1
|
Ayobahan SU, Alvincz J, Reinwald H, Strompen J, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Comprehensive identification of gene expression fingerprints and biomarkers of sexual endocrine disruption in zebrafish embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114514. [PMID: 36608563 DOI: 10.1016/j.ecoenv.2023.114514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Endocrine disruptors (EDs), capable of modulating the sex hormone system of an organism, can exert long-lasting negative effects on reproduction in both humans and the environment. For these reasons, the properties of EDs prevent a substance from being approved for marketing. However, regulatory testing to evaluate endocrine disruption is time-consuming, costly, and animal-intensive. Here, we combined sublethal zebrafish embryo assays with transcriptomics and proteomics for well-characterized endocrine disrupting reference compounds to identify predictive biomarkers for sexual endocrine disruption in this model. Using RNA and protein gene expression fingerprints from two different sublethal exposure concentrations, we identified specific signatures and impaired biological processes induced by ethinylestradiol, tamoxifen, methyltestosterone and flutamide 96 h post fertilization (hpf). Our study promotes vtg1 as well as cyp19a1b, fam20cl, lhb, lpin1, nr1d1, fbp1b, and agxtb as promising biomarker candidates for identifying and differentiating estrogen and androgen receptor agonism and antagonism. Evaluation of these biomarkers for pre-regulatory zebrafish embryo-based bioassays will help identify endocrine disrupting hazards of compounds at the molecular level. Such approaches additionally provide weight-of-evidence for the identification of putative EDs and may contribute significantly to a reduction in animal testing in higher tier studies.
Collapse
Affiliation(s)
- Steve U Ayobahan
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Julia Alvincz
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Jannis Strompen
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Elke Eilebrecht
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
2
|
Li X, Wang J, Ba W, Zhang S, Lin Z, Gao M, Tian H, Ru S. Mechanistic revealing of reproductive behavior impairment in male guppy (Poecilia reticulata) induced by environmentally realistic 2,2'-dithiobis-pyridine exposure. CHEMOSPHERE 2022; 286:131839. [PMID: 34403901 DOI: 10.1016/j.chemosphere.2021.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Although (PS)2, the primary degradation product of emerging antifouling biocides metal pyrithiones (MePTs), can disrupt the reproductive behavior of fish at an environmentally relevant ng/L level, the underlying mechanism is still largely unknown. This study exposed sexually mature male guppy (Poecilia reticulata) to 20, 200, and 2000 ng/L (PS)2 to explore the compromised effect of (PS)2 on reproductive behavior through a realistic competing scenario. The results showed that (PS)2 suppressed male guppies' sexual interest to stimulus females, reduced their competitive behavior frequencies toward rival males, and decreased their mating time and frequency. (PS)2 exposure did not affect male guppies' secondary sexual characteristics or induce estrogenic activity. Whole-brain transcriptome sequencing identified 1070 differentially expressed genes (DEGs) with 872 up-regulated genes, which were functionally enriched into Gene Ontology terms pertaining to extracellular matrix (ECM) and extracellular region. KEGG enrichment for the DEGs uncovered that the activations of ECM-receptor interaction and focal adhesion pathways could be the underlying molecular mechanism implicated in the (PS)2 induced reproductive behavior impairment. This work would deliver a substantial contribution to the understanding of the ecological safety of MePTs biocides.
Collapse
Affiliation(s)
- Xuefu Li
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China
| | - Jun Wang
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China
| | - Wanyu Ba
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China
| | - Suqiu Zhang
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China
| | - Zhenxian Lin
- School of Biology and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an, 271000, Shandong province, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu province, China
| | - Hua Tian
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China.
| | - Shaoguo Ru
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China
| |
Collapse
|
3
|
Onishi Y, Tatarazako N, Koshio M, Okamura T, Watanabe H, Sawai A, Yamamoto J, Ishikawa H, Sato T, Kawashima Y, Yamazaki K, Iguchi T. Summary of reference chemicals evaluated by the fish short-term reproduction assay, OECD TG229, using Japanese Medaka, Oryzias latipes. J Appl Toxicol 2021; 41:1200-1221. [PMID: 33486801 PMCID: PMC8359193 DOI: 10.1002/jat.4104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Under the Organisation for Economic Co-operation and Development (OECD), the Ministry of the Environment of Japan (MOE) added Japanese medaka (Oryzias latipes) to the test guideline fish short-term reproduction assay (FSTRA) developed by the United States Environmental Protection Agency (US EPA) using fathead minnow (Pimephales promelas). The FSTRA was designed to detect endocrine disrupting effects of chemicals interacting with the hypothalamic-pituitary-gonadal axis (HPG axis) such as agonists or antagonists on the estrogen receptor (Esr) and/or the androgen receptor (AR) and steroidogenesis inhibitors. We conducted the FSTRA with Japanese medaka, in accordance with OECD test guideline number 229 (TG229), for 16 chemicals including four Esr agonists, two Esr antagonists, three AR agonists, two AR antagonists, two steroidogenesis inhibitors, two progesterone receptor agonists, and a negative substance, and evaluated the usability and the validity of the FSTRA (TG229) protocol. In addition, in vitro reporter gene assays (RGAs) using Esr1 and ARβ of Japanese medaka were performed for the 16 chemicals, to support the interpretation of the in vivo effects observed in the FSTRA. In the present study, all the test chemicals, except an antiandrogenic chemical and a weak Esr agonist, significantly reduced the reproductive status of the test fish, that is, fecundity or fertility, at concentrations where no overt toxicity was observed. Moreover, vitellogenin (VTG) induction in males and formation of secondary sex characteristics (SSC), papillary processes on the anal fin, in females was sensitive endpoints to Esr and AR agonistic effects, respectively, and might be indicators of the effect concentrations in long-term exposure. Overall, it is suggested that the in vivo FSTRA supported by in vitro RGA data can adequately detect effects on the test fish, O. latipes, and probably identify the mode of action (MOA) of the chemicals tested.
Collapse
Affiliation(s)
- Yuta Onishi
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of AgricultureEhime UniversityMatsuyamaJapan
- Center for Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaJapan
| | - Masaaki Koshio
- Center for Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaJapan
| | - Tetsuro Okamura
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | - Haruna Watanabe
- Center for Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaJapan
| | - Atsushi Sawai
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | - Jun Yamamoto
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | | | - Tomomi Sato
- NanobioscienceYokohama City UniversityYokohamaJapan
| | | | - Kunihiko Yamazaki
- Environmental Health DepartmentMinistry of the EnvironmentTokyoJapan
| | | |
Collapse
|
4
|
Real MV, Rocha MJ, Gonçalves JF, Rocha E. Histology and design-based estimation of hepatocellularity and volumes of hepatocytes in control and ethynylestradiol exposed males of platyfish (Xiphophorus maculatus). Tissue Cell 2020; 63:101327. [DOI: 10.1016/j.tice.2019.101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
|
5
|
Min BH, Kim BM, Kim M, Kang JH, Jung JH, Rhee JS. Plasma biomarkers in juvenile marine fish provide evidence for endocrine modulation potential of organotin compounds. Comp Biochem Physiol C Toxicol Pharmacol 2018; 210:35-43. [PMID: 29746996 DOI: 10.1016/j.cbpc.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used to control marine fouling. Here, we show that organotin stimulation reduces the hormone levels in the plasma of two economically important aquaculture fish. Blood plasma samples were collected from juvenile red seabream and black rockfish exposed to environmentally realistic concentrations of TBT and TPT for 14 days. The levels of two plasma biomarkers, namely the yolk protein precursor vitellogenin (VTG) and the sex steroid 17β-estradiol (E2), were measured to determine the endocrine disrupting potential of the organotin compounds. Both organotin compounds were dose-dependently accumulated in the blood of two fish. Exposure to waterborne TBT and TBT significantly decreased the plasma VTG levels in both the juvenile fish in a dose-dependent manner. In contrast, the treatment with E2, a well-known VTG inducer, significantly increased the plasma VTG levels in both the fish. In addition, the mRNA levels of vtg were also downregulated in the liver tissues of both the fish at 100 and/or 1000 ng L-1 of TBT or TPT exposure. The plasma E2 titers were significantly suppressed at 100 and/or 1000 ng L-1 of TBT or TPT exposure for 14 days compared to their titer in the control. Since estrogen directly regulates vtg gene expression and VTG synthesis, our results reveal the endocrine disrupting potential of organotin compounds, and subsequently the endocrine modulation at early stage of fish can trigger further fluctuations in sexual differentiation, maturation, sex ration or egg production. In addition, the results demonstrate their effects on non-target organisms, particularly on animals reared in aquaculture and fisheries.
