1
|
Malikowska-Racia N, Golebiowska J, Nikiforuk A, Khoo SYS, Popik P. Effects of ketamine optical isomers, fluoxetine and naloxone on timing in differential reinforcement of low-rate response (DRL) 72-s task in rats. Eur Neuropsychopharmacol 2023; 67:37-52. [PMID: 36476352 DOI: 10.1016/j.euroneuro.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
(S)-ketamine-induced rapid-acting antidepressant effects have revolutionized the pharmacotherapy of major depression; however, this medication also produces psychotomimetic effects such as timing distortion. While (R)-ketamine produces fewer dissociative effects, its antidepressant actions are less studied. Depression is associated with time overestimation (i.e., subjectively, time passes slowly). Our recent report suggests that while (S)-ketamine induces an opposite effect, i.e., time underestimation, the (R)-isomer does not affect timing. It has been suggested that opioid receptors are involved in the antidepressant effect of ketamine. In the present study we tested (R)- and (S)-ketamine, and fluoxetine as a positive control in the differential-reinforcement-of-low-rate (DRL) 72-s schedule of reinforcement in male rats following naloxone pretreatment. DRL classic metrics as well as peak deviation analyses served to determine antidepressant-like actions and those associated with timing. We report antidepressant-like effects of (S)-ketamine (30-60 mg/kg) that resemble fluoxetine's (2.5-10 mg/kg), as both compounds increased reinforcement rate and peak location (suggesting increased performance), reduced premature responses (suggesting time underestimation) and decreased Weber's fraction (suggesting increased timing precision). (R)-ketamine (30, but not 60 mg/kg) increased only the reinforcement rate and peak location but did not affect timing. Only fluoxetine decreased burst responses, suggesting decreased impulsivity. Naloxone pretreatment did not block ketamine enantiomers' actions, but unexpectedly, increased fluoxetine' performance. Thus, while all three medications produced antidepressant-like effects in DRL 72-s, fluoxetine- and (S)- but not (R)- ketamine-induced time underestimation (the subject experiences the time as passing quickly). The potentiation of DRL performance of fluoxetine by naloxone was unexpected and warrants clinical studies.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Joanna Golebiowska
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Shaun Yon-Seng Khoo
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Canada
| | - Piotr Popik
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
2
|
Liao RM, Pattij T. Neural basis of operant behaviors maintained on the differential-reinforcement-of-low-rate (DRL) schedule in rodents. Brain Res Bull 2022; 185:1-17. [DOI: 10.1016/j.brainresbull.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022]
|
3
|
Desrochers SS, Spring MG, Nautiyal KM. A Role for Serotonin in Modulating Opposing Drive and Brake Circuits of Impulsivity. Front Behav Neurosci 2022; 16:791749. [PMID: 35250501 PMCID: PMC8892181 DOI: 10.3389/fnbeh.2022.791749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Impulsivity generally refers to a deficit in inhibition, with a focus on understanding the neural circuits which constitute the "brake" on actions and gratification. It is likely that increased impulsivity can arise not only from reduced inhibition, but also from a heightened or exaggerated excitatory "drive." For example, an action which has more vigor, or is fueled by either increased incentive salience or a stronger action-outcome association, may be harder to inhibit. From this perspective, this review focuses on impulse control as a competition over behavioral output between an initially learned response-reward outcome association, and a subsequently acquired opposing inhibitory association. Our goal is to present a synthesis of research from humans and animal models that supports this dual-systems approach to understanding the behavioral and neural substrates that contribute to impulsivity, with a focus on the neuromodulatory role of serotonin. We review evidence for the role of serotonin signaling in mediating the balance of the "drive" and "brake" circuits. Additionally, we consider parallels of these competing instrumental systems in impulsivity within classical conditioning processes (e.g., extinction) in order to point us to potential behavioral and neural mechanisms that may modulate the competing instrumental associations. Finally, we consider how the balance of these competing associations might contribute to, or be extracted from, our experimental assessments of impulsivity. A careful understanding of the underlying behavioral and circuit level contributions to impulsivity is important for understanding the pathogenesis of increased impulsivity present in a number of psychiatric disorders. Pathological levels of impulsivity in such disorders are likely subserved by deficits in the balance of motivational and inhibitory processes.
Collapse
Affiliation(s)
| | | | - Katherine M. Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
4
|
Desrochers SS, Lesko EK, Magalong VM, Balsam PD, Nautiyal KM. A role for reward valuation in the serotonergic modulation of impulsivity. Psychopharmacology (Berl) 2021; 238:3293-3309. [PMID: 34390360 PMCID: PMC8605981 DOI: 10.1007/s00213-021-05944-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/22/2021] [Indexed: 12/28/2022]
Abstract
RATIONALE Impulsive behavior is a deleterious component of a number of mental health disorders but has few targeted pharmacotherapies. One contributing factor to the difficulty in understanding the neural substrates of disordered impulsivity is the diverse presentations of impulsive behavior. Defining the behavioral and cognitive processes which contribute to different subtypes of impulsivity is important for understanding the neural underpinnings of dysregulated impulsive behavior. METHODS Using a mouse model for disordered impulsivity, our goal was to identify behavioral and cognitive processes that are associated with increased impulsivity. Specifically, we were interested in the facets of impulsivity modulated by serotonin signaling. We used mice lacking the serotonin 1B receptor (5-HT1BR) and measured different types of impulsivity as well as goal-directed responding, extinction, habitual-like behavior, cue reactivity, and reward reactivity. RESULTS Mice lacking expression of 5-HT1BR had increased levels of impulsive action, goal-directed responding, and motivation, with no differences seen in rate of extinction, development of habitual behavior, delay discounting, or effort-based discounting. Interestingly, mice lacking 5-HT1BR expression also showed an overall increase in the choice of higher value rewards, increased hedonic responses to sweet rewards, and responded more for cues that predict reward. We developed a novel paradigm to demonstrate that increasing anticipated reward value could directly increase impulsive action. Furthermore, we found that 5-HT1BR KO-induced impulsivity could be ameliorated by decreasing the reward value relative to controls, suggesting that the increased 5-HT1BR-associated impulsive action may be a result of increased reward valuation. CONCLUSIONS Taken together, these data show that the effects of serotonin on impulsive action are mediated through the modulation of hedonic value, which may alter the reward representations that motivate action. Overall, this data supports a role for reward value as an important substrate in impulsive action which may drive clinically relevant increases in impulsivity.
Collapse
Affiliation(s)
- Stephanie S Desrochers
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Emma K Lesko
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Valerie M Magalong
- Department of Psychology, Barnard College and Columbia University, New York, NY, 10027, USA
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | - Peter D Balsam
- Department of Psychology, Barnard College and Columbia University, New York, NY, 10027, USA
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | - Katherine M Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
5
|
Serotonin 1B Receptor Binding Is Associated With Trait Anger and Level of Psychopathy in Violent Offenders. Biol Psychiatry 2017; 82:267-274. [PMID: 27108021 DOI: 10.1016/j.biopsych.2016.02.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/18/2016] [Accepted: 02/26/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND The involvement of serotonin in aggression has traditionally been attributed to impaired prefrontal serotonergic inhibitory control of emotional reactions to provocations in antisocial individuals. However, it is unclear which specific serotonergic receptors are involved in the effects. A large body of preclinical research supports a specific role of serotonin 1B receptors (5-HT1BRs) in aggression and impulsivity, but this has never been evaluated in humans. METHODS Nineteen incarcerated violent offenders and 24 healthy control nonoffenders were included and examined with positron emission tomography, using the radioligand [11C]AZ10419369 for quantification of cerebral 5-HT1BR binding in three regions of interest: the anterior cingulate cortex, orbitofrontal cortex, and striatum. RESULTS Group status significantly moderated the association between striatal 5-HT1BRs and trait anger (difference in slopes, pcorrected = .04). In the violent offender group, striatal 5-HT1BR binding was positively correlated with self-reported trait anger (p = .0004), trait psychopathy (p = .008), and level of psychopathy according to the Psychopathy Checklist-Revised (p = .02). We found no group differences in 5-HT1BR binding. CONCLUSIONS Our data demonstrate for the first time in humans a specific involvement of 5-HT1BR binding in anger and psychopathy. 5-HT1BRs putatively represent a molecular target for development of pharmacologic antiaggressive treatments.
