1
|
Richardson BJ, Hamilton J, Roeder N, Thanos KZ, Marion M, Thanos PK. Fatty acid-binding protein 5 differentially impacts dopamine signaling independent of sex and environment. ADDICTION NEUROSCIENCE 2023; 8:100118. [PMID: 37664218 PMCID: PMC10470066 DOI: 10.1016/j.addicn.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Epidermal/brain fatty acid-binding protein 5 (FABP5) plays an integral role in the intracellular trafficking of bioactive lipids/endocannabinoids and the subsequent initiation of cellular cascades affecting cannabinoid and dopamine (DA) systems. Social isolation (SI) and environmental enrichment (EE) during adolescence have been shown to impact DA signaling, and, specifically, DA transporter (DAT) and receptor levels of DA type 1 (D1) and 2 (D2); however, the relationship between FABP5, environment and DA signaling remains unclear. The present study quantified DAT and DA receptor levels in male/female FABP5-/- and FABP5+/+ mice raised in either SI or EE. Results showed that FABP5-/- mice had 6.09-8.81% greater D1 levels in striatal sub-regions of the caudal brain, independent of sex or environment. D1 levels were 8.03% greater only in the olfactory tubercle of enrichment-reared animals. In summary, these results supported that FABP5 plays an important function in regulating striatal DA signaling, and this may have important implications as a target with therapeutic potential for various psychiatric disorders.
Collapse
Affiliation(s)
- Brittany J. Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Kyriaki Z. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
| | - Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Abdelfattah AM, Abuelezz SA, Hendawy N, Negm EA, Nawishy SAEK, Khalil AMM. Sonic hedgehog pathway as a new target of atypical antipsychotics: Revisiting of amisulpride and aripiprazole effects in a rat model of schizophrenia. Life Sci 2023; 316:121366. [PMID: 36649751 DOI: 10.1016/j.lfs.2022.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Schizophrenia is a chronic mental illness presented by cognitive deficits that precede its positive and negative symptoms. Sonic hedgehog (Shh)-pathway contributes to its pathophysiology. Shh has a role in neurogenesis as it regulates proliferation and survival of neural cells. In this study, effects of the anti-psychotics Amisulpride and/or Aripiprazole on the Shh-pathway and its relation to cognitive functions and neurogenesis in a rat model of schizophrenia were tested. METHODS 60 male Wistar rats were allocated into the following groups: control, socially isolated, amisulpride and/or aripiprazole-treated groups. Rats were then subjected to behavioral, biochemical, and histopathological tests to assess the impact of these drugs on Shh-pathway. KEY FINDINGS Cognitive-dysfunction was evidenced in socially isolated group in novel object, three-chamber, and Morris water maze tests, associated by disorganised Shh-pathway proteins levels concentrations, increased glial fibrillary acidic protein (GFAP)-stained astrocytes. Treated groups favorably reversed these changes evidenced by increased Shh, transmembrane patched-1 and smoothened, glioma-associated-oncogene (GLI)-1 levels, dopamine-1 receptors and brain derived neurotrophic factor, and decreased GLI-3 protein, GFAP immune reaction in astrocytes and inflammatory markers compared to socially isolated group. CONCLUSION Amisulpride and/or aripiprazole have a favorable role in turning on Shh-pathway with subsequent beneficial cognitive and neurogenesis effects.