Collapse
Affiliation(s)
- Byung Hwa Min
- Aquaculture Industry Research Division, East Sea Fisheries Research Institute, Gangneung 25435, South Korea
| | - Bo-Mi Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Moonkoo Kim
- South Sea Environment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, South Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Jung-Hoon Kang
- South Sea Environment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, South Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Jee-Hyun Jung
- South Sea Environment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, South Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, South Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea.
| |
Collapse
|
6
|
Yang Q, Yang X, Liu J, Chen Y, Shen S. Effects of exposure to BPF on development and sexual differentiation during early life stages of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2018; 210:44-56. [PMID: 29758382 DOI: 10.1016/j.cbpc.2018.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/23/2018] [Accepted: 05/08/2018] [Indexed: 01/25/2023]
Abstract
Bisphenol F (BPF) has become a predominant bisphenol contaminant in recent years. It has significant estrogenic properties in both in vivo and in vitro studies. We have previously studied the disrupting mechanisms of BPF on the hypothalamic-pituitary-gonadal axis of adult zebrafish. However, the effects of BPF exposure on development and sexual differentiation of zebrafish embryos/larvae remain unclear. To determine the effects of BPF on the critical stage of sex differentiation in zebrafish, zebrafish embryos/larvae were exposed to 1, 10, 100, and 1000 μg/L BPF from fertilization to 60 days post-fertilization (dpf). Developmental malformations were induced by exposure to BPF from 2 h post-fertilization (hpf), with a LC50 of 10,030 μg/L at 96 hpf and 9391 μg/L at 120 hpf. Long-term exposure during sex differentiation tended to result in a female sex ratio bias. Histological analyses at 60 dpf indicated that the development of ovo-testes and immature ovaries was induced by 100 and 1000 μg/L BPF. Homogenate testosterone levels decreased and 17β-estradiol levels increased in zebrafish in a concentration-dependent manner. BPF exposure suppressed gene expression of double sex, Mab3-related transcription factor 1(dmrt1), fushi tarazu factor 1d (ff1d), sry-box containing gene 9a (sox9a) and anti-Mullerian hormone (amh); induced expression of the forkhead box L2 transcription factor (foxl2), leading to increased expression of aromatase (cyp19a1a), which promoted production of estrogens, and further caused phenotypic feminization of zebrafish. These results suggest that developmental exposure to BPF has adverse effects on sexual differentiation, and the results were useful for a BPF risk assessment.
Collapse
Affiliation(s)
- Qian Yang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China; The College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xianhai Yang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Jining Liu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China.
| | - Yingwen Chen
- The College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Shubao Shen
- The College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
7
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:141-163. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.08.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 05/13/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
8
|
J. M. Schaaf M. The First Fifteen Years of Steroid Receptor Research in Zebrafish; Characterization and Functional Analysis of the Receptors. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Pelka KE, Henn K, Keck A, Sapel B, Braunbeck T. Size does matter - Determination of the critical molecular size for the uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:1-10. [PMID: 28142078 DOI: 10.1016/j.aquatox.2016.12.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/19/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
In order to identify the upper limits of the molecular size of chemicals to cross the chorion of zebrafish, Danio rerio, differently sized, non-toxic and chemically inert polyethylene glycols (PEGs; 2000-12,000Da) were applied at concentrations (9.76mM) high enough to provoke osmotic pressure. Whereas small PEGs were expected to be able to cross the chorion, restricted uptake of large PEGs was hypothesized to result in shrinkage of the chorion. Due to a slow, but gradual uptake of PEGs over time, molecular size-dependent equilibration in conjunction with a regain of the spherical chorion shape was observed. Thus, the size of molecules able to cross the chorion could be narrowed down precisely to ≤4000Da, and the time-dependency of the movement across the chorion could be described. To account for associated alterations in embryonic development, fish embryo toxicity tests (FETs) according to OECD test guideline 236 (OECD, 2013) were performed with special emphasis to changes in chorion shape. FETs revealed clear-cut size-effects: the higher the actual molecular weight (=size) of the PEG, the more effects (both acutely toxic and sublethal) were found. No effects were seen with PEGs of 2000 and 3000Da. In contrast, PEG 8000 and PEG 12,000 were found to be most toxic with LC50 values of 16.05 and 16.40g/L, respectively. Likewise, the extent of chorion shrinkage due to increased osmotic pressure strictly depended on PEG molecular weight and duration of exposure. A reflux of water and PEG molecules into the chorion and a resulting re-shaping of the chorion could only be observed for eggs exposed to PEGs ≤4000Da. Results clearly indicate a barrier function of the zebrafish chorion for molecules larger than 3000 to 4,000Da.
Collapse
Affiliation(s)
- Katharina E Pelka
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Kirsten Henn
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Andreas Keck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Benjamin Sapel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany.
| |
Collapse
|
10
|
Estrogen-dependent, extrahepatic synthesis of vitellogenin in male vertebrates: A mini-review. C R Biol 2017; 340:139-144. [DOI: 10.1016/j.crvi.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 01/28/2023]
|
11
|
Luzio A, Monteiro SM, Rocha E, Fontaínhas-Fernandes AA, Coimbra AM. Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17α-ethinylestradiol and fadrozole). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:90-105. [PMID: 27002526 DOI: 10.1016/j.aquatox.2016.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/08/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Exposure of wildlife to endocrine disrupting chemicals (EDCs) is not necessarily continuous. Due to seasonal changes and variable industrial and agricultural activities it often occurs intermittently. Thus, it is possible that aquatic organisms may be more affected by periodic peak exposure than by chronic exposure. Therefore, an experimental scenario including an exposure from 2h to 90 days post-fertilization (dpf) and a subsequent recovery period until 150 dpf was chosen to assess the potential reversibility of the effects of sex steroids on sexual and gonad development of zebrafish (Danio rerio). The aim of this study was to investigate the persistence of the endocrine effects of an estrogen (EE2-17α-ethinylestradiol, 4ng/L), an inhibitor of estrogen synthesis (Fad-fadrozole, 50μg/L) or their binary mixture (Mix-EE2+ Fad, 4ng/L+50μg/L). Afterwards, a semi-quantitative histological assessment was used to investigate histopathological changes on gonad differentiation and development. The data showed that fadrozole, alone or in combination with EE2, permanently disrupts the sexual development, inducing masculinization and causing severe pathological alterations in testis, such as intersex associated to the enlargement of sperm ducts, interstitial changes, asynchronous development and detachment of basal membrane. After exposures to both EDCs and their mixture, the gonad histopathology revealed interstitial proteinaceous fluid deposits and, in ovaries, there were atretic oocytes, and presumably degenerative mineralization. On the other hand, the gonadal changes induced by EE2 alone seem to be partially reversible when the exposure regime changed to a recovery period. In addition, EE2 enhanced zebrafish growth in both genders, with male fish presenting signs of early obesity such as the presence of adipocytes in testis. Moreover, sex ratio was slightly skewed toward females, at 90 and 105 dpf, in zebrafish exposed to EE2. The data further indicate that long-term studies on impacts of single EDCs and their mixtures with recovery periods are crucial to reveal the possibility of sex reversal and pathological changes of gonads that can adversely affect breeding.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Portugal; Histomorphology, Physiopathology, and Applied Toxicology Group, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
12
|
Luzio A, Santos D, Fontaínhas-Fernandes AA, Monteiro SM, Coimbra AM. Effects of 17α-ethinylestradiol at different water temperatures on zebrafish sex differentiation and gonad development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:22-35. [PMID: 26897088 DOI: 10.1016/j.aquatox.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 05/15/2023]
Abstract
In the current climate change scenario, studies combining effects of water contaminants with environmental parameters, such as temperature, are essential to predict potentially harmful impacts on aquatic organisms. In zebrafish (Danio rerio), sex determination seems to have a polygenic genetic basis, which can be secondarily influenced by environmental factors, such as temperature and endocrine disrupting chemicals (EDCs). The present study aimed to evaluate the effects of the EDC 17α-ethinylestradiol (EE2), a potent synthetic estrogen, on zebrafish sex differentiation and gonad development at different water temperatures. Therefore, zebrafish raised at three distinct water temperatures (23, 28 or 33±0.5°C), were exposed to 4ng/L of EE2, from 2hours to 60days post-fertilization (dpf). Subsequently, a quantitative (stereological) assessment of zebrafish gonads was performed, at 35 and 60dpf, to identify alterations on gonadal development and differentiation. The results show that low temperature delayed general growth of zebrafish, as well as gonad differentiation and maturation, while high temperature induced an opposite effect. Moreover, sex ratio was skewed toward males when zebrafish were exposed to the high temperature. In general, EE2 exposure promoted gonad maturation in both genders, independently of the temperature. However, at the high temperature condition, exposure to EE2 induced a delay in the male gonad development, with some individuals still showing differentiating gonads at 60dpf. The findings of this study support the notion that zebrafish has a genetic sex determination mechanism highly sensitive to environmental factors and show that it is essential to study the effects of water contaminants at different climate scenarios in order to understand potential future impacts on organisms.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Dércia Santos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
13
|
Kim BM, Lee MC, Kang HM, Rhee JS, Lee JS. Genomic organization and transcriptional modulation in response to endocrine disrupting chemicals of three vitellogenin genes in the self-fertilizing fish Kryptolebias marmoratus. J Environ Sci (China) 2016; 42:187-195. [PMID: 27090710 DOI: 10.1016/j.jes.2015.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/25/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Vitellogenin (Vtg) is the precursor of egg yolk proteins, and its expression has been used as a reliable biomarker for estrogenic contamination in the aquatic environment. To examine the biomarker potential of the self-fertilizing killifish Kryptolebias marmoratus Vtgs (Km-Vtgs), full genomic DNAs of Km-Vtgs-Aa, Km-Vtgs-Ab, and Km-Vtgs-C were cloned, sequenced, and characterized. Three Vtg genes in K. marmoratus are tandemly placed in a 550 kb section of the same chromosome. In silico analysis of promoter regions revealed that both the Km-Vtgs-Aa and Km-Vtgs-Ab genes had an estrogen response element (ERE), but the Km-Vtgs-C gene did not. However, all three Km-Vtgs genes had several ERE-half sites in their promoter regions. Phylogenetic analysis demonstrated that the three deduced amino acid residues were highly conserved with conventional Vtgs protein, forming distinctive clades within teleost Vtgs. Liver tissue showed the highest expression of Km-Vtg transcripts in all tested tissues (brain/pituitary, eye, gonad, intestine, skin, and muscle) in response to endocrine disrupting chemical (EDC)-exposed conditions. Km-Vtg transcripts were significantly increased in response to 17β-estradiol (E2), tamoxifen (TMX), 4-n-nonylphenol (NP), bisphenol A (BPA), and octylphenol (OP) over 24hr exposure. The Km-Vtg-A gene was highly expressed compared to the control in response to NP and OP. EDC-induced modulatory patterns of Km-Vtg gene expression were different depending on tissue, gender, and isoforms.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
14
|
Zhang S, Dong Y, Cui P. Vitellogenin is an immunocompetent molecule for mother and offspring in fish. FISH & SHELLFISH IMMUNOLOGY 2015; 46:710-715. [PMID: 26282682 DOI: 10.1016/j.fsi.2015.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
Our understanding of the function of vitellogenin (Vg) in reproduction has undergone a transformation over the past decade in parallel with new insights into the role of Vg in immunity. Initially, Vg was regarded as a female-specific reproductive protein, which is cleaved into yolk proteins such as phosvitin (Pv) and lipovitellin (Lv), stored in egg, providing the nutrients for developing embryos. Recently, Vg is shown to be an immune-relevant molecule involved in the defense of the host against the microbes including bacterium and virus. Furthermore, Pv and Lv, that both are proteolytically cleaved products of Vg, play a defense role in developing embryos. Importantly, yolk protein-derived small peptides also display antimicrobial activity. These data together indicate that Vg, in addition to being involved in yolk protein formation, plays a non-reproductive role via functioning as an immune-relevant molecule in both parent fishes and their offspring. It also shows that yolk proteins and their degraded peptides are novel players in maternal immunity, opening a new avenue to study the functions of reproductive proteins.