Collapse
|
6
|
Frameworking memory and serotonergic markers. Rev Neurosci 2017; 28:455-497. [DOI: 10.1515/revneuro-2016-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
Abstract:The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals’ species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Collapse
|
7
|
Brucks D, Marshall-Pescini S, Wallis LJ, Huber L, Range F. Measures of Dogs' Inhibitory Control Abilities Do Not Correlate across Tasks. Front Psychol 2017; 8:849. [PMID: 28596749 PMCID: PMC5443147 DOI: 10.3389/fpsyg.2017.00849] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/09/2017] [Indexed: 11/29/2022] Open
Abstract
Inhibitory control, the ability to overcome prepotent but ineffective behaviors, has been studied extensively across species, revealing the involvement of this ability in many different aspects of life. While various different paradigms have been created in order to measure inhibitory control, only a limited number of studies have investigated whether such measurements indeed evaluate the same underlying mechanism, especially in non-human animals. In humans, inhibitory control is a complex construct composed of distinct behavioral processes rather than of a single unified measure. In the current study, we aimed to investigate the validity of inhibitory control paradigms in dogs. Sixty-seven dogs were tested in a battery consisting of frequently used inhibitory control tests. Additionally, dog owners were asked to complete an impulsivity questionnaire about their dog. No correlation of dogs' performance across tasks was found. In order to understand whether there are some underlying behavioral aspects explaining dogs' performance across tests, we performed principle component analyses. Results revealed that three components (persistency, compulsivity and decision speed) explained the variation across tasks. The questionnaire and dogs' individual characteristics (i.e., age and sex) provided only limited information for the derived components. Overall, results suggest that no unique measurement for inhibitory control exists in dogs, but tests rather measure different aspects of this ability. Considering the context-specificity of inhibitory control in dogs and most probably also in other non-human animals, extreme caution is needed when making conclusions about inhibitory control abilities based on a single test.
Collapse
Affiliation(s)
- Désirée Brucks
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna, University of ViennaVienna, Austria
| | - Sarah Marshall-Pescini
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna, University of ViennaVienna, Austria
| | - Lisa Jessica Wallis
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna, University of ViennaVienna, Austria.,Department of Ethology, Eötvös Loránd UniversityBudapest, Hungary
| | - Ludwig Huber
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna, University of ViennaVienna, Austria
| | - Friederike Range
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna, University of ViennaVienna, Austria
| |
Collapse
|
8
|
Nautiyal KM, Wall MM, Wang S, Magalong VM, Ahmari SE, Balsam PD, Blanco C, Hen R. Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior. Neuropsychopharmacology 2017; 42:1182-1191. [PMID: 27976680 PMCID: PMC5437890 DOI: 10.1038/npp.2016.277] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023]
Abstract
Impulsivity is an endophenotype found in many psychiatric disorders including substance use disorders, pathological gambling, and attention deficit hyperactivity disorder. Two behavioral features often considered in impulsive behavior are behavioral inhibition (impulsive action) and delayed gratification (impulsive choice). However, the extent to which these behavioral constructs represent distinct facets of behavior with discrete biological bases is unclear. To test the hypothesis that impulsive action and impulsive choice represent statistically independent behavioral constructs in mice, we collected behavioral measures of impulsivity in a single cohort of mice using well-validated operant behavioral paradigms. Mice with manipulation of serotonin 1B receptor (5-HT1BR) expression were included as a model of disordered impulsivity. A factor analysis was used to characterize correlations between the measures of impulsivity and to identify covariates. Using two approaches, we dissociated impulsive action from impulsive choice. First, the absence of 5-HT1BRs caused increased impulsive action, but not impulsive choice. Second, based on an exploratory factor analysis, a two-factor model described the data well, with measures of impulsive action and choice separating into two independent factors. A multiple-indicator multiple-causes analysis showed that 5-HT1BR expression and sex were significant covariates of impulsivity. Males displayed increased impulsivity in both dimensions, whereas 5-HT1BR expression was a predictor of increased impulsive action only. These data support the conclusion that impulsive action and impulsive choice are distinct behavioral phenotypes with dissociable biological influences that can be modeled in mice. Our work may help inform better classification, diagnosis, and treatment of psychiatric disorders, which present with disordered impulsivity.
Collapse
Affiliation(s)
- Katherine M Nautiyal
- Department of Psychiatry, Columbia University, New York, NY, USA,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Melanie M Wall
- Department of Psychiatry, Columbia University, New York, NY, USA,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA,Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shuai Wang
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Valerie M Magalong
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program; Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter D Balsam
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA,Psychology Departments, Barnard College and Columbia University, New York, NY, USA
| | - Carlos Blanco
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA,Center for Neurobiology and Behavior, Columbia University, 722 W. 168th St., P.I. Annex 731, 1051 Riverside Drive, Unit 87, New York, NY 10032, USA, Tel: 212 646 774 7104, Fax: 212 646 774 7102, E-mail: or
| | - René Hen
- Department of Psychiatry, Columbia University, New York, NY, USA,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, Columbia University, New York, NY, USA,Center for Neurobiology and Behavior, Columbia University, 722 W. 168th St., P.I. Annex 731, 1051 Riverside Drive, Unit 87, New York, NY 10032, USA, Tel: 212 646 774 7104, Fax: 212 646 774 7102, E-mail: or
| |
Collapse
|
9
|
Nautiyal KM, Okuda M, Hen R, Blanco C. Gambling disorder: an integrative review of animal and human studies. Ann N Y Acad Sci 2017; 1394:106-127. [PMID: 28486792 PMCID: PMC5466885 DOI: 10.1111/nyas.13356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/22/2017] [Indexed: 11/29/2022]
Abstract
Gambling disorder (GD), previously called pathological gambling and classified as an impulse control disorder in DSM-III and DSM-IV, has recently been reclassified as an addictive disorder in the DSM-5. It is widely recognized as an important public health problem associated with substantial personal and social costs, high rates of psychiatric comorbidity, poor physical health, and elevated suicide rates. A number of risk factors have been identified, including some genetic polymorphisms. Animal models have been developed in order to study the underlying neural basis of GD. Here, we discuss recent advances in our understanding of the risk factors, disease course, and pathophysiology. A focus on a phenotype-based dissection of the disorder is included in which known neural correlates from animal and human studies are reviewed. Finally, current treatment approaches are discussed, as well as future directions for GD research.
Collapse
Affiliation(s)
- Katherine M. Nautiyal
- New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
| | - Mayumi Okuda
- New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
| | - Rene Hen
- New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
- Departments of Neuroscience and Pharmacology, Columbia University, New York, New York
| | - Carlos Blanco
- National Institute on Drug Abuse, Rockville, Maryland
| |
Collapse
|
10
|
Abstract
The role of serotonin in major depressive disorder (MDD) is the focus of accumulating clinical and preclinical research. The results of these studies reflect the complexity of serotonin signaling through many receptors, in a large number of brain regions, and throughout the lifespan. The role of the serotonin transporter in MDD has been highlighted in gene by environment association studies as well as its role as a critical player in the mechanism of the most effective antidepressant treatments – selective serotonin reuptake inhibitors. While the majority of the 15 known receptors for serotonin have been implicated in depression or depressive-like behavior, the serotonin 1A (5-HT
1A) and 1B (5-HT
1B) receptors are among the most studied. Human brain imaging and genetic studies point to the involvement of 5-HT
1A and 5-HT
1B receptors in MDD and the response to antidepressant treatment. In rodents, the availability of tissue-specific and inducible knockout mouse lines has made possible the identification of the involvement of 5-HT
1A and 5-HT
1B receptors throughout development and in a cell-type specific manner. This, and other preclinical pharmacology work, shows that autoreceptor and heteroreceptor populations of these receptors have divergent roles in modulating depression-related behavior as well as responses to antidepressants and also have different functions during early postnatal development compared to during adulthood.
