1
|
Radwan MA, El-Gendy KS, Gad AF. Biomarker responses in terrestrial gastropods exposed to pollutants: A comprehensive review. CHEMOSPHERE 2020; 257:127218. [PMID: 32497833 DOI: 10.1016/j.chemosphere.2020.127218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
The chemical contamination of terrestrial ecosystems is a great concern as these ecosystems are the target of most of the pollutants derived from anthropogenic activities such as pesticides, heavy metals, nanoparticles, and others. Terrestrial gastropods are considered to be excellent sentinel organisms for biological monitoring of environmental pollution, as they have the ability to accumulate chemicals in their tissues and exhibit a great potential to evaluate the ecological effects of pollutants in terrestrial ecosystems. The use of biomarkers as sensitive parameters to estimate the exposure or resulting effects of chemicals have received considerable attention. The successful biomarker must be applicable in the laboratory and field conditions. Many biomarkers have been examined to understand the adverse effects of pollutants. In this review, we shed light on different types of biomarkers, such as oxidative stress, genotoxicity and immunotoxicity as diagnostic tools for monitoring the impacts of pollution. These biomarkers can provide information about early detection and quantification of these impacts during their initial manifestations and can facilitate the implementation of a rapid preventive and/or restorative responses in the affected ecosystems, as well as single or multiple biomarkers can be integrated into routine monitoring programs.
Collapse
Affiliation(s)
- M A Radwan
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, University of Alexandria, El-Shatby, 21545, Alexandria, Egypt.
| | - K S El-Gendy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, University of Alexandria, El-Shatby, 21545, Alexandria, Egypt
| | - A F Gad
- Department of Animal Pests, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| |
Collapse
|
2
|
Sezer N, Kılıç Ö, Sıkdokur E, Çayır A, Belivermiş M. Impacts of elevated pCO 2 on Mediterranean mussel (Mytilus galloprovincialis): Metal bioaccumulation, physiological and cellular parameters. MARINE ENVIRONMENTAL RESEARCH 2020; 160:104987. [PMID: 32907725 DOI: 10.1016/j.marenvres.2020.104987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Ocean acidification alters physiology, acid-base balance and metabolic activity in marine animals. Near future elevated pCO2 conditions could be expected to influence the bioaccumulation of metals, feeding rate and immune parameters in marine mussels. To better understand such impairments, a series of laboratory-controlled experiment was conducted by using a model marine mussel, Mytilus galloprovincialis. The mussels were exposed to three pH conditions according to the projected CO2 emissions in the near future (one ambient: 8.10 and two reduced: 7.80 and 7.50). At first, the bioconcentration of Ag and Cd was studied in both juvenile (2.5 cm) and adult (5.1 cm) mussels by using a highly sensitive radiotracer method (110mAg and 109Cd). The uptake and depuration kinetics were followed 21 and 30 days, respectively. The biokinetic experiments demonstrated that the effect of ocean acidification on bioconcentration was metal-specific and size-specific. The uptake, depuration and tissue distribution of 110mAg were not affected by elevated pCO2 in both juvenile and adult mussels, whereas 109Cd uptake significantly increased with decreasing pH in juveniles but not in adults. Regardless of pH, 110mAg accumulated more efficiently in juvenile mussels than adult mussels. After executing the biokinetic experiment, the perturbation was sustained by using the same mussels and the same experimental set-up, which enabled us to determine filtration rate, haemocyte viability, lysosomal membrane stability, circulating cell-free nucleic acids (ccf-NAs) and protein (ccf-protein) levels. The filtration rate and haemocyte viability gradually decreased by increasing pCO2 level, whereas the lysosomal membrane stability, ccf-NAs, and ccf-protein levels remained unchanged in the mussels exposed to elevated pCO2 for eighty-two days. This study suggests that acidified seawater partially shift metal bioaccumulation, physiological and cellular parameters in the mussel Mytilus galloprovincialis.
Collapse
Affiliation(s)
- Narin Sezer
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey
| | - Önder Kılıç
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey
| | - Ercan Sıkdokur
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Turkey
| | - Akın Çayır
- Vocational Health College, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey.
| |
Collapse
|
3
|
Mansour C, Guibbolini M, Rouane Hacene O, Saidane Mosbahi D, Risso-de Faverney C. Oxidative Stress and Damage Biomarkers in Clam Ruditapes decussatus Exposed to a Polluted Site: The Reliable Biomonitoring Tools in Hot and Cold Seasons. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:478-494. [PMID: 32016484 DOI: 10.1007/s00244-020-00713-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
In the present study, a multi-biomarker approach was used to assess the biological effects of metal pollution in the southern lagoon of Tunis, on clam Ruditapes decussatus both in "hot" (in summer) and "cold" (in winter) seasons. Clams were collected in August 2015 and February 2016 from three sites of the lagoon and from Louza considered a reference site. The concentrations of five trace metals (cadmium, copper, iron, lead, and zinc) in the soft tissues of R. decussatus were evaluated at the sampling sites. A core of biomarkers indicative of (a) neurotoxicity (acetylcholinesterase, AChE); (b) biotransformation (glutathione S-transferase, GST); (c) oxidative stress (catalase, CAT; total glutathione peroxidase, T-GPx; total glutathione peroxidase, T-GPx; selenium-dependent glutathione peroxidase, Se-GPx; glutathione reductase, GR; superoxide dismutase, SOD) (d) lipid peroxidation (malondialdhyde, MDA level), and (e) apoptotic process (caspase 3-like, CSP3) was selected for measurements of environmental effects on the populations of clams collected from the different sampling sites. The results of metal bioaccumulation in soft tissues of Ruditapes decussatus revealed a high pollution in the South Lagoon of Tunis with spatial variation and relatively high levels at the navigation channel. Anthropogenic pollutants in the lagoon led to the activation of antioxidant defense and biotransformation enzymes to oxidative damage of the membrane and activation of apoptosis, and revealed neurotoxicity. Among this core of biomarkers, the antioxidants enzymes (CAT, SOD, GR, and GPx) were very sensitive, allowing the discrimination among sites and pointing to the navigation channel as the most impacted site in the southern lagoon of Tunis. Moreover, a significant effect of season was recorded on biomarkers responses (e.g., CAT, GR, SOD, AChE, and CSP3 activities and MDA levels) with higher levels in winter than in summer, probably influenced by the reproductive stage and food availability. Finally, the measurement of the selected core of biomarkers in the whole soft tissues of clams was considered as an integrated indicator of environmental stress. Moreover, R. decussatus proved to be a remarkable sentinel species capable to establish a reliable diagnosis of the health status of the marine environment in different areas of the southern lagoon of Tunis, both in "hot" and "cold" seasons.
