1
|
d'Isa R, Fasano S, Brambilla R. Editorial: Animal-friendly methods for rodent behavioral testing in neuroscience research. Front Behav Neurosci 2024; 18:1431310. [PMID: 38983871 PMCID: PMC11232432 DOI: 10.3389/fnbeh.2024.1431310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Affiliation(s)
- Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), Division of Neuroscience (DNS), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Fasano
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
O'Connor SM, Sleebs BE, Street IP, Flynn BL, Baell JB, Coles C, Quazi N, Paul D, Poiraud E, Huyard B, Wagner S, Andriambeloson E, de Souza EB. BNC210, a negative allosteric modulator of the alpha 7 nicotinic acetylcholine receptor, demonstrates anxiolytic- and antidepressant-like effects in rodents. Neuropharmacology 2024; 246:109836. [PMID: 38185416 DOI: 10.1016/j.neuropharm.2024.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
This work describes the characterization of BNC210 (6-[(2,3-dihydro-1H-inden-2-yl)amino]-1-ethyl-3-(4-morpholinylcarbonyl)-1,8-naphthyridin-4(1H)-one), a selective, small molecule, negative allosteric modulator (NAM) of α7 nicotinic acetylcholine receptors (α7 nAChR). With the aim to discover a non-sedating, anxiolytic compound, BNC210 was identified during phenotypic screening of a focused medicinal chemistry library using the mouse Light Dark (LD) box to evaluate anxiolytic-like activity and the mouse Open Field (OF) (dark) test to detect sedative and/or motor effects. BNC210 exhibited anxiolytic-like activity with no measurable sedative or motor effects. Electrophysiology showed that BNC210 did not induce α7 nAChR currents by itself but inhibited EC80 agonist-evoked currents in recombinant GH4C1 cell lines stably expressing the rat or human α7 nAChR. BNC210 was not active when tested on cell lines expressing other members of the cys-loop ligand-gated ion channel family. Screening over 400 other targets did not reveal any activity for BNC210 confirming its selectivity for α7 nAChR. Oral administration of BNC210 to male mice and rats in several tests of behavior related to anxiety- and stress- related disorders, demonstrated significant reduction of these behaviors over a broad therapeutic range up to 500 times the minimum effective dose. Further testing for potential adverse effects in suitable rat and mouse tests showed that BNC210 did not produce sedation, memory and motor impairment or physical dependence, symptoms associated with current anxiolytic therapeutics. These data suggest that allosteric inhibition of α7 nAChR function may represent a differentiated approach to treating anxiety- and stress- related disorders with an improved safety profile compared to current treatments.
Collapse
Affiliation(s)
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Ian P Street
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia; Children's Cancer Institute, School of Medicine and Health, UNSW, Randwick, Australia
| | - Bernard L Flynn
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Melbourne, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | | | - Nurul Quazi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
3
|
Sérgio Galina Spilla C, Luiza Decanini Miranda de Souza A, Maria Guissoni Campos L, da Silveira Cruz-Machado S, Pinato L. LPS-induced inflammation in rats during pregnancy reduces maternal melatonin and impairs neurochemistry and behavior of adult male offspring. Brain Res 2024; 1824:148692. [PMID: 38036237 DOI: 10.1016/j.brainres.2023.148692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Inflammation during pregnancy can induce neurodevelopmental changes that affect the neurological health of offspring. Elevated levels of circulating inflammatory cytokines have been shown to decrease nocturnal melatonin synthesis by the pineal gland, potentially impacting fetal development. This study aimed to assess the effects of LPS-induced inflammation on melatonin concentrations in the plasma of pregnant female rats and explore resulting neurochemical and behavioral changes in their offspring. Our findings revealed that pregnant rats injected with LPS experienced decreased nocturnal melatonin levels in their plasma, with an increase in diurnal melatonin content. The offspring exhibited reduced performance in tests evaluating motor coordination and spatial memory compared to control subjects. Immunohistochemical analysis indicated a decline in calbindin immunoreactivity in Purkinje cells in the cerebellum. Additionally, the hippocampus displayed an increase in IBA-1 and calretinin expression, coupled with a reduction in parvalbumin expression in the offspring of the LPS group. Collectively, this study provides compelling evidence that an inflammatory state can lead to a reduction in melatonin synthesis in pregnant females, potentially impacting the neurodevelopment of offspring, including neuronal, glial, motor, and cognitive aspects. Subsequent studies will further elucidate the mechanisms underlying inflammation-induced maternal melatonin reduction and its impact on offspring neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marília, São Paulo 17525-900, Brazil.
| |
Collapse
|
4
|
Jia G, Sun Y, An P, Wu W, Shen Y, Liu H, Shan Y, Wang J, Lai CSW, Schreiner CE, He H, Zhou X. Auditory training remodels hippocampus-related memory in adult rats. Cereb Cortex 2024; 34:bhae045. [PMID: 38367612 DOI: 10.1093/cercor/bhae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Consequences of perceptual training, such as improvements in discriminative ability, are highly stimulus and task specific. Therefore, most studies on auditory training-induced plasticity in adult brain have focused on the sensory aspects, particularly on functional and structural effects in the auditory cortex. Auditory training often involves, other than auditory demands, significant cognitive components. Yet, how auditory training affects cognition-related brain regions, such as the hippocampus, remains unclear. Here, we found in female rats that auditory cue-based go/no-go training significantly improved the memory-guided behaviors associated with hippocampus. The long-term potentiations of the trained rats recorded in vivo in the hippocampus were also enhanced compared with the naïve rats. In parallel, the phosphorylation level of calcium/calmodulin-dependent protein kinase II and the expression of parvalbumin-positive interneurons in the hippocampus were both upregulated. These findings demonstrate that auditory training substantially remodels the processing and function of brain regions beyond the auditory system, which are associated with task demands.
Collapse
Affiliation(s)
- Guoqiang Jia
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yutian Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Pengying An
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Weiwei Wu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yang Shen
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Hui Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Wuhu Hospital, East China Normal University, 259 Middle Jiuhua Road, Wuhu 241000, China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Christoph E Schreiner
- Coleman Memorial Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of California, 675 Nelson Rising Lane, San Francisco, CA 94158, United States
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- New York University-East China Normal University (NYU-ECNU) Institute of Brain and Cognitive Science, NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
5
|
Tan NA, Carpio AMA, Heller HC, Pittaras EC. Behavioral and Neuronal Characterizations, across Ages, of the TgSwDI Mouse Model of Alzheimer's Disease. Genes (Basel) 2023; 15:47. [PMID: 38254938 PMCID: PMC10815655 DOI: 10.3390/genes15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that currently affects as many as 50 million people worldwide. It is neurochemically characterized by an aggregation of β-amyloid plaques and tau neurofibrillary tangles that result in neuronal dysfunction, cognitive decline, and a progressive loss of brain function. TgSwDI is a well-studied transgenic mouse model of AD, but no longitudinal studies have been performed to characterize cognitive deficits or β-amyloid plaque accumulation for use as a baseline reference in future research. Thus, we use behavioral tests (T-Maze, Novel Object Recognition (NOR), Novel Object Location (NOL)) to study long-term and working memory, and immunostaining to study β-amyloid plaque deposits, as well as brain size, in hippocampal, cerebellum, and cortical slices in TgSwDI and wild-type (WT) mice at 3, 5, 8, and 12 months old. The behavioral results show that TgSwDI mice exhibit deficits in their long-term spatial memory starting at 8 months old and in long-term recognition memory at all ages, but no deficits in their working memory. Immunohistochemistry showed an exponential increase in β-amyloid plaque in the hippocampus and cortex of TgSwDI mice over time, whereas there was no significant accumulation of plaque in WT mice at any age. Staining showed a smaller hippocampus and cerebellum starting at 8 months old for the TgSwDI compared to WT mice. Our data show how TgSwDI mice differ from WT mice in their baseline levels of cognitive function and β-amyloid plaque load throughout their lives.
Collapse
Affiliation(s)
| | | | | | - Elsa C. Pittaras
- Department of Biology, Stanford University, Stanford, CA 94305, USA; (N.A.T.); (A.M.A.C.); (H.C.H.)