Collapse
Affiliation(s)
- Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Yuan Dong
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Pengfei Cui
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
15
|
Luzio A, Monteiro SM, Garcia-Santos S, Rocha E, Fontaínhas-Fernandes AA, Coimbra AM. Zebrafish sex differentiation and gonad development after exposure to 17α-ethinylestradiol, fadrozole and their binary mixture: A stereological study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:83-95. [PMID: 26240953 DOI: 10.1016/j.aquatox.2015.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
Current knowledge on zebrafish (Danio rerio) sex determination suggests that this trait has a polygenic genetic basis, although environmental factors, such as endocrine disrupting chemicals (EDC), may also be involved in modeling or disturbing the species sex differentiation and development. This study aimed to assess how sex steroids imbalance triggers impact on sex differentiation and gonad development in zebrafish. Fish where exposed to an estrogen (EE2, i.e. 17α-ethinylestradiol, 4ng/L), to an inhibitor of estrogen synthesis (Fad, i.e. fadrozole, 50μg/L) or to their binary mixture (Mix-EE2+ Fad, 4ng/L+50μg/L), from 2h to 60 days post-fertilization (dpf). Afterwards, a quantitative (stereological) analysis using light microscopy, based on systematic sampling, was made at 35 and 60dpf, to identify alterations on gonad differentiation and development. During the sex differentiation period, our histological data showed that not all zebrafish males develop a "juvenile ovary", contrarily to what is currently taken for granted. Furthermore, the stereological analysis suggests that EE2 alone enhanced both zebrafish growth and gonad development. On the other hand, exposure to Fad affected the sexual development in zebrafish, inducing masculinization of the specimens, with some degree of intersex observed in males. In addition, the binary mixture allowed identifying sex-dependent roles of steroid hormones in the general growth and gonad development of zebrafish, with estrogens acting as growth promoters in females and being essential for ovary development. Data further support that sex-specific and single EDC impact studies are important, but clearly not sufficient to understand what may occur in the environment.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1).
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1)
| | - Sofia Garcia-Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1)
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Portugal; Histomorphology, Physiopathology and Applied Toxicology Group, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), CIMAR Associated Laboratory (CIMAR LA), University of Porto (U. Porto), Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1)
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1).
| |
Collapse
|
16
|
Garmshausen J, Kloas W, Hoffmann F. 17α-Ethinylestradiol can disrupt hemoglobin catabolism in amphibians. Comp Biochem Physiol C Toxicol Pharmacol 2015; 171:34-40. [PMID: 25819740 DOI: 10.1016/j.cbpc.2015.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 11/22/2022]
Abstract
Different chemical substances, which enter the environment due to anthropogenic influences, can affect the endocrine system and influence development and physiology of aquatic animals. One of these endocrine disrupting chemicals is the synthetic estrogen, 17α-ethinylestradiol (EE2), which is a main component of various oral contraceptives and demonstrably affects many different aquatic vertebrates at extremely low concentrations by feminization phenomena. The aim of the present study was to investigate whether a four week exposure to three different concentrations of EE2 (0.3 ng/L, 29.6 ng/L and 2960 ng/L) affects the catabolism of hemoglobin of the amphibian Xenopus laevis. The results of this study demonstrate for the first time that beside an increase of the hepatic vitellogenin gene expression, exposure to EE2 also decreases the gene expression of the hepatic heme oxygenase 1 and 2 (HO1, HO2), degrading heme of different heme proteins to biliverdin, as well as of the biliverdin reductase A (BLVRA), which converts biliverdin to bilirubin. The results further suggest that EE2 already at the environmentally relevant concentration of (29.6 ng/L) can disrupt hemoglobin catabolism, indicated by decreased gene expression of HO2, which becomes evident at the highest EE2 concentration that led to a severe increase of biliverdin in plasma.
Collapse
Affiliation(s)
- Josefin Garmshausen
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301-310, 12587 Berlin, Germany.
| | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301-310, 12587 Berlin, Germany; Department of Endocrinology, Institute of Biology, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Frauke Hoffmann
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301-310, 12587 Berlin, Germany
| |
Collapse
|
17
|
Gladys FM, Matsuda M, Lim Y, Jackin BJ, Imai T, Otani Y, Yatagai T, Cense B. Developmental and morphological studies in Japanese medaka with ultra-high resolution optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:297-308. [PMID: 25780725 PMCID: PMC4354602 DOI: 10.1364/boe.6.000297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 05/30/2023]
Abstract
We propose ultra-high resolution optical coherence tomography to study the morphological development of internal organs in medaka fish in the post-embryonic stages at micrometer resolution. Different stages of Japanese medaka were imaged after hatching in vivo with an axial resolution of 2.8 µm in tissue. Various morphological structures and organs identified in the OCT images were then compared with the histology. Due to the medaka's close resemblance to vertebrates, including humans, these morphological features play an important role in morphogenesis and can be used to study diseases that also occur in humans.
Collapse
Affiliation(s)
- Fanny Moses Gladys
- Center for Optical Research and Education (CORE), Utsunomiya University,
Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University,
Japan
| | - Yiheng Lim
- Center for Optical Research and Education (CORE), Utsunomiya University,
Japan
| | - Boaz Jessie Jackin
- Center for Optical Research and Education (CORE), Utsunomiya University,
Japan
| | - Takuto Imai
- Center for Bioscience Research and Education, Utsunomiya University,
Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology,
Japan
| | - Yukitoshi Otani
- Center for Optical Research and Education (CORE), Utsunomiya University,
Japan
| | - Toyohiko Yatagai
- Center for Optical Research and Education (CORE), Utsunomiya University,
Japan
| | - Barry Cense
- Center for Optical Research and Education (CORE), Utsunomiya University,
Japan
| |
Collapse
|
18
|
Ankley GT, Villeneuve DL. Temporal Changes in Biological Responses and Uncertainty in Assessing Risks of Endocrine-Disrupting Chemicals: Insights from Intensive Time-Course Studies with Fish. Toxicol Sci 2015; 144:259-75. [DOI: 10.1093/toxsci/kfu320] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Yamaguchi A, Kato K, Arizono K, Tominaga N. Induction of the estrogen-responsive genes encoding choriogenin H and L in the liver of male medaka (Oryzias latipes) upon exposure to estrogen receptor subtype-selective ligands. J Appl Toxicol 2014; 35:752-8. [DOI: 10.1002/jat.3063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Akemi Yamaguchi
- Department of Chemical and Biological Engineering; Ariake National College of Technology; 150 Higashihagio-machi Omuta Fukuoka 836-8585 Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences; Prefectural University of Kumamoto; 3-1-10 Tsukide Kumamoto 862-8502 Japan
| | - Nobuaki Tominaga
- Department of Chemical and Biological Engineering; Ariake National College of Technology; 150 Higashihagio-machi Omuta Fukuoka 836-8585 Japan
| |
Collapse
|
20
|
Baker ME, Sprague LJ, Ribecco C, Ruggeri B, Lekmine N, Ludka C, Wick I, Soverchia L, Ubaldi M, Šášik R, Schlenk D, Kelley KM, Reyes JA, Hardiman G. Application of a targeted endocrine q-PCR panel to monitor the effects of pollution in southern California flatfish. ACTA ACUST UNITED AC 2014. [DOI: 10.4161/23273739.2014.969598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Hao X, Ling Q, Hong F. Effects of dietary selenium on the pathological changes and oxidative stress in loach (Paramisgurnus dabryanus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1313-1323. [PMID: 24633928 DOI: 10.1007/s10695-014-9926-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
In this study, loach (Paramisgurnus dabryanus) were fed artificial diets containing 0.31 (control), 0.39, 0.48, 0.50 and 0.62 mg kg(-1) of selenium (Se) for 60 days, respectively. Liver histopathology, hepatocyte ultrastructure, blood indices, biochemical parameters of liver functions and oxidative stress in the Se-treated loach were then assayed. The results showed the following: histopathological and ultrastructural lesions in liver were only observed in loach fed the 0.62 mg Se kg(-1) diet; Haemoglobin and total protein were significantly increased in the 0.50 mg Se kg(-1) group; albumin and high-density lipoprotein were increased significantly in the 0.48-0.50 mg Se kg(-1) groups. However, white blood cell count was significantly decreased in the 0.48 mg Se kg(-1) group; alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase were decreased in the 0.39-0.50 mg Se kg(-1) groups. In liver tissue, the content of hydrogen peroxide was lower than that of controls in the 0.48-0.50 mg Se kg(-1) groups, and the malondialdehyde level was lowest in the 0.48 mg Se kg(-1) group. The activities of superoxide dismutase and glutathione peroxidase were significantly increased in the 0.50 mg Se kg(-1) group; catalase and total antioxidant capacity were markedly increased in the 0.48-0.50 mg Se kg(-1) group. These present results indicated that the dietary Se requirement for loach is 0.48-0.50 mg Se kg(-1) diet.
