the properties of a novel biaryl diamine alpha7 nAChR agonist, A-582941. A-582941 was found to exhibit high-affinity binding and partial agonism at alpha7 nAChRs, with acceptable pharmacokinetic properties and excellent distribution to the central nervous system (CNS). In vitro and in vivo studies indicated that A-582941 activates signaling pathways known to be involved in cognitive function such as ERK1/2 and CREB phosphorylation. A-582941 enhanced cognitive performance in behavioral models that capture domains of working memory, short-term recognition memory, memory consolidation, and sensory gating deficit. A-582941 exhibited a benign secondary pharmacodynamic and tolerability profile as assessed in a battery of assays of cardiovascular, gastrointestinal, and CNS function. The studies summarized in this review collectively provide preclinical validation that alpha7 nAChR agonism offers a mechanism with potential to improve cognitive deficits associated with various neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Karin R. Tietje
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - David J. Anderson
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - R. Scott Bitner
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Eric A. Blomme
- Department of Cellular and Molecular Toxicology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Paul J. Brackemeyer
- Manufacturing Science and Technology, Global Pharmaceutical Operations, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Clark A. Briggs
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Kaitlin E. Browman
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Dagmar Bury
- Toxicology & Pathology, Global Pharmaceutical Research and Development, Abbott Laboratories, Ludwigshafen, Germany
| | - Peter Curzon
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Karla U. Drescher
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Ludwigshafen, Germany
| | - Jennifer M. Frost
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Ryan M. Fryer
- Department of Integrative Pharmacology, Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Gerard B. Fox
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Jens Halvard Gronlien
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Monika Håkerud
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Earl J. Gubbins
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Sabine Halm
- Toxicology & Pathology, Global Pharmaceutical Research and Development, Abbott Laboratories, Ludwigshafen, Germany
| | - Richard Harris
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Rosalind J. Helfrich
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Kathy L. Kohlhaas
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Devalina Law
- Manufacturing Science and Technology, Global Pharmaceutical Operations, Abbott Laboratories, Abbott Park, Illinois, USA
| | - John Malysz
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Kennan C. Marsh
- Pharmacokinetics and Metabolism, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Ilinois, USA
| | - Ruth L. Martin
- Department of Integrative Pharmacology, Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Michael D. Meyer
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Angela L. Molesky
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Arthur L. Nikkel
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Stephani Otte
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Liping Pan
- Pharmacokinetics and Metabolism, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Ilinois, USA
| | - Pamela S. Puttfarcken
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Richard J. Radek
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Holly M. Robb
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Eva Spies
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Ludwigshafen, Germany
| | - Kirsten Thorin‐Hagene
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Jeffrey F. Waring
- Department of Cellular and Molecular Toxicology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Hilde Ween
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Hongyu Xu
- Pharmacokinetics and Metabolism, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Ilinois, USA
| | - Murali Gopalakrishnan
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| | - William H. Bunnelle
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA
| |
Collapse
|
44
|
|
45
|
Nersesian DL, Black LA, Miller TR, Vortherms TA, Esbenshade TA, Hancock AA, Cowart MD. In vitro SAR of pyrrolidine-containing histamine H3 receptor antagonists: trends across multiple chemical series. Bioorg Med Chem Lett 2007; 18:355-9. [PMID: 18077160 DOI: 10.1016/j.bmcl.2007.10.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 11/15/2022]
Abstract
Structure-activity relationships (SAR) were analyzed within a library of diverse yet simple compounds prepared as histamine H3 antagonists. The libraries were constructed with a variety of low molecular weight pyrrolidines, selected from (R)-2-methylpyrrolidine, (S)-2-methylpyrrolidine, and pyrrolidine.