| |
Collapse
|
6
|
Eltokhi A, Bertocchi I, Rozov A, Jensen V, Borchardt T, Taylor A, Proenca CC, Rawlins JNP, Bannerman DM, Sprengel R. Distinct effects of AMPAR subunit depletion on spatial memory. iScience 2023; 26:108116. [PMID: 37876813 PMCID: PMC10590979 DOI: 10.1016/j.isci.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Pharmacological studies established a role for AMPARs in the mammalian forebrain in spatial memory performance. Here we generated global GluA1/3 double knockout mice (Gria1/3-/-) and conditional knockouts lacking GluA1 and GluA3 AMPAR subunits specifically from principal cells across the forebrain (Gria1/3ΔFb). In both models, loss of GluA1 and GluA3 resulted in reduced hippocampal GluA2 and increased levels of the NMDAR subunit GluN2A. Electrically-evoked AMPAR-mediated EPSPs were greatly diminished, and there was an absence of tetanus-induced LTP. Gria1/3-/- mice showed premature mortality. Gria1/3ΔFb mice were viable, and their memory performance could be analyzed. In the Morris water maze (MWM), Gria1/3ΔFb mice showed profound long-term memory deficits, in marked contrast to the normal MWM learning previously seen in single Gria1-/- and Gria3-/- knockout mice. Our results suggest a redundancy of function within the pool of available ionotropic glutamate receptors for long-term spatial memory performance.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacolog, University of Washington, Seattle, WA, USA
| | - Ilaria Bertocchi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute - Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Andrei Rozov
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhniy, 603022 Novgorod, Russia
- Federal Center of Brain Research and Neurotechnology, 117997 Moscow, Russia
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Thilo Borchardt
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Amy Taylor
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Catia C. Proenca
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Rolf Sprengel
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
7
|
Cleal M, Fontana BD, Hillman C, Parker MO. Ontogeny of working memory and behavioural flexibility in the free movement pattern (FMP) Y-maze in zebrafish. Behav Processes 2023; 212:104943. [PMID: 37689254 DOI: 10.1016/j.beproc.2023.104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The acquisition of executive skills such as working memory, decision-making and adaptive responding occur at different stages of central nervous system development. Zebrafish (Danio rerio) are increasingly used in behavioural neuroscience for complex behavioural tasks, and there is a critical need to understand the ontogeny of their executive functions. Zebrafish across developmental stages (4, 7, 14, 30 and 90 days post fertilisation (dpf)), were assessed to track development of working memory (WM) and behavioural flexibility (BF) using the free movement pattern Y-maze (FMP Y-maze). Several differences in both WM and BF were identified during the transition from yolk-dependent to independent feeding. Specifically, WM is evident in all age groups, even from 4 dpf. However, BF is not developed until larvae start free feeding, and show significant improvement thereafter, with young adults (90 dpf) demonstrating the most well-defined BF. We demonstrate, for the first time, objective WM processes in 4 dpf zebrafish larvae. This suggests that those wishing to study WM in zebrafish may be able to do so from 4 dpf, thus drastically increasing throughput. In addition, we show that zebrafish follow distinct stages of cognitive development and age-related changes during the early developmental period. Finally, our findings indicate distinct WM and BF mechanisms, which may be useful to study for translational purposes.
Collapse
Affiliation(s)
- Madeleine Cleal
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research centre, School of Biosciences, University of Surrey, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK; Surrey Sleep Research centre, School of Biosciences, University of Surrey, UK.
| |
Collapse
|
8
|
Çalışkan G, Demiray YE, Stork O. Comparison of three common inbred mouse strains reveals substantial differences in hippocampal GABAergic interneuron populations and in vitro network oscillations. Eur J Neurosci 2023; 58:3383-3401. [PMID: 37550182 DOI: 10.1111/ejn.16112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
A major challenge in neuroscience is to pinpoint neurobiological correlates of specific cognitive and neuropsychiatric traits. At the mesoscopic level, promising candidates for establishing such connections are brain oscillations that can be robustly recorded as local field potentials with varying frequencies in the hippocampus in vivo and in vitro. Inbred mouse strains show natural variation in hippocampal synaptic plasticity (e.g. long-term potentiation), a cellular correlate of learning and memory. However, their diversity in expression of different types of hippocampal network oscillations has not been fully explored. Here, we investigated hippocampal network oscillations in three widely used inbred mouse strains: C57BL/6J (B6J), C57BL/6NCrl (B6N) and 129S2/SvPasCrl (129) with the aim to identify common oscillatory characteristics in inbred mouse strains that show aberrant emotional/cognitive behaviour (B6N and 129) and compare them to "control" B6J strain. First, we detected higher gamma oscillation power in the hippocampal CA3 of both B6N and 129 strains. Second, higher incidence of hippocampal sharp wave-ripple (SPW-R) transients was evident in these strains. Third, we observed prominent differences in the densities of distinct interneuron types and CA3 associative network activity, which are indispensable for sustainment of mesoscopic network oscillations. Together, these results add further evidence to profound physiological differences among inbred mouse strains commonly used in neuroscience research.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Yunus E Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying MentalHealth (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Jena-Magdeburg-Halle, Germany
| |
Collapse
|
9
|
Hurter B, Gourley SL, Wolmarans DW. Associations between nesting, stereotypy, and working memory in deer mice: response to levetiracetam. Pharmacol Rep 2023; 75:647-656. [PMID: 37055664 PMCID: PMC10227124 DOI: 10.1007/s43440-023-00484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Some deer mice (Peromyscus maniculatus bairdii) exhibit various phenotypes of persistent behaviors. It remains unknown if and how said phenotypes associate with early-life and adult cognitive perturbations, and whether potentially cognitive enhancing drugs might modify such associations. Here, we explored the longitudinal relationship between early-life behavioral flexibility and the expression of persistent behavior in adulthood. We also investigated how said phenotypes might associate with working memory in adulthood, and how this association might respond to chronic exposure to the putative cognitive enhancer, levetiracetam (LEV). METHODS 76 juvenile deer mice were assessed for habit-proneness in the Barnes maze (BM) and divided into two exposure groups (n = 37-39 per group), i.e., control and LEV (75 mg/kg/day). After 56 days of uninterrupted exposure, mice were screened for nesting and stereotypical behavior, and then assessed for working memory in the T-maze. RESULTS Juvenile deer mice overwhelmingly utilize habit-like response strategies, regardless of LNB and HS behavior in adulthood. Further, LNB and HS are unrelated in terms of their expression, while LEV reduces the expression of LNB, but bolsters CR (but not VA). Last, an increased level of control over high stereotypical expression may facilitate improved working memory performance. CONCLUSION LNB, VA and CR, are divergent in terms of their neurocognitive underpinnings. Chronic LEV administration throughout the entire rearing period may be of benefit to some phenotypes, e.g., LNB, but not others (CR). We also show that an increased level of control over the expression of stereotypy may facilitate improved working memory performance.
Collapse
Affiliation(s)
- Bianca Hurter
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Emory School of Medicine, Atlanta, USA
- Children's Healthcare of Atlanta, Atlanta, USA
- Emory National Primate Research Center, Emory University, Atlanta, USA
| | - De Wet Wolmarans
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
10
|
Li JM, Li X, Chan LWC, Hu R, Yang S. A high fat diet in glutamate 3-/Y mice causes changes in behavior that resemble human intellectual disability. Physiol Behav 2023; 259:114050. [PMID: 36476780 DOI: 10.1016/j.physbeh.2022.114050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Cognitive impairment in individuals with intellectual disability (ID) is characterized by developmental delay and deficits in language and memory. Ionotropic AMPA mediate the majority of excitatory synaptic transmission in the central nervous system and are essential for the induction and maintenances of long-term potentiation (LTP) and long-term depression (LTD), two cellular models of learning and memory underlie many the symptoms of ID. Clinical research has found obese male patients with GluA3 interrupted underlie the symptom of ID. We tested GluA3-/Y mice under high fat diet (HFD) stress on a series of behavioral paradigms associated with symptoms of ID: wild type mice showed significant levels of sociability, while GluA3-/Y mice did not. Wild type mice showed significant preference for social novelty, while GluA3-/Y mice did not. Normal scores on relevant control measures confirmed general health and physical abilities in both GluA3-/Y and wild type mice (WT), ruling out artifactual explanations for social deficits. GluA3-/Y mice also showed working spatial memory behavior impairment in Y-maze test and abnormal anxiety in open-field test, compared to wild-type littermate controls. GluA3-/Y mice had a significantly reduced spontaneous activities tested by elevated plus maze, display both low social approach and resistance to change in routine on the T-maze, consistent with an ID-like phenotype. These findings demonstrate that selective gene deletion of GluA3 receptor in male mice under oxidative stress induced phenotypic abnormalities related to ID-like symptoms.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Anatomy, School of Basic Medical Sciences, Changsha Medical University, Changsha, 410219, China; Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, 410151, China
| | - Xianyu Li
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, 99077, Hong Kong
| | - Lawrence W C Chan
- School of Life Science, Wuchang University of Technology, Wuhan, 430070, China
| | - Ruinian Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Sijun Yang
- Department of Anatomy, School of Basic Medical Sciences, Changsha Medical University, Changsha, 410219, China; Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, 99077, Hong Kong; School of life science, Shaoxing University, Shaoxing, 312000, China; School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China.