Collapse
Affiliation(s)
- Xiaofeng Hao
- School of Preclinical Medicine and Life Science, Soochow University, 199, Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | | | | |
Collapse
|
22
|
Santos D, Matos M, Coimbra AM. Developmental toxicity of endocrine disruptors in early life stages of zebrafish, a genetic and embryogenesis study. Neurotoxicol Teratol 2014; 46:18-25. [PMID: 25172296 DOI: 10.1016/j.ntt.2014.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
Endocrine disrupting compounds (EDCs) are capable of interfering with the endocrine system and are increasingly widespread in the aquatic environments. In the present study, zebrafish (Danio rerio) embryos and larvae were used to assess how EDCs may interfere with embryogenesis. Therefore, zebrafish embryos were exposed to 17α-ethinylestradiol (EE2: 0.4, 2, 4 and 20 ng/L), genistein (Gen: 2, 20, 200 and 2000 ng/L) and fadrozole (Fad: 2, 10, 50 and 250 μg/L), between 2 and 144 h post-fertilization (hpf). Somite development, heartbeat, malformations, mortality and hatching rates were evaluated. In parallel, the expression patterns of hormone receptors (esr1, esr2a, esr2b and ar) and apoptotic pathways related genes (p53 and c-jun) were determined using quantitative real-time PCR. Results showed that EE2, Gen and Fad caused a higher mortality and also malformations in larvae compared with control. A significant toxic effect was observed in the heartbeat rate, at 144 hpf, in larvae exposed to EE2 and Fad. QPCR revealed alterations in the expression levels of all the evaluated genes, at different time points. esr1 and c-jun genes were upregulated by EE2 and Gen exposure while the expression of esr2a, esr2b and ar genes was downregulated. Fad exposure decreased esr1, p53 and c-jun expression levels. This study shows a toxic effect of EE2, Gen and Fad to vertebrate embryogenesis and a relation between hormones action and apoptosis pathways.
Collapse
Affiliation(s)
- Dércia Santos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal.
| | - Manuela Matos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal; Institute of Biotechnology and Bioengineering/Centre of Genomics and Biotechnology (IBB/CGB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal.
| | - Ana M Coimbra
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal.
| |
Collapse
|
23
|
Reyhanian Caspillo N, Volkova K, Hallgren S, Olsson PE, Porsch-Hällström I. Short-term treatment of adult male zebrafish (Danio Rerio) with 17α-ethinyl estradiol affects the transcription of genes involved in development and male sex differentiation. Comp Biochem Physiol C Toxicol Pharmacol 2014; 164:35-42. [PMID: 24747828 DOI: 10.1016/j.cbpc.2014.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
The synthetic estrogen 17α-ethinyl estradiol (EE2) disturbs reproduction and causes gonadal malformation in fish. Effects on the transcription of genes involved in gonad development and function that could serve as sensitive biomarkers of reproductive effects in the field is, however, not well known. We have studied mRNA expression in testes and liver of adult zebrafish (Danio rerio) males treated with 0, 5 or 25 ng/L EE2for 14 days. qPCR analysis showed that the mRNA expression of four genes linked to zebrafish male sex determination and differentiation, Anti-Mullerian Hormone, Double sex and mab-related protein, Sry-related HMG box-9a and Nuclear receptor subfamily 5 group number 1b were significantly decreased by 25 ng/L, but not 5 ng/L EE2 compared with the levels in untreated fish. The decreased transcription was correlated with a previously shown spawning failure in these males (Reyhanian et al., 2011. Aquat Toxicol 105, 41-48), suggesting that decreased mRNA expression of genes regulating male sexual function could be involved in the functional sterility. The mRNA level of Cytochrome P-45019a, involved in female reproductive development, was unaffected by hormone treatment. The transcription of the female-specific Vitellogenin was significantly induced in testes. While testicular Androgen Receptor and the Estrogen Receptor-alpha mRNA levels were unchanged, Estrogen receptor-beta was significantly decreased by 25 ng/L EE2. Hepatic Estrogen Receptor-alpha mRNA was significantly increased by both exposure concentrations, while Estrogen Receptor-beta transcription was unaltered. The decreased transcription of male-predominant genes supports a demasculinization of testes by EE2 and might reflect reproductive disturbances in the environment.
Collapse
Affiliation(s)
- Nasim Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| | - Kristina Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Stefan Hallgren
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Per-Erik Olsson
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Inger Porsch-Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| |
Collapse
|
24
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
25
|
Zhong L, Yuan L, Rao Y, Li Z, Zhang X, Liao T, Xu Y, Dai H. Distribution of vitellogenin in zebrafish (Danio rerio) tissues for biomarker analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 149:1-7. [PMID: 24549118 DOI: 10.1016/j.aquatox.2014.01.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Vitellogenin (VTG), the precursor of yolk proteins, is a sensitive biomarker of estrogenic contamination in aquatic environments. Traditionally, VTG was believed to be synthesized under the control of estrogen in the livers of mature females and then secreted into the blood, before being taken up by the ovaries and cleaved into lipovitellin and phosvitin, which provide nutrition for developing embryos. However, recent studies have reported that the liver is not the only tissue to express VTG and this has led to questions over the precise tissue distribution of VTG in zebrafish. Moreover, studies in zebrafish on the expression of the VTG protein are rare. Using Western blotting and reverse-transcriptase polymerase chain reaction, this present study reports that the VTG protein and VTG1 mRNA were detected not only in the liver, but also in various extrahepatic tissues, including the heart, spleen, kidney, skin, muscle, gill, eye and brain tissues, of female and 17α-ethinylestradiol (EE2)-treated male zebrafish. Due to the high expression levels of VTG and the ease of taking samples, skin and eye tissues were chosen to evaluate the effects of varying doses and exposure times of EE2 on male zebrafish. The VTG gene and protein were induced by EE2 exposure in liver, skin and eye tissues of male zebrafish in dose- and time-dependent patterns. Therefore, we suggest that zebrafish skin and eye tissues may be alternatives to plasma and liver tissues for VTG biomarker analysis.
Collapse
Affiliation(s)
- Liqiao Zhong
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, PR China
| | - Li Yuan
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China.
| | - Yu Rao
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China
| | - Zhouquan Li
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China
| | - Tao Liao
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China
| | - Ying Xu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China
| | - Heping Dai
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China.
| |
Collapse
|
26
|
Chakravarthy S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as anIn VivoHigh-Throughput Model for Genotoxicity. Zebrafish 2014; 11:154-66. [DOI: 10.1089/zeb.2013.0924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Sathish Sadagopan
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | - Ayyappan Nair
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | | |
Collapse
|
27
|
Laurenson JP, Bloom RA, Page S, Sadrieh N. Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data. AAPS J 2014; 16:299-310. [PMID: 24470211 PMCID: PMC3933577 DOI: 10.1208/s12248-014-9561-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/02/2014] [Indexed: 11/30/2022] Open
Abstract
Interest in pharmaceuticals in the environment has increased substantially in recent years. Several studies in particular have assessed human and ecological risks from human pharmaceutical estrogens, such as 17α-ethinyl estradiol (EE2). Regulatory action also has increased, with the USA and other countries developing rules to address estrogens and other pharmaceuticals in the environment. Accordingly, the Center for Drug Evaluation and Research at the US Food and Drug Administration has conducted a review and analysis of current data on the long-term ecological exposure and effects of EE2 and other estrogens. The results indicate that mean-flow long-term predicted environmental concentrations (PECs) of EE2 in approximately 99% or more of US surface water segments downstream of wastewater treatment plants are lower than a predicted no-effect concentration (PNEC) for aquatic chronic toxicity of 0.1 ng/L. Exceedances are expected to be primarily in localized, effluent-dominated water segments. The median mean-flow PEC is more than two orders of magnitude lower than this PNEC. Similar results exist for other pharmaceutical estrogens. Data also suggest that the contribution of EE2 more broadly to total estrogenic load in the environment from all sources (including other human pharmaceutical estrogens, endogenous estrogens, natural environmental estrogens, and industrial chemicals), while highly uncertain and variable, appears to be relatively low overall. Additional data and a more comprehensive approach for data collection and analysis for estrogenic substances in the environment, especially in effluent-dominated water segments in sensitive environments, would more fully characterize the risks.
Collapse
Affiliation(s)
- James P Laurenson
- Office of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20903, USA,
| | | | | | | |
Collapse
|
28
|
Ferreira F, Monteiro NM, Vieira MN, Reis-Henriques MA, Castro LFC, Santos MM. A real-time PCR assay for differential expression of vitellogenin I and II genes in the liver of the sentinel fish species Lipophrys pholis. Toxicol Mech Methods 2013; 23:591-7. [PMID: 23718563 DOI: 10.3109/15376516.2013.809620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract The recent advances in molecular biology techniques have prompted the use of vitellogenin (VTG) gene expression as a sensitive and reliable indicator of estrogenic chemicals (EC) exposure. However, data on the dynamic response of the different VTGs genes upon EC exposure is still poorly understood, particularly in sentinel fish species used in field monitoring studies. Hence, the present study aimed at developing a sensitive real-time PCR assay for determining the response of VTG I and II in the recently proposed marine sentinel species Lipophrys pholis upon exposure to the model EC 17α-ethinylestradiol (EE2). The findings of the laboratory study indicate that L. pholis VTG I proved to be not only more inducible but also more sensitive to EE2 exposure than VTG II, for the same range of concentrations. In fact, VTG I gene induction was 475-fold higher than VTG II at 15 ng/L EE2, and 13-fold at 5 ng/L EE2. Overall, the findings of the present study indicate that in the field, expression of VTG I in L. pholis should be preferentially used in the screening of EC exposure because of its higher sensitivity. Furthermore, the present study favors L. pholis integration in monitoring programs associated with EC's pollution within the European water policy legislation.