Collapse
Affiliation(s)
- Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia.
| | - Marielle Guibbolini
- University Côte d'Azur, CNRS, ECOSEAS, UMR 7035, 28 Avenue Valrose BP 71, 06108, Nice Cedex 2, France
| | - Omar Rouane Hacene
- Laboratoire Réseau de Surveillance Environnementale (LRSE), Department of Biology, University of Oran, 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000, Oran, Algeria
| | - Dalila Saidane Mosbahi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia
| | | |
Collapse
|
4
|
Gu B, Liang W, Yang T, Hu Z, Shen H. Metallothionein, hemocyte status and superoxide dismutase/aspartate aminotransferase activity are sensitive biomarkers of cadmium stress in Onchidium reevesii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105284. [PMID: 31479758 DOI: 10.1016/j.aquatox.2019.105284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Metal pollution in the environment is a serious threat to the biological sustainability of coastal ecosystems. However, our current understanding of the biological effects of metals in these ecosystems is limited. Herein, we investigated the responses of the sea slug Onchidium reevesii to persistent sublethal Cd environmental stress. Dynamic expression was analyzed using various biomarkers. The full-length cDNA of O. reevesii metallothionein (MT) was cloned and consists of 1639 nucleotides encoding a 65 amino acid polypeptide. Phylogenetic analysis showed that Or-MT has conserved Cys residues typical of MTs, including a typical Cys-X-Cys motif, implying that it can function the same as the MT of other shellfish. Expression of Or-MT in response to Cd varied in different tissues, and was highest in gastropod tissues. Thus, regiotemporal expression of MT may be useful for assessing pollution in coastal areas. Cellular immunity (in the hemolymph) and enzyme activity (in the hepatopancreas) were investigated along with hemocyte viability, hemocyte phagocytosis, and superoxide dismutase (SOD) and aspartate aminotransferase (AST) activities. Hemocyte viability was elevated under continuous Cd exposure but hemocyte phagocytosis was decreased. SOD and AST activities in the hepatopancreas fluctuated considerably, and SOD activity was more sensitive. SOD activity was lowest at 4 h and highest at 12 h, while AST activity peaked at 2 h and was lowest at 48 h. Thus, changes in enzyme activity may reveal adaptation to stress. Furthermore, the response patterns of certain enzymes, cellular immunity, and MT expression in O. reevesii could serve as biomarkers of Cd pollution in aquatic environments.
Collapse
Affiliation(s)
- Bingning Gu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China
| | - Wei Liang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China
| | - Tiezhu Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China
| | - Zhongjun Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China.
| | - Heding Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China.
| |
Collapse
|
5
|
Neves RAF, Santiago TC, Carvalho WF, Silva EDS, da Silva PM, Nascimento SM. Impacts of the toxic benthic dinoflagellate Prorocentrum lima on the brown mussel Perna perna: Shell-valve closure response, immunology, and histopathology. MARINE ENVIRONMENTAL RESEARCH 2019; 146:35-45. [PMID: 30910251 DOI: 10.1016/j.marenvres.2019.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Prorocentrum lima is a widely distributed marine benthic dinoflagellate that produces diarrhetic toxins, okadaic acid (OA) and its analogs, that may promote damage on bivalve tissues and cellular responses. Cultivation of the brown mussel Perna perna represents an important economic activity in the tropical and subtropical regions, where mussels may co-occur with P. lima. This study aimed to assess the behavioral, cellular immune responses, and pathological condition of P. perna following a short-term experimental exposure to P. lima. The toxic dinoflagellate treatment was compared to a non-toxic exposure to the chlorophyte Tetraselmis sp. at similar concentrations. The prevalence of pathological conditions and parasites were assessed, and a pathological index was applied by scoring the prevalences into four levels. Reaction time and the number of stimuli necessary for shell-valve closure response significantly increased after 72 h of P. lima exposure. Circulating hemocyte concentration was significantly lower in P. lima exposed mussels than in control mussels at 48- and 96 h of incubation, while hemocyte relative size in exposed mussels was significantly higher than that in control mussels. Comparatively, phagocytic activity and ROS production by hemocytes was significantly higher in mussels exposed to P. lima at 48- and 96 h of incubation, respectively. In addition, exposed mussels significantly presented exacerbated hemocytic infiltration in digestive organs, higher prevalence of moderate to severe atrophy in digestive tubules, and higher pathological index which suggests an impairment of mussel immunologic responses. A lower prevalence of Rickettsia-like organisms (RLOs), trematodes and copepods in P. lima exposed mussels suggests a direct toxic effect of OA on parasites. The exposure of mussels to P. lima is likely to occur frequently and may lead to constraints on mussel behavior, physiology, and pathological condition.