| |
Collapse
|
11
|
d'Isa R, Gerlai R. Designing animal-friendly behavioral tests for neuroscience research: The importance of an ethological approach. Front Behav Neurosci 2023; 16:1090248. [PMID: 36703720 PMCID: PMC9871504 DOI: 10.3389/fnbeh.2022.1090248] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), Division of Neuroscience (DNS), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
12
|
Lemarchant S, Sourioux M, Le Douce J, Henriques A, Callizot N, Hugues S, Farinelli M, Godfrin Y. NX210c Peptide Promotes Glutamatergic Receptor-Mediated Synaptic Transmission and Signaling in the Mouse Central Nervous System. Int J Mol Sci 2022; 23:8867. [PMID: 36012124 PMCID: PMC9408760 DOI: 10.3390/ijms23168867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
NX210c is a disease-modifying dodecapeptide derived from the subcommissural organ-spondin that is under preclinical and clinical development for the treatment of neurological disorders. Here, using whole-cell patch-clamp recordings, we demonstrate that NX210c increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and GluN2A-containing N-methyl-D-aspartate receptor (GluN2A-NMDAR)-mediated excitatory postsynaptic currents in the brain. Accordingly, using extracellular field excitatory postsynaptic potential recordings, an enhancement of synaptic transmission was shown in the presence of NX210c in two different neuronal circuits. Furthermore, the modulation of synaptic transmission and GluN2A-NMDAR-driven signaling by NX210c restored memory in mice chronically treated with the NMDAR antagonist phencyclidine. Overall, by promoting glutamatergic receptor-related neurotransmission and signaling, NX210c represents an innovative therapeutic opportunity for patients suffering from CNS disorders, injuries, and states with crippling synaptic dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | - Noëlle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France
| | - Sandrine Hugues
- E-Phy-Science, Bioparc, 2400 Routes de Colles, Sophia Antipolis, 06410 Biot, France
| | - Mélissa Farinelli
- E-Phy-Science, Bioparc, 2400 Routes de Colles, Sophia Antipolis, 06410 Biot, France
| | - Yann Godfrin
- Axoltis Pharma, 60 Avenue Rockefeller, 69008 Lyon, France
- Godfrin Life-Sciences, 8 Impasse de la Source, 69300 Caluire-et-Cuire, France
| |
Collapse
|
13
|
Shirsat-John P, Saldanha T, Kolhe S, Ziyaurrahman AR. Antiamnesic effect of Mesua ferrea (L.) flowers on scopolamine-induced memory impairment and oxidative stress in rats. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Spontaneous alternation and stereotypical behaviour in deer mice: response to escitalopram and levetiracetam. Behav Pharmacol 2022; 33:282-290. [PMID: 35621170 DOI: 10.1097/fbp.0000000000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Obsessive-compulsive disorder is varyingly associated with cognitive impairment, that is, deficits in spatial working memory, although it seems unlikely that this is generalised across all domains of functioning. Further, it is unclear whether symptoms will respond to potentially novel, non-serotonergic drugs that have shown promise as so-called cognitive enhancers. Here, we studied low (Norm-N; n = 31) and compulsive-like high (Comp-H; n = 34) stereotypical deer mice (Peromyscus maniculatus bairdii) to establish (1) whether there is a relationship between stereotypical intensity and working memory ability as measured by spontaneous T-maze arm alternation and (2) if and how stereotypy and its association with changes in working memory, would respond to the known anti-compulsive agent, escitalopram, and the proposed cognitive enhancer, levetiracetam. After assessing the stereotypical and alternation behaviour of all animals at baseline, they were divided into three socially housed drug exposure groups, that is, water control (n = 11 per phenotype), escitalopram 50 mg/kg/d (n = 11 per phenotype) and levetiracetam 75 mg/kg/d (Norm-N: n = 9; Comp-H: n = 12). Drugs were administered for 28 days before stereotypy and alternation assessment were repeated. The present data indicate a weak negative relationship between stereotypical intensity and spontaneous alternation. While levetiracetam increased the time spent engaging in normal rodent activity by Comp-H, but not Norm-N animals, neither of the interventions affected the expression of Comp-H behaviour or the alternation behaviour of deer mice. In conclusion, this work points to some degree of cognitive involvement in Comp-H expression, which should be explored to further our understanding of compulsive-like stereotypy.
Collapse
|
15
|
Friedman L, Kahen B, Velíšek L, Velíšková J. Sex differences in behavioral pathology induced by subconvulsive stimulation during early postnatal life are overcome by epileptic activity in the pre-juvenile weanling period. Brain Res 2022; 1783:147849. [DOI: 10.1016/j.brainres.2022.147849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022]
|
16
|
Wang H, Abel GM, Storm DR, Xia Z. Adolescent cadmium exposure impairs cognition and hippocampal neurogenesis in C57BL/6 mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:335-348. [PMID: 34741586 PMCID: PMC10942748 DOI: 10.1002/tox.23402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal and a significant public health concern. Epidemiological studies suggest that Cd is a potential neurotoxicant, and its exposure is associated with cognitive deficits in children, adults, and seniors. Our previous study has found that adulthood-only Cd exposure can impair cognition in mice. However, few studies have addressed the effects of Cd exposure during adolescence on cognitive behavior in animals later in life. In the present study, we exposed 4-week-old male C57BL/6 mice to 3 mg/L Cd via drinking water for 28 weeks and assessed their hippocampus-dependent learning and memory. Cd did not affect anxiety or locomotor activity in the open field test. However, Cd exposure impaired short-term spatial memory and contextual fear memory in mice. A separate cohort of 4-week-old mice was similarly exposed to Cd for 13 weeks to investigate the potential mechanism of Cd neurotoxicity on cognition. We observed that Cd-treated mice had fewer adult-born cells, adult-born neurons, and a reduced proportion of adult-born cells that differentiated into mature neurons in the subgranular zone of the dentate gyrus. These results suggest that Cd exposure from adolescence to adulthood is sufficient to cause cognitive deficits and impair key processes of hippocampal neurogenesis in mice.
Collapse
Affiliation(s)
- Hao Wang
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Glen M. Abel
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Zhengui Xia
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Ventura R, Cabib S, Babicola L, Andolina D, Di Segni M, Orsini C. Interactions Between Experience, Genotype and Sex in the Development of Individual Coping Strategies. Front Behav Neurosci 2022; 15:785739. [PMID: 34987364 PMCID: PMC8721137 DOI: 10.3389/fnbeh.2021.785739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Coping strategies, the first line of defense against adversities, develop through experience. There is consistent evidence that both genotype and sex contribute to the development of dysfunctional coping, leading to maladaptive outcomes of adverse experiences or to adaptive coping that fosters rapid recovery even from severe stress. However, how these factors interact to influence the development of individual coping strategies is just starting to be investigated. In the following review, we will consider evidence that experience, sex, and genotype influence the brain circuits and neurobiological processes involved in coping with adversities and discuss recent results pointing to the specific effects of the interaction between early experiences, genotype, and stress in the development of functional and dysfunctional coping styles.
Collapse
Affiliation(s)
- Rossella Ventura
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Simona Cabib
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Lucy Babicola
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Di Segni
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cristina Orsini
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze. Sci Rep 2021; 11:21177. [PMID: 34707108 PMCID: PMC8551159 DOI: 10.1038/s41598-021-00402-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022] Open
Abstract
Spatial working memory can be assessed in mice through the spontaneous alternation T-maze test. The T-maze is a T-shaped apparatus featuring a stem (start arm) and two lateral goal arms (left and right arms). The procedure is based on the natural tendency of rodents to prefer exploring a novel arm over a familiar one, which induces them to alternate the choice of the goal arm across repeated trials. During the task, in order to successfully alternate choices across trials, an animal has to remember which arm had been visited in the previous trial, which makes spontaneous alternation T-maze an optimal test for spatial working memory. As this test relies on a spontaneous behaviour and does not require rewards, punishments or pre-training, it represents a particularly useful tool for cognitive evaluation, both time-saving and animal-friendly. We describe here in detail the apparatus and the protocol, providing representative results on wild-type healthy mice.
Collapse
|
19
|
Friedman LK, Peng H, Zeman RJ. Cannabidiol reduces lesion volume and restores vestibulomotor and cognitive function following moderately severe traumatic brain injury. Exp Neurol 2021; 346:113844. [PMID: 34428457 DOI: 10.1016/j.expneurol.2021.113844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Despite the high incidence of traumatic brain injury (TBI), there is no universal treatment to safely treat patients. Blunt brain injuries destroy primary neural tissue that results in impaired perfusion, excessive release of glutamate, inflammation, excitotoxicity, and progressive secondary neuronal cell death. We hypothesized that administration of cannabidiol (CBD) directly to a brain contusion site, will optimize delivery to the injured tissue which will reduce local neural excitation and inflammation to spare neural tissue and improve neurological outcome following TBI. CBD was infused into a gelfoam matrix forming an implant (CBDi), then applied over the dura at the contusion site as well as delivered systemically by injection (CBD.IP). Post-injury administration of CBDi+IP greatly reduced defecation scores, lesion volume, the loss of neurons in the ipsilateral hippocampus, the number of injured neurons of the contralateral hippocampus, and reversed TBI-induced glial fibrillary acidic protein (GFAP) upregulation which was superior to either CBD.IP or CBDi treatment alone. Vestibulomotor performance on the beam-balance test was restored by 12 days post-TBI and sustained through 28 days. CBDi+IP treated rats exhibited preinjury levels of spontaneous alternation on the spontaneous alternation T-maze. In the object recognition test, they had greater mobility and exploration of novel objects compared to contusion or implant alone consistent with reduced anxiety and restored cognitive function. These results suggest that dual therapy by targeting the site of injury internally with a CBD-infused medical carrier followed by systemic supplementation may offer a more effective countermeasure than systemic or implant treatment alone for the deleterious effects of penetrating head wounds.