Collapse
Affiliation(s)
- F Ferreira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto , Porto , Portugal
| | | | | | | | | | | |
Collapse
|
29
|
Rose E, Paczolt KA, Jones AG. The effects of synthetic estrogen exposure on premating and postmating episodes of selection in sex-role-reversed Gulf pipefish. Evol Appl 2013; 6:1160-70. [PMID: 24478798 PMCID: PMC3901546 DOI: 10.1111/eva.12093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/25/2013] [Indexed: 01/29/2023] Open
Abstract
Environmental estrogens have been shown to affect populations of aquatic organisms in devastating ways, including feminization of males, alterations in mating behaviors, and disruption of sexual selection. Studies have shown 17α-ethinylestradiol (EE2) exposure to induce female-like secondary sexual traits in male Gulf pipefish, changing how females perceive affected males. We aimed to understand the effects of EE2 exposure on the sex-role-reversed mating system and the strength of selection in Gulf pipefish. We used artificial Gulf pipefish breeding aggregations and microsatellite-based parentage analysis to determine maternity. We then calculated the opportunity for selection and selection differentials on body size for both sexes during three consecutive episodes of selection. Exposure to EE2 did not affect the strength of selection, likely due to the unusual sex-role-reversed mating system found in this species. With respect to multiply mated females, EE2-exposed females produced more eggs with higher embryo survivorship than nonexposed females. Thus, short-term exposure to low concentrations (2.0 ng/L) of EE2 in Gulf pipefish enhanced female reproductive success. However, higher EE2 concentrations (5.0 ng/L) caused complete reproductive failure in Gulf pipefish males. These results call for more work on the long-term effects of EE2 exposure in Gulf pipefish in artificial and natural populations.
Collapse
Affiliation(s)
- Emily Rose
- Department of Biology, Texas A&M University College Station, TX, USA
| | - Kimberly A Paczolt
- Department of Biology, Texas A&M University College Station, TX, USA ; Department of Biology, University of Maryland College Park, MD, USA
| | - Adam G Jones
- Department of Biology, Texas A&M University College Station, TX, USA
| |
Collapse
|
30
|
Authman MMN, Abbas WT, Abumourad IMK, Kenawy AM. Effects of illegal cyanide fishing on vitellogenin in the freshwater African catfish, Clarias gariepinus (Burchell, 1822). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 91:61-70. [PMID: 23395455 DOI: 10.1016/j.ecoenv.2013.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/05/2013] [Accepted: 01/08/2013] [Indexed: 06/01/2023]
Abstract
The effects of cyanide, used in illegal fishing, on one of the most economically important Nile fishes, the African catfish (Clarias gariepinus), were studied. Cyanide impacts were evaluated in terms of biochemical, molecular and histopathological characteristics. After exposure to sublethal concentration (0.05mg/l) of potassium cyanide (KCN) for two and four weeks, GOT (glutamate oxaloacetate transaminase) was significantly increased in both male and female, while GPT (glutamate pyruvate transaminase), total plasma protein, phosphoprotein phosphorus (Vgt) in serum, vitellogenin gene expression (Vtg mRNA) and estrogen receptors (ER mRNA) were significantly decreased in female. On the other hand, male C. gariepinus showed a significant increase in Vtg and Vtg mRNA. Liver, testis and ovaries showed distinct histopathological changes. It was concluded that, cyanide caused damaging effects to fish and can cause serious disturbance in the natural reproduction and a drastic decline in fish population. Therefore, it is recommended that, the use of cyanide compounds must be prohibited to conserve the fisheries resources.
Collapse
|
31
|
Abstract
Vitellogenin genes (vtg) encode large lipid transfer proteins (LLTPs) that are typically female-specific, functioning as precursors to major yolk proteins (MYPs). Within the phylum Echinodermata, however, the MYP of the Echinozoa (Echinoidea + Holothuroidea) is expressed by an unrelated transferrin-like gene that has a reproductive function in both sexes. We investigated egg proteins in the Asterozoa (Asteroidea + Ophiuroidea), a sister clade to the Echinozoa, showing that eggs of the asteroid Parvulastra exigua contain a vitellogenin protein (Vtg). vtg is expressed by P. exigua, a species with large eggs and nonfeeding larvae, and by the related asterinid Patiriella regularis which has small eggs and feeding larvae. In the Asteroidea, therefore, the reproductive function of vtg is conserved despite significant life history evolution. Like the echinozoan MYP gene, asteroid vtg is expressed in both sexes and may play a role in the development of both ovaries and testes. Phylogenetic analysis indicated that a putative Vtg from the sea urchin genome, a likely pseudogene, does not clade with asteroid Vtg. We propose the following sequence as a potential pathway for the evolution of YP genes in the Echinodermata: (1) the ancestral echinoderm produced YPs derived from Vtg, (2) bisexual vtg expression subsequently evolved in the echinoderm lineage, (3) the reproductive function of vtg was assumed by a transferrin-like gene in the ancestral echinozoan, and (4) redundant echinozoan vtg was released from stabilizing selection.
Collapse
|
32
|
Anchoring ethinylestradiol induced gene expression changes with testicular morphology and reproductive function in the medaka. PLoS One 2012; 7:e52479. [PMID: 23300682 PMCID: PMC3530452 DOI: 10.1371/journal.pone.0052479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/19/2012] [Indexed: 01/03/2023] Open
Abstract
Environmental estrogens are ubiquitous in the environment and can cause detrimental effects on male reproduction. In fish, a multitude of effects from environmental estrogens have been observed including altered courting behavior and fertility, sex reversal, and gonadal histopathology. However, few studies in fish assess the impacts of estrogenic exposure on a physiological endpoint, such as reproduction, as well as the associated morphologic response and underlying global gene expression changes. This study assessed the implications of a 14 day sub-chronic exposure of ethinylestradiol (EE2; 1.0 or 10.0 µg/L EE2) on male medaka fertility, testicular histology and testicular gene expression. The findings demonstrate that a 14 day exposure to EE2 induced impaired male reproductive capacity and time- and dose-dependent alterations in testicular morphology and gene expression. The average fertilization rate/day following the exposure for control, 1.0 and 10.0 µg/L EE2 was 91.3% (±4.4), 62.8% (±8.3) and 28.8% (±5.8), respectively. The testicular morphologic alterations included increased germ cell apoptosis, decreased germinal epithelium and thickening of the interstitium. These changes were highly associated with testicular gene expression changes using a medaka-specific microarray. A pathway analysis of the differentially expressed genes emphasized genes and pathways associated with apoptosis, cell cycle and proliferation, collagen production/extracellular matrix organization, hormone signaling, male reproduction and protein ubiquitination among others. These findings highlight the importance of anchoring global gonadal gene expression changes with morphology and ultimately with tissue/organ function.
Collapse
|
33
|
Chandra K, Bosker T, Hogan N, Lister A, MacLatchy D, Currie S. Sustained high temperature increases the vitellogenin response to 17α-ethynylestradiol in mummichog (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 118-119:130-140. [PMID: 22561700 DOI: 10.1016/j.aquatox.2012.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 04/04/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Mummichog (Fundulus heteroclitus), an estuarine fish of the western Atlantic, were acclimated to three salinities (0, 16 or 32 ppt) or three temperatures (10, 20 or 26 °C) and exposed to nominal 50 or 250 ng/L 17α-ethynylestradiol (EE2) for 14 days. In a separate experiment, fish were exposed to the same levels of EE2 and were subjected to a 1h heat shock (20-30 °C) on the 14th day and allowed to recover for 20 h. We were interested in whether or not susceptibility to EE2 exposure, as indicated by increases in vitellogenin (vtg) gene expression would change with high and low salinity, warm or cold temperature acclimation or acute heat shock. We also investigated the potential role of heat shock proteins (HSPs) under these conditions. Liver vtg1 mRNA was significantly induced in male mummichog exposed to 50 and 250 ng/L EE2, but salinity acclimation or acute heat shock did not further affect this induction. Males acclimated to 26 °C and exposed to 250 ng/L EE2 induced 3.5-fold more vtg1 mRNA than EE2 exposed males acclimated to 10 °C. HSP90 and HSP70 protein were largely unaffected by EE2 exposure. Our findings suggest that mummichog are more susceptible to EE2 under sustained temperature increases that may occur seasonally or with warming of coastal waters.
