1
|
Connacher J, von Grüning H, Birkholtz L. Histone Modification Landscapes as a Roadmap for Malaria Parasite Development. Front Cell Dev Biol 2022; 10:848797. [PMID: 35433676 PMCID: PMC9010790 DOI: 10.3389/fcell.2022.848797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
Plasmodium falciparum remains the deadliest parasite species in the world, responsible for 229 million cases of human malaria in 2019. The ability of the P. falciparum parasite to progress through multiple life cycle stages and thrive in diverse host and vector species hinges on sophisticated mechanisms of epigenetic regulation of gene expression. Emerging evidence indicates such epigenetic control exists in concentric layers, revolving around core histone post-translational modification (PTM) landscapes. Here, we provide a necessary update of recent epigenome research in malaria parasites, focusing specifically on the ability of dynamic histone PTM landscapes to orchestrate the divergent development and differentiation pathways in P. falciparum parasites. In addition to individual histone PTMs, we discuss recent findings that imply functional importance for combinatorial PTMs in P. falciparum parasites, representing an operational histone code. Finally, this review highlights the remaining gaps and provides strategies to address these to obtain a more thorough understanding of the histone modification landscapes that are at the center of epigenetic regulation in human malaria parasites.
Collapse
|
2
|
Pereira PHS, Borges-Pereira L, Garcia CRS. Evidences of G Coupled-Protein Receptor (GPCR) Signaling in the human Malaria Parasite Plasmodium falciparum for Sensing its Microenvironment and the Role of Purinergic Signaling in Malaria Parasites. Curr Top Med Chem 2021; 21:171-180. [PMID: 32851963 DOI: 10.2174/1568026620666200826122716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
The nucleotides were discovered in the early 19th century and a few years later, the role of such molecules in energy metabolism and cell survival was postulated. In 1972, a pioneer work by Burnstock and colleagues suggested that ATP could also work as a neurotransmitter, which was known as the "purinergic hypothesis". The idea of ATP working as a signaling molecule faced initial resistance until the discovery of the receptors for ATP and other nucleotides, called purinergic receptors. Among the purinergic receptors, the P2Y family is of great importance because it comprises of G proteincoupled receptors (GPCRs). GPCRs are widespread among different organisms. These receptors work in the cells' ability to sense the external environment, which involves: to sense a dangerous situation or detect a pheromone through smell; the taste of food that should not be eaten; response to hormones that alter metabolism according to the body's need; or even transform light into an electrical stimulus to generate vision. Advances in understanding the mechanism of action of GPCRs shed light on increasingly promising treatments for diseases that have hitherto remained incurable, or the possibility of abolishing side effects from therapies widely used today.
Collapse
Affiliation(s)
- Pedro H S Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Lucas Borges-Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Célia R S Garcia
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Abstract
Malaria is the major cause of mortality and morbidity in tropical countries. The causative agent, Plasmodium sp., has a complex life cycle and is armed with various mechanisms which ensure its continuous transmission. Gametocytes represent the sexual stage of the parasite and are indispensable for the transmission of the parasite from the human host to the mosquito. Despite its vital role in the parasite's success, it is the least understood stage in the parasite's life cycle. The presence of gametocytes in asymptomatic populations and induction of gametocytogenesis by most antimalarial drugs warrants further investigation into its biology. With a renewed focus on malaria elimination and advent of modern technology available to biologists today, the field of gametocyte biology has developed swiftly, providing crucial insights into the molecular mechanisms driving sexual commitment. This review will summarise key current findings in the field of gametocyte biology and address the associated challenges faced in malaria detection, control and elimination.