Collapse
Affiliation(s)
- Katherine M Nautiyal
- Division of Integrative Neuroscience, New York State Psychiatric Institute, and Department of Psychiatry, Columbia University, NY, USA
| | - René Hen
- Division of Integrative Neuroscience, New York State Psychiatric Institute, and Department of Psychiatry, Columbia University, NY, USA; Departments of Neuroscience and Pharmacology, Columbia University, NY, USA
| |
Collapse
|
11
|
Faulkner P, Mancinelli F, Lockwood PL, Matarin M, Dolan RJ, Wood NW, Dayan P, Roiser JP. Peripheral Serotonin 1B Receptor Transcription Predicts the Effect of Acute Tryptophan Depletion on Risky Decision-Making. Int J Neuropsychopharmacol 2016; 20:58-66. [PMID: 27638901 PMCID: PMC5480594 DOI: 10.1093/ijnp/pyw075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/13/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The effects of acute tryptophan depletion on human decision-making suggest that serotonin modulates the processing of rewards and punishments. However, few studies have assessed which of the many types of serotonin receptors are responsible. METHODS Using a within-subject, double-blind, sham-controlled design in 26 subjects, we examined whether individual differences in serotonin system gene transcription, measured in peripheral blood, predicted the effect of acute tryptophan depletion on decision-making. Participants performed a task in which they chose between successive pairs of fixed, lower-stakes (control) and variable, higher-stakes (experimental) gambles, each involving wins or losses. In 21 participants, mRNA from 9 serotonin system genes was measured in whole blood prior to acute tryptophan depletion: 5-HT1B, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT3A, 5-HT3E, 5-HT7 (serotonin receptors), 5-HTT (the serotonin transporter), and tryptophan hydroxylase 1. RESULTS Acute tryptophan depletion did not significantly influence participants' sensitivity to probability, wins, or losses, although there was a trend for a lower tendency to choose experimental gambles overall following depletion. Significant positive correlations, which survived correction for multiple comparisons, were detected between baseline 5-HT1B mRNA levels and acute tryptophan depletion-induced increases in both the overall tendency to choose the experimental gamble and sensitivity to wins. No significant relationship was observed with any other peripheral serotonin system markers. Computational analyses of decision-making data provided results consistent with these findings. CONCLUSIONS These results suggest that the 5-HT1B receptor may modulate the effects of acute tryptophan depletion on risky decision-making. Peripheral levels of serotonin markers may predict response to treatments that act upon the serotonin system, such as selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Paul Faulkner
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner);,Correspondence: Paul Faulkner, PhD, Semel Institute, 760 Westwood Boulevard, University of California, Los Angeles, CA 90025 ()
| | - Federico Mancinelli
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Patricia L Lockwood
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Mar Matarin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Raymond J Dolan
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Nick W Wood
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Peter Dayan
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Jonathan P Roiser
- Gatsby Computational Neuroscience Unit (Mr Mancinelli and Dr Dayan), and CoMPLEX Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (Mr Mancinelli), University College London, London, United Kingdom; Experimental Psychology, University of Oxford, Oxford, United Kingdom (Dr Lockwood); Clinical and Experimental Epilepsy, Institute of Neurology (Dr Matarin), and Wellcome Trust Centre for Neuroimaging (Dr Dolan), University College London, London, United Kingdom; Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom (Dr Wood)
| |
Collapse
|
12
|
Adolescent methylphenidate treatment differentially alters adult impulsivity and hyperactivity in the Spontaneously Hypertensive Rat model of ADHD. Pharmacol Biochem Behav 2015; 141:66-77. [PMID: 26657171 DOI: 10.1016/j.pbb.2015.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
Abstract
Impulsivity and hyperactivity are two facets of attention deficit/hyperactivity disorder (ADHD). Impulsivity is expressed as reduced response inhibition capacity, an executive control mechanism that prevents premature execution of an intermittently reinforced behavior. During methylphenidate treatment, impulsivity and hyperactivity are decreased in adolescents with ADHD, but there is little information concerning levels of impulsivity and hyperactivity in adulthood after adolescent methylphenidate treatment is discontinued. The current study evaluated impulsivity, hyperactivity as well as cocaine sensitization during adulthood after adolescent methylphenidate treatment was discontinued in the Spontaneously Hypertensive Rat (SHR) model of ADHD. Treatments consisted of oral methylphenidate (1.5mg/kg) or water vehicle provided Monday-Friday from postnatal days 28-55. During adulthood, impulsivity was measured in SHR and control strains (Wistar Kyoto and Wistar rats) using differential reinforcement of low rate (DRL) schedules. Locomotor activity and cocaine sensitization were measured using the open-field assay. Adult SHR exhibited decreased efficiency of reinforcement under the DRL30 schedule and greater levels of locomotor activity and cocaine sensitization compared to control strains. Compared to vehicle, methylphenidate treatment during adolescence reduced hyperactivity in adult SHR, maintained the lower efficiency of reinforcement, and increased burst responding under DRL30. Cocaine sensitization was not altered following adolescent methylphenidate in adult SHR. In conclusion, adolescent treatment with methylphenidate followed by discontinuation in adulthood had a positive benefit by reducing hyperactivity in adult SHR rats; however, increased burst responding under DRL compared to SHR given vehicle, i.e., elevated impulsivity, constituted an adverse consequence associated with increased risk for cocaine abuse liability.
Collapse
|
13
|
Leiser SC, Li Y, Pehrson AL, Dale E, Smagin G, Sanchez C. Serotonergic Regulation of Prefrontal Cortical Circuitries Involved in Cognitive Processing: A Review of Individual 5-HT Receptor Mechanisms and Concerted Effects of 5-HT Receptors Exemplified by the Multimodal Antidepressant Vortioxetine. ACS Chem Neurosci 2015; 6:970-86. [PMID: 25746856 DOI: 10.1021/cn500340j] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been known for several decades that serotonergic neurotransmission is a key regulator of cognitive function, mood, and sleep. Yet with the relatively recent discoveries of novel serotonin (5-HT) receptor subtypes, as well as an expanding knowledge of their expression level in certain brain regions and localization on certain cell types, their involvement in cognitive processes is still emerging. Of particular interest are cognitive processes impacted in neuropsychiatric and neurodegenerative disorders. The prefrontal cortex (PFC) is critical to normal cognitive processes, including attention, impulsivity, planning, decision-making, working memory, and learning or recall of learned memories. Furthermore, serotonergic dysregulation within the PFC is implicated in many neuropsychiatric disorders associated with prominent symptoms of cognitive dysfunction. Thus, it is important to better understand the overall makeup of serotonergic receptors in the PFC and on which cell types these receptors mediate their actions. In this Review, we focus on 5-HT receptor expression patterns within the PFC and how they influence cognitive behavior and neurotransmission. We further discuss the net effects of vortioxetine, an antidepressant acting through multiple serotonergic targets given the recent findings that vortioxetine improves cognition by modulating multiple neurotransmitter systems.
Collapse
Affiliation(s)
| | - Yan Li
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Alan L. Pehrson
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Elena Dale
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Gennady Smagin
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Connie Sanchez
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| |
Collapse
|
14
|
Nautiyal KM, Tanaka KF, Barr MM, Tritschler L, Le Dantec Y, David DJ, Gardier AM, Blanco C, Hen R, Ahmari SE. Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and Impulsivity. Neuron 2015; 86:813-26. [PMID: 25892302 DOI: 10.1016/j.neuron.2015.03.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 01/21/2015] [Accepted: 03/12/2015] [Indexed: 01/11/2023]
Abstract
Impulsive and aggressive behaviors are both modulated by serotonergic signaling, specifically through the serotonin 1B receptor (5-HT1BR). 5-HT1BR knockout mice show increased aggression and impulsivity, and 5-HT1BR polymorphisms are associated with aggression and drug addiction in humans. To dissect the mechanisms by which the 5-HT1BR affects these phenotypes, we developed a mouse model to spatially and temporally regulate 5-HT1BR expression. Our results demonstrate that forebrain 5-HT1B heteroreceptors expressed during an early postnatal period contribute to the development of the neural systems underlying adult aggression. However, distinct heteroreceptors acting during adulthood are involved in mediating impulsivity. Correlating with the impulsivity, dopamine in the nucleus accumbens is elevated in the absence of 5-HT1BRs and normalized following adult rescue of the receptor. Overall, these data show that while adolescent expression of 5-HT1BRs influences aggressive behavior, a distinct set of 5-HT1B receptors modulates impulsive behavior during adulthood.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Aggression/physiology
- Animals
- Animals, Newborn
- Brain/anatomy & histology
- Brain/growth & development
- Brain/metabolism
- Choice Behavior/physiology
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dopamine/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Doxycycline/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Impulsive Behavior/physiology
- Iodine Isotopes/pharmacokinetics
- Mice
- Mice, Transgenic
- Pindolol/analogs & derivatives
- Pindolol/pharmacokinetics
- Piperazines/pharmacology
- Protein Binding/drug effects
- Receptor, Serotonin, 5-HT1B/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Serotonin/metabolism
- Serotonin Antagonists/pharmacokinetics
Collapse
Affiliation(s)
- Katherine M Nautiyal
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, the New York State Psychiatric Institute, New York, NY 10032, USA
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160 8582, Japan
| | - Mary M Barr
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Laurent Tritschler
- Université Paris-Sud, INSERM UMR-S 1178, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Yannick Le Dantec
- Université Paris-Sud, INSERM UMR-S 1178, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Denis J David
- Université Paris-Sud, INSERM UMR-S 1178, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Alain M Gardier
- Université Paris-Sud, INSERM UMR-S 1178, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Carlos Blanco
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, the New York State Psychiatric Institute, New York, NY 10032, USA
| | - René Hen
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, the New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, Center for Neuroscience Program, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
15
|
Pattij T, Schoffelmeer AN. Serotonin and inhibitory response control: Focusing on the role of 5-HT1A receptors. Eur J Pharmacol 2015; 753:140-5. [DOI: 10.1016/j.ejphar.2014.05.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
|
16
|
McDonald MP. Methods and Models of the Nonmotor Symptoms of Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Jentsch JD, Ashenhurst JR, Cervantes MC, Groman SM, James AS, Pennington ZT. Dissecting impulsivity and its relationships to drug addictions. Ann N Y Acad Sci 2014; 1327:1-26. [PMID: 24654857 DOI: 10.1111/nyas.12388] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Addictions are often characterized as forms of impulsive behavior. That said, it is often noted that impulsivity is a multidimensional construct, spanning several psychological domains. This review describes the relationship between varieties of impulsivity and addiction-related behaviors, the nature of the causal relationship between the two, and the underlying neurobiological mechanisms that promote impulsive behaviors. We conclude that the available data strongly support the notion that impulsivity is both a risk factor for, and a consequence of, drug and alcohol consumption. While the evidence indicating that subtypes of impulsive behavior are uniquely informative--either biologically or with respect to their relationships to addictions--is convincing, multiple lines of study link distinct subtypes of impulsivity to low dopamine D2 receptor function and perturbed serotonergic transmission, revealing shared mechanisms between the subtypes. Therefore, a common biological framework involving monoaminergic transmitters in key frontostriatal circuits may link multiple forms of impulsivity to drug self-administration and addiction-related behaviors. Further dissection of these relationships is needed before the next phase of genetic and genomic discovery will be able to reveal the biological sources of the vulnerability for addiction indexed by impulsivity.