Collapse
Affiliation(s)
- Kavish Chandra
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - Thijs Bosker
- Department of Natural Resources and the Environment, Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, 06269-4087, USA
| | - Natacha Hogan
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Canada
| | - Andrea Lister
- Department of Biology and Canadian Rivers Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Deborah MacLatchy
- Department of Biology and Canadian Rivers Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Suzanne Currie
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada.
| |
Collapse
|
34
|
Adedeji OB, Durhan EJ, Garcia-Reyero N, Kahl MD, Jensen KM, Lalone CA, Makynen EA, Perkins EJ, Thomas L, Villeneuve DL, Ankley GT. Short-term study investigating the estrogenic potency of diethylstilbesterol in the fathead minnow (Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7826-7835. [PMID: 22708615 DOI: 10.1021/es301043b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Diethylstilbestrol (DES) is a synthetic estrogen that has been banned for use in humans, but still is employed in livestock and aquaculture operations in some parts of the world. Detectable concentrations of DES in effluent and surface waters have been reported to range from slightly below 1 to greater than 10 ng/L. Little is known, however, concerning the toxicological potency of DES in fish. In this study, sexually mature fathead minnows (Pimephales promelas) of both sexes were exposed to 1, 10, or 100 ng of DES/L of water in a flow-through system. Tissue concentrations of DES and changes in a number of estrogen-responsive end points were measured in the fish at the end of a 4 d exposure and after a 4 d depuration/recovery period in clean water. Accumulation of DES was sex-dependent, with females exhibiting higher tissue residues than males after the 4 d exposure. The observed bioconcentration of DES in the fish was about 1 order of magnitude lower than that predicted on the basis of the octanol-water partition coefficient of the chemical, suggesting relatively efficient metabolic clearance by the fish. Exposure to 1, 10, or 100 ng of DES/L caused decreased testis weight and morphological demasculinization of males (regression of dorsal nuptial tubercles). Diethylstilbesterol induced plasma vitellogenin (VTG) in both sexes at water concentrations ≥10 ng/L; this response (especially in males) persisted through the end of the 4 d recovery period. Hepatic transcripts of VTG and estrogen receptor-α also were affected at DES concentrations ≥10 ng/L. Evaluation of transcript profiles in the liver of females using a 15K-gene fathead minnow microarray revealed a concentration-dependent change in gene expression, with mostly up-regulated transcripts after the exposure and substantial numbers of down-regulated gene products after depuration. Genes previously identified as vitellogenesis-related and regulated by 17β-estradiol were significantly enriched among those differentially expressed following exposure to DES. Overall, our studies show that DES causes a range of responses in fish at water concentrations comparable to those reported in the environment and that in vivo potency of the estrogen is on par with that of the better-studied estrogenic contaminant 17α-ethinylestradiol.
Collapse
Affiliation(s)
- Olufemi B Adedeji
- Department of Veterinary Public Health and Preventative Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Genovese G, Regueira M, Piazza Y, Towle DW, Maggese MC, Lo Nostro F. Time-course recovery of estrogen-responsive genes of a cichlid fish exposed to waterborne octylphenol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:1-13. [PMID: 22410082 DOI: 10.1016/j.aquatox.2012.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/13/2012] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
The aim of this study was to describe the time-course of estrogen-induced gene expression, corresponding plasma protein detection and histological alterations after cessation of octylphenol (OP) exposure of Cichlasoma dimerus, to test differential responses of biomarkers suitable for environmental monitoring. Male fish were exposed to a nominal concentration of 150 μg/L OP for 28 days, and later transferred to OP-free water aquaria for 1, 3, 7, 14, 21 or 28 days. Blood and mucus samples were obtained in order to analyze vitellogenin (VTG) and zona pellucida (ZP) proteins by Western blot; liver samples were used for gene expression and to assess tissue damage and further recovery of all the analyzed endpoints. Partial sequences of C. dimerus VTG and Na⁺/K⁺-ATPase were obtained. Comparison with VTGs of several teleosts supports that the partial sequence obtained for C. dimerus belongs to VTGAb type. ZP and VTG expression was highly up-regulated by OP. Immunoreactive (ir-) bands of 62, 52 and 50 kDa for ZP and 140, 103, 75 and 64 kDa for VTG, were detected after 28 days of OP exposure in plasma and mucus samples. After transfer of treated fish to clean water, ZP ir-bands in plasma disappeared rapidly (day 3), while VTG ir-bands decreased gradually; no ir-bands were detected on day 28 of recovery. Similarly, ZPB transcripts abruptly returned to background levels (day 3), earlier than for ZPC (day 7) or VTG (day 14). Liver from OP treated fish showed tissue disarrangement, eccentric and euchromatic hepatocytes nuclei and intense perinuclear basophilia. After the recovery period, these changes were still evident though less pronounced, accounting for irreversibility of tissue damage or the requirement for a longer period of depuration. The present results confirm that for biochemical and molecular biomarkers, such as induction of female proteins in male fish exposed to OP, complete recovery is achieved after adequate time of depuration (28 days). Male ZPB expression reflects a recent exposure to estrogenic contaminants, while VTG may reveal past exposures. The combination of biomarkers with different temporal responses such as C. dimerus ZP and VTG provides a more comprehensive interpretation of pollution status.
Collapse
Affiliation(s)
- Griselda Genovese
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Argentina.
| | | | | | | | | | | |
Collapse
|
36
|
Tingaud-Sequeira A, Knoll-Gellida A, André M, Babin PJ. Vitellogenin Expression in White Adipose Tissue in Female Teleost Fish1. Biol Reprod 2012; 86:38. [DOI: 10.1095/biolreprod.111.093757] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
37
|
Zucchi S, Oggier DM, Fent K. Global gene expression profile induced by the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:3086-3096. [PMID: 21601967 DOI: 10.1016/j.envpol.2011.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/26/2011] [Accepted: 04/03/2011] [Indexed: 05/30/2023]
Abstract
Residues of the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are ubiquitously found in aquatic biota but potential adverse effects in fish are fairly unknown. To identify molecular effects and modes of action of EHMC we applied a gene expression profiling in zebrafish using whole genome microarrays. Transcriptome analysis and validation of targeted genes were performed after 14 days of exposure of male zebrafish. Concentrations of 2.2 μg/L and 890 μg/L EHMC lead to alteration of 1096 and 1137 transcripts, respectively, belonging to many pathways. Genes involved in lipid metabolism and estrogenic pathway (vtg1), lipid biosynthesis (ptgds), vitamin A metabolic process (rbp2a), DNA damage and apoptosis (gadd45b), and regulation of cell growth (igfbp1a) were investigated by qRT-PCR analysis in whole body, liver, brain and testis. The analysis showed tissue-specific gene profiles and revealed that EHMC slightly affects the transcription of genes involved in hormonal pathways including vtg1, esr1, esr2b, ar, cyp19b and hsd17β3.
Collapse
Affiliation(s)
- Sara Zucchi
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründensrasse 40, CH-4132 Muttenz, Switzerland
| | | | | |
Collapse
|
38
|
Groh KJ, Nesatyy VJ, Segner H, Eggen RIL, Suter MJF. Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:619-647. [PMID: 21229308 PMCID: PMC3146978 DOI: 10.1007/s10695-010-9464-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/17/2010] [Indexed: 05/27/2023]
Abstract
The molecular mechanisms controlling sex determination and differentiation in zebrafish (Danio rerio) are largely unknown. A genome-wide analysis may provide comprehensive insights into the processes involved. The mRNA expression in zebrafish gonads has been fairly well studied, but much less data on the corresponding protein expression are available, although the proteins are considered to be more relevant markers of gene function. Because mRNA and protein abundances rarely correlate well, mRNA profiles need to be complemented with the information on protein expression. The work presented here analyzed the proteomes of adult zebrafish gonads by a multidimensional protein identification technology, generating the to-date most populated lists of proteins expressed in mature zebrafish gonads. The acquired proteomics data partially confirmed existing transcriptomics information for several genes, including several novel transcripts. However, disagreements between mRNA and protein abundances were often observed, further stressing the necessity to assess the expression on different levels before drawing conclusions on a certain gene's expression and function. Several gene groups expressed in a sexually dimorphic way in zebrafish gonads were identified. Their potential importance for gonad development and function is discussed. The data gained in the current study provide a basis for further work on elucidating processes occurring during zebrafish development with use of high-throughput proteomics.
Collapse
Affiliation(s)
- Ksenia J. Groh
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| | - Victor J. Nesatyy
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
- Present Address: EPFL, Station 15, 1015 Lausanne, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, Postbox 8466, 3001 Bern, Switzerland
| | - Rik I. L. Eggen
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| | - Marc J.-F. Suter
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| |
Collapse
|
39
|
Genovese G, Da Cuña R, Towle DW, Maggese MC, Lo Nostro F. Early expression of zona pellucida proteins under octylphenol exposure in Cichlasoma dimerus (Perciformes, Cichlidae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:175-185. [PMID: 21035200 DOI: 10.1016/j.aquatox.2010.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/21/2010] [Accepted: 09/25/2010] [Indexed: 05/30/2023]
Abstract
An increasing number of widely used industrial and agricultural chemicals are being found to cause endocrine disruption. In fishes, xenoestrogens can induce female proteins, and in some cases, the development of testis-ova, demonstrating feminization of males. In this study we analyzed the effect of an acute exposure of adult male Cichlasoma dimerus fish to estradiol (E(2)) and octylphenol (OP). E(2) and OP were injected at 10 and 50 μg/g body weight doses, respectively. After a single OP dose, liver was processed for RNA extraction at 1, 3, 12, 24, and 72 h. PCR was performed using cDNA and primers for egg coat or zona pellucida proteins (ZP). Genes encoding ZPB and ZPC isoforms were sequenced. E(2)-induced fish were sacrificed at 72 h. Using multiple OP or E(2) injections, blood and surface mucus were sampled on days 0, 3, 6, 9, and 13. On day 13 fish were sacrificed for liver and testis dissection. Histological examination of E(2) and OP-treated fish livers showed cellular disarray and intense cytoplasmatic basophilia within hepatocytes, probably due to increased mRNA synthesis, as well as hypertrophied euchromatic nuclei, and conspicuous nucleoli, indicative of augmented cell activity. An abnormal amount of sperm and immature germ cells within the testis lumen were seen in treated fish, suggesting reproductive impairment. Both plasma and mucus revealed the presence of ZP (and vitellogenin) at day 3 and thereafter with E(2) treatment, using Western and Dot blot techniques; OP effects were delayed in time. These results validate the analysis of mucus by Dot blot as an easy and rapid technique to address endocrine disruption caused by OP. Quantitative gene expression showed induction of liver ZPB and ZPC upon OP injection; muscle, brain, and intestine did not express any ZP. Both ZPs were induced at 1h post injection, but only ZPB expression was statistically significant. At 12h, both ZPs increased significantly, reaching the same levels of E(2)-challenged males after 72 h. Therefore, OP mimicked the action of E(2) with a prompt and strong xenoestrogenic effect, evidenced by the early response through mRNA and protein expression of ZP and the concomitant histological liver and testis alterations.