Collapse
Affiliation(s)
- Diana L Nersesian
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Isensee K, Petroianu G, Stark H. Pharmacological aspects of cognitive impairment: past, present and future of drugs in dementia. J Appl Biomed 2007. [DOI: 10.32725/jab.2007.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
47
|
Arrang JM, Morisset S, Gbahou F. Constitutive activity of the histamine H3 receptor. Trends Pharmacol Sci 2007; 28:350-7. [PMID: 17573125 DOI: 10.1016/j.tips.2007.05.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 04/12/2007] [Accepted: 05/25/2007] [Indexed: 11/27/2022]
Abstract
Constitutive activity has been mainly recorded for numerous overexpressed and/or mutated receptors. The histamine H(3) receptor (H(3)R) is a target of choice to study the physiological relevance of this process. In rodent brain, postsynaptic H(3)Rs show high constitutive activity, and presynaptic H(3) autoreceptors that show constitutive activity have a predominant role in inhibiting the activity of histamine neurons. H(3)R inverse agonists abrogate this constitutive brake and enhance histamine release in vivo. Some of these inverse agonists have entered clinical trials for the treatment of cognitive and food intake disorders. Studies performed in vitro and in vivo with proxyfan show that this H(3)R ligand is a 'protean agonist' - that is, a ligand with a spectrum of activity ranging from full agonism to full inverse agonism depending on the level of H(3)R constitutive activity. Consistent with its physiological and therapeutic relevance, the constitutive activity of H(3)R thus has a major function in the brain and regulates the activity of H(3)R-targeted drugs.
Collapse
Affiliation(s)
- Jean-Michel Arrang
- INSERM, Unité de Neurobiologie et Pharmacologie Moléculaire (U 573), Centre Paul Broca, 75014 Paris, France.
| | | | | |
Collapse
|
48
|
Kholdebarin E, Caldwell DP, Blackwelder WP, Kao M, Christopher NC, Levin ED. Interaction of nicotinic and histamine H(3) systems in the radial-arm maze repeated acquisition task. Eur J Pharmacol 2007; 569:64-9. [PMID: 17544392 PMCID: PMC1994942 DOI: 10.1016/j.ejphar.2007.04.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 04/19/2007] [Accepted: 04/25/2007] [Indexed: 11/22/2022]
Abstract
Nicotinic systems have been found in a variety of studies to play important roles in cognitive function. Nicotinic involvement in different aspects of cognitive function such as learning vs. memory may differ. We have found in rats that the spatial repeated acquisition task in the radial-arm maze is significantly improved by low doses of the nicotinic receptor antagonist mecamylamine, the atypical nicotinic receptor ligand lobeline, as well as the alpha7 nicotinic receptor agonist ARR-17779. Interestingly, nicotine in the same dose range that improves working memory in the win-shift radial maze task was not effective in improving repeated acquisition performance. Nicotinic systems interact with a variety of other neural systems. Differential involvement of these extended effects with learning vs. memory may help explain differential effects of nicotinic drugs with these cognitive functions. Histamine H(3) receptor antagonists have been shown by some studies to improve cognitive function, but others have not found this effect and some have found impairment. Nicotine stimulates the release of histamine. This effect may counter other cascading effects of nicotine in the performance of learning and memory tasks. A specific test of this hypothesis involves our study of nicotine (0.1-0.4 mg/kg) interactions with the histamine H(3) receptor antagonist thioperamide (2.5-10 mg/kg) on learning memory in the repeated acquisition test in the radial-arm maze. The highest dose of thioperamide tested caused a significant choice accuracy impairment, which was most evident during the later portions of the learning curve. The highest dose of nicotine did not change overall errors but did cause a significant impairment in learning over trials. The choice accuracy impairment induced by thioperamide was significantly attenuated by nicotine (0.4 mg/kg). The learning impairment caused by the highest dose of nicotine was significantly attenuated by thioperamide. Thioperamide also caused a slowing of response, an effect, which was attenuated by nicotine co-administration. The repeated acquisition test can help differentiate acute drug effects on learning. Nicotine and thioperamide effectively reversed each other's choice accuracy impairment even though each by itself impaired accuracy.