Collapse
Affiliation(s)
- L K Friedman
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, United States of America.
| | - H Peng
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, United States of America
| | - R J Zeman
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, United States of America
| |
Collapse
|
20
|
Cuervo-Zanatta D, Garcia-Mena J, Perez-Cruz C. Gut Microbiota Alterations and Cognitive Impairment Are Sexually Dissociated in a Transgenic Mice Model of Alzheimer's Disease. J Alzheimers Dis 2021; 82:S195-S214. [PMID: 33492296 DOI: 10.3233/jad-201367] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Normal aging is accompanied by cognitive deficiencies, affecting women and men equally. Aging is the main risk factor for Alzheimer's disease (AD), with women having a higher risk. The higher prevalence of AD in women is associated with the abrupt hormonal decline seen after menopause. However, other factors may be involved in this sex-related cognitive decline. Alterations in gut microbiota (GM) and its bioproducts have been reported in AD subjects and transgenic (Tg) mice, having a direct impact on brain amyloid-β pathology in male (M), but not in female (F) mice. OBJECTIVE The aim of this work was to determine GM composition and cognitive dysfunction in M and F wildtype (WT) and Tg mice, in a sex/genotype segregation design. METHODS Anxiety, short term working-memory, spatial learning, and long-term spatial memory were evaluated in 6-month-old WT and Tg male mice. Fecal short chain fatty acids were determined by chromatography, and DNA sequencing and bioinformatic analyses were used to determine GM differences. RESULTS We observed sex-dependent differences in cognitive skills in WT mice, favoring F mice. However, the cognitive advantage of females was lost in Tg mice. GM composition showed few sex-related differences in WT mice. Contrary, Tg-M mice presented a more severe dysbiosis than Tg-F mice. A decreased abundance of Ruminococcaceae was associated with cognitive deficits in Tg-F mice, while butyrate levels were positively associated with better working- and object recognition-memory in WT-F mice. CONCLUSION This report describes a sex-dependent association between GM alterations and cognitive impairment in a mice model of AD.
Collapse
Affiliation(s)
- Daniel Cuervo-Zanatta
- Pharmacology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Laboratory of Neuroplasticity and Neurodegeneration, Mexico City, Mexico.,Genetics and Molecular Biology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Laboratory of reference and support for the characterization of genomes, transcriptomes and microbiomes, Mexico City, Mexico
| | - Jaime Garcia-Mena
- Genetics and Molecular Biology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Laboratory of reference and support for the characterization of genomes, transcriptomes and microbiomes, Mexico City, Mexico
| | - Claudia Perez-Cruz
- Pharmacology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Laboratory of Neuroplasticity and Neurodegeneration, Mexico City, Mexico
| |
Collapse
|
21
|
Habedank A, Kahnau P, Lewejohann L. Alternate without alternative: neither preference nor learning explains behaviour of C57BL/6J mice in the T-maze. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In rodents, the T-maze is commonly used to investigate spontaneous alternating behaviour, but it can also be used to investigate preference between goods. However, for T-maze preference tests with mice there is no recommended protocol and researchers frequently report reproduction difficulties. Here, we tried to develop an efficient protocol with female C57BL/6J CrL mice for preference tests. We used two different designs, adapting habituation, cues and trial timing. However, in both experiments mice did not show any preference, although we used goods which we knew mice find rewarding. Instead, they alternated choices indicating that exploratory behaviour overruled preference. We argue that this behavioural strategy has evolved as an adaptive trait in saturated conditions where there is no need to take the reward immediately. Therefore, we deem the T-maze unsuitable for preference testing with the procedures we used here.
Collapse
Affiliation(s)
- Anne Habedank
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8–10, D-10589 Berlin, Germany
| | - Pia Kahnau
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8–10, D-10589 Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8–10, D-10589 Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, D-14163 Berlin, Germany
| |
Collapse
|
22
|
Ruby NF. Suppression of Circadian Timing and Its Impact on the Hippocampus. Front Neurosci 2021; 15:642376. [PMID: 33897354 PMCID: PMC8060574 DOI: 10.3389/fnins.2021.642376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
In this article, I describe the development of the disruptive phase shift (DPS) protocol and its utility for studying how circadian dysfunction impacts memory processing in the hippocampus. The suprachiasmatic nucleus (SCN) of the Siberian hamster is a labile circadian pacemaker that is easily rendered arrhythmic (ARR) by a simple manipulation of ambient lighting. The DPS protocol uses room lighting to administer a phase-advancing signal followed by a phase-delaying signal within one circadian cycle to suppress clock gene rhythms in the SCN. The main advantage of this model for inducing arrhythmia is that the DPS protocol is non-invasive; circadian rhythms are eliminated while leaving the animals neurologically and genetically intact. In the area of learning and memory, DPS arrhythmia produces much different results than arrhythmia by surgical ablation of the SCN. As I show, SCN ablation has little to no effect on memory. By contrast, DPS hamsters have an intact, but arrhythmic, SCN which produces severe deficits in memory tasks that are accompanied by fragmentation of electroencephalographic theta oscillations, increased synaptic inhibition in hippocampal circuits, and diminished responsiveness to cholinergic signaling in the dentate gyrus of the hippocampus. The studies reviewed here show that DPS hamsters are a promising model for translational studies of adult onset circadian dysfunction in humans.
Collapse
Affiliation(s)
- Norman F. Ruby
- Biology Department, Stanford University, Stanford, CA, United States
| |
Collapse
|
23
|
Cleal M, Fontana BD, Ranson DC, McBride SD, Swinny JD, Redhead ES, Parker MO. The Free-movement pattern Y-maze: A cross-species measure of working memory and executive function. Behav Res Methods 2021; 53:536-557. [PMID: 32748238 PMCID: PMC8062322 DOI: 10.3758/s13428-020-01452-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous neurodegenerative and psychiatric disorders are associated with deficits in executive functions such as working memory and cognitive flexibility. Progress in developing effective treatments for disorders may benefit from targeting these cognitive impairments, the success of which is predicated on the development of animal models with validated behavioural assays. Zebrafish offer a promising model for studying complex brain disorders, but tasks assessing executive function are lacking. The Free-movement pattern (FMP) Y-maze combines aspects of the common Y-maze assay, which exploits the inherent motivation of an organism to explore an unknown environment, with analysis based on a series of sequential two-choice discriminations. We validate the task as a measure of working memory and executive function by comparing task performance parameters in adult zebrafish treated with a range of glutamatergic, cholinergic and dopaminergic drugs known to impair working memory and cognitive flexibility. We demonstrate the cross-species validity of the task by assessing performance parameters in adapted versions of the task for mice and Drosophila, and finally a virtual version in humans, and identify remarkable commonalities between vertebrate species' navigation of the maze. Together, our results demonstrate that the FMP Y-maze is a sensitive assay for assessing working memory and cognitive flexibility across species from invertebrates to humans, providing a simple and widely applicable behavioural assay with exceptional translational relevance.
Collapse
Affiliation(s)
- Madeleine Cleal
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Daniel C Ranson
- Medicines Research Group, University of East London, London, UK
| | | | - Jerome D Swinny
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Edward S Redhead
- School of Psychology, University of Southampton, Southampton, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
24
|
Ang MJ, Lee S, Kim JC, Kim SH, Moon C. Behavioral Tasks Evaluating Schizophrenia-like Symptoms in Animal Models: A Recent Update. Curr Neuropharmacol 2021; 19:641-664. [PMID: 32798374 PMCID: PMC8573744 DOI: 10.2174/1570159x18666200814175114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Schizophrenia is a serious mental illness that affects more than 21 million people worldwide. Both genetics and the environment play a role in its etiology and pathogenesis. Symptoms of schizophrenia are mainly categorized into positive, negative, and cognitive. One major approach to identify and understand these diverse symptoms in humans has been to study behavioral phenotypes in a range of animal models of schizophrenia. OBJECTIVE We aimed to provide a comprehensive review of the behavioral tasks commonly used for measuring schizophrenia-like behaviors in rodents together with an update of the recent study findings. METHODS Articles describing phenotypes of schizophrenia-like behaviors in various animal models were collected through a literature search in Google Scholar, PubMed, Web of Science, and Scopus, with a focus on advances over the last 10 years. RESULTS Numerous studies have used a range of animal models and behavioral paradigms of schizophrenia to develop antipsychotic drugs for improved therapeutics. In establishing animal models of schizophrenia, the candidate models were evaluated for schizophrenia-like behaviors using several behavioral tasks for positive, negative, and cognitive symptoms designed to verify human symptoms of schizophrenia. Such validated animal models were provided as rapid preclinical avenues for drug testing and mechanistic studies. CONCLUSION Based on the most recent advances in the field, it is apparent that a myriad of behavior tests are needed to confirm and evaluate the congruency of animal models with the numerous behaviors and clinical signs exhibited by patients with schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Changjong Moon
- Address correspondence to this author at the Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea, Tel: +82-62-530-2838; E-mail:
| |
Collapse
|
25
|
De Souza L, Barros WDM, De Souza RM, Delanogare E, Machado AE, Braga SP, Rosa GK, Nardi GM, Rafacho A, Speretta GFF, Moreira ELG. Impact of different fructose concentrations on metabolic and behavioral parameters of male and female mice. Physiol Behav 2020; 228:113187. [PMID: 32987042 DOI: 10.1016/j.physbeh.2020.113187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Clinical evidence has shown that a high consumption of sugar-sweetened beverages is a risk factor for developing obesity and metabolic syndrome. There has also been increasing interest in the potential effects of high-fructose intake on behavior. The present study evaluated sex differences in behavioral and metabolic characteristics in response to chronic fructose intake in mice. Swiss mice (3-months-old) had access to tap water or fructose-water solution (at 15% or 30% w/v) ad libitum for nine weeks. After the 8 weeks, the mice were submitted to a battery of behavioral tests. A glucose tolerance test was performed one day after these behavioral tests, and the next day blood was collected for biochemical analysis. At a 15% concentration, fructose-intaking resulted in higher plasma cholesterol levels and glucose intolerance in mice that paralleled with a passive stress-coping behavior in the female mice and lower self-care behavior in the male and the female mice. At a 30% concentration, fructose-intaking resulted in higher body mass gain and higher plasma cholesterol and triglycerides levels in the male and the female mice, whereas glucose intolerance was more pronounced in the male mice. Spatial memory impairments and lower self-care behavior were observed in the male and the female mice, while passive stress-coping behavior was observed only in the female mice. Collectively, high-fructose intake induces metabolic and behavioral alterations in mice, with the males being more susceptible to glucose metabolism dysfunctions and the females to depressive-like endophenotypes.