Collapse
Affiliation(s)
- Griselda Genovese
- Laboratorio de Embriología Animal, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
40
|
Zucchi S, Blüthgen N, Ieronimo A, Fent K. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males. Toxicol Appl Pharmacol 2011; 250:137-46. [DOI: 10.1016/j.taap.2010.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 12/27/2022]
|
41
|
Kim HR, Park YJ, Kim JG, Chung KH, Oh SM. Molecular cloning of vitellogenin gene and mRNA expression by 17alpha-ethinylestradiol from slender bitterling. Gen Comp Endocrinol 2010; 168:484-95. [PMID: 20600042 DOI: 10.1016/j.ygcen.2010.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/14/2010] [Accepted: 06/19/2010] [Indexed: 01/18/2023]
Abstract
Indigenous aquatic population such as fish could be used as a successful test species for evaluating the ecological effects in aquatic environment. In the present study, vitellogenin (Vtg) from slender bitterling (Acheilognathus yamatsutae), an indigenous aquatic species in Korea, was cloned and sequenced to determine if the Vtg gene possesses an important characteristic so as to act as a sensitive biomarker for estrogenic endocrine disrupting chemicals (EEDCs). The sbVtg cDNA is 5010 bp in length, containing a 4653 bp open reading frame, which encodes 1550 amino acid residues. The sbVtg cDNA was divided into lipovitellin heavy chain (LvH), phosvitin (Pv), lipovitellin light chain (LvL) as well as a beta'-component (beta'-c) domain, and belongs to VtgAo2. SbVtg has conserved important sequences for Vtg functions such as signal peptide, VtgR-binding region, and disulfide bond formation, all of which are consistent with those of other teleosts. In addition, the male slender bitterling aqueous exposed to 17 alpha-ethinylestradiol (EE2, 12.5, 25, and 50 ng/L) produced a statistically significant and concentration-dependent increase in hepatic Vtg mRNA expression, which showed a similar pattern to biliary estrogenic activity, measured by ERE-reporter gene assay. Thus, this study clearly indicates that the induction of Vtg in slender bitterling might be a suitable biomarker in toxicological research of EEDCs.
Collapse
Affiliation(s)
- Ha Ryong Kim
- School of Pharmacy, Sungkyunkwan University, #300 Cheoncheondong, Jangan-Gu, Suwon, Gyeonggi-do 440-746, South Korea
| | | | | | | | | |
Collapse
|
42
|
Strömqvist M, Tooke N, Brunström B. DNA methylation levels in the 5' flanking region of the vitellogenin I gene in liver and brain of adult zebrafish (Danio rerio)--sex and tissue differences and effects of 17alpha-ethinylestradiol exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:275-281. [PMID: 20346522 DOI: 10.1016/j.aquatox.2010.02.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/16/2010] [Accepted: 02/20/2010] [Indexed: 05/29/2023]
Abstract
Vitellogenin is produced in the liver of sexually mature female fish in response to endogenous estrogens. Exogenous estrogens also induce synthesis of vitellogenin in the liver of male and juvenile fish and vitellogenin is a frequently used biomarker for estrogen exposure. The epigenetic state, e.g. histone acetylation and DNA methylation, in the region of a gene or in its 5' flanking region influences the gene expression. DNA methylation positions in multicellular eukaryotes are mostly found on cytosine bases located 5' to guanine, i.e. in CpG sites. Here, we have for the first time analyzed the DNA methylation levels of three CpG sites located in the 5' flanking region of the vitellogenin I gene in liver and brain from adult zebrafish (Danio rerio) utilizing Pyrosequencing technology. This sequencing technique allows determination of methylation levels of multiple individual CpG sites. Our purpose was to assess any differences in methylation levels related to sex, tissue and exposure to estrogen. Out of the seven vitellogenin genes identified in the zebrafish, vitellogenin I is the most highly expressed during vitellogenesis. We found that the methylation levels of all three CpG sites were higher in male liver than in female liver. In brain, which does not express vitellogenin, females and males showed similar, high methylation levels in the analyzed CpG positions. Exposure of adult zebrafish to 17alpha-ethinylestradiol (100 ng/L) for 14 days decreased the methylation levels in the 5' flanking region of vitellogenin I in the liver in both females and males. These results suggest that induced expression of vitellogenin in fish following exposure to estrogens might involve alterations in DNA methylation.
Collapse
Affiliation(s)
- Marie Strömqvist
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
| | - Nigel Tooke
- QIAGEN AB, Frösundaviks Allé 15, SE-169 70 Solna, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| |
Collapse
|
43
|
Katsiadaki I, Williams TD, Ball JS, Bean TP, Sanders MB, Wu H, Santos EM, Brown MM, Baker P, Ortega F, Falciani F, Craft JA, Tyler CR, Viant MR, Chipman JK. Hepatic transcriptomic and metabolomic responses in the Stickleback (Gasterosteus aculeatus) exposed to ethinyl-estradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 97:174-187. [PMID: 19665239 DOI: 10.1016/j.aquatox.2009.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 05/28/2023]
Abstract
An established three-spined stickleback (Gasterosteus aculeatus) cDNA array was expanded to 14,496 probes with the addition of hepatic clones derived from subtractive and normalized libraries from control males and males exposed to model toxicants. Microarrays and one-dimensional (1)H nuclear magnetic resonance (NMR) spectroscopy, together with individual protein and gene biomarkers were employed to investigate the hepatic responses of the stickleback to ethinyl-estradiol (EE(2)) exposure. Male fish were exposed via the water to EE(2), including environmentally relevant concentrations (0.1-100ng/l) for 4 days, and hepatic transcript and metabolite profiles, kidney spiggin protein and serum vitellogenin concentrations were determined in comparison to controls. EE(2) exposure did not significantly affect spiggin concentration but significantly induced serum vitellogenin protein at the threshold concentration of 32ng/l. (1)H NMR coupled with robust univariate testing revealed only limited changes, but these did support the predicted modulation of the amino acid profile by transcriptomics. Transcriptional induction was found for hepatic vitellogenins and choriogenins as expected, together with a range of other EE(2)-responsive genes. Choriogenins showed the more sensitive responses with statistically significant induction at 10ng/l. Real-time polymerase chain reaction (PCR) confirmed transcriptional induction of these genes. Phosvitinless vitellogenin C transcripts were highly expressed and represent a major form of the egg yolk precursors, and this is in contrast to other fish species where it is a minor component of vitellogenic transcripts. Differences in inducibility between the vitellogenins and choriogenins appear to be in accordance with the sequential formation of chorion and yolk during oogenesis in fish.
Collapse
Affiliation(s)
- Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth, Dorset, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Differential expression of vitellogenin and oestrogen receptor genes in the liver of zebrafish, Danio rerio. Anal Bioanal Chem 2009; 396:625-30. [PMID: 19789858 DOI: 10.1007/s00216-009-3112-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/05/2009] [Accepted: 08/27/2009] [Indexed: 02/05/2023]
Abstract
Environmental oestrogens are responsible for adverse effects in fish that affect reproduction. Availability of model fish to study the differential effects of endogenous and exogenous oestrogens and to test for oestrogenic activity of chemicals would be advantageous. Zebrafish could provide such a model, but the organisation and expression of vitellogenins (VTGs) and oestrogen receptors (ERs) are not completely understood. VTGs are synthesised in the liver and provide a sensitive biomarker of oestrogenic activity since they are thought to be under the regulation of the ER. There are multiple genes for VTGs and an in silico analysis of their distribution in the Zebrafish genome has identified six genes: VTG-1, VTG-2, VTG-4, VTG-5, VTG-7 located on chromosome 22 and VTG-3 on chromosome 11. VTG-specific, quantitative, real-time, reverse-transcriptase polymerase chain reaction assays were developed and used to measure differential expression in the livers of mature male and female zebrafish. Following normalisation in female fish, relative expression of VTG-5 mRNA is highest and is 1.3x, 1.6x and 2x higher than VTG-4, VTG-2 and VTG-1, respectively, while expression of VTG-3 and VTG-7 is very low. Expression of VTGs in male fish was either undetectable or very low (VTG-4 and VTG-5). ERalpha and ERbeta2 were expressed at higher levels than ERbeta1 in females, but only ERbeta2 was expressed in appreciable quantity in males. Expression of ERalpha in males was significant but only at the limit of detection (<0.1% of female fish), while ERbeta1 could not be detected. The very low level of expression of ERalpha in males raises questions about the accepted mechanism of oestrogenic induction of VTG in male fish.