Collapse
|
4
|
Campino S, Benavente ED, Assefa S, Thompson E, Drought LG, Taylor CJ, Gorvett Z, Carret CK, Flueck C, Ivens AC, Kwiatkowski DP, Alano P, Baker DA, Clark TG. Genomic variation in two gametocyte non-producing Plasmodium falciparum clonal lines. Malar J 2016; 15:229. [PMID: 27098483 PMCID: PMC4839107 DOI: 10.1186/s12936-016-1254-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Transmission of the malaria parasite Plasmodium falciparum from humans to the mosquito vector requires differentiation of a sub-population of asexual forms replicating within red blood cells into non-dividing male and female gametocytes. The nature of the molecular mechanism underlying this key differentiation event required for malaria transmission is not fully understood. Methods Whole genome sequencing was used to examine the genomic diversity of the gametocyte non-producing 3D7-derived lines F12 and A4. These lines were used in the recent detection of the PF3D7_1222600 locus (encoding PfAP2-G), which acts as a genetic master switch that triggers gametocyte development. Results The evolutionary changes from the 3D7 parental strain through its derivatives F12 (culture-passage derived cloned line) and A4 (transgenic cloned line) were identified. The genetic differences including the formation of chimeric var genes are presented. Conclusion A genomics resource is provided for the further study of gametocytogenesis or other phenotypes using these parasite lines. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1254-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Samuel Assefa
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Eloise Thompson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Laura G Drought
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Catherine J Taylor
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Zaria Gorvett
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Celine K Carret
- The European Molecular Biology Organization, Heidelberg, Germany
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Al C Ivens
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Dominic P Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.,Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
5
|
A Putative Non-Canonical Ras-Like GTPase from P. falciparum: Chemical Properties and Characterization of the Protein. PLoS One 2015; 10:e0140994. [PMID: 26540393 PMCID: PMC4634863 DOI: 10.1371/journal.pone.0140994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/02/2015] [Indexed: 12/16/2022] Open
Abstract
During its development the malaria parasite P. falciparum has to adapt to various different environmental contexts. Key cellular mechanisms involving G-protein coupled signal transduction chains are assumed to act at these interfaces. Heterotrimeric G-proteins are absent in Plasmodium. We here describe the first cloning and expression of a putative, non-canonical Ras-like G protein (acronym PfG) from Plasmodium. PfG reveals an open reading frame of 2736 bp encoding a protein of 912 amino acids with a theoretical pI of 8.68 and a molecular weight of 108.57 kDa. Transcript levels and expression are significantly increased in the erythrocytic phase in particular during schizont and gametocyte formation. Most notably, PfG has GTP binding capacity and GTPase activity due to an EngA2 domain present in small Ras-like GTPases in a variety of Bacillus species and Mycobacteria. By contrast, plasmodial PfG is divergent from any human alpha-subunit. PfG was expressed in E. coli as a histidine-tagged fusion protein and was stable only for 3.5 hours. Purification was only possible under native conditions by Nickel-chelate chromatography and subsequent separation by Blue Native PAGE. Binding of a fluorescent GTP analogue BODIPY® FL guanosine 5’O-(thiotriphosphate) was determined by fluorescence emission. Mastoparan stimulated GTP binding in the presence of Mg2+. GTPase activity was determined colorimetrically. Activity expressed as absolute fluorescence was 50% higher for the human paralogue than the activity of the parasitic enzyme. The PfG protein is expressed in the erythrocytic stages and binds GTP after immunoprecipitation. Immunofluorescence using specific antiserum suggests that PfG localizes to the parasite cytosol. The current data suggest that the putitative, Ras-like G-protein might be involved in a non-canonical signaling pathway in Plasmodium. Research on the function of PfG with respect to pathogenesis and antimalarial chemotherapy is currently under way.
Collapse
|
6
|
Morahan B, Garcia-Bustos J. Kinase signalling in Plasmodium sexual stages and interventions to stop malaria transmission. Mol Biochem Parasitol 2014; 193:23-32. [PMID: 24509402 DOI: 10.1016/j.molbiopara.2014.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 12/26/2022]
Abstract
The symptoms of malaria, one of the infectious diseases with the highest mortality and morbidity world-wide, are caused by asexual parasites replicating inside red blood cells. Disease transmission, however, is effected by non-replicating cells which have differentiated into male or female gametocytes. These are the forms infectious to mosquito vectors and the insects are the only hosts where parasite sexual reproduction can take place. Malaria is thus a complex infection in which pharmacological treatment of symptoms may still allow transmission for long periods, while pharmacological blockage of infectivity may not cure symptoms. The process of parasite sexual differentiation and development is still being revealed but it is clear that kinase-mediated signalling mechanisms play a significant role. This review attempts to summarise our limited current knowledge on the signalling mechanisms involved in the transition from asexual replication to sexual differentiation and reproduction, with a brief mention to the effects of current treatments on the sexual stages and to some of the difficulties inherent in developing pharmacological interventions to curtail disease transmission.