Collapse
Affiliation(s)
- J David Jentsch
- Department of Psychology, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
18
|
Marek GJ. Activation of adenosine₁ receptors induces antidepressant-like, anti-impulsive effects on differential reinforcement of low-rate 72-s behavior in rats. J Pharmacol Exp Ther 2012; 341:564-70. [PMID: 22323824 DOI: 10.1124/jpet.112.191718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stress and psychiatric illness have been associated with a dysregulation of glutamatergic neurotransmission. Recently, positive allosteric modulators (PAMs) of the metabotropic glutamate 2 (mGlu₂) receptor have been found to exert antidepressant-like activity in rats performing under a differential reinforcement of low rate (DRL) 72-s schedule. An autoreceptor role at glutamatergic synapses is the most salient physiological role played by the mGlu₂ receptor. Adenosine A₁ receptors play a heteroreceptor role at many of the same forebrain synapses where mGlu₂ autoreceptors are found. Agonists and/or PAMs of mGlu₂ receptors act similarly to adenosine A₁ receptor agonists with respect to a wide range of electrophysiological, biochemical, and behavioral responses mediated by limbic circuitry thought to play a role in the pathophysiology of neuropsychiatric disease and to mediate therapeutic drug effects. Therefore, the role of adenosine A₁ receptor activation on rat DRL 72-s behavior was explored to provide preclinical evidence consistent or inconsistent with potential antidepressant effects. The adenosine A₁ receptor agonist N⁶-cyclohexyladenosine (CHA) increased the reinforcement rate, decreased the response rate, and induced a rightward shift in inter-response time distributions in a dose-dependent fashion similar to most known antidepressant drugs. The adenosine A₁ receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) blocked these antidepressant-like effects. These novel observations with CHA and DPCPX suggest that activation of adenosine A₁ receptors could contribute to antidepressant effects, in addition to previous preclinical reports of anxiolytic and antipsychotic effects. By implication, targeting a dysregulated glutamatergic system may be an important principle in discovering novel antidepressant agents that may also possess anti-impulsive activity.
Collapse
Affiliation(s)
- Gerard J Marek
- Abbott Laboratories, Neuroscience Development, GPRD, R48B, Bldg. AP04-1, 100 Abbott Park Road, Abbott Park, IL 60064-6075, USA.
| |
Collapse
|
19
|
Serotonin (5-hydroxytryptamine) 5-HT(2A) receptor: association with inherent and cocaine-evoked behavioral disinhibition in rats. Behav Pharmacol 2011; 22:248-61. [PMID: 21499079 DOI: 10.1097/fbp.0b013e328345f90d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alterations in the balance of functional activity within the serotonin [5-hydroxytryptamine (5-HT)] system are hypothesized to underlie impulse control. Cocaine-dependent subjects consistently show greater impulsivity relative to nondrug using control subjects. Preclinical studies suggest that the 5-HT(2A) receptor (5-HT(2A)R) contributes to the regulation of impulsive behavior and also mediates some of the behavioral effects of cocaine. We hypothesized that the selective 5-HT(2A)R antagonist M100907 would reduce inherent levels of impulsivity and attenuate impulsive responding induced by cocaine in two animal models of impulsivity, the differential reinforcement of low rate (DRL) task and the one-choice serial reaction time (1-CSRT) task. M100907 reduced rates of responding in the DRL task and premature responding in the 1-CSRT task. Conversely, cocaine disrupted rates of responding in the DRL task and increased premature responding in the 1-CSRT task. M100907 attenuated cocaine-induced increases in specific markers of behavioral disinhibition in the DRL and 1-CSRT tasks. These results suggest that the 5-HT(2A)R regulates inherent impulsivity, and that blockade of the 5-HT(2A)R alleviates specific aspects of elevated levels of impulsivity induced by cocaine exposure. These data point to the 5-HT(2A)R as an important regulatory substrate in impulse control.
Collapse
|
20
|
Derenne A, Brown-Borg H, Feltman K, Corbett G, Lackman S. Acquisition of steady-state operant behavior in long-living Ames Dwarf mice. Physiol Behav 2011; 104:1048-52. [PMID: 21782837 DOI: 10.1016/j.physbeh.2011.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 07/03/2011] [Accepted: 07/06/2011] [Indexed: 12/22/2022]
Abstract
Ames dwarf mice have a Prop-1 mutation that has been identified with increased levels of IGF-I in the central nervous system, upregulation of neuroprotective systems, and increased lifespan. To elucidate the behavioral effects of the Prop-1 mutation, 8 Ames dwarf and 7 normal mice (all of whom were 8 months of age or younger) were compared on a differential-reinforcement-of-low-rate-of-responding schedule of reinforcement and a matching-to-sample task. On both tasks, nosepokes were reinforced with access to a saccharin solution. Comparisons were based on several measures of behavioral efficiency: pause durations, intertrial intervals, and numbers of responses. Ames dwarf mice were generally less efficient than normal mice. One possible cause of this outcome is that relatively young Ames dwarf mice show less cognitive development than age-matched normal mice.
Collapse
Affiliation(s)
- Adam Derenne
- Department of Psychology, University of North Dakota, Grand Forks, ND 58202-8380, USA.
| | | | | | | | | |
Collapse
|
21
|
A neurochemical yin and yang: does serotonin activate and norepinephrine deactivate the prefrontal cortex? Psychopharmacology (Berl) 2011; 213:171-82. [PMID: 20386882 DOI: 10.1007/s00213-010-1856-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/27/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The prefrontal cortex (PFC) receives serotonergic input from the dorsal raphe nucleus of the brainstem, as well as noradrenergic input from another brainstem nucleus, the locus coeruleus. A large number of studies have shown that these two neurotransmitter systems, and drugs that affect them, modulate the functional properties of the PFC in both humans and animal models. RESULTS Here I examine the hypothesis that serotonin (5-HT) plays a general role in activating the PFC, whereas norepinephrine (NE) plays a general role in deactivating this brain region. In this manner, the two neurotransmitter systems may have opposing effects on PFC-influenced behavior. To assess this hypothesis, three primary lines of evidence are examined comprising the effects of 5-HT and NE on impulsivity, cognitive flexibility, and working memory. DISCUSSION While all of the existing data do not unequivocally support the activation/deactivation hypothesis, there is a large body of support for it.
Collapse
|
22
|
Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Castillo C. Serotonin transporter and memory. Neuropharmacology 2011; 61:355-63. [PMID: 21276807 DOI: 10.1016/j.neuropharm.2011.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/15/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
The serotonin transporter (SERT) has been associated to diverse functions and diseases, though seldom to memory. Therefore, we made an attempt to summarize and discuss the available publications implicating the involvement of the SERT in memory, amnesia and anti-amnesic effects. Evidence indicates that Alzheimer's disease and drugs of abuse like d-methamphetamine (METH) and (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") have been associated to decrements in the SERT expression and memory deficits. Several reports have indicated that memory formation and amnesia affected the SERT expression. The SERT expression seems to be a reliable neural marker related to memory mechanisms, its alterations and potential treatment. The pharmacological, neural and molecular mechanisms associated to these changes are of great importance for investigation.