Collapse
Affiliation(s)
- Ehsan Kholdebarin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
49
|
Medalha CC, Mattioli R. Involvement of the histaminergic system on appetitive learning and its interaction with haloperidol in goldfish. Neurosci Lett 2007; 418:195-200. [PMID: 17386974 DOI: 10.1016/j.neulet.2007.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/26/2007] [Accepted: 03/09/2007] [Indexed: 11/24/2022]
Abstract
This study investigated the actions of the histaminergic system on appetitive learning and memory, and its interaction with the dopaminergic system in goldfish. It consisted of nine sessions, in which fish were tested in a four-arm tank. On day 1, the animals were habituated for 10 min. On day 2, they were placed in one arm and had to find food at the left or the right arm. Time to begin feeding was recorded, and the procedure repeated for more 3 days (training phase). On training day 4, seven groups were injected with saline, seven with haloperidol (2.0 mg/kg) and one with DMSO solution before training and after feeding, three groups received saline, six chlorpheniramine (CPA) (1.0, 4.0 and 8.0 mg/kg), and six l-histidine (LH) (25, 50 and 100 mg/kg). Saline groups were considered as control of CPA and LH treated groups and DMSO as control of haloperidol. A non-injected group was also included. Testing occurred after 24 h. A reversal procedure was conducted 24h after testing and repeated for 3 days. The groups receiving CPA at 1.0 and 8.0 mg/kg and LH at 25, 50 and 100 mg/kg differed between Test and Reversal day 1. Pre-treatment with haloperidol plus 8.0 mg/kg of CPA and 25 and 50 mg/kg of LH reverted the treatment effect. However, in the groups treated with 1.0 mg/kg of CPA and 100 mg/kg of LH, the difference remained. This study confirmed the interaction between the histaminergic and the dopaminergic systems on memory process in goldfish.
Collapse
|
50
|
Bonaventure P, Letavic M, Dugovic C, Wilson S, Aluisio L, Pudiak C, Lord B, Mazur C, Kamme F, Nishino S, Carruthers N, Lovenberg T. Histamine H3 receptor antagonists: From target identification to drug leads. Biochem Pharmacol 2007; 73:1084-96. [PMID: 17129577 DOI: 10.1016/j.bcp.2006.10.031] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/19/2006] [Accepted: 10/31/2006] [Indexed: 11/22/2022]
Abstract
The successful cloning and functional expression of the histamine H(3) receptor in the late 1990 s has greatly facilitated our efforts to identify small molecule, non-imidazole based compounds to permit the evaluation of H(3) antagonists in models of CNS disorders. High-throughput screening identified several series of lead compounds, including a series of imidazopyridines, which led to JNJ-6379490, a compound with high affinity for the human H(3) receptor. Analysis of structural features common to several series of non-imidazole H(3) receptor ligands resulted in a pharmacophore model. This model led to the design of JNJ-5207852, a diamine-based H(3) antagonist with good in vitro and in vivo efficacy but with an undesirable long half-life. However, further modifications of the template provided an understanding of the effect of structural modifications on pharmacokinetic properties, ultimately affording several additional series of compounds including JNJ-10181457, a compound with an improved pharmacokinetic profile. These compounds allowed in vivo pharmacological evaluation to show that H(3) antagonists promote wakefulness, but unlike modafinil and classical psychostimultants, they do not increase locomotor activity or produce any alteration of the EEG power spectral activity in rats. H(3) antagonists also increase extracellular acetylcholine and norepinephrine but not dopamine in rat frontal cortex and show efficacy in various models of learning-memory deficit. In addition, cFos immunoreactivity studies show H(3) antagonists activate neuronal cells in restricted rat brain regions in contrast to widespread activation after modafinil or amphetamine treatment. Therefore, H(3) antagonists are promising clinical candidates for the treatment of excessive day time sleepiness and/or cognitive disorders.
Collapse
Affiliation(s)
- P Bonaventure
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|