Collapse
Affiliation(s)
- Letícia De Souza
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Wellinghton de Medeiros Barros
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Raul Marin De Souza
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Eslen Delanogare
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Adriano Emanuel Machado
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Sara Pereira Braga
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Giovana Karoline Rosa
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Geisson Marcos Nardi
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Alex Rafacho
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Guilherme Fleury Fina Speretta
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Eduardo Luiz Gasnhar Moreira
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil.
| |
Collapse
|
26
|
Lee AY, Choi JM, Lee YA, Shin SH, Cho EJ. Beneficial effect of black rice ( Oryza sativa L. var. japonica ) extract on amyloid β-induced cognitive dysfunction in a mouse model. Exp Ther Med 2020; 20:64. [PMID: 32963594 DOI: 10.3892/etm.2020.9192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is an age-dependent progressive neurodegenerative disease, resulting in memory loss and cognitive dysfunction. The accumulation of amyloid β (Aβ) has been identified as the most important risk factor for AD. Black rice (BR; Oryza sativa L. var. japonica), which is widely consumed in Asia, is a good source of bioactive compounds including anthocyanins. Therefore, the aim of the present study was to evaluate the protective effect of BR extracts against Aβ25-35-induced memory impairment in an in vivo AD mouse model. After intracerebroventricular injection of Aβ25-35, mice were treated with BR extract supplementation for 14 days. Memory and cognition function were evaluated over this period in both treated and untreated animals using T-maze, novel object recognition and Morris water maze tests. After behavioral tests, malondialdehyde (MDA) and nitric oxide (NO) concentrations in brain, liver and kidney tissues were analyzed. Mice treated with Aβ25-35 had impaired memory and cognitive function; however, mice administered BR extract (100 mg/kg/day) demonstrated an improvement in cognition and memory function compared with the Aβ25-35-injected control group. Furthermore, injection of Aβ25-35 significantly increased MDA and NO generation in the brain, liver and kidney of mice. However, the group administered with BR extract had significantly inhibited lipid peroxidation and NO generation in the brain, liver and kidney. In addition, the protective effect of BR on lipid peroxidation and NO production by Aβ25-35 was stronger in the brain compared with other tissues. Collectively, these findings suggested that BR supplementation may prevent memory and cognition deficits caused by Aβ25-35-induced oxidative stress.
Collapse
Affiliation(s)
- Ah Young Lee
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Ji Myung Choi
- Department of Food Science and Nutrition, Research Institute of Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Young A Lee
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan 38430, Republic of Korea
| | - Seon Hwa Shin
- Department of Food Science and Nutrition, Research Institute of Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Research Institute of Ecology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
27
|
Zhang L, Wang H, Abel GM, Storm DR, Xia Z. The Effects of Gene-Environment Interactions Between Cadmium Exposure and Apolipoprotein E4 on Memory in a Mouse Model of Alzheimer's Disease. Toxicol Sci 2020; 173:189-201. [PMID: 31626305 PMCID: PMC8204948 DOI: 10.1093/toxsci/kfz218] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cadmium (Cd) is a heavy metal of great public health concern. Recent studies suggested a link between Cd exposure and cognitive decline in humans. The ε4 allele, compared with the common ε3 allele, of the human apolipoprotein E gene (ApoE) is associated with accelerated cognitive decline and increased risks for Alzheimer's disease (AD). To investigate the gene-environment interactions (GxE) between ApoE-ε4 and Cd exposure on cognition, we used a mouse model of AD that expresses human ApoE-ε3 (ApoE3-KI [knock-in]) or ApoE-ε4 (ApoE4-KI). Mice were exposed to 0.6 mg/l CdCl2 through drinking water for 14 weeks and assessed for hippocampus-dependent memory. A separate cohort was sacrificed immediately after exposure and used for Cd measurements and immunostaining. The peak blood Cd was 0.3-0.4 µg/l, within levels found in the U.S. general population. All Cd-treated animals exhibited spatial working memory deficits in the novel object location test. This deficit manifested earlier in ApoE4-KI mice than in ApoE3-KI within the same sex and earlier in males than females within the same genotype. ApoE4-KI but not ApoE3-KI mice exhibited reduced spontaneous alternation later in life in the T-maze test. Finally, Cd exposure impaired neuronal differentiation of adult-born neurons in the hippocampus of male ApoE4-KI mice. These data suggest that a GxE between ApoE4 and Cd exposure leads to accelerated cognitive impairment and that impaired adult hippocampal neurogenesis may be one of the underlying mechanisms. Furthermore, male mice were more susceptible than female mice to this GxE effect when animals were young.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Environmental and Occupational Health Sciences
| | - Hao Wang
- Department of Environmental and Occupational Health Sciences
| | - Glen M Abel
- Department of Environmental and Occupational Health Sciences
| | - Daniel R Storm
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Zhengui Xia
- Department of Environmental and Occupational Health Sciences
| |
Collapse
|
28
|
Syeda T, Sanchez-Tapia M, Pinedo-Vargas L, Granados O, Cuervo-Zanatta D, Rojas-Santiago E, Díaz-Cintra SA, Torres N, Perez-Cruz C. Bioactive Food Abates Metabolic and Synaptic Alterations by Modulation of Gut Microbiota in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2019; 66:1657-1682. [PMID: 30475761 DOI: 10.3233/jad-180556] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent investigations have demonstrated an important role of gut microbiota (GM) in the pathogenesis of Alzheimer's disease (AD). GM modulates a host's health and disease by production of several substances, including lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), among others. Diet can modify the composition and diversity of GM, and ingestion of a healthy diet has been suggested to lower the risk to develop AD. We have previously shown that bioactive food (BF) ingestion can abate neuroinflammation and oxidative stress and improve cognition in obese rats, effects associated with GM composition. Therefore, BF can impact the gut-brain axis and improved behavior. In this study, we aim to explore if inclusion of BF in the diet may impact central pathological markers of AD by modulation of the GM. Triple transgenic 3xTg-AD (TG) female mice were fed a combination of dried nopal, soy, chia oil, and turmeric for 7 months. We found that BF ingestion improved cognition and reduced Aβ aggregates and tau hyperphosphorylation. In addition, BF decreased MDA levels, astrocyte and microglial activation, PSD-95, synaptophysin, GluR1 and ARC protein levels in TG mice. Furthermore, TG mice fed BF showed increased levels of pGSK-3β. GM analysis revealed that pro-inflammatory bacteria were more abundant in TG mice compared to wild-type, while BF ingestion was able to restore the GM's composition, LPS, and propionate levels to control values. Therefore, the neuroprotective effects of BF may be mediated, in part, by modulation of GM and the release of neurotoxic substances that alter brain function.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- Departmento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N. 2508, Mexico City, Mexico
| | - Mónica Sanchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Laura Pinedo-Vargas
- Instituto Nacional de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla-Querétaro, Mexico
| | - Omar Granados
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Daniel Cuervo-Zanatta
- Departmento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N. 2508, Mexico City, Mexico
| | | | - Sof A Díaz-Cintra
- Instituto Nacional de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla-Querétaro, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Claudia Perez-Cruz
- Departmento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N. 2508, Mexico City, Mexico
| |
Collapse
|
29
|
Yamada J, Jinno S. Potential link between antidepressant-like effects of ketamine and promotion of adult neurogenesis in the ventral hippocampus of mice. Neuropharmacology 2019; 158:107710. [DOI: 10.1016/j.neuropharm.2019.107710] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
|
30
|
Aharoni R, Schottlender N, Bar-Lev DD, Eilam R, Sela M, Tsoory M, Arnon R. Cognitive impairment in an animal model of multiple sclerosis and its amelioration by glatiramer acetate. Sci Rep 2019; 9:4140. [PMID: 30858445 PMCID: PMC6412002 DOI: 10.1038/s41598-019-40713-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/21/2019] [Indexed: 01/28/2023] Open
Abstract
The severe motor impairment in the MS animal model experimental autoimmune encephalomyelitis (EAE) obstructs the assessment of cognitive functions. We developed an experimental system that evaluates memory faculties in EAE-affected mice, irrespective of their motor performance, enabling the assessment of cognitive impairments along the disease duration, the associated brain damage, and the consequences of glatiramer acetate (GA) treatment on these manifestations. The delayed-non-matching to sample (DNMS) T-maze task, testing working and long term memory was adapted and utilized. Following the appearance of clinical manifestations task performances of the EAE-untreated mice drastically declined. Cognitive impairments were associated with disease severity, as indicated by a significant correlation between the T-maze performance and the clinical symptoms in EAE-untreated mice. GA-treatment conserved cognitive functions, so that despite their exhibited mild motor impairments, the treated mice performed similarly to naïve controls. The cognitive deficit of EAE-mice coincided with inflammatory and neurodegenerative damage to the frontal cortex and the hippocampus; these damages were alleviated by GA-treatment. These combined findings indicate that in addition to motor impairment, EAE leads to substantial impairment of cognitive functions, starting at the early stages and increasing with disease aggravation. GA-treatment, conserves cognitive capacities and prevents its disease related deterioration.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel.