Collapse
Affiliation(s)
- Belinda Morahan
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Jose Garcia-Bustos
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
7
|
Peatey CL, Dixon MWA, Gardiner DL, Trenholme KR. Temporal evaluation of commitment to sexual development in Plasmodium falciparum. Malar J 2013; 12:134. [PMID: 23607486 PMCID: PMC3659030 DOI: 10.1186/1475-2875-12-134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/12/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The production of gametocytes is essential for transmission of malaria parasites from the mammalian host to the mosquito vector. However the process by which the asexual blood-stage parasite undergoes commitment to sexual development is not well understood. This process is known to be sensitive to environmental stimuli and it has been suggested that a G protein dependent system may mediate the switch, but there is little evidence that the Plasmodium falciparum genome encodes heterotrimeric G proteins. Previous studies have indicated that the malaria parasite can interact with endogenous erythrocyte G proteins, and other components of the cyclic nucleotide pathway have been identified in P. falciparum. Also, the polypeptide cholera toxin, which induces commitment to gametocytogenesis is known to catalyze the ADP-ribosylation of the α(s) class of heterotrimeric G protein α subunits in mammalian systems has been reported to detect a number of G(α) subunits in P. falciparum-infected red cells. METHODS Cholera toxin and Mas 7 (a structural analogue of Mastoparan) were used to assess the role played by putative G protein signalling in the commitment process, both are reported to interact with different components of classical Gas and Gai/o signalling pathways. Their ability to induce gametocyte production in the transgenic P. falciparum line Pfs16-GFP was determined and downstream effects on the secondary messenger cAMP measured. RESULTS Treatment of parasite cultures with either cholera toxin or MAS 7 resulted in increased gametocyte production, but only treatment with MAS 7 resulted in a significant increase in cAMP levels. This indicates that MAS 7 acts either directly or indirectly on the P. falciparum adenylyl cyclase. CONCLUSION The observation that cholera toxin treatment did not affect cAMP levels indicates that while addition of cholera toxin does increase gametocytogenesis the method by which it induces increased commitment is not immediately obvious, except that is unlikely to be via heterotrimeric G proteins.
Collapse
Affiliation(s)
- Christopher L Peatey
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4006, Australia
| | | | | | | |
Collapse
|
8
|
Generation of second messengers in Plasmodium. Microbes Infect 2012; 14:787-95. [PMID: 22584103 DOI: 10.1016/j.micinf.2012.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 02/05/2023]
Abstract
Signalling in malaria parasites is a field of growing interest as its components may prove to be valuable drug targets, especially when one considers the burden of a disease that is responsible for up to 500 million infections annually. The scope of this review is to discuss external stimuli in the parasite life cycle and the upstream machinery responsible for translating them into intracellular responses, focussing particularly on the calcium signalling pathway.