Collapse
Affiliation(s)
- Alfredo Meneses
- Depto. de Farmacobiología, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, Mexico City 14330, Mexico.
| | | | | | | | | |
Collapse
|
23
|
Pizzo MJ, Kirkpatrick K, Blundell PJ. The effect of changes in criterion value on differential reinforcement of low rate schedule performance. J Exp Anal Behav 2010; 92:181-98. [PMID: 20354598 DOI: 10.1901/jeab.2009.92-181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 06/02/2009] [Indexed: 10/19/2022]
Abstract
The differential reinforcement of low rate (DRL) schedule is commonly used to assess impulsivity, hyperactivity, and the cognitive effects of pharmacological treatments on performance. A DRL schedule requires subjects to wait a certain minimum amount of time between successive responses to receive reinforcement. The DRL criterion value, which specifies the minimum wait time between responses, is often shifted towards increasingly longer values over the course of training. However, the process invoked by shifting DRL values is poorly understood. Experiment 1 compared performance on a DRL 30-s schedule versus a DRL 15-s schedule that was later shifted to a DRL 30-s schedule. Dependent measures assessing interresponse time (IRT) production and reward-earning efficiency showed significant detrimental effects following a DRL schedule transition in comparison with the performance on a maintained DRL 30-s schedule. Experiments 2a and 2b assessed the effects of small incremental changes vs. a sudden large shift in the DRL criterion on performance. The incremental changes produced little to no disruption in performance compared to a sudden large shift. The results indicate that the common practice of incrementing the DRL criterion over sessions may be an inefficient means of training stable DRL performance.
Collapse
|
24
|
Jones JD, Hall FS, Uhl GR, Riley AL. Dopamine, norepinephrine and serotonin transporter gene deletions differentially alter cocaine-induced taste aversion. Pharmacol Biochem Behav 2010; 94:580-7. [PMID: 19969013 PMCID: PMC3104319 DOI: 10.1016/j.pbb.2009.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 11/16/2022]
Abstract
Although cocaine is primarily known for its powerful hedonic effects, there is evidence that its affective experience has a notable aversive component that is less well understood. A variety of pharmacological and molecular approaches have implicated enhanced monoamine (MA) neurotransmission in the aversive effects of cocaine. Although numerous studies have yielded data supportive of the role of the monoamines (indirectly and directly), the specific system suggested to be involved differs across studies and paradigms (Freeman et al., 2005b; Grupp, 1997; Roberts and Fibiger, 1997). Monoamine transporter knockout mice have been useful in the study of many different aspects of cocaine effects relevant to human drug use and addiction, yet an assessment of the effects of deletion of the genes for the dopamine, norepinephrine and serotonin transporters (DAT, NET, and SERT, respectively) on cocaine's aversive properties has yet to be performed (Uhl et al., 2002). In the current investigation, the strength of cocaine-induced aversions was compared among three groups of transgenic mice with deletions of the genes responsible for the production of one of the monoamine transporters. When compared to their respective WT controls, dopamine transporter deletion slightly attenuated cocaine-induced aversion while deletion of SERT or NET resulted in a more significant delay in the onset and strength of cocaine-induced taste aversions. The data lead us to conclude that the action of cocaine to inhibit NET contributes most substantially to its aversive effects, with some involvement of SERT and minimal contribution of DAT.
Collapse
Affiliation(s)
- Jermaine D Jones
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, D.C., USA.
| | | | | | | |
Collapse
|
25
|
Eagle DM, Baunez C. Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 2010; 34:50-72. [PMID: 19615404 PMCID: PMC2789250 DOI: 10.1016/j.neubiorev.2009.07.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 05/23/2009] [Accepted: 07/07/2009] [Indexed: 11/23/2022]
Abstract
Many common psychiatric conditions, such as attention deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), Parkinson's disease, addiction and pathological gambling are linked by a failure in the mechanisms that control, or inhibit, inappropriate behavior. Models of rat behavioral inhibition permit us to study in detail the anatomical and pharmacological bases of inhibitory failure, using methods that translate directly with patient assessment in the clinic. This review updates current ideas relating to behavioral inhibition based on two significant lines of evidence from rat studies: (1) To integrate new findings from the stop-signal task into existing models of behavioral inhibition, in particular relating to 'impulsive action' control. The stop-signal task has been used for a number of years to evaluate psychiatric conditions and has recently been translated for use in the rat, bringing a wealth of new information to behavioral inhibition research. (2) To consider the importance of the subthalamic nucleus (STN) in the neural circuitry of behavioral inhibition. This function of this nucleus is central to a number of 'disinhibitory' disorders such as Parkinson's disease and OCD, and their therapies, but its role in behavioral inhibition is still undervalued, and often not considered in preclinical models of behavioral control. Integration of these findings has pinpointed the orbitofrontal cortex (OF), dorsomedial striatum (DMStr) and STN within a network that normally inhibits many forms of behavior, including both impulsive and compulsive forms. However, there are distinct differences between behavioral subtypes in their neurochemical modulation. This review brings new light to the classical view of the mechanisms that inhibit behavior, in particular suggesting a far more prominent role for the STN, a structure that is usually omitted from conventional behavioral-inhibition networks. The OF-DMStr-STN circuitry may form the basis of a control network that defines behavioral inhibition and that acts to suppress or countermand many forms of inappropriate or maladaptive behavior.
Collapse
Affiliation(s)
- Dawn M Eagle
- Department of Experimental Psychology, University of Cambridge, Downing Site, Cambridge, UK.
| | | |
Collapse
|
26
|
HTR1B as a risk profile maker in psychiatric disorders: a review through motivation and memory. Eur J Clin Pharmacol 2009; 66:5-27. [DOI: 10.1007/s00228-009-0724-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 08/18/2009] [Indexed: 12/21/2022]
|
27
|
Whitford GM, Whitford JL, Hobbs SH. Appetitive-based learning in rats: Lack of effect of chronic exposure to fluoride. Neurotoxicol Teratol 2009; 31:210-5. [DOI: 10.1016/j.ntt.2009.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 02/11/2009] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
|
28
|
Postsynaptic alpha-2 adrenergic receptors are critical for the antidepressant-like effects of desipramine on behavior. Neuropsychopharmacology 2009; 34:1067-77. [PMID: 18923403 PMCID: PMC2727683 DOI: 10.1038/npp.2008.184] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antidepressant desipramine inhibits the reuptake of norepinephrine (NE), leading to activation of both pre- and postsynaptic adrenergic receptors, including alpha-1, alpha-2, beta-1, and beta-2 subtypes. However, it is not clear which adrenergic receptors are involved in mediating its antidepressant effects. Treatment of mice with desipramine (20 mg/kg, i.p.) produced an antidepressant-like effect, as evidenced by decreased immobility in the forced-swim test; this was antagonized by pretreatment with the alpha-2 adrenergic antagonist idazoxan (0.1-2.5 mg/kg, i.p.). Similarly, idazoxan, administered peripherally (0.5-2.5 mg/kg, i.p.) or centrally (1-10 microg, i.c.v.), antagonized the antidepressant-like effect of desipramine in rats responding under a differential-reinforcement-of-low-rate (DRL) 72-s schedule, ie, decreased response rate and increased reinforcement rate. By contrast, pretreatment with the beta-adrenergic antagonists propranolol and CGP-12177 or the alpha-1 adrenergic antagonist prazosin did not alter the antidepressant-like effect of desipramine on DRL behavior. The lack of involvement of beta-adrenergic receptors in mediating the behavioral effects of desipramine was confirmed using knockout lines. In the forced-swim test, the desipramine-induced decrease in immobility was not altered in mice deficient in beta-1, beta-2, or both beta-1 and beta-2 adrenergic receptors. In addition, desipramine (3-30 mg/kg) produced an antidepressant-like effect on behavior under a DRL 36-s schedule in mice deficient in both beta-1 and beta-2 adrenergic receptors. As antagonism of presynaptic alpha-2 adrenergic receptors facilitates NE release, which potentiates the effects of desipramine, the present results suggest that postsynaptic alpha-2 adrenergic receptors play an important role in its antidepressant effects.
Collapse
|
29
|
Bert B, Voigt JP, Kusserow H, Theuring F, Rex A, Fink H. Increasing the number of 5-HT1A-receptors in cortex and hippocampus does not induce mnemonic deficits in mice. Pharmacol Biochem Behav 2009; 92:76-81. [DOI: 10.1016/j.pbb.2008.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/09/2008] [Accepted: 10/21/2008] [Indexed: 11/29/2022]
|
30
|
Perez-Garcia G, Meneses A. Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role. Behav Brain Res 2008; 195:17-29. [DOI: 10.1016/j.bbr.2007.11.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 11/16/2022]
|
31
|
Learning and memory in 5-HT1A-receptor mutant mice. Behav Brain Res 2008; 195:78-85. [DOI: 10.1016/j.bbr.2008.02.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/15/2008] [Accepted: 02/15/2008] [Indexed: 11/22/2022]
|
32
|
Abstract
The neurotransmitter serotonin (5-HT) has been implicated in the modulation of aggression in animals and humans. A longstanding dogma that aggression and serotonergic activity are inversely related has to be abandoned in light of many new findings. Trait and state aggression are differentially regulated by the 5-HT system and different 5-HT receptors seem to be involved. Of the 14 different 5-HT receptors, the 5-HT(1B) receptor, particularly the postsynaptically located 5-HT(1B) heteroreceptor, plays a highly selective role in the modulation of offensive aggression. We are still far from understanding the complex role played by the serotonergic system in the modulation of a complex set of behaviors like aggression.