| | - Nofar Schottlender
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Dekel D Bar-Lev
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Raya Eilam
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Michael Sela
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel.
| |
Collapse
|
31
|
Przybilla MJ, Ou L, Tăbăran AF, Jiang X, Sidhu R, Kell PJ, Ory DS, O'Sullivan MG, Whitley CB. Comprehensive behavioral and biochemical outcomes of novel murine models of GM1-gangliosidosis and Morquio syndrome type B. Mol Genet Metab 2019; 126:139-150. [PMID: 30528226 DOI: 10.1016/j.ymgme.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
Deficiencies in the lysosomal hydrolase β-galactosidase (β-gal) lead to two distinct diseases: the skeletal disease Morquio syndrome type B, and the neurodegenerative disease GM1-gangliosidosis. Utilizing CRISPR-Cas9 genome editing, the mouse β-gal encoding gene, Glb1, was targeted to generate both models of β-gal deficiency in a single experiment. For Morquio syndrome type B, the common human missense mutation W273L (position 274 in mice) was introduced into the Glb1 gene (Glb1W274L), while for GM1-gangliosidosis, a 20 bp mutation was generated to remove the catalytic nucleophile of β-gal (β-gal-/-). Glb1W274L mice showed a significant reduction in β-gal enzyme activity (8.4-13.3% of wildtype), but displayed no marked phenotype after one year. In contrast, β-gal-/- mice were devoid of β-gal enzyme activity (≤1% of wildtype), resulting in ganglioside accumulation and severe cellular vacuolation throughout the central nervous system (CNS). β-gal-/- mice also displayed severe neuromotor and neurocognitive dysfunction, and as the disease progressed, the mice became emaciated and succumbed to the disease by 10 months of age. Overall, in addition to generating a novel murine model that phenotypically resembles GM1-gangliosidosis, the first model of β-galactosidase deficiency with residual enzyme activity has been developed.
Collapse
Affiliation(s)
- Michael J Przybilla
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, United States
| | - Li Ou
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Alexandru-Flaviu Tăbăran
- Comparative Pathology Shared Resource, Masonic Cancer Center and College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Pamela J Kell
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - M Gerard O'Sullivan
- Comparative Pathology Shared Resource, Masonic Cancer Center and College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
32
|
de Souza RM, de Souza L, Machado AE, de Bem Alves AC, Rodrigues FS, Aguiar AS, dos Santos ARS, de Bem AF, Moreira ELG. Behavioural, metabolic and neurochemical effects of environmental enrichment in high-fat cholesterol-enriched diet-fed mice. Behav Brain Res 2019; 359:648-656. [DOI: 10.1016/j.bbr.2018.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/10/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022]
|
33
|
Wang H, Zhang L, Abel GM, Storm DR, Xia Z. Cadmium Exposure Impairs Cognition and Olfactory Memory in Male C57BL/6 Mice. Toxicol Sci 2019; 161:87-102. [PMID: 29029324 DOI: 10.1093/toxsci/kfx202] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cadmium (Cd) is a heavy metal of high interest to the superfund initiative. Recent epidemiology studies have suggested a possible association between Cd exposure and cognitive as well as olfactory impairments in humans. However, studies in animal models are needed to establish a direct causal relationship between Cd exposure and impairments in cognition and olfaction. This study aims to investigate the toxic effect of Cd on cognition and olfactory function in mice. One group of 8-week-old C57BL/6 male mice was exposed to 3 mg/l Cd (in the form of CdCl2) through drinking water for 20 weeks for behavior tests and final blood Cd concentration analysis. The behavior tests were conducted before, during, and after Cd exposure to analyze the effects of Cd on cognition and olfactory function. Upon completion of behavior tests, blood was collected to measure final blood Cd concentration. Two additional groups of mice were similarly exposed to Cd for 5 or 13 weeks for peak blood Cd concentration measurement. The peak blood Cd concentration was 2.125-2.25 μg/l whereas the final blood Cd concentration was 0.18 μg/l. At this exposure level, Cd impaired hippocampus-dependent learning and memory in novel object location test, T-maze test, and contextual fear memory test. It also caused deficits in short-term olfactory memory and odor-cued olfactory learning and memory. Results in this study demonstrate a direct relationship between Cd exposure and cognitive as well as olfactory impairments in an animal model.
Collapse
Affiliation(s)
- Hao Wang
- Toxicology Program, Department of Environmental and Occupational Health Sciences
| | - Liang Zhang
- Toxicology Program, Department of Environmental and Occupational Health Sciences
| | - Glen M Abel
- Toxicology Program, Department of Environmental and Occupational Health Sciences
| | - Daniel R Storm
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Zhengui Xia
- Toxicology Program, Department of Environmental and Occupational Health Sciences
| |
Collapse
|
34
|
Power SC, Michalik MJ, Couture-Nowak S, Kent BA, Mistlberger RE. Midday meals do not impair mouse memory. Sci Rep 2018; 8:17013. [PMID: 30451946 PMCID: PMC6242856 DOI: 10.1038/s41598-018-35427-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022] Open
Abstract
Nocturnal mice fed in the middle of the light period exhibit food anticipatory rhythms of behavior and physiology under control of food-entrainable circadian clocks in the brain and body. This is presumed to be adaptive by aligning behavior and physiology with predictable mealtimes. This assumption is challenged by a report that daytime feeding schedules impair cognitive processes important for survival, including object memory and contextual fear conditioning assessed at two times of day. To further evaluate these effects, mice were restricted to a 6 h daily meal in the middle of the light or dark period and object memory was tested at four times of day. Object memory was not impaired by daytime feeding, and did not exhibit circadian variation in either group. To determine whether impairment might depend on methodology, experimental procedures used previously to detect impairment were followed. Daytime feeding induced food anticipatory rhythms and shifted hippocampal clock genes, but again did not impair object memory. Spontaneous alternation and contextual fear conditioning were also not impaired. Hippocampal memory function appears more robust to time of day and daytime feeding schedules than previously reported; day-fed mice can remember what they have seen, where they have been, and where it is dangerous.
Collapse
Affiliation(s)
- Sarah C Power
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | | | | | - Brianne A Kent
- Djavad Mowafaghian Centre for Brain Health, Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
35
|
The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents. Sci Rep 2018; 8:2416. [PMID: 29403000 PMCID: PMC5799259 DOI: 10.1038/s41598-018-20895-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/26/2018] [Indexed: 12/23/2022] Open
Abstract
Enhancing endogenous cannabinoid (eCB) signaling has been considered as a potential strategy for the treatment of stress-related conditions. Fatty acid amide hydrolase (FAAH) represents the primary degradation enzyme of the eCB anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). This study describes a potent reversible FAAH inhibitor, SSR411298. The drug acts as a selective inhibitor of FAAH, which potently increases hippocampal levels of AEA, OEA and PEA in mice. Despite elevating eCB levels, SSR411298 did not mimic the interoceptive state or produce the behavioral side-effects (memory deficit and motor impairment) evoked by direct-acting cannabinoids. When SSR411298 was tested in models of anxiety, it only exerted clear anxiolytic-like effects under highly aversive conditions following exposure to a traumatic event, such as in the mouse defense test battery and social defeat procedure. Results from experiments in models of depression showed that SSR411298 produced robust antidepressant-like activity in the rat forced-swimming test and in the mouse chronic mild stress model, restoring notably the development of inadequate coping responses to chronic stress. This preclinical profile positions SSR411298 as a promising drug candidate to treat diseases such as post-traumatic stress disorder, which involves the development of maladaptive behaviors.
Collapse
|
36
|
Modica CM, Schweser F, Sudyn ML, Bertolino N, Preda M, Polak P, Siebert DM, Krawiecki JC, Sveinsson M, Hagemeier J, Dwyer MG, Pol S, Zivadinov R. Effect of teriflunomide on cortex-basal ganglia-thalamus (CxBGTh) circuit glutamatergic dysregulation in the Theiler's Murine Encephalomyelitis Virus mouse model of multiple sclerosis. PLoS One 2017; 12:e0182729. [PMID: 28796815 PMCID: PMC5552032 DOI: 10.1371/journal.pone.0182729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pathology of gray matter is associated with development of physical and cognitive disability in patients with multiple sclerosis. In particular, glutamatergic dysregulation in the cortex-basal ganglia-thalamus (CxBGTh) circuit could be associated with decline in these behaviors. OBJECTIVES To investigate the effect of an immunomodulatory therapy (teriflunomide, Aubagio®) on changes of the CxBGTh loop in the Theiler's Murine Encephalomyelitis Virus, (TMEV) mouse model of MS. METHODS Forty-eight (48) mice were infected with TMEV, treated with teriflunomide (24) or control vehicle (24) and followed for 39 weeks. Mice were examined with MRS and volumetric MRI scans (0, 8, 26, and 39 weeks) in the cortex, basal ganglia and thalamus, using a 9.4T scanner, and with behavioral tests (0, 4, 8, 12, 17, 26, and 39 weeks). Within conditions, MRI measures were compared between two time points by paired samples t-test and across multiple time points by repeated measures ANOVA (rmANOVA), and between conditions by independent samples t-test and rmANOVA, respectively. Data were considered as significant at the p<0.01 level and as a trend at p<0.05 level. RESULTS In the thalamus, the teriflunomide arm exhibited trends toward decreased glutamate levels at 8 and 26 weeks compared to the control arm (p = 0.039 and p = 0.026), while the control arm exhibited a trend toward increased glutamate between 0 to 8 weeks (p = 0.045). In the basal ganglia, the teriflunomide arm exhibited a trend toward decreased glutamate earlier than the control arm, from 0 to 8 weeks (p = 0.011), resulting in decreased glutamate compared to the control arm at 8 weeks (p = 0.016). CONCLUSIONS Teriflunomide may reduce possible excitotoxicity in the thalamus and basal ganglia by lowering glutamate levels.