Collapse
Affiliation(s)
- Raquel A F Neves
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.
| | - Tainá Cristina Santiago
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Wanderson F Carvalho
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Edson Dos Santos Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil
| | - Silvia M Nascimento
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Pirrone C, Rossi F, Cappello S, Borgese M, Mancini G, Bernardini G, Gornati R. Evaluation of biomarkers in Mytilus galloprovincialis as an integrated measure of biofilm-membrane bioreactor (BF-MBR) system efficiency in mitigating the impact of oily wastewater discharge to marine environment: a microcosm approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:49-62. [PMID: 29501937 DOI: 10.1016/j.aquatox.2018.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
The large volumes of oily wastewater discharged to marine environment cause heavy impacts on the coastal marine ecosystem. The selection of an appropriate technology to reduce these impacts should be based on the respect of the discharge limits and on the effective assessment and monitoring of its effects on biological organism preservation. To this aim, we set up a controlled microcosm-scale system to compare the effects of a treated and untreated oily wastewater discharge in which the restore process is performed through a Membrane Bio-Reactor. The system is completed by other three microcosms to control and isolate any possible concurrent effect on the Mytilus galloprovincialis, used as sentinel organism. Mytilus galloprovincialis have been kept in all these microcosms, and then mRNA expression and morphology were evaluated on gills and digestive gland. The genes considered in this work are Heat Shock Protein 70 and Metallothionein 10, involved in response to physicochemical sublethal stressors, Superoxide dismutase 1, Catalase, and Cytochrome P450 involved in oxidative stress response. Our results evidenced a significant overexpression, both in gills and digestive gland, of HSP70 in samples maintained in the microcosm receiving the untreated effluent, and of MT10 in those animals kept in microcosm where the effluent was treated. Even though the mRNA modifications are considered "primary" and transient responses which do not always correspond to protein content, the study of these modifications can help to gain insights into the mechanisms of action of xenobiotic exposure. Morphological analysis suggested that, although different, depending on the microcosm, the most serious damages were found in the gill epithelium accompanied with severe haemocyte infiltration, whilst in digestive gland the tissue architecture alterations and the haemocyte infiltration were less pronounced. These observations suggest that the immune system was activated as a general response to stressful stimuli such as the presence of toxic compounds. Moreover, the results indicate that the treatment process is useful. In fact, samples derived from the microcosm receiving the treated effluent, even though presenting some signs of stress, seemed to partially recover the normal structure, although their mRNA expression indicated some cellular suffering.
Collapse
Affiliation(s)
- Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Federica Rossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Simone Cappello
- Institute for Coastal Marine Environment, National Research Center, Via San Raineri 86, 98122 Messina, Italy
| | - Marina Borgese
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Giuseppe Mancini
- Electric, Electronics and Computer Engineering Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy; "The Protein Factory" Research Center, Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Via Mancinelli 7, 20131, Milano, Italy
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy; "The Protein Factory" Research Center, Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Via Mancinelli 7, 20131, Milano, Italy.
| |
Collapse
|
7
|
Wang C, Yang J, Zhu L, Yan L, Lu D, Zhang Q, Zhao M, Li Z. Never deem lightly the "less harmful" low-molecular-weight PAH, NPAH, and OPAH - Disturbance of the immune response at real environmental levels. CHEMOSPHERE 2017; 168:568-577. [PMID: 27838030 DOI: 10.1016/j.chemosphere.2016.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/29/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
The upcoming energy structure optimization and the implementation of strict emissions control will effectively alleviated the pollution of high-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. Compared to HMW PAHs, the immune response to low-molecular-weight (LMW) PAHs is recognized as "less harmful", despite the high proportions of these substances. The present study intends to investigate the effects of several of the most abundant LMW PAHs on macrophages RAW264.7 at environmentally relevant doses. The data assembled herein showed that Fluoranthene (Fluo, PAH) formed a π-π interaction with the Phe12 residue of AhR while inhibiting the transcription of CYP1A1 and CYP1B1, and ultimately induced the inflammatory cytokines in RAW264.7. The 1-Nitropyrene (1-Nitro, NPAH) formed both a π-π interaction and a hydrogen bond with AhR, stimulated CYP1A1transcription, while suppressed the cytokine levels. Additionally, the inflammation potency caused by TPAHs was highly correlated with the cytotoxic potency rather than the oxidative stress potency. When stimulated by LPS, the transcription of IL-6 was inhibited by Fluo, and 1-Nitro suppressed both IL-6 and TNFα transcription. Furthermore, only 1-Nitro gave a significant inhibition on phagocytosis. The effects of 9-Fluorenone (9-Fluo, OPAH) on macrophages remained insignificant throughout the study since the low affinity for AhR, which resulted in low cytotoxicity. Collectively, this study suggested that LMW PAHs tended to cause mild inflammation when they bind without activating AhR. During infection, AhR ligands caused immunosuppression and this potency for TPAHs may be higher in AhR activator than that in AhR inactivator.
Collapse
Affiliation(s)
- Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jinhuan Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linwensi Zhu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lu Yan
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuoyu Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
8
|
Jiang Y, Tang X, Sun T, Wang Y. BDE-47 exposure changed the immune function of haemocytes in Mytilus edulis: An explanation based on ROS-mediated pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:58-66. [PMID: 27871004 DOI: 10.1016/j.aquatox.2016.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Brominated Tetra-BDE (BDE-47), is suggested to be widely distributed in marine environments and highly accumulated in marine organisms. Blue mussel Mytilus edulis is a sentinel organism that is commonly used for monitoring chemical contaminants in coastal ecosystems, and its haemocytes play an essential role in immune function. Therefore, we estimated the effects of BDE-47 exposure on the M. edulis haemocytes' immune function under controlled laboratory conditions. The study found the following results: (1) BDE-47 exposure increased the mortality of the haemocytes and decreased the total haemocyte counts. The ultrastructure and microstructure in the haemocytes were significantly changed, and the micronucleus frequency was increased steadily in a concentration-dependent manner, inferring that cellular and molecular damages occur during the exposure. (2) The immune function of the haemocytes was estimated from lysosomal and phagocytic changes. The lysosomal membrane stability was significantly disrupted compared to the control according to neutral red retention time changes, and the phagocytic ability was reduced significantly. Two lysosomal enzymes, acid phosphatases and alkaline phosphatases, presented similar increasing trends during the treatment. (3) BDE-47 exposure significantly induced the overproduction of reactive oxygen species and malondialdehyde in a clear time- and concentration-dependent manner, suggesting the occurrence of oxidative stress. We thus presumed that BDE-47 exposure affected the immune function of the mussel's haemocytes, and an ROS-mediated pathway might be one of the possible explanations for the observation.