Collapse
Affiliation(s)
- Ahmed M Abdelfattah
- Clinical Pharmacology Department, Faculty of Medicine, Port Said University, Cairo, Egypt.
| | - Sally A Abuelezz
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nevien Hendawy
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman A Negm
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
3
|
Andersen SL. Stress, sensitive periods, and substance abuse. Neurobiol Stress 2019; 10:100140. [PMID: 30569003 PMCID: PMC6288983 DOI: 10.1016/j.ynstr.2018.100140] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/18/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Research on the inter-relationship between drug abuse and social stress has primarily focused on the role of stress exposure during adulthood and more recently, adolescence. Adolescence is a time of heightened reward sensitivity, but it is also a time when earlier life experiences are expressed. Exposure to stress early in postnatal life is associated with an accelerated age of onset for drug use. Lifelong addiction is significantly greater if drug use is initiated during early adolescence. Understanding how developmental changes following stress exposure interact with sensitive periods to unfold over the course of maturation is integral to reducing their later impact on substance use. Arousal levels, gender/sex, inflammation, and the timing of stress exposure play a role in the vulnerability of these circuits. The current review focuses on how early postnatal stress impacts brain development during a sensitive period to increase externalizing and internalizing behaviors in adolescence that include social interactions (aggression; sexual activity), working memory impairment, and depression. How stress effects the developmental trajectories of brain circuits that are associated with addiction are discussed for both clinical and preclinical studies.
Collapse
|
4
|
Lahvis GP. Social Reward and Empathy as Proximal Contributions to Altruism: The Camaraderie Effect. Curr Top Behav Neurosci 2017; 30:127-157. [PMID: 27600591 PMCID: PMC5675738 DOI: 10.1007/7854_2016_449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural selection favors individuals to act in their own interests, implying that wild animals experience a competitive psychology. Animals in the wild also express helping behaviors, presumably at their own expense and suggestive of a more compassionate psychology. This apparent paradox can be partially explained by ultimate mechanisms that include kin selection, reciprocity, and multilevel selection, yet some theorists argue such ultimate explanations may not be sufficient and that an additional "stake in others" is necessary for altruism's evolution. We suggest this stake is the "camaraderie effect," a by-product of two highly adaptive psychological experiences: social motivation and empathy. Rodents can derive pleasure from access to others and this appetite for social rewards motivates individuals to live together, a valuable psychology when group living is adaptive. Rodents can also experience empathy, the generation of an affective state more appropriate to the situation of another compared to one's own. Empathy is not a compassionate feeling but it has useful predictive value. For instance, empathy allows an individual to feel an unperceived danger from social cues. Empathy of another's stance toward one's self would predict either social acceptance or ostracism and amplify one's physiological sensitivity to social isolation, including impaired immune responses and delayed wound healing. By contrast, altruistic behaviors would promote well-being in others and feelings of camaraderie from others, thereby improving one's own physiological well-being. Together, these affective states engender a stake in others necessary for the expression of altruistic behavior.
Collapse
Affiliation(s)
- Garet P Lahvis
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Mail Code L-470, Portland, Oregon, 97239, USA.
| |
Collapse
|
5
|
Differential effects of dopamine receptor D1-type and D2-type antagonists and phase of the estrous cycle on social learning of food preferences, feeding, and social interactions in mice. Neuropsychopharmacology 2011; 36:1689-702. [PMID: 21525863 PMCID: PMC3138658 DOI: 10.1038/npp.2011.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neurobiological bases of social learning, by which an animal can 'exploit the expertise of others' and avoid the disadvantages of individual learning, are only partially understood. We examined the involvement of the dopaminergic system in social learning by administering a dopamine D1-type receptor antagonist, SCH23390 (0.01, 0.05, and 0.1 mg/kg), or a D2-type receptor antagonist, raclopride (0.1, 0.3, and 0.6 mg/kg), to adult female mice prior to socially learning a food preference. We found that while SCH23390 dose-dependently inhibited social learning without affecting feeding behavior or the ability of mice to discriminate between differently flavored diets, raclopride had the opposite effects, inhibiting feeding but leaving social learning unaffected. We showed that food odor, alone or in a social context, was insufficient to induce a food preference, proving the specifically social nature of this paradigm. The estrous cycle also affected social learning, with mice in proestrus expressing the socially acquired food preference longer than estrous and diestrous mice. This suggests gonadal hormone involvement, which is consistent with known estrogenic regulation of female social behavior and estrogen receptor involvement in social learning. Furthermore, a detailed ethological analysis of the social interactions during which social learning occurs showed raclopride- and estrous phase-induced changes in agonistic behavior, which were not directly related to effects on social learning. Overall, these results suggest a differential involvement of the D1-type and D2-type receptors in the regulation of social learning, feeding, and agonistic behaviors that are likely mediated by different underlying states.