Collapse
Affiliation(s)
- Claire M Modica
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Ferdinand Schweser
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, Buffalo, New York, United States of America
| | - Michelle L Sudyn
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Nicola Bertolino
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Marilena Preda
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, Buffalo, New York, United States of America
| | - Paul Polak
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Danielle M Siebert
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Exercise Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, United States of America
| | - Jacqueline C Krawiecki
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Department of Geology, University at Buffalo, Buffalo, New York, United States of America
| | - Michele Sveinsson
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Jesper Hagemeier
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Suyog Pol
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
37
|
Lewis SA, Negelspach DC, Kaladchibachi S, Cowen SL, Fernandez F. Spontaneous alternation: A potential gateway to spatial working memory in Drosophila. Neurobiol Learn Mem 2017; 142:230-235. [DOI: 10.1016/j.nlm.2017.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/17/2017] [Accepted: 05/21/2017] [Indexed: 10/19/2022]
|
38
|
Water and T-maze protocols are equally efficient methods to assess spatial memory in 3xTg Alzheimer’s disease mice. Behav Brain Res 2017; 331:54-66. [DOI: 10.1016/j.bbr.2017.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/09/2017] [Accepted: 05/03/2017] [Indexed: 01/28/2023]
|
39
|
Engstrom AK, Snyder JM, Maeda N, Xia Z. Gene-environment interaction between lead and Apolipoprotein E4 causes cognitive behavior deficits in mice. Mol Neurodegener 2017; 12:14. [PMID: 28173832 PMCID: PMC5297175 DOI: 10.1186/s13024-017-0155-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/18/2017] [Indexed: 01/10/2023] Open
Abstract
Background Alzheimer’s disease (AD) is characterized by progressive cognitive decline and memory loss. Environmental factors and gene-environment interactions (GXE) may increase AD risk, accelerate cognitive decline, and impair learning and memory. However, there is currently little direct evidence supporting this hypothesis. Methods In this study, we assessed for a GXE between lead and ApoE4 on cognitive behavior using transgenic knock-in (KI) mice that express the human Apolipoprotein E4 allele (ApoE4-KI) or Apolipoprotein E3 allele (ApoE3-KI). We exposed 8-week-old male and female ApoE3-KI and ApoE4-KI mice to 0.2% lead acetate via drinking water for 12 weeks and assessed for cognitive behavior deficits during and after the lead exposure. In addition, we exposed a second (cellular) cohort of animals to lead and assessed for changes in adult hippocampal neurogenesis as a potential underlying mechanism for lead-induced learning and memory deficits. Results In the behavior cohort, we found that lead reduced contextual fear memory in all animals; however, this decrease was greatest and statistically significant only in lead-treated ApoE4-KI females. Similarly, only lead-treated ApoE4-KI females exhibited a significant decrease in spontaneous alternation in the T-maze. Furthermore, all lead-treated animals developed persistent spatial working memory deficits in the novel object location test, and this deficit manifested earlier in ApoE4-KI mice, with female ApoE4-KI mice exhibiting the earliest deficit onset. In the cellular cohort, we observed that the maturation, differentiation, and dendritic development of adult-born neurons in the hippocampus was selectively impaired in lead-treated female ApoE4-KI mice. Conclusions These data suggest that GXE between ApoE4 and lead exposure may contribute to cognitive impairment and that impaired adult hippocampal neurogenesis may contribute to these deficits in cognitive behavior. Together, these data suggest a role for GXE and sex differences in AD risk.
Collapse
Affiliation(s)
- Anna K Engstrom
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Box 357234, Seattle, WA, 98195, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhengui Xia
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Box 357234, Seattle, WA, 98195, USA.
| |
Collapse
|
40
|
Effects of natural enrichment materials on stress, memory and exploratory behavior in mice. Lab Anim (NY) 2016; 44:262-7. [PMID: 26091131 DOI: 10.1038/laban.735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/07/2014] [Indexed: 01/07/2023]
Abstract
Environmental enrichment is an essential component of laboratory animal housing that allows animals to engage in natural behaviors in an otherwise artificial setting. Previous research by the authors suggested that, compared with synthetic enrichment materials, natural materials were associated with lower stress levels in mice. Here, the authors compare the effects of different enrichment materials on stress, memory and exploratory behavior in Swiss Webster mice. Mice that were provided with natural enrichment materials had lower stress levels, better memory and greater exploratory behavior than did mice provided with synthetic enrichment materials or with no enrichment materials. These findings suggest that provision of natural enrichment materials can improve well-being of laboratory mice.
Collapse
|
41
|
Bögli SY, Huang MYY. Spontaneous alternation behavior in larval zebrafish. ACTA ACUST UNITED AC 2016; 220:171-173. [PMID: 27811295 DOI: 10.1242/jeb.149336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/25/2016] [Indexed: 01/16/2023]
Abstract
Spontaneous alternation behavior (SAB) describes the tendency of animals to alternate their turn direction in consecutive turns. SAB, unlike other mnestic tasks, does not require any prior training or reinforcement. Because of its close correlation with the development and function of the hippocampus in mice, it is thought to reflect a type of memory. Adult zebrafish possess a hippocampus-like structure utilizing the same neurotransmitters as in human brains, and have thus been used to study memory. In the current study, we established SAB in zebrafish larvae at 6 days post-fertilization using a custom-made forced-turn maze with a rate of 57%. Our demonstration of the presence of SAB in larval zebrafish at a very early developmental stage not only provides evidence for early cognition in this species but also suggests its future usefulness as a high-throughput model for mnestic studies.
Collapse
Affiliation(s)
- Stefan Yu Bögli
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Melody Ying-Yu Huang
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich 8057, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich 8057, Switzerland
| |
Collapse
|
42
|
The selective 5-HT 6 receptor antagonist SLV has putative cognitive- and social interaction enhancing properties in rodent models of cognitive impairment. Neurobiol Learn Mem 2016; 133:100-117. [DOI: 10.1016/j.nlm.2016.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 02/05/2023]
|
43
|
Balu D, Larson JR, Schmidt JV, Wirtshafter D, Yevtodiyenko A, Leonard JP. Behavioral and physiological characterization of PKC-dependent phosphorylation in the Grin2a∆PKC mouse. Brain Res 2016; 1646:315-326. [PMID: 27317637 PMCID: PMC4976052 DOI: 10.1016/j.brainres.2016.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
Activity-dependent plasticity in NMDA receptor-containing synapses can be regulated by phosphorylation of serines and tyrosines in the C-terminal domain of the receptor subunits by various kinases. We have previously identified S1291/S1312 as important sites for PKC phosphorylation; while Y1292/Y1312 are the sites indirectly phosphorylated by PKC via Src kinase. In the oocyte expression system, mutation of those Serine sites to Alanine (that cannot be phosphorylated) in the GluN2A subunit, resulted in a decreased PKC stimulated current enhancement through the receptors compared to wild-type NMDA receptors. To investigate the behavioral and physiological significance of those PKC-mediated phosphorylation sites in vivo, the Grin2a∆PKC mouse expressing GluN2A with four mutated amino acids: S1291A, S1312A, Y1292F and Y1387F was generated using homologous recombination. The Grin2a∆PKC mice exhibit reduced anxiety in the open field test, light dark emergence test, and elevated plus maze. The mutant mice show reduced alternation in a Y maze spontaneous alternation task and a in a non-reinforced T maze alternation task. Interestingly, when the mutant mice were exposed to novel environments, there was no increase in context-induced Fos levels in hippocampal CA1 and CA3 compared to home-cage Fos levels, while the Fos increased in the WT mice in CA1, CA3 and DG. When the SC-CA1 synapses in slices from mutant mice were stimulated using a theta-burst protocol, there was no impairment in LTP. Overall, these results suggest that at least one of those PKC-mediated phosphorylation sites regulates NMDAR-mediated signaling that modulates anxiety.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - John R Larson
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - Jennifer V Schmidt
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - David Wirtshafter
- Department of Psychology, University of Illinois at Chicago, IL 60607, USA
| | - Aleksey Yevtodiyenko
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - John P Leonard
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA.
| |
Collapse
|
44
|
Huffman DM, Justice JN, Stout MB, Kirkland JL, Barzilai N, Austad SN. Evaluating Health Span in Preclinical Models of Aging and Disease: Guidelines, Challenges, and Opportunities for Geroscience. J Gerontol A Biol Sci Med Sci 2016; 71:1395-1406. [PMID: 27535967 PMCID: PMC5055649 DOI: 10.1093/gerona/glw106] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/22/2016] [Indexed: 12/14/2022] Open
Abstract
Life extension is no longer considered sufficient evidence of delayed aging in research animals. It must also be demonstrated that a broad swathe of health indicators have been extended. During a retreat of the Geroscience Network, a consortium of basic and clinical aging researchers, potential measures of mouse health were considered for their potential as easily standardized, highly informative metrics. Major health domains considered were neuromuscular, cognitive, cardiovascular, metabolic, and inflammatory functions as well as body composition and energetics and a multitude of assays interrogating these domains. A particularly sensitive metric of health is the ability to respond to, and recover, from stress. Therefore, the Network also considered stresses of human relevance that could be implemented in mouse models to assess frailty and resilience. Mouse models already exist for responses to forced immobility, cancer chemotherapy, infectious diseases, dietary challenges, and surgical stress, and it was felt that these could be employed to determine whether putative senescence-retarding interventions increased and extended organismal robustness. The Network discussed challenges in modeling age-related human chronic diseases and concluded that more attention needs to be paid to developing disease models with later age of onset, models of co- and multimorbidity, diversifying the strains and sexes commonly used in aging research, and considering additional species.