Collapse
|
9
|
Liu Z, Miao J, Cui L. Gametocytogenesis in malaria parasite: commitment, development and regulation. Future Microbiol 2012; 6:1351-69. [PMID: 22082293 DOI: 10.2217/fmb.11.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Malaria parasites have evolved a complicated life cycle alternating between two hosts. Gametocytes are produced in the vertebrate hosts and are obligatory for natural transmission of the parasites through mosquito vectors. The mechanism of sexual development in Plasmodium has been the focus of extensive studies. In the postgenomic era, the advent of genome-wide analytical tools and genetic manipulation technology has enabled rapid advancement of our knowledge in this area. Patterns of gene expression during sexual development, molecular distinction of the two sexes, and mechanisms underlying subsequent formation of gametes and their fertilization have been progressively elucidated. However, the triggers and mechanism of sexual development remain largely unknown. This article provides an update of our understanding of the molecular and cellular events associated with the decision for commitment to sexual development and regulation of gene expression during gametocytogenesis. Insights into the molecular mechanisms of gametocyte development are essential for designing proper control strategies for interruption of malaria transmission and ultimate elimination.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Entomology, The Pennsylvania State University, 537 ASI Building University Park, PA 16802, USA
| | | | | |
Collapse
|
10
|
Lampert TJ, Coleman KD, Hennessey TM. A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction. PLoS One 2011; 6:e28022. [PMID: 22140501 PMCID: PMC3226668 DOI: 10.1371/journal.pone.0028022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/30/2011] [Indexed: 11/18/2022] Open
Abstract
Although G-protein coupled receptors (GPCRs) are a common element in many chemosensory transduction pathways in eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete knockout of a gene that we call GPCR6 (TTHERM_00925490). Based on sequence comparisons, the Gpcr6p protein belongs to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing ions Ba2+ and K+, suggesting a decrease in basal excitability (decrease in Ca2+ channel activity). The other major phenotype of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA) and proteose peptone (PP), two known chemoattractants in Tetrahymena. Using microsomal [35S]GTPγS binding assays, we found that wild-type (CU427) have a prominent basal G-protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor), addition of chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes) towards the attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a pertussis-sensitive G-protein.
Collapse
Affiliation(s)
- Thomas J Lampert
- Department of Biological Sciences, University at Buffalo, Amherst, New York, United States of America
| | | | | |
Collapse
|
11
|
McDonough KA, Rodriguez A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 2011; 10:27-38. [PMID: 22080930 DOI: 10.1038/nrmicro2688] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All organisms must sense and respond to their external environments, and this signal transduction often involves second messengers such as cyclic nucleotides. One such nucleotide is cyclic AMP, a universal second messenger that is used by diverse forms of life, including mammals, fungi, protozoa and bacteria. In this review, we discuss the many roles of cAMP in bacterial, fungal and protozoan pathogens and its contributions to microbial pathogenesis. These roles include the coordination of intracellular processes, such as virulence gene expression, with extracellular signals from the environment, and the manipulation of host immunity by increasing cAMP levels in host cells during infection.
Collapse
Affiliation(s)
- Kathleen A McDonough
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, New York, New York 12201-2002, USA. kathleen.mcdonough@ wadsworth.org
| | | |
Collapse
|
12
|
Gazarini ML, Beraldo FH, Almeida FM, Bootman M, Da Silva AM, Garcia CRS. Melatonin triggers PKA activation in the rodent malaria parasite Plasmodium chabaudi. J Pineal Res 2011; 50:64-70. [PMID: 20964707 DOI: 10.1111/j.1600-079x.2010.00810.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcium (Ca(2+) ) is a critical regulator of many aspects of the Plasmodium reproductive cycle. In particular, intra-erythrocyte Plasmodium parasites respond to circulating levels of the melatonin in a process mediated partly by intracellular Ca(2+) . Melatonin promotes the development and synchronicity of parasites, thereby enhancing their spread and worsening the clinical implications. The signalling mechanisms underlying the effects of melatonin are not fully established, although both Ca(2+) and cyclic AMP (cAMP) have been implicated. Furthermore, it is not clear whether different strains of Plasmodium use the same, or divergent, signals to control their development. The aim of this study was to explore the signalling mechanisms engaged by melatonin in P. chabaudi, a virulent rodent parasite. Using parasites at the throphozoite stage acutely isolated from mice erythrocytes, we demonstrate that melatonin triggers cAMP production and protein kinase A (PKA) activation. Interestingly, the stimulation of cAMP/PKA signalling by melatonin was dependent on elevation of Ca(2+) within the parasite, because buffering Ca(2+) changes using the chelator BAPTA prevented cAMP production in response to melatonin. Incubation with melatonin evoked robust Ca(2+) signals within the parasite, as did the application of a membrane-permeant analogue of cAMP. Our data suggest that P. chabaudi engages both Ca(2+) and cAMP signalling systems when stimulated by melatonin. Furthermore, there is positive feedback between these messengers, because Ca(2+) evokes cAMP elevation and vice versa. Melatonin more than doubled the observed extent of parasitemia, and the increase in cAMP concentration and PKA activation was essential for this effect. These data support the possibility to use melatonin antagonists or derivates in therapeutic approach.