Collapse
Affiliation(s)
- Yongshun Jiang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tianli Sun
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
9
|
Khaniyan M, Salamat N, Safahieh A, Movahedinia A. Detection of benzo[a]pyrene-induced immunotoxicity in orange spotted grouper (Epinephelus coioides). ENVIRONMENTAL TOXICOLOGY 2016; 31:329-338. [PMID: 25263604 DOI: 10.1002/tox.22047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to investigate the effects of benzo[a]pyrene (BaP) on immune status of orange spotted grouper (Epinephelus coioides). Fish were injected with 2, 20 and 35 mg/kg-bw of BaP and were kept under laboratory conditions for 14 days. Blood samples were taken at days 1, 4, 7, and 14 and changes in total WBC and RBC, phagocytosis, lysozyme activity, lysosomal membrane stability, immunoglobulin M (IgM) level and antibacterial activity were evaluated. Also BaP bioaccumulation in fish muscle was measured. BaP concentration in the muscle of treated fish reached a maximum level after 4 days (P < 0.05). Exposure of fish to BaP resulted in a significant decrease of total RBC and WBC, lysozyme activity, lysosomal membrane stability, IgM level and antibacterial activity after 4 days and phagocytosis after 7 days of the experiment (P < 0.05). Totally, the results revealed BaP ability to suppress the fish immune function.
Collapse
Affiliation(s)
- Maryam Khaniyan
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Negin Salamat
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Alireza Safahieh
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| |
Collapse
|
10
|
Beaudry A, Lacaze E, Jobin-Piché A, Masson S, Auffret M, Brousseau P, Fournier M. Ecotoxicological Evaluation of the Immunocompetence of two Bivalves Species ( Mya Arenaria and Mytilus Edulis ) in the Saguenay Fjord Including a Salinity Gradient. J Xenobiot 2015; 5:5769. [PMID: 30701041 PMCID: PMC6324476 DOI: 10.4081/xeno.2015.5769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
| | - E Lacaze
- INRS-Institut-Armand-Frappier, Laval, Québec, Canada
| | - A Jobin-Piché
- Parc Marin Saguenay St-Laurent, Rivière-Éternité, Québec, Canada
| | - S Masson
- Aquarium du Québec, Québec, Canada
| | - M Auffret
- Université de Bretagne Occidentale, Brest, France
| | | | | |
Collapse
|
11
|
Cotou E, Tsangaris C, Henry M. Comparative study of biochemical and immunological biomarkers in three marine bivalves exposed at a polluted site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1812-1822. [PMID: 22956114 DOI: 10.1007/s11356-012-1150-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
A battery of biochemical and immunological biomarkers used for pollution assessment were measured for first time in the clams Venus verrucosa and Callista chione and were compared with those of the mussel Mytilus galloprovincialis, a well-established indicator organism utilized in numerous environmental monitoring programs. Clams and mussel were transplanted at a polluted and a reference site or maintained at the laboratory. Among biochemical biomarkers, acetylcholinesterase did not differ at the polluted site in all species, but there was a significant difference between the mussel and the clams, glutathione S-transferase showed a clear inhibition at the polluted site in all species and a significant difference between the two clams was also indicated, while catalase activities were increased only in V. verrucosa at the polluted site and not in mussel or the other clam. Immunological biomarkers responses were also pronounced at the polluted site. Lysozyme activity was species-dependent whereas respiratory burst activity measured as luminol-dependent chemiluminescence (CL) was site and stimulus dependent, and it was evident in M. galloprovincialis and V. verrucosa and not in C. chione. Further investigation focused on biochemical and immunological biomarkers related with the oxidative mechanisms in clams will strengthen and expand their use as bioindicators for pollution assessment.
Collapse
Affiliation(s)
- Efthimia Cotou
- Institute of Aquaculture, Hellenic Centre for Marine Research (HCMR), Agios Kosmas, 16777, Ellinikon, Greece.
| | | | | |
Collapse
|
12
|
Mohamed AH. Sublethal toxicity of Roundup to immunological and molecular aspects of Biomphalaria alexandrina to Schistosoma mansoni infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:754-60. [PMID: 21126764 DOI: 10.1016/j.ecoenv.2010.10.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/24/2010] [Accepted: 10/25/2010] [Indexed: 05/30/2023]
Abstract
The present study was performed to elucidate the cellular mechanisms of Biomphalaria alexandrina snails hemocytes against sublethal concentration (10 mg/L) of herbicide Roundup (48% Glyphosate) and/or Schistosoma mansoni infection during 7 days of exposure. Obtained results indicated that herbicide treatment and/or infection led to significant increase (P<0.05) in total hemocytes count during exposure period. Examination of hemocytes monolayers resulted in observation of 3 morphologically different cell types, round small, hyalinocytes and spreading hemocytes. Spreading hemocytes are the dominant, more responsive and highly phagocytic cell type in all experimental groups. Moreover, the exposure to herbicide, infection or both together led to a significant increase (P<0.05) of in vitro phagocytic activity against yeast cells during 7 days of exposure. In addition, flow cytometric analysis of cell cycle and comet assay, resulted in DNA damage in B. alexandrina hemocytes exposed to herbicide and/or S. mansoni infection when compared to control group. The immunological responses as well as molecular aspects in B. alexandrina snails have been proposed as biomarkers of exposure to environmental pollutants.