Collapse
Affiliation(s)
- Berend Olivier
- Department of Psychopharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 36, 3584CA Utrecht, the Netherlands.
| |
Collapse
|
33
|
The importance of cognitive phenotypes in experimental modeling of animal anxiety and depression. Neural Plast 2008; 2007:52087. [PMID: 18288249 PMCID: PMC2233771 DOI: 10.1155/2007/52087] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 06/05/2007] [Indexed: 12/16/2022] Open
Abstract
Cognitive dysfunctions are commonly seen in many stress-related disorders, including
anxiety and depression—the world's most common neuropsychiatric illnesses. Various genetic,
pharmacological, and behavioral animal models have long been used to establish animal anxiety-like
and depression-like phenotypes, as well as to assess their memory, learning, and other
cognitive functions. Mounting clinical and animal evidences strongly supports the notion that
disturbed cognitions represent an important pathogenetic factor in anxiety and depression, and may
also play a role in integrating the two disorders within a common stress-precipitated
developmental pathway. This paper evaluates why and how the assessment of cognitive and
emotional domains may improve our understanding of animal behaviors via different high-throughput
tests and enable a better translation of animal phenotypes into human brain disorders.
Collapse
|
34
|
Holmes A. Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci Biobehav Rev 2008; 32:1293-314. [PMID: 18439676 DOI: 10.1016/j.neubiorev.2008.03.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 02/20/2008] [Indexed: 01/09/2023]
Abstract
The serotonin system is strongly implicated in the pathophysiology and therapeutic alleviation of stress-related disorders such as anxiety and depression. Serotonergic modulation of the acute response to stress and the adaptation to chronic stress is mediated by a myriad of molecules controlling serotonin neuron development (Pet-1), synthesis (tryptophan hydroxylase 1 and 2 isozymes), packaging (vesicular monoamine transporter 2), actions at presynaptic and postsynaptic receptors (5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, 5-HT3A, 5-HT4, 5-HT5A, 5-HT6, 5-HT7), reuptake (serotonin transporter), and degradation (monoamine oxidase A). A growing body of evidence from preclinical rodents models, and especially genetically modified mice and inbred mouse strains, has provided significant insight into how genetic variation in these molecules can affect the development and function of a key neural circuit between the dorsal raphe nucleus, medial prefrontal cortex and amygdala. By extension, such variation is hypothesized to have a major influence on individual differences in the stress response and risk for stress-related disease in humans. The current article provides an update on this rapidly evolving field of research.
Collapse
Affiliation(s)
- Andrew Holmes
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, 5625 Fishers Lane Room 2N09, Rockville, MD 20852-9411, USA.
| |
Collapse
|
35
|
Scott-McKean JJ, Wenger GR, Tecott LH, Costa ACS. 5-HT(1A) Receptor Null Mutant Mice Responding Under a Differential-Reinforcement-of-Low-Rate 72-Second Schedule of Reinforcement. ACTA ACUST UNITED AC 2008; 1:24-32. [PMID: 20352018 DOI: 10.2174/1876523800801010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last two decades, our ever-increasing ability to manipulate the mouse genome has resulted in a variety of genetically defined mouse models of depression and other psychiatric and neurological disorders. However, it is still the case that some relevant rodent models for depression and antidepressant action have been validated experimentally in rats only and not in mice. An important example of such models is the operant model of antidepressant action known as differential-reinforcement-of-low-rates 72-second (DRL 72-s). A specific set of drug-induced changes on the performance of rats responding under a DRL 72-s schedule of reinforcement has been shown to be a highly reliable predictor of antidepressant activity in human depressive disorders. The aim of this study is to validate the use of the DRL 72-s schedule in mice by both genetic and pharmacological means. We have analyzed the actions of the specific serotonin reuptake inhibitor (SSRI) fluoxetine and the tricyclic agent desipramine (DMI) on wild-type and 5-hydroxytryptamine 1A receptor-null mutant (5-HT(1A)R KO) mice. In agreement with the literature on rats, we found that fluoxetine produced an acute antidepressant-like effect in 5-HT(1A)R KO mice but not in wild-type (Wt) mice. Additionally, an antidepressant-like effect was observed when DMI was administered to both 5-HT(1A)R KO and Wt mice. In conclusion: through the use of both genetic and pharmacological strategies, this study validates the extension of a protocol involving the DRL 72-s operant schedule of reinforcement as a behavioral model for the action of antidepressants in mice.
Collapse
|
36
|
Homberg JR, Pattij T, Janssen MCW, Ronken E, De Boer SF, Schoffelmeer ANM, Cuppen E. Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. Eur J Neurosci 2007; 26:2066-73. [PMID: 17897403 DOI: 10.1111/j.1460-9568.2007.05839.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Impulsivity and aggression have been suggested to inversely correlate with central serotonin (5-HT) levels in a trait-like manner. However, this relationship is far from straightforward. In the present study we addressed the effect of lifelong reduced or absent serotonin transporter (SERT) function, which is associated with constitutively increased extracellular 5-HT levels, on impulsivity and aggression. We used unique SERT knockout rats in a resident-intruder test, five-choice serial reaction time task and serial reversal learning task to assay aggression, inhibitory control and behavioural flexibility, respectively. Homozygous SERT knockout rats (SERT( -/-)) displayed reduced aggression and improved inhibitory control, but unchanged behavioural flexibility. The behavioural phenotype of heterozygous SERT knockout rats (SERT( +/-)) was not different from that of wild-type controls in any of the behavioural paradigms. We determined monoamine (metabolite) tissue levels in the medial prefrontal cortex, orbitofrontal cortex, lateral hypothalamus, raphe nuclei and cerebrospinal fluid, and found that the 5-HT levels, but not other monoamine tissue levels, were reduced in SERT( -/-) rats. In addition, the 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio in cerebrospinal fluid was increased in these rats. In conclusion, our data show that the absence of the SERT affects aggression and inhibitory control, but not behavioural flexibility, characteristics that may reflect the trait-like consequences of constitutive changes in central 5-HT levels.
Collapse
Affiliation(s)
- Judith R Homberg
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Pattij T, Janssen MCW, Loos M, Smit AB, Schoffelmeer ANM, van Gaalen MM. Strain specificity and cholinergic modulation of visuospatial attention in three inbred mouse strains. GENES BRAIN AND BEHAVIOR 2007; 6:579-87. [PMID: 17116168 DOI: 10.1111/j.1601-183x.2006.00284.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tremendous increase in the use of mouse inbred strains and mutant mice to study the molecular basis of psychiatric disorders urges for a better understanding of attentional performance in mice. To this aim, we investigated possible strain differences in performance and cholinergic modulation of visuospatial attention in three widely used mouse inbred strains (129S2/SvHsd, C57BL/6JOlaHsd and DBA/2OlaHsd) in the five-choice serial reaction time task. Results indicated that after extended training, performance of 129S2/SvHsd mice was superior to that of C57BL/6JOlaHsd and DBA/2OlaHsd mice in terms of attention, omission errors, inhibitory control and latencies to correct choice. Increasing the attentional load resulted in comparable decrements in attention in all strains and inhibitory control impairments that were most pronounced in DBA/2OlaHsd mice. Further pharmacological evaluation indicated that all strains showed attentional impairments after treatment with the muscarinic and nicotinic antagonists scopolamine and mecamylamine, respectively. 129S2/SvHsd mice were less sensitive, whereas DBA/2OlaHsd mice appeared more sensitive to the detrimental effects of mecamylamine. In addition, subchronic, but not acute, nicotine treatment slightly improved attentional performance in all strains to the same extent. In conclusion, our data indicate strain specificity with particularly good performance of 129S2/SvHsd mice and strong cholinergic involvement in visuospatial attention in mice.