Collapse
|
6
|
Nehrenberg DL, Rodriguiz RM, Cyr M, Zhang X, Lauder JM, Gariépy JL, Wetsel WC. An anxiety-like phenotype in mice selectively bred for aggression. Behav Brain Res 2009; 201:179-91. [PMID: 19428632 DOI: 10.1016/j.bbr.2009.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/12/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
Abstract
Using selective bi-directional breeding procedures, two different lines of mice were developed. The NC900 line is highly reactive and attacks their social partners without provocation, whereas aggression in NC100 animals is uncommon in social environments. The enhanced reactivity of NC900 mice suggests that emotionality may have been selected with aggression. As certain forms of anxiety promote exaggerated defensive responses, we tested NC900 mice for the presence of an anxiety-like phenotype. In the open field, light-dark exploration, and zero maze tests, NC900 mice displayed anxiety-like responses. These animals were less responsive to the anxiolytic actions of diazepam in the zero maze than NC100 animals; diazepam also reduced the reactivity and attack behaviors of NC900 mice. The NC900 mice had reduced diazepam-sensitive GABA(A) receptor binding in brain regions associated with aggression and anxiety. Importantly, there was a selective reduction in levels of the GABA(A) receptor alpha(2) subunit protein in NC900 frontal cortex and amygdala; no changes in alpha(1) or gamma(2) subunit proteins were observed. These findings suggest that reductions in the alpha(2) subunit protein in selected brain regions may underlie the anxiety and aggressive phenotype of NC900 mice. Since anxiety and aggression are comorbid in certain psychiatric conditions, such as borderline personality and posttraumatic stress disorder, investigations with NC900 mice may provide new insights into basic mechanisms that underlie these and related psychiatric conditions.
Collapse
Affiliation(s)
- Derrick L Nehrenberg
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Tomiyama K, Makihara Y, Yamamoto H, O'Sullivan G, Nally RE, Tighe O, Kinsella A, Fienberg AA, Grandy DK, Sibley DR, Croke DT, Koshikawa N, Waddington JL. Disruption of orofacial movement topographies in congenic mutants with dopamine D5 but not D4 receptor or DARPP-32 transduction 'knockout'. Eur Neuropsychopharmacol 2006; 16:437-45. [PMID: 16413758 DOI: 10.1016/j.euroneuro.2005.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 09/12/2005] [Accepted: 11/29/2005] [Indexed: 11/26/2022]
Abstract
The role of D(1)-like [D(1), D(5)] and D(2)-like [D(2), D(3), D(4)] dopamine receptors and dopamine transduction via DARPP-32 in topographies of orofacial movement was assessed in restrained mice with congenic D(4) vs. D(5) receptor vs. DARPP-32 'knockout'. D(4) and DARPP-32 mutants evidenced no material phenotype; also, there were no alterations in topographical responsivity to either the selective D(2)-like agonist RU 24213 or the selective D(1)-like agonist SK and F 83959. In contrast, D(5) mutants evidenced an increase in spontaneous vertical jaw movements, which habituated more slowly than in wildtypes, and a decrease in horizontal jaw movements; topographical responsivity to SK and F 83959 and RU 24213 was unaltered. D(5) receptors regulate distinct topographies of vertical and horizontal jaw movement in an opposite manner. In assuming that the well-recognised role of the D(1)-like family in regulating orofacial movements involves primarily D(1) receptors, a role for their D(5) counterparts may have been overlooked.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Chromans/pharmacology
- Dopamine and cAMP-Regulated Phosphoprotein 32/deficiency
- Dopamine and cAMP-Regulated Phosphoprotein 32/genetics