Collapse
Affiliation(s)
- Azza H Mohamed
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| |
Collapse
|
13
|
Greco L, Pellerin J, Capri E, Garnerot F, Louis S, Fournier M, Sacchi A, Fusi M, Lapointe D, Couture P. Physiological effects of temperature and a herbicide mixture on the soft-shell clam Mya arenaria (Mollusca, Bivalvia). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:132-141. [PMID: 20853449 DOI: 10.1002/etc.359] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The aim of the current study was to investigate effects of temperature and a mixture of herbicides on the physiological status of the bivalve Mya arenaria. Bivalves acclimated to two temperatures (7 and 18°C) were exposed for 28 d to 0.01 mg/L of a pesticide formulation containing dichlorophenoxyacetic acid (2,4-D), 2-(2-methyl-4-chlorophenoxy) propionic acid (mecoprop), and 3,6-dichloro-2-methoxybenzoic acid (dicamba). At days 7, 14, and 28, mortality, immune parameters (hemocyte number, phagocytic activity, and efficiency), biomarkers of oxidative stress (catalase [CAT] and superoxide dismutase [SOD] activities and malondialdehyde [MDA] content), the metabolic enzyme cytochrome C oxidase (CCO), a biomarker of pesticide exposure (acetylcholinesterase [AChE]), and the activity of an enzyme related to gametogenesis (aspartate transcarbamylase [ATCase]) were monitored in clam tissues. Gonadosomatic index (GSI), condition factor (CF), and sex were also assessed. In clams acclimated to 7°C, exposure to pesticide enhanced CCO activity and CF and decreased MDA content, hemocyte number, CAT, and SOD activities. In clams kept at 18°C, pesticide effects appeared minor compared with samples kept at 7°C. In bivalves acclimated to 18°C, CCO, SOD, and ATCase activity and MDA content were enhanced, and hemocyte number, CAT, and AchE activities and phagocytosis were suppressed. In samples exposed to pesticides, increased temperature enhanced MDA content and CCO and SOD activity and suppressed hemocyte number and CAT and AchE activity. A gradual sexual maturation was observed in both sexes through experimental time, but females had a higher sensitivity to temperature and pesticides compared to males. Increased temperature altered the ability of the sentinel species Mya arenaria to respond to pesticide exposures. Further work is needed to understand the impacts of increasing temperature on the whole St. Lawrence estuary ecosystem.
Collapse
Affiliation(s)
- Luna Greco
- Università Cattolica del Sacro Cuore, Agricultural and Environmental Chemistry Institute, Piacenza, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gagné F, Blaise C, Pellerin J, Fournier M, Gagnon C, Sherry J, Talbot A. Impacts of pollution in feral Mya arenaria populations: the effects of clam bed distance from the shore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:5844-5854. [PMID: 19698974 DOI: 10.1016/j.scitotenv.2009.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/30/2009] [Accepted: 07/07/2009] [Indexed: 05/28/2023]
Abstract
This study examined the relationships between population characteristics and the expression of physiological biomarkers of stress in an intertidal clam population under pollution at sites differing in thermal history and coastline distance. The clam population metrics were age distribution, growth, condition factor, distance of the clam beds from the shore, and gonad development. Physiological biomarkers comprised biomarkers of defence such as superoxide dismutase, labile IIb metals in tissues, redox status of metallothioneins and glutathione S-transferase, of tissue damage such as lipid peroxidation and DNA strand breaks, of reproduction as determined by vitellogenin-like proteins and gonadosomatic index and immunocompetence such as phagocytosis and hemocyte viability. Age-related pigments were also examined to compare the physiological age of the clams with their chronological age. The results showed that all the above biomarkers were significantly affected at one of the two polluted sites at least. Distance from the shore was significantly correlated with most (81%) of the biomarkers examined. Clams collected at one polluted site were physiologically older than clams from the corresponding reference site. Canonical and adaptive regression (artificial neural networks) analyses found that the biomarkers measured in this study were able to predict the ecologically relevant endpoints. Biomarkers implicated in defense mechanisms, tissue damage and age-related pigments were most closely related to the clam population characteristics. Sensitivity analysis of the learning algorithm found that the following physiological and biochemical markers were the most predictive, in decreasing order, of clam population characteristics: glutathione S-transferase, phagocytosis, age pigments, lipid peroxidation in the gills, labile IIb metals and total MT levels. These biomarkers were affected by the distance of the clam beds from the shore, site quality (pollution) and reproduction activity.
Collapse
Affiliation(s)
- F Gagné
- Fluvial Ecosystem Research Section, Environment Canada, 105 McGill Street, Montréal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
15
|
Differential in vivo response of soft-shell clam hemocytes against two strains of Vibrio splendidus: Changes in cell structure, numbers and adherence. J Invertebr Pathol 2009; 102:50-6. [DOI: 10.1016/j.jip.2009.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/22/2009] [Accepted: 06/25/2009] [Indexed: 11/15/2022]
|
16
|
Pichaud N, Pellerin J, Fournier M, Gauthier-Clerc S, Rioux P, Pelletier E. Oxidative stress and immunologic responses following a dietary exposure to PAHs in Mya arenaria. Chem Cent J 2008; 2:23. [PMID: 19055737 PMCID: PMC2613372 DOI: 10.1186/1752-153x-2-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/02/2008] [Indexed: 11/18/2022] Open
Abstract
Background The aim of this research was to investigate oxidative stress and immune responses following a dietary polycyclic aromatic hydrocarbon (PAH) exposure in a marine bioindicator organism, the soft shell clam, Mya arenaria. Immune parameters in hemolymph (haemocyte number, efficiency of phagocytosis and haemocyte activity) and assessment of oxidative stress using catalase (CAT) activity and levels of malondialdehyde (MDA) performed on the digestive gland were estimated as biomarkers in clams fed in mesocosm with PAH contaminated phytoplankton. MDA levels and CAT activities were also measured in situ in organisms sampled in a control site (Metis Beach, Québec, Canada) as well as organisms sampled in a site receiving domestic effluents (Pointe-au-Père, Québec, Canada), to assess effects of abiotic variables related to seasonal variations and mixed contamination on the selected parameters. Results Results on immune parameters suggest that the PAHs may interfere with the maturation and/or differentiation processes of haemocytes. MDA results showed that lipid peroxidation did not occur following the exposure. The levels of CAT activity corresponded to weak antioxidant activity (no significant differences). Recovery was noted for all the immune endpoints at the end of the experiment. Conclusion Results suggest that immune parameters are early biomarkers that can efficiently detect a physiological change during a short term exposure to low concentrations of PAHs. The in situ survey (in the natural environment) suggested that clams from the Pointe-au-Père site did not show any oxidative stress as well as the clams contaminated in mesocosm, probably due to the low concentrations of PAHs used for this study. MDA levels increased however in organisms from Metis Beach, a response probably related to domestic effluents or parasitism.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Institut des Sciences de la Mer de Rimouski, Rimouski, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