Collapse
Affiliation(s)
- T Pattij
- Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Meneses A, Perez-Garcia G. 5-HT1A receptors and memory. Neurosci Biobehav Rev 2007; 31:705-27. [PMID: 17418894 DOI: 10.1016/j.neubiorev.2007.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 01/03/2007] [Accepted: 02/13/2007] [Indexed: 11/19/2022]
Abstract
The study of 5-hydroxytryptamine (5-HT) systems has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT(1)-5-HT(7)). Increasing evidence suggests that 5-HT pathways, reuptake site/transporter complex and 5-HT receptors represent a strategic distribution for learning and memory. A key question still remaining is whether 5-HT markers (e.g., receptors) are directly or indirectly contributing to the physiological and pharmacological basis of memory and its pathogenesis or, rather, if they represent protective or adaptable mechanisms (at least in initial stages). In the current paper, the major aim is to revise recent advances regarding mammalian 5-HT(1A) receptors in light of their physiological, pathophysiological and therapeutic implications in memory. An attempt is made to identify and discuss sources of discrepancies by employing an analytic approach to examine the nature and degree of difficulty of behavioral tasks used, as well as implicating other factors (for example, brain areas, training time or duration, and drug administration) which might offer new insights into the understanding and interpretation of these data. In this context, 8-OH-DPAT deserves special attention since for many years it has been the more selective 5-HT drug and, hence, more frequently used. As 5-HT(1A) receptors are key components of serotonergic signaling, investigation of their memory mechanisms and action sites and the conditions under which they might operate, could yield valuable insights. Moreover, selective drugs with agonists, neutral antagonists or inverse agonist properties for 5-HT(1A) (and 5-HT(7)) receptors may constitute a new therapeutic opportunity for learning and memory disorders.
Collapse
Affiliation(s)
- Alfredo Meneses
- Department de Farmacobiologia, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, México.
| | | |
Collapse
|
39
|
van den Bergh FS, Bloemarts E, Chan JSW, Groenink L, Olivier B, Oosting RS. Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol Biochem Behav 2006; 83:380-90. [PMID: 16580713 DOI: 10.1016/j.pbb.2006.02.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 02/15/2006] [Accepted: 02/18/2006] [Indexed: 10/24/2022]
Abstract
The validity of the Spontaneously Hypertensive rat (SHR) as a model for Attention Deficit Hyperactivity Disorder (ADHD) is explored by comparing the SHR with Wistar-Kyoto (WKY) and Wistar rats in a number of different tests. In the open field, SHR are hyperactive compared to both Wistar and WKY, but only at specific ages. At those ages, methylphenidate (1mg/kg) did not attenuate hyperactivity. Subsequently, a dose response study of methylphenidate (0.1-10mg/kg) was conducted in the Differential Reinforcement of Low-rate responding (DRL)-72s and five-choice serial reaction time tests (5-CSRTT). Compared to WKY but not Wistar rats, SHR performed worse on the DRL-72s. Performance was not improved by methylphenidate (0.1-1.0mg/kg). In the 5-CSRTT, attentional performance was similar for all rat strains, but Wistar rats made more impulsive responses than both the SHR and the WKY. Methylphenidate only attenuated impulsivity in Wistar rats. Because SHR do not consistently display symptoms of ADHD across the different tests, and methylphenidate effects were observed in both WKY and Wistar rats, but not in SHR, we conclude that SHR is not a representative animal model for ADHD.
Collapse
Affiliation(s)
- Filip S van den Bergh
- Utrecht Institute for Pharmaceutical Sciences, and Rudolf Magnus Institute of Neuroscience Department of Psychopharmacology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Nelson RJ, Trainor BC, Chiavegatto S, Demas GE. Pleiotropic contributions of nitric oxide to aggressive behavior. Neurosci Biobehav Rev 2006; 30:346-55. [PMID: 16483891 DOI: 10.1016/j.neubiorev.2005.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 02/22/2005] [Accepted: 02/25/2005] [Indexed: 11/24/2022]
Abstract
Male mice with targeted deletion of the genes encoding the neuronal (NOS-1-/- or nNOS-/-) isoform of nitric oxide synthase display altered aggressive behaviors. Male nNOS-1-/- mice are more aggressive than wild-type (WT) mice in all testing paradigms. Testosterone is necessary, but not sufficient, for evoking the persistent aggression, and that serotonin (5-HT) metabolism is altered in male nNOS-1-/- mice. The specific deletion of the nNOS-1 gene not only results in a lack of nNOS-1 protein, but in common with many genes, affects several 'down-stream' processes. In this review, we address whether the elevated aggression in male nNOS-1-/- mice reflects pleiotropic effects of the nNOS-1 gene on pain sensitivity, 'anxiety-like', or 'depressive-like' behaviors. For example, male nNOS-1-/- mice display increased sensitivity to painful stimuli, which may prolong aggressive interactions. Despite elevated corticosterone concentrations, nNOS-1 knockout mice appear to be less 'anxious' or fearful than WT mice. Male nNOS-1-/- mice display longer latencies to right themselves on an inverted platform and spend more time in the center of an open field than WT mice. Because of reduced serotonin turnover, the excessive aggressiveness displayed by nNOS-1-/- mice may be symptomatic of a depressive-like syndrome. However, nNOS-1-/- mice rarely display behavioral 'despair' when assessed with the Porsolt forced swim test; rather, nNOS-1-/- mice show vigorous swimming throughout the assessment suggesting that the aggressive behavior does not represent depressive-like behavior. Importantly, aggressive behavior is not a unitary process, but is the result of complex interactions among several physiological, motivational, and behavioral systems, with contributions from the social as well as the physical environment. Lastly, the multiple, and often unanticipated, effects of targeted gene disruption on aggressive behavior are considered.
Collapse
Affiliation(s)
- Randy J Nelson
- Department of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
41
|
Olivier B, van Oorschot R. 5-HT1B receptors and aggression: A review. Eur J Pharmacol 2005; 526:207-17. [PMID: 16310769 DOI: 10.1016/j.ejphar.2005.09.066] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/23/2005] [Indexed: 01/19/2023]
Abstract
The serotonergic (5-HT) system in the brain is involved in the modulation of offensive aggressive behavior. The dogma that activity of the 5-HT system is inversely related to aggression is obsolete now. Research on the status of the 5-HT system before, during and after the execution of aggression is ongoing but has not yet led to a clear picture about the actual functional role of the 5-HT system, the more because state versus trait aggression seems to play a pivotal role in the outcome. Pharmacological challenges pinpoint 5-HT(1A) and 5-HT(1B) receptors as key players in the modulation of offensive aggression. This review emphasizes in particular the role of postsynaptic 5-HT(1B) (hetero) receptors as a premier site to modulate offensive aggression. Modulation of the firing and 5-HT release of the serotonergic neuron, via presynaptic 5-HT(1A) (auto) receptors, presynaptic 5-HT(1B) (auto) receptors and serotonergic transporters, may also have striking influences on aggression under certain conditions. Therefore, it is hypothesized that postsynaptic 5-HT(1B) (hetero) receptors directly influence the executive, consummatory phases of agonistic behavior, whereas presynaptic serotonergic feedback systems are particularly useful in the introductory (appetitive) phases of the agonistic behavioral complex.
Collapse
Affiliation(s)
- Berend Olivier
- Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, The Netherlands.
| | | |
Collapse
|
42
|
Isles AR, Hathway GJ, Humby T, de la Riva C, Kendrick KM, Wilkinson LS. An mTph2 SNP gives rise to alterations in extracellular 5-HT levels, but not in performance on a delayed-reinforcement task. Eur J Neurosci 2005; 22:997-1000. [PMID: 16115223 DOI: 10.1111/j.1460-9568.2005.04265.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
5-Hydroxytryptamine (5-HT) is an important neurotransmitter mediating many aspects of cognition and behaviour. One psychology in which 5-HT plays an important role is impulsive responding. Recently, we have demonstrated that variation in an aspect of impulsive behaviour, namely delayed gratification, has a clear genetic contribution. Here, we examined the neurobiological relevance of a recently discovered single nucleotide polymorphism (SNP) in the murine gene tryptophan hydroxylase (mTph2) by analysing extracellular levels of 5-HT in medial prefrontal cortex (mPFC) and ventral striatum (VS), key brain regions for impulsive behaviours. The allelic variants were associated with systematic effects on baseline 5-HT efflux in the mPFC and VS. We then went on to examine whether the mTph2 allelic variants gave rise to differences in impulsive behaviour. However, the mTph2 genotype, and therefore presumably baseline brain levels of 5-HT, did not predict impulsive choice, as indexed by sensitivity to delayed reinforcement. Consequently, the data do not support a role for the mTph2 C1473G polymorphism on this aspect of impulsive behaviour. Instead, they indicate that perturbations of the 5-HT system via heritable traits may have differential consequences for qualitatively distinct aspects of impulsive behaviour.