- Dyskinesia, Drug-Induced/genetics
- Dyskinesia, Drug-Induced/physiopathology
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Dopamine D4/agonists
- Receptors, Dopamine D4/deficiency
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D5/agonists
- Receptors, Dopamine D5/deficiency
- Receptors, Dopamine D5/genetics
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Katsunori Tomiyama
- Nihon University Advanced Research Institute for the Sciences and Humanities, Tokyo 102, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The social interaction test of anxiety was developed 25 years ago to provide an ethologically based test that was sensitive to both anxiolytic and anxiogenic effects. It is sensitive to a number of environmental and physiological factors that can affect anxiety. It has detected anxiogenic effects of peptides such as corticotropin-releasing factor (CRF) and adrenocorticotropic hormone (ACTH), and anxiolytic effects of neuropeptide Y and substance P receptor antagonists. It has successfully identified neuropharmacological sites of action of anxiogenic compounds and drug withdrawal. Effects of compounds acting on the gamma-aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) systems have been extensively investigated after both systemic administration and microinjection into specific brain regions. The use of this test has, thus, played a crucial role in unravelling the neural basis of anxiety. It is hoped that in the next 25 years, the test will play a crucial role in determining the genetic basis of anxiety disorders.
Collapse
Affiliation(s)
- Sandra E File
- Psychopharmacology Research Unit, Centre for Neuroscience, King's College London, Guy's Campus, UK
| | | |
Collapse
|
9
|
Miura H, Qiao H, Ohta T. Influence of aging and social isolation on changes in brain monoamine turnover and biosynthesis of rats elicited by novelty stress. Synapse 2002; 46:116-24. [PMID: 12211090 DOI: 10.1002/syn.10133] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aging is a risk factor of human depression. Middle-aged or older men are vulnerable to adverse life events and an absence of social contact and easily become depressed. In the present study, we investigated the influence of aging on responses to life events in socially isolated conditions. We applied isolation-rearing (4 W) to two age groups, older (18 M) and younger (11 W), of male F344 rats that had been reared in a group and then examined responses to novelty stress (20 min). Changes in brain monoamines and their metabolites such as dopamine (DA), serotonin (5-HT), dihydroxyphenylacetic acid (DOPAC), homovanilic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in six regions: the prefrontal cortex, nucleus accumbens, hippocampus, amygdala, midbrain, and raphe nuclei. MANOVA was carried out for rearing condition, age, and novelty stress. Isolation significantly changed monoamines and their metabolites, except in amygdala and raphe nuclei. Aging significantly altered them in all regions, although novelty stress did not. In the amygdala and midbrain, isolation significantly changed monoamine biosynthesis, with monoamine turnover remaining unchanged. In the prefrontal cortex and nucleus accumbens, aging significantly altered turnover, while biosynthesis remained unchanged. Novelty stress significantly varied only the turnover in the prefrontal cortex. The interaction between isolation and aging indicated that aging influences changes in turnover and biosynthesis elicited by isolation primarily at the center of the mesolymbic DA system, the midbrain, and in raphe nuclei of the 5-HT system. In peripheral regions of the mesolymbic system, aging primarily affects changes in turnover induced by isolation.