17
|
Gagné F, Blaise C, Pellerin J, Fournier M, Durand MJ, Talbot A. Relationships between intertidal clam population and health status of the soft-shell clam Mya arenaria in the St. Lawrence Estuary and Saguenay Fjord (Québec, Canada). ENVIRONMENT INTERNATIONAL 2008; 34:30-43. [PMID: 17825412 DOI: 10.1016/j.envint.2007.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 05/17/2023]
Abstract
The purpose of this study was to examine the impacts of anthropogenic activity on the health status of intertidal clam populations of the Saguenay Fjord and the St. Lawrence Estuary (Québec, Canada). Clams were collected during low tide at sites subject to direct contamination and at sites far from human activity. Clams were analyzed for tributyltin and dibutyltin total levels and toxic stress (glutathione S-transferase, gonadal lipid peroxidation and DNA strand breaks), immunocompetence (phagocytic activity, hemocyte count and viability), reproduction (gonado-somatic index, gamete maturation, and vitellogenin-like proteins), energy status (temperature-dependent mitochondrial electron transport, and gonad lipids), and individual status (age, condition factor, and growth index). These responses were compared against population characteristics such as live clam density, number of empty shells, and sex ratio. The results show that clam density decreased with distance from the estuary (high salinity level) to upstream of the fjord (low salinity). There was no clear relationship between the number of empty shells and distance or site quality. Clam density values corrected against distance were significantly correlated with hemocyte viability, phagocytic activity, mitochondrial electron transport (MET), DNA damage in gonad, and temperature-dependent mitochondrial electron transport activity. A canonical analysis of the various groups of biomarkers revealed that population metrics were more strongly related with immunocompetence, followed by energy status and temperature-dependent mitochondrial electron transport activity. However, toxic stress biomarkers were strongly associated with energy status and reproduction. This was further confirmed by non-linear modeling using adaptive artificial neural networks (genetic selection and back propagation learning paradigms), where the following parameters were able to predict population parameters with <20% error: gonad maturation and somatic index, MET (at 4 degrees C), gonad LPO, DNA damage, and phagocytic capacity. Intertidal clam populations were influenced by a distance gradient effect (salinity), where immunocompetence, in addition to energy status, was the strongest physiological parameter related to clam population metrics.
Collapse
Affiliation(s)
- F Gagné
- Fluvial Ecosystems Research, Aquatic Ecosystems Research Protection Branch, Environment Canada, 105 McGill Street, Montréal, Québec, Canada H2Y 2E7.
| | | | | | | | | | | |
Collapse
|
18
|
Novas A, Barcia R, Ramos-Martínez JI. After the Prestige oil spill modifications in NO production and other parameters related to the immune response were detected in hemocytes of Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 85:285-290. [PMID: 17980924 DOI: 10.1016/j.aquatox.2007.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/18/2007] [Accepted: 09/25/2007] [Indexed: 05/25/2023]
Abstract
In marine mollusks, many physiologic functions are regulated seasonally depending on such factors as the reproductive cycle or the presence of food. The synthesis of nitric oxide by hemocytes of Mytilus galloprovincialis is among the multiple physiologic actions in the immune response, and it is also affected by season. The maximal basal production of NO by hemocytes of M. galloprovincialis was detected in summer, whereas the minimum values were detected in winter. In winter, the presence of IL-2 induced an increase in NO production that was not detected in summer. Three months after the Prestige oil spill (November 2002), basal NO production by the hemocytes of mussels in the Galician coast showed a progressive decrease and stopping, both in summer and in winter. The characteristic increase of NO synthesis induced by IL-2 in winter also disappeared all through 2003 and 2004. The two different nitric oxide synthases previously identified by immunoblotting between 1999 and 2002 were undetectable in both 2003 and 2004. When comparing the data obtained during 2003 and 2004 to those obtained in previous years, an increase in the proportion of SH cells was detected. Also, these cells showed a higher sensitivity to apoptosis- and necrosis-inducing agents than in earlier years.
Collapse
Affiliation(s)
- Ana Novas
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela (USC), Campus of Lugo, School of Veterinary Medicine, E-27002 Lugo, Spain
| | | | | |
Collapse
|
19
|
Cherkasov A, Grewal S, Sokolova I. Combined effects of temperature and cadmium exposure on haemocyte apoptosis and cadmium accumulation in the eastern oyster Crassostrea virginica (Gmelin). J Therm Biol 2007. [DOI: 10.1016/j.jtherbio.2007.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Ordás MC, Albaigés J, Bayona JM, Ordás A, Figueras A. Assessment of in vivo effects of the prestige fuel oil spill on the mediterranean mussel immune system. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 52:200-6. [PMID: 17180482 DOI: 10.1007/s00244-006-0058-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/26/2006] [Indexed: 05/13/2023]
Abstract
A laboratory experiment was carried out to study immune function alteration of the mussel Mytilus galloprovincialis when exposed to the Prestige oil spilled in November 2002 on the northwestern Spanish coast. Mussels were maintained for 4 months in tanks with flowing seawater and with 1, 2, and 0 kg (controls) Prestige fuel oil. Polycyclic aromatic hydrocarbon concentrations, which were determined in gills and digestive glands, were higher in digestive glands. The methylphenantrene and dibenzothiophene profiles confirmed the real exposure of mussels to the fuel oil. Immune data analysis revealed that no differences between fuel-treated and control animals were found in the cellular immune parameters measured (hemocyte viability, phagocytic activity, nitric oxide production, and chemiluminescence emission). In addition, histologic observations did not reveal tissue lesions in any of the samples, probably because of the short time of fuel-oil exposure. In contrast, significant differences were found in serum protein concentration and lysozyme activity between the fuel-treated mussels and controls. However, these humoral immune parameters were dependant on numerous environmental and physiologic factors, so it was difficult to ascertain the real effect of the fuel oil on their variability. Because hemocytes are the primary line of defense of bivalve mollusks, the results obtained in the present study suggest that the mussel immune system was not significantly affected by exposure to the Prestige fuel oil.