Collapse
Affiliation(s)
- Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brasil
| | | | | | | | | | | |
Collapse
|
13
|
Alves E, Bartlett PJ, Garcia CRS, Thomas AP. Melatonin and IP3-induced Ca2+ release from intracellular stores in the malaria parasite Plasmodium falciparum within infected red blood cells. J Biol Chem 2010; 286:5905-12. [PMID: 21149448 DOI: 10.1074/jbc.m110.188474] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.
Collapse
Affiliation(s)
- Eduardo Alves
- Department of Pharmacology and Physiology, UMDNJ, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
14
|
Pertseva MN, Shpakov AO. Hypothesis of evolutionary origin of several human and animal diseases. J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093010030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abstract
One of the most important public health problems in the world today is the emergence and dissemination of drug-resistant malaria parasites. Plasmodium falciparum is the causative agent of the most lethal form of human malaria. New anti-malarial strategies are urgently required, and their design and development require the identification of potential therapeutic targets. However, the molecular mechanisms controlling the life cycle of the malaria parasite are still poorly understood. The published genome sequence of P. falciparum and previous studies have revealed that several homologues of eukaryotic signalling proteins, such as protein kinases, are relatively conserved. Protein kinases are now widely recognized as important drug targets in protozoan parasites. Cyclic AMP-dependent protein kinase (PKA) is implicated in numerous processes in mammalian cells, and the regulatory mechanisms of the cAMP pathway have been characterized. P. falciparum cAMP-dependent protein kinase plays an important role in the parasite's life cycle and thus represents an attractive target for the development of anti-malarial drugs. In this review, we focus on the P. falciparum cAMP/PKA pathway to provide new insights and an improved understanding of this signalling cascade.
Collapse
|
16
|
Initiation of Plasmodium sporozoite motility by albumin is associated with induction of intracellular signalling. Int J Parasitol 2009; 40:25-33. [PMID: 19654011 DOI: 10.1016/j.ijpara.2009.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/25/2009] [Accepted: 06/27/2009] [Indexed: 11/21/2022]
Abstract
Malaria infection is initiated when a mosquito injects Plasmodium sporozoites into a mammalian host. Sporozoites exhibit gliding motility both in vitro and in vivo. This motility is associated with the secretion of at least two proteins, circumsporozoite protein (CSP) and thrombospondin-related anonymous protein (TRAP). Both derive from micronemes, which are organelles that empty out of the apical end of the sporozoite. Sporozoite motility can be initiated in vitro by albumin added to the medium. To investigate how albumin functions in this process, we studied second messenger signalling within the sporozoite. Using pharmacological activators and inhibitors, we have concluded that gliding motility is initiated when albumin interacts with the surface of the sporozoite and that this leads to a signal transduction cascade within the sporozoite, including the elevation of intracellular cAMP, the modulation of sporozoite motility by Ca(2+) and the release of microneme proteins.
Collapse
|
17
|
Molecular machinery of signal transduction and cell cycle regulation in Plasmodium. Mol Biochem Parasitol 2009; 165:1-7. [PMID: 19393157 DOI: 10.1016/j.molbiopara.2009.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/27/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
Abstract
The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.