Collapse
Affiliation(s)
- Hideki Miura
- Department of Psychiatry, School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | | | | |
Collapse
|
10
|
Miura H, Qiao H, Ohta T. Attenuating effects of the isolated rearing condition on increased brain serotonin and dopamine turnover elicited by novelty stress. Brain Res 2002; 926:10-7. [PMID: 11814401 DOI: 10.1016/s0006-8993(01)03201-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Isolation and acute environmental change are risk factors in human depression. In the present study, we investigated the differences in the brain monoamine activity of rats between two rearing conditions, isolated and group. Moreover, we examined the responses to novelty stress. Male F344 rats aged 11 weeks were divided into the above two groups. Four weeks later they were further divided into non-stress and stress groups. The latter received 20 min exposure to novelty stress. Isolation significantly changed brain monoamine levels, with the levels of dopamine (DA) in the nucleus accumbens and midbrain, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the midbrain, and 5-hydroxyindoleacetic acid (5-HIAA) in the hippocampus increasing. Serotonin (5-HT) levels also increased in all brain areas except the raphe nuclei. HVA levels in the raphe nuclei decreased. Novelty stress significantly altered brain monoamine levels. DA, DOPAC, and HVA levels in the prefrontal cortex decreased, as did those of 5-HT in the prefrontal cortex and hippocampus. DA levels in the nucleus accumbens increased. Isolation attenuated the enhanced brain monoamine turnover elicited by novelty stress. The enhanced DA turnover ratio in the prefrontal cortex of the group-reared group was attenuated in the isolated-reared group, and the unchanged DA turnover ratio in the nucleus accumbens of the group-reared group declined in the isolated-reared group. The enhanced 5-HT turnover ratio in the prefrontal cortex, nucleus accumbens, and hippocampus of the group-reared group was attenuated in the isolated-reared group. Isolation may exacerbate adaptation to stress, and be related to the etiology of human depression.
Collapse
Affiliation(s)
- Hideki Miura
- Department of Psychiatry, School of Medicine, Nagoya University, Tsuruma-cho, Showa-ku, Nagoya, Aichi, Japan
| | | | | |
Collapse
|
11
|
Selective breeding for differential aggression in mice provides evidence for heterochrony in social behaviours. Anim Behav 2001. [DOI: 10.1006/anbe.2000.1700] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Gendreau PL, Petitto JM, Petrova A, Gariépy J, Lewis MH. D(3) and D(2) dopamine receptor agonists differentially modulate isolation-induced social-emotional reactivity in mice. Behav Brain Res 2000; 114:107-17. [PMID: 10996052 DOI: 10.1016/s0166-4328(00)00193-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following isolation housing, mice typically exhibit heightened emotional reactivity to mild social stimulation. Aggression, social avoidance and a variety of defensive behaviors that differ in terms of motor activation (e.g. freezing, escape) can be observed depending on strain. Previous studies suggested that D(2)-like dopamine (DA) receptors play an important, albeit strain specific, role in the mediation of particular forms of defensive behavior. D(3) receptors are subtypes of D(2)-like receptors that are highly expressed in limbic areas of the brain and, therefore, they have been hypothesized to mediate emotional behavior. This study examined the effects of the putative D(3) receptor agonists 7-OH-DPAT and PD128907 on social-emotional behavior in isolated C57BL/6J and A/J mice. These effects were compared with those of the selective D(2) receptor agonist PNU91356A. All three DA agonists increased non-locomotor forms of defensive behavior (e.g. freezing, upright defensive posture). These effects were observed at low doses in C57BL/6J and at higher doses in A/J mice. Only the D(3) receptor agonists were effective in increasing locomotor forms of defensive behavior (i.e. escape, jump) at higher doses. These effects were more pronounced in C57BL/6J mice than A/J mice. The increases in stationary and locomotor defensive behavior were accompanied by marked reduction in social investigation in both the strains. Aggressive behavior was also abolished in the aggressive C57BL/6J strain. These results support previous findings and suggest that DA agonists potentiate defensive behavior and/or social fearfulness. They also suggest that D(3) and D(2) DA receptors differentially modulate the expression of social-emotional reactivity and indicate the importance of strain in examining the effects of DA ligands on emotional behavior.
Collapse
Affiliation(s)
- P L Gendreau
- Brain Institute, Department of Psychiatry, University of Florida, P. O. Box 100256, Gainesville, FL 32610-0256, USA
| | | | | | | | | |
Collapse
|