Collapse
|
45
|
Goetz FW, Rise ML, Rise M, Goetz GW, Binkowski F, Shepherd BS. Stimulation of growth and changes in the hepatic transcriptome by 17β-estradiol in the yellow perch (Perca flavescens). Physiol Genomics 2009; 38:261-80. [DOI: 10.1152/physiolgenomics.00069.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The effects of dietary 17β-estradiol (E2) on growth and liver transcriptomics were investigated in the yellow perch ( Perca flavescens). After a 3-mo treatment, E2 significantly stimulated an increase in length and weight of juvenile male and female perch relative to control animals. The increase was significantly greater in females compared with males. Separate, unnormalized cDNA libraries were constructed from equal quantities of RNA from 6 male and 6 female livers of E2-treated and control perch, and 3,546 and 3,719 expressed sequence tags (ESTs) were obtained, respectively. To characterize E2-regulated transcripts, EST frequencies between libraries were calculated within contiguous sequences that were assembled from the combined ESTs of both libraries. Frequencies were also determined in EST transcript groupings produced by aligning all of the ESTs from both libraries at the nucleotide level. From these analyses, there were 28 annotated transcripts that were regulated by 75% between libraries and for which there were at least 5 ESTs of the same transcript between libraries. Regulation of a subset ( 14 ) of these transcripts was confirmed by quantitative reverse transcription-polymerase chain reaction (QPCR). Transcripts that were upregulated by E2 included reproduction-related proteins, binding proteins, and proteases and protease inhibitors. While not part of the transcript frequency analysis, QPCR showed significant upregulation of estrogen receptor esr1 and of insulin-like growth factor I (IGF-I) in E2 livers. E2-downregulated transcripts represented a variety of functional categories including components of the respiratory chain, lipid transport and metabolism, glycolysis, amino acid and nitrogen metabolism, binding proteins, a hydrolytic enzyme, and a transcriptional regulator. In perch it appears that exogenous estrogen drastically shifts liver metabolism toward the production of lipoproteins and carbohydrate binding proteins, and that the growth-promoting action may involve an increase in hepatic IGF-I production.
Collapse
Affiliation(s)
- Frederick W. Goetz
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Matthew L. Rise
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Marlies Rise
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Giles W. Goetz
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Frederick Binkowski
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Brian S. Shepherd
- Great Lakes WATER Institute/Agricultural Research Service/U.S. Department of Agriculture, Milwaukee, Wisconsin
| |
Collapse
|
46
|
Yin N, Jin X, He J, Yin Z. Effects of adrenergic agents on the expression of zebrafish (Danio rerio) vitellogenin Ao1. Toxicol Appl Pharmacol 2009; 238:20-6. [DOI: 10.1016/j.taap.2009.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/30/2009] [Accepted: 04/02/2009] [Indexed: 11/16/2022]
|
47
|
Woods M, Kumar A, Barton M, Woods A, Kookana R. Localisation of estrogen responsive genes in the liver and testis of Murray rainbowfish Melanotaenia fluviatilis exposed to 17beta-estradiol. Mol Cell Endocrinol 2009; 303:57-66. [PMID: 19428992 DOI: 10.1016/j.mce.2008.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/19/2008] [Accepted: 12/31/2008] [Indexed: 10/21/2022]
Abstract
The localisation of estrogen receptors (ERalpha and ERbeta) and vitellogenin (VTG) transcripts were examined in the liver and testis in male rainbowfish exposed to 17beta-estradiol (E2; 0, 50 and 500 ng/L) via the water for up to 7 days. The ER transcripts were localised within the perinuclear region of the hepatocytes and were up-regulated with E2 exposure. A parallel induction of liver VTG transcripts and protein was observed within 24h, followed by a time-dependent increase in VTG protein. In the testis, both ERs were up-regulated in the germ and epithelial cells, while VTG protein was detected in the cellular space surrounding the spermatids and in association with the connective tissue of the sperm tubules. These results indicate that the ERs are positively auto-regulated in the liver and testis of male rainbowfish. The cellular localisation of VTG within the testis may suggest implication in the mediation of adverse effects of endocrine disrupting chemicals such as testicular growth inhibition, testis-ova and sex reversal.
Collapse
Affiliation(s)
- Marianne Woods
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Glen Osmond, Australia.
| | | | | | | | | |
Collapse
|
48
|
Levi L, Pekarski I, Gutman E, Fortina P, Hyslop T, Biran J, Levavi-Sivan B, Lubzens E. Revealing genes associated with vitellogenesis in the liver of the zebrafish (Danio rerio) by transcriptome profiling. BMC Genomics 2009; 10:141. [PMID: 19335895 PMCID: PMC2678157 DOI: 10.1186/1471-2164-10-141] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 03/31/2009] [Indexed: 11/20/2022] Open
Abstract
Background In oviparous vertebrates, including fish, vitellogenesis consists of highly regulated pathways involving 17β-estradiol (E2). Previous studies focused on a relatively small number of hepatic expressed genes during vitellogenesis. This study aims to identify hepatic genes involved in vitellogenesis and regulated by E2, by using zebrafish microarray gene expression profiling, and to provide information on functional distinctive genes expressed in the liver of a vitellogenic female, using zebrafish as a model fish. Results Genes associated with vitellogenesis were revealed by the following paired t-tests (SAM) comparisons: a) two-month old vitellogenic (Vit2) females were compared with non-vitellogenic (NV) females, showing 825 differentially expressed transcripts during early stages of vitellogenesis, b) four-month old vitellogenic (Vit4) females were compared with NV females, showing 1,046 differentially expressed transcripts during vitellogenesis and c) E2-treated males were compared with control males, showing 1,828 differentially expressed transcripts regulated by E2. A Venn diagram revealed 822 common transcripts in the three groups, indicating that these transcripts were involved in vitellogenesis and putatively regulated by E2. In addition, 431 transcripts were differentially expressed in Vit2 and Vit4 females but not in E2-treated males, indicating that they were putatively not up-regulated by E2. Correspondence analysis showed high similarity in expression profiles of Vit2 with Vit4 and of NV females with control males. The E2-treated males differed from the other groups. The repertoire of genes putatively regulated by E2 in vitellogenic females included genes associated with protein synthesis and reproduction. Genes associated with the immune system processes and biological adhesion, were among the genes that were putatively not regulated by E2. E2-treated males expressed a large array of transcripts that were not associated with vitellogenesis. The study revealed several genes that were not reported before as being regulated by E2. Also, the hepatic expression of several genes was reported here for the first time. Conclusion Gene expression profiling of liver samples revealed 1,046 differentially expressed transcripts during vitellogenesis of which at least ~64% were regulated by E2. The results raise the question on the regulation pattern and temporal pleiotropic expression of hepatic genes in vitellogenic females.
Collapse
Affiliation(s)
- Liraz Levi
- Department Marine Biology and Biotechnology, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Segner H. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:187-95. [PMID: 18955160 DOI: 10.1016/j.cbpc.2008.10.099] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 01/05/2023]
Abstract
Endocrine-disrupting compounds (EDCs) are widespread in the aquatic environment and can cause alterations in development, physiological homeostasis and health of vertebrates. Zebrafish, Danio rerio, has been suggested as a model species to identify targets as well as modes of EDC action. In fact, zebrafish has been found useful in EDC screening, in EDC effects assessment and in studying targets and mechanisms of EDC action. Since many of the environmental EDCs interfere with the sex steroid system of vertebrates, most EDC studies with zebrafish addressed disruption of sexual differentiation and reproduction. However, other targets of EDCs action must not be overlooked. For using a species as a toxicological model, a good knowledge of the biological traits of this species is a pre-requisite for the rational design of test protocols and endpoints as well as for the interpretation and extrapolation of the toxicological findings. Due to the genomic resources available for zebrafish and the long experience with zebrafish in toxicity testing, it is easily possible to establish molecular endpoints for EDC effects assessment. Additionally, the zebrafish model offers a number of technical advantages including ease and cost of maintenance, rapid development, high fecundity, optical transparency of embryos supporting phenotypic screening, existence of many mutant strains, or amenability for both forward and reverse genetics. To date, the zebrafish has been mainly used to identify molecular targets of EDC action and to determine effect thresholds, while the potential of this model species to study immediate and delayed physiological consequences of molecular interactions has been instrumentalized only partly. One factor that may limit the exploitation of this potential is the still rather fragmentary knowledge of basic biological and endocrine traits of zebrafish. Information on species-specific features in endocrine processes and biological properties, however, need to be considered in establishing EDC test protocols using zebrafish, in extrapolating findings from zebrafish to other vertebrate species, and in understanding how EDC-induced gene expression changes translate into disease.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, University of Berne, P.O. Box 8466, CH-3001 Bern, Switzerland.
| |
Collapse
|
50
|
Reading BJ, Hiramatsu N, Sawaguchi S, Matsubara T, Hara A, Lively MO, Sullivan CV. Conserved and variant molecular and functional features of multiple egg yolk precursor proteins (vitellogenins) in white perch (Morone americana) and other teleosts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:169-187. [PMID: 18766402 DOI: 10.1007/s10126-008-9133-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/07/2008] [Accepted: 07/11/2008] [Indexed: 05/26/2023]
Abstract
Three complete cDNAs encoding different forms of vitellogenin (Vtg) were isolated from a white perch (Morone americana) liver cDNA library and characterized with respect to immunobiochemical and functional features of the three Vtgs and their product yolk proteins (YPs) in this species and in the congeneric striped bass (Morone saxatilis). The two longest cDNAs encoded Vtgs with a complete suite of yolk protein domains that, based on comparisons with vtg sequences from other species, were categorized as VtgAa and VtgAb using the current nomenclature for multiple teleost Vtgs. The shorter cDNA encoded a Vtg that lacked a phosvitin domain, had a shortened C-terminus, and was categorized as VtgC. Mapping of peptide sequences from the purified Vtgs and their derived YPs to Vtg sequences deduced from the cDNAs definitively identified the white perch VtgAa, VtgAb, and VtgC proteins. Detailed comparisons of the primary structures of each Vtg with partial or complete sequences of Morone yolk proteins or of Vtgs from other fishes revealed conserved and variant structural elements of teleost Vtgs with functional significance, including, as examples, signal peptide cleavage sites, dimerization sites, cathepsin D protease recognition sites, and receptor-binding domains. These comparisons also yielded an interim revision of the classification scheme for multiple teleost Vtgs.
Collapse
Affiliation(s)
- Benjamin J Reading
- Department of Zoology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | | | | | | | | | | | | |
Collapse
|