Collapse
Affiliation(s)
- M C Ordás
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Eduardo Cabello 6, 36208 Vigo, Spain
| | | | | | | | | |
Collapse
|
21
|
Gauthier-Clerc S, Pellerin J, Fournier M, Amiard JC. Immunological and biochemical responses in Mya arenaria (Mollusca Bivalvia) exposed in vivo to estradiol-17beta. Comp Biochem Physiol C Toxicol Pharmacol 2006; 144:228-34. [PMID: 17030151 DOI: 10.1016/j.cbpc.2006.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 08/18/2006] [Accepted: 08/28/2006] [Indexed: 11/17/2022]
Abstract
Soft-shell clams Mya arenaria were injected with 10, 20 or 40 nmol of estradiol 17beta (E2). We observed a significant inhibiting effect of E2 on phagocytic activity of hemocytes from clams exposed to 10 and 20 nmol. A dose-response increase of the glycogen phosphorylase in the gonad tended to show a remobilisation of glycogen reserves involved in vitellogenesis although the exposure time must have been too short to observe a decrease in glycogen reserves or an increase in RNA concentration. Both results corroborate those of other studies about estrogen involvement in controlling immune capacity and energy metabolism related to vitellogenesis in bivalves. We can assume that immune parameters should now be taken into consideration in assessing endocrine disruption in bivalves. Nevertheless further studies are needed to understand the controlling pathways of E2 with a special regard on its interactions with other effectors involved in bivalve immunity and reproduction as well.
Collapse
Affiliation(s)
- S Gauthier-Clerc
- Institut de recherche sur les Zones Côtières Inc., Université de Moncton, Campus de Shippagan, 232-B avenue de l'église, Shippagan, Nouveau-Brunswick, Canada E8S 1J2.
| | | | | | | |
Collapse
|
22
|
Bigas M, Durfort M, Poquet M. Cytological response of hemocytes in the European flat oyster, Ostrea edulis, experimentally exposed to mercury. Biometals 2006; 19:659-73. [PMID: 17043754 DOI: 10.1007/s10534-006-9003-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
Molluscs bivalves have been widely used as bioindicators to monitor contamination levels in coastal waters. In addition, many studies have attempted to analyze bivalve organs, considered pollutant-targets, to understand the bio-accumulation process and to characterize the effects of pollutants on the organisms. Here we analyzed the effects of mercury exposure on flat oyster hemocytes. Optical and electronic microscope procedures were used to characterize hemocyte morphology. In addition, cell solutions treated with acridine orange were analyzed by flow cytometry and laser scanning cytometry in order to evaluate the variations of cytoplasmic granules (red fluorescence, ARF) and cell size (green fluorescence, AGF) of hemocyte populations over time. Light and electron microscopical studies enabled us to differentiate four hemocyte subpopulations, agranulocytes (Types I and II) and granulocytes (Types I and II). Slight morphological differences were observed between control and Hg-exposed cells only in granulocytes exposed to Hg for 30 days, where condensed chromatin and partially lysed cytoplasmic regions were detected. Flow and laser scanning cytometry studies allowed us to differentiate three hemocyte populations, agranulocytes (R1) and granulocytes (R2 and R3). The exposure time to Hg increased the average red fluorescence (ARF) of agranulocytes and small granulocytes, while there was no change in large granulocytes, which showed a loss of membrane integrity. In control oysters, the three hemocyte populations showed an increase of ARF after 19 days of exposure although initial values were restored after 30 days. The average green fluorescence (AGF) was more stable than the ARF throughout the experiment. In Hg-exposed oysters, the values of AGF of agranulocytes showed an increase at half Hg-exposure period while the AGF values of large granulocytes decreased throughout the experiment, confirming the instability of these types of cells. The relative percentage of small granulocytes and granulocytes showed time variations in both control and exposed oysters. However, the values of small granulocytes remained constant during the whole experiment. The fact that there were only changes in agranulocytes and large granulocytes suggested a possible relationship between these two types of cells. In a quantitative study, we found a significant linear relationship between the agranulocytes and large granulocytes.
Collapse
Affiliation(s)
- Montserrat Bigas
- Departament de Biologia Cel*lular, Facultat de Biologia, Universitat de Barcelona, Diagonal-645, E-08028, Barcelona, Spain
| | | | | |
Collapse
|
23
|
Gagnaire B, Thomas-Guyon H, Burgeot T, Renault T. Pollutant effects on Pacific oyster, Crassostrea gigas (Thunberg), hemocytes: Screening of 23 molecules using flow cytometry. Cell Biol Toxicol 2006; 22:1-14. [PMID: 16463015 DOI: 10.1007/s10565-006-0011-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 08/22/2005] [Indexed: 11/26/2022]
Abstract
The shellfish industry is an important economic activity in France, occurring mostly in estuarine zones subject to pollution due to anthropogenic activities. The harmful effects of pollutants on species inhabiting these estuarine zones are not well known. Among marine species, bivalve mollusks--particularly Pacific oyster, Crassostrea gigas--may serve a model of interest. The species is sedentary and filter-feeding, which favors bioaccumulation of pollutants in their tissues. Oysters may be suitable for studies on disturbance by pollutants of physiological activities, among which defense mechanisms are poorly documented in bivalves. In this study, effects of pollutants on hemocyte functions were monitored in Pacific oyster, C. gigas. Hemocytes were exposed in vitro to selected pollutants. The strategy for investigating the effects of pollutants on hemocyte functions is based on several biomarkers, which is more relevant than that of published papers based on single-endpoint experiments. Pollutants belonging to the most important groups of xenobiotics (PAHs, PCBs, and pesticides) were selected and their effect on hemocyte activities was analyzed using flow cytometry. Twenty-three pollutants were tested and eight of them showed significant modulation of hemocyte activities. PAHs and PCB 77 induced a decrease of hemocyte activity after an incubation periods of 4 and 24 h at 200 micro mol/L. Three pesticides (2,4D, paraoxon, and chlorothalonil) modulated hemocyte activities. A mixture of eight pesticides also decreased phagocytotic activity. This study is one of the first to investigate the effects of so many pollutants on hemocyte functions at the same time and therefore allows a real comparison of different pollutant effects.