Collapse
Affiliation(s)
- Derek M Huffman
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
| | - Jamie N Justice
- Department of Integrative Physiology, University of Colorado Boulder
| | - Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
| | | |
Collapse
|
45
|
Borralleras C, Mato S, Amédée T, Matute C, Mulle C, Pérez-Jurado LA, Campuzano V. Synaptic plasticity and spatial working memory are impaired in the CD mouse model of Williams-Beuren syndrome. Mol Brain 2016; 9:76. [PMID: 27485321 PMCID: PMC4971717 DOI: 10.1186/s13041-016-0258-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/29/2016] [Indexed: 01/22/2023] Open
Abstract
Mice heterozygous for a complete deletion (CD) equivalent to the most common deletion found in individuals with Williams-Beuren syndrome (WBS) recapitulate relevant features of the neurocognitive phenotype, such as hypersociability, along with some neuroanatomical alterations in specific brain areas. However, the pathophysiological mechanisms underlying these phenotypes still remain largely unknown. We have studied the synaptic function and cognition in CD mice using hippocampal slices and a behavioral test sensitive to hippocampal function. We have found that long-term potentiation (LTP) elicited by theta burst stimulation (TBS) was significantly impaired in hippocampal field CA1 of CD animals. This deficit might be associated with the observed alterations in spatial working memory. However, we did not detect changes in presynaptic function, LTP induction mechanisms or AMPA and NMDA receptor function. Reduced levels of Brain-derived neurotrophic factor (BDNF) were present in the CA1-CA3 hippocampal region of CD mice, which could account for LTP deficits in these mice. Taken together, these results suggest a defect of CA1 synapses in CD mice to sustain synaptic strength after stimulation. These data represent the first description of synaptic functional deficits in CD mice and further highlights the utility of the CD model to study the mechanisms underlying the WBS neurocognitive profile.
Collapse
Affiliation(s)
- Cristina Borralleras
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Susana Mato
- Department of Neuroscience, Neurotek-University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Zamudio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Thierry Amédée
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 - University of Bordeaux, F-33000, Bordeaux, France
| | - Carlos Matute
- Department of Neuroscience, Neurotek-University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Zamudio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 - University of Bordeaux, F-33000, Bordeaux, France
| | - Luis A Pérez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Victoria Campuzano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. .,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
46
|
Golli NE, Dallagi Y, Rahali D, Rejeb I, Fazaa SE. Neurobehavioral assessment following e-cigarette refill liquid exposure in adult rats. Toxicol Mech Methods 2016; 26:435-42. [DOI: 10.1080/15376516.2016.1193585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Narges El Golli
- Department of Biology, Faculty of Sciences, LMBA, El Manar University, Tunis, Tunisia
| | - Yosra Dallagi
- Department of Biology, Faculty of Sciences, LMBA, El Manar University, Tunis, Tunisia
| | - Dalila Rahali
- Department of Biology, Faculty of Sciences, LMBA, El Manar University, Tunis, Tunisia
| | - Ines Rejeb
- Department of Biology, Faculty of Sciences, LMBA, El Manar University, Tunis, Tunisia
| | - Saloua El Fazaa
- Department of Biology, Faculty of Sciences, LMBA, El Manar University, Tunis, Tunisia
| |
Collapse
|
47
|
Hansen HH, Fabricius K, Barkholt P, Niehoff ML, Morley JE, Jelsing J, Pyke C, Knudsen LB, Farr SA, Vrang N. The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 46:877-88. [PMID: 25869785 PMCID: PMC4878312 DOI: 10.3233/jad-143090] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer’s disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of amyloid-β plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD.
Collapse
Affiliation(s)
| | | | | | | | - John E Morley
- St. Louis University, Division of Geriatrics, St. Louis, MO, USA.,St. Louis University School of Medicine, Division of Endocrinology, St. Louis University, St. Louis, MO, USA
| | | | - Charles Pyke
- Diabetes Research, Novo Nordisk A/S, Maaloev, Denmark
| | | | - Susan A Farr
- St. Louis University, Division of Geriatrics, St. Louis, MO, USA.,Research and Development, Veterans Affairs Medical Center, St. Louis, MO, USA
| | | |
Collapse
|
48
|
Fatemi I, Shamsizadeh A, Ayoobi F, Taghipour Z, Sanati MH, Roohbakhsh A, Motevalian M. Role of orexin-A in experimental autoimmune encephalomyelitis. J Neuroimmunol 2016; 291:101-9. [PMID: 26857503 DOI: 10.1016/j.jneuroim.2016.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Abstract
The aim of this study was to evaluate the effects of orexin-A (OX-A) on behavioral and pathological parameters and on gene expression of some multiple sclerosis-related peptides in a model of experimental autoimmune encephalomyelitis (EAE). EAE was induced by subcutaneous administration of MOG 35-55. Following immunization, the treatment was initiated by using SB.334867 (orexin-1 receptor antagonist) and/or OX-A. Locomotor activity and exploratory behaviors were monitored using open field and T-maze continuous alternation task (T-CAT) respectively. Pain sensitivity was assessed by hot-plate test. Histopathological assessments were performed by H&E staining. The expression of TGF-β, MBP, MMP-9, IL-12, iNOS and MCP-1 were measured using real-time PCR method in lumbar spinal cord. OX-A administration in EAE mice remarkably attenuated the clinical symptoms, increased latency response in hot plate test, inhibited infiltration of inflammatory cells, up-regulated mRNA expression of TGF-β as well as MBP and down-regulated mRNA expression of iNOS, MMP-9 and IL-12. In contrast SB.334867 administration in EAE mice deteriorated the clinical symptoms, decreased the alternation in T-CAT, increased infiltration of inflammatory cells, down-regulated mRNA expression of TGF-β and MBP and up-regulated mRNA expression of iNOS. Results of this study suggest that the orexinergic system might be involved in pathological development of EAE. These findings suggest orexinergic system as a potential target for treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Iman Fatemi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Ayoobi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Taghipour
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hossein Sanati
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Roohbakhsh
- Pharmacutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Dines M, Lamprecht R. The Role of Ephs and Ephrins in Memory Formation. Int J Neuropsychopharmacol 2015; 19:pyv106. [PMID: 26371183 PMCID: PMC4851260 DOI: 10.1093/ijnp/pyv106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022] Open
Abstract
The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer's disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Israel.
| |
Collapse
|
50
|
Steardo L, Bronzuoli MR, Iacomino A, Esposito G, Steardo L, Scuderi C. Does neuroinflammation turn on the flame in Alzheimer's disease? Focus on astrocytes. Front Neurosci 2015; 9:259. [PMID: 26283900 PMCID: PMC4518161 DOI: 10.3389/fnins.2015.00259] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/10/2015] [Indexed: 12/18/2022] Open
Abstract
Data from animal models and Alzheimer's disease (AD) subjects provide clear evidence for an activation of inflammatory pathways during the pathogenetic course of such illness. Biochemical and neuropathological studies highlighted an important cause/effect relationship between inflammation and AD progression, revealing a wide range of genetic, cellular, and molecular changes associated with the pathology. In this context, glial cells have been proved to exert a crucial role. These cells, in fact, undergo important morphological and functional changes and are now considered to be involved in the onset and progression of AD. In particular, astrocytes respond quickly to pathology with changes that have been increasingly recognized as a continuum, with potentially beneficial and/or negative consequences. Although it is now clear that activated astrocytes trigger the neuroinflammatory process, however, the precise mechanisms have not been completely elucidated. Neuroinflammation is certainly a multi-faceted and complex phenomenon and, especially in the early stages, exerts a reparative intent. However, for reasons not yet all well known, this process goes beyond the physiologic control and contributes to the exacerbation of the damage. Here we scrutinize some evidence supporting the role of astrocytes in the neuroinflammatory process and the possibility that these cells could be considered a promising target for future AD therapies.
Collapse
Affiliation(s)
- Luca Steardo
- Department of Psychiatry, University of Naples SUNNaples, Italy
| | - Maria R. Bronzuoli
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Aniello Iacomino
- Faculty of Psychology, University of Rome “G. Marconi”Rome, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| |
Collapse
|