Collapse
Affiliation(s)
- Anthony R Isles
- Laboratory of Cognitive and Behavioural Neuroscience, The Babraham Institute, Babraham Research Campus, Babraham, Cambridge, CB2 4AT, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Isles AR, Humby T, Walters E, Wilkinson LS. Common genetic effects on variation in impulsivity and activity in mice. J Neurosci 2005; 24:6733-40. [PMID: 15282276 PMCID: PMC6729702 DOI: 10.1523/jneurosci.1650-04.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Impulsivity is a complex psychological construct that impacts on behavioral predispositions in the normal range and has been shown to have a genetic element through the examination of hereditary patterns of abnormal conditions such as attention deficit/hyperactivity disorder and obsessive compulsive disorder. In this study, we took advantage of the isogenic nature of inbred strains of mice to determine the contribution of genes to impulsive behaviors by examining the performance of four separate mouse strains in a novel murine delayed-reinforcement paradigm, during which the animals had to choose between rewards that were relatively small but available immediately and larger but progressively delayed rewards. To control for maternal effects, all the mice were cross-fostered to a common strain immediately after birth. Under these conditions, we found significant differences between the strains on behaviors indexing impulsive choice and on independent measures of locomotor activity, which subsequent heritability analysis showed could be related, in part, to genetic effects. Moreover, the two aspects of behavior were found to co-vary, with the more active animals also displaying more impulsive behavior. This was not attributable to mundane confounds related to individual task requirements but instead indicated the existence of common genetic factors influencing variation in both impulsivity and locomotor activity. The data are discussed in terms of the coexistence of impulsivity and hyperactivity, interactions between environmental and genetic effects, and possible candidate genes.
Collapse
Affiliation(s)
- Anthony R Isles
- Neurobiology and Developmental Genetics Programmes, The Babraham Institute, Babraham, Cambridge CB2 4AT, United Kingdom
| | | | | | | |
Collapse
|
44
|
Meneses A, Manuel-Apolinar L, Rocha L, Castillo E, Castillo C. Expression of the 5-HT receptors in rat brain during memory consolidation. Behav Brain Res 2004; 152:425-36. [PMID: 15196811 DOI: 10.1016/j.bbr.2003.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 10/18/2003] [Accepted: 10/21/2003] [Indexed: 11/17/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) system displays more than 14 receptors subtypes on brain areas involved in learning and memory processes, and pharmacological manipulation of specific receptors selectively affects memory formation. In order to begin the search of 5-HT receptors expression during memory formation, in this work, we aimed to determine, by autoradiography (using 3H 5-HT as ligand, 2 nM, specific activity 123 Ci/mmol), 5-HT receptors (5-HTR) expression in passive (untrained) and autoshaping trained (3 sessions) adult (3 months) and old (9 months) male rats. Thus, trained adult rats had better retention than old animals. Raphe nuclei of adult and old trained rats expressed less receptors on medial and dorsal, respectively. Hippocampal CA1 area and dentate gyrus of adult trained rats expressed less 5-HTR, while dentate gyrus of old increased them. Basomedial amygdaloid nucleus in old trained rats expressed more 5-HTR; while in the basolateral amygdaloid nucleus they were augmented in both groups. Training decreased or did not change 5-HTR in caudate-putamen of adult or old animals. The above profile of 5-HTR expression is consistent with previous reports, and suggests that memory formation and aging modulates 5-HTR expression in brain areas relevant to memory systems.
Collapse
Affiliation(s)
- A Meneses
- Departamento de Farmacobiología, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, Mexico City 14330, Mexico.
| | | | | | | | | |
Collapse
|
45
|
Millan MJ, Gobert A, Roux S, Porsolt R, Meneses A, Carli M, Di Cara B, Jaffard R, Rivet JM, Lestage P, Mocaer E, Peglion JL, Dekeyne A. The serotonin1A receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] enhances cholinergic transmission and cognitive function in rodents: a combined neurochemical and behavioral analysis. J Pharmacol Exp Ther 2004; 311:190-203. [PMID: 15146031 DOI: 10.1124/jpet.104.069625] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
These studies examined the influence of the selective 5-hydroxytryptamine (serotonin) (5-HT)(1A) receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] upon cholinergic transmission and cognitive function in rodents. In the absence of acetylcholinesterase inhibitors, S15535 dose-dependently (0.04-5.0 mg/kg s.c.) elevated dialysis levels of acetylcholine in the frontal cortex and dorsal hippocampus of freely moving rats. In the cortex, the selective 5-HT(1A) receptor antagonist WAY100,635 [(N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclo-hexanecarboxamide) fumarate] dose-dependently (0.0025-0.63) blocked this action of S15535. By contrast, in dorsal hippocampus, WAY100,635 mimicked the induction of acetylcholine release by S15535. In a social recognition paradigm, S15535 dose-dependently (0.16-10.0) improved retention, an action blocked by WAY100,635 (0.16), which was ineffective alone. Furthermore, S15535 dose-dependently (0.04-2.5) and WAY100,635 reversibly abolished amnesic properties of the muscarinic antagonist scopolamine (0.63) in this procedure. Cognitive deficits provoked by scopolamine in autoshaping and Morris water-maze procedures were likewise blocked by S15535 at doses of 0.63 to 10.0 and 0.16 to 2.5, respectively. In a two-platform spatial discrimination task, in which S15535 similarly abrogates cognitive deficits elicited by scopolamine, injection of S15535 (1.0 and 10.0 microg) into dorsal hippocampus blocked amnesic effects of the 5-HT(1A) agonist 8-hydroxy-2-dipropylaminotetralin (0.5 microg). Finally, S15535 (0.16-0.63) improved performance in a spatial, delayed nonmatching to sample model in mice, and in an operant delayed nonmatching to sample model in old rats, S15535 (1.25-5.0 mg/kg p.o.) increased response accuracy and reduced latency to respond. In conclusion, S15535 reinforces frontocortical and hippocampal release of acetylcholine and displays a broad-based pattern of procognitive properties. Its actions involve both blockade of postsynaptic 5-HT(1A) receptors and engagement of 5-HT(1A) autoreceptors.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 chemin de Ronde 78290 Croissy/Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004; 9:326-57. [PMID: 14743184 DOI: 10.1038/sj.mp.4001457] [Citation(s) in RCA: 450] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to modify mice genetically has been one of the major breakthroughs in modern medical science affecting every discipline including psychiatry. It is hoped that the application of such technologies will result in the identification of novel targets for the treatment of diseases such as depression and to gain a better understanding of the molecular pathophysiological mechanisms that are regulated by current clinically effective antidepressant medications. The advent of these tools has resulted in the need to adopt, refine and develop mouse-specific models for analyses of depression-like behavior or behavioral patterns modulated by antidepressants. In this review, we will focus on the utility of current models (eg forced swim test, tail suspension test, olfactory bulbectomy, learned helplessness, chronic mild stress, drug-withdrawal-induced anhedonia) and research strategies aimed at investigating novel targets relevant to depression in the mouse. We will focus on key questions that are considered relevant for examining the utility of such models. Further, we describe other avenues of research that may give clues as to whether indeed a genetically modified animal has alterations relevant to clinical depression. We suggest that it is prudent and most appropriate to use convergent tests that draw on different antidepressant-related endophenotypes, and complimentary physiological analyses in order to provide a program of information concerning whether a given phenotype is functionally relevant to depression-related pathology.
Collapse
Affiliation(s)
- J F Cryan
- Neuroscience Research, The Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | |
Collapse
|
47
|
Pattij T, Broersen LM, Peter S, Olivier B. Impulsive-like behavior in differential-reinforcement-of-low-rate 36 s responding in mice depends on training history. Neurosci Lett 2004; 354:169-71. [PMID: 14698465 DOI: 10.1016/j.neulet.2003.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Prior behavioral history in operant conditioning paradigms may induce impulsive-like responding as shown in rats. Little is known to what extent behavioral history influences subsequent behavior in mice, therefore the present study investigated the effects of lever-pressing under a fixed-ratio 5 schedule of reinforcement on subsequent differential-reinforcement-of-low-rate (DRL) 36 s performance in wild type mice compared to the behavior of 5-HT1B receptor knockout mice. Acquisition of both autoshaping and fixed-ratio 5 training was faster in 5-HT1B receptor knockout compared to wild type mice. Nevertheless, in the DRL 36 s procedure no differences were observed between genotypes. Both wild type and 5-HT1B receptor knockout mice displayed premature or impulsive-like responding in the DRL 36 s procedure, for example a peak location of responses around 20 s and high rates of responding. Taken together, the present data suggest that impulsive-like responding in the DRL 36 s procedure in mice depends on prior behavioral history.
Collapse
Affiliation(s)
- Tommy Pattij
- Department of Anatomy, University Medical Center St Radboud, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|