Collapse
Affiliation(s)
- B Gagnaire
- IFREMER La Tremblade, Laboratoire de Génétique et Pathologie (LGP), La Tremblade, France
| | | | | | | |
Collapse
|
24
|
Sokolova IM, Evans S, Hughes FM. Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. ACTA ACUST UNITED AC 2004; 207:3369-80. [PMID: 15326213 DOI: 10.1242/jeb.01152] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exposure to environmentally prevalent heavy metals such as cadmium can have detrimental effects on a variety of commercially and ecologically important species such as oysters. Since Cd(2+) is known to induce apoptosis in immune cells of vertebrates, we have investigated the effects of this metal on isolated oyster hemocytes, the main cellular immune defense in mollusks. Enhanced apoptosis of these cells could conceivably create immunosuppressed conditions in these organisms and result in reduced disease resistance and increased opportunistic infection, resulting in decline of their populations. Cd(2+) exposure induced apoptosis in oyster hemocytes in a dose-dependent manner in the range of 10-100 micromol l(-1), as indicated by the translocation of phosphatidylserine to the outer leaflet of the plasma membrane. At higher concentrations (200-1000 micromol l(-1)), there was no further increase in apoptosis but a significant increase in the level of necrosis. In stark contrast to vertebrate immune cells, there was no decrease in the mitochondrial membrane potential or activation of caspases in response to Cd(2+) in the apoptotic range. Surprisingly, Cd(2+) exposure in this range did cause a significant decrease in intracellular ATP levels, indicating a severe disturbance of energy metabolism. Similarly, Cd(2+) exposure of isolated mitochondria resulted in partial uncoupling of mitochondria but no difference in mitochondrial membrane potential. The results demonstrate that the important environmental pollutant Cd(2+) induces apoptosis in oyster immune cells and does so through a mitochondria/caspase-independent pathway, suggesting that a novel, perhaps ancient, apoptotic pathway is active in these cells. Furthermore, it appears that the observed decrease in ATP production during apoptosis is not due to the loss of the mitochondrial proton-motive force but is more likely to be due to inhibition of the F(0)/F(1)-ATPase and/or mitochondrial ADP/ATP or substrate transport.
Collapse
Affiliation(s)
- I M Sokolova
- Biology Department, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA.
| | | | | |
Collapse
|
25
|
Russo J, Lagadic L. Effects of environmental concentrations of atrazine on hemocyte density and phagocytic activity in the pond snail Lymnaea stagnalis (Gastropoda, Pulmonata). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2004; 127:303-311. [PMID: 14568729 DOI: 10.1016/s0269-7491(03)00269-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Immunotoxicological effects of environmentally relevant concentrations (10, 23, 50, 100 microg/l) of atrazine were studied in Lymnaea stagnalis. Individual hemolymph sampling was performed at 0, 24, 48, 72, 96, 168, 336, 504 and 672 h during exposure. Every atrazine concentration induced a significant increase in the mean number of circulating hemocytes, without any concentration-response relation. A peak (1.6-fold increase) of hemocyte density was observed after 96 h of exposure. After 504 h, the number of hemocytes remained higher only in the snails exposed to the two highest concentrations. Granulocytes contributed most to the increase in hemocyte density in herbicide-exposed snails. Both short- (24 and 96 h) and long-term (504 h) exposures resulted in significant inhibition of hemocyte phagocytic activity upon E. coli. Over the long-term, phagocytosis recovered for the two lowest concentrations. After 504 h of exposure, every herbicide level resulted in a significant reduction of reactive oxygen species production in E. coli-stimulated hemocytes, which was not observed for short-term exposures.
Collapse
Affiliation(s)
- Jacqueline Russo
- UMR 6553 Ecobio CNRS Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes cedex, France.
| | | |
Collapse
|
26
|
Faucet J, Maurice M, Gagnaire B, Renault T, Burgeot T. Isolation and primary culture of gill and digestive gland cells from the common mussel Mytilus edulis. ACTA ACUST UNITED AC 2004; 25:177-84. [PMID: 15801163 DOI: 10.1007/s11022-004-8227-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As the marine mussel Mytilus edulis is commonly used as a sentinel species, it would be useful to develop a primary culture of the target organs most often in contact with the marine environment. This study reports an improved method for dissociating the digestive gland and gills of M. edulis and considers the effect of mussel storage on cell viability and functionality before culture initiation. Viability and enzymatic activities such as those of esterase and peroxidase were monitored by flow cytometry, a sensitive, objective technique allowing large volumes of cells to be counted within a short time. A primary culture of digestive gland showed more than 75% viability after 72 h. Mussels were maintained in an aquarium containing clean, oxygenated seawater at 12 degrees C for two days before culture initiation, and dissociation was performed mechanically and chemically with Ca-Mg-free saline to obtain digestive gland cells. Application of non-specific esterase activity, using fluorescein diacetate (FDA test) coupled with flow cytometry, characterised the functionality of digestive gland and gill cells in culture.
Collapse
Affiliation(s)
- Jérôme Faucet
- IFREMER, Direction Environement Littoral, Département Polluants chimiques, Laboratoire d'Ecotoxicologie, Nantes, France.
| | | | | | | | | |
Collapse
|