Collapse
|
18
|
Dixon MW, Thompson J, Gardiner DL, Trenholme KR. Sex in Plasmodium: a sign of commitment. Trends Parasitol 2008; 24:168-75. [DOI: 10.1016/j.pt.2008.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 01/03/2008] [Accepted: 01/03/2008] [Indexed: 11/30/2022]
|
19
|
Shpakov AO, Pertseva MN. Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:151-282. [DOI: 10.1016/s1937-6448(08)01004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Beraldo FH, Almeida FM, da Silva AM, Garcia CRS. Cyclic AMP and calcium interplay as second messengers in melatonin-dependent regulation of Plasmodium falciparum cell cycle. ACTA ACUST UNITED AC 2007; 170:551-7. [PMID: 16103224 PMCID: PMC2171486 DOI: 10.1083/jcb.200505117] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The host hormone melatonin increases cytoplasmic Ca(2+) concentration and synchronizes Plasmodium cell cycle (Hotta, C.T., M.L. Gazarini, F.H. Beraldo, F.P. Varotti, C. Lopes, R.P. Markus, T. Pozzan, and C.R. Garcia. 2000. Nat. Cell Biol. 2:466-468). Here we show that in Plasmodium falciparum melatonin induces an increase in cyclic AMP (cAMP) levels and cAMP-dependent protein kinase (PKA) activity (40 and 50%, respectively). When red blood cells infected with P. falciparum are treated with cAMP analogue adenosine 3',5'-cyclic monophosphate N6-benzoyl/PKA activator (6-Bz-cAMP) there is an alteration of the parasite cell cycle. This effect appears to depend on activation of PKA (abolished by the PKA inhibitors adenosine 3',5'-cyclic monophosphorothioate/8 Bromo Rp isomer, PKI [cell permeable peptide], and H89). An unexpected cross talk was found to exist between the cAMP and the Ca(2+)-dependent signaling pathways. The increases in cAMP by melatonin are inhibited by blocker of phospholipase C U73122, and addition of 6-Bz-cAMP increases cytosolic Ca(2+) concentration, through PKA activation. These findings suggest that in Plasmodium a highly complex interplay exists between the Ca(2+) and cAMP signaling pathways, but also that the control of the parasite cell cycle by melatonin requires the activation of both second messenger controlled pathways.
Collapse
Affiliation(s)
- Flávio H Beraldo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
21
|
Shpakov AO. Structure-functional organization of adenylyl cyclases of unicellular eukaryotes and molecular mechanisms of their regulation. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Furuya T, Mu J, Hayton K, Liu A, Duan J, Nkrumah L, Joy DA, Fidock DA, Fujioka H, Vaidya AB, Wellems TE, Su XZ. Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. Proc Natl Acad Sci U S A 2005; 102:16813-8. [PMID: 16275909 PMCID: PMC1277966 DOI: 10.1073/pnas.0501858102] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A male gametocyte defect in the Plasmodium falciparum Dd2 parasite was previously discovered through the observation that all progeny clones in a Dd2 x HB3 genetic cross were the result of fertilization events between Dd2 female and HB3 male gametes. A determinant linked to the defect in Dd2 was subsequently mapped to an 800-kb segment on chromosome 12. Here, we report further mapping of the determinant to an 82-kb region and the identification of a candidate gene, P. falciparum male development gene 1 (pfmdv-1), that is expressed at a lower level in Dd2 compared with the wild-type normal male gametocyte-producing ancestor W2. Pfmdv-1 protein is sexual-stage specific and is located on the gametocyte plasma membrane, parasitophorous vacuole membrane, and the membranes of cleft-like structures within the erythrocyte. Disruption of pfmdv-1 results in a dramatic reduction in mature gametocytes, especially functional male gametocytes, with the majority of sexually committed parasites developmentally arrested at stage I. The pfmdv-1-knockout parasites show disturbed membrane structures, particularly multimembrane vesicles/tubes that likely derive from deformed cleft-like structures. Mosquito infectivity of the knockout parasites was also greatly reduced but not completely lost. The results suggest that pfmdv-1 plays a key role in gametocyte membrane formation and integrity.
Collapse
Affiliation(s)
- Tetsuya Furuya
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gardiner DL, Dixon MWA, Spielmann T, Skinner-Adams TS, Hawthorne PL, Ortega MR, Kemp DJ, Trenholme KR. Implication of a Plasmodium falciparum gene in the switch between asexual reproduction and gametocytogenesis. Mol Biochem Parasitol 2005; 140:153-60. [PMID: 15760655 DOI: 10.1016/j.molbiopara.2004.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 12/27/2004] [Accepted: 12/27/2004] [Indexed: 10/25/2022]
Abstract
Gametocytogenesis is fundamental for transmission of the malaria parasite Plasmodium falciparum from the human host to the mosquito vector, yet very little is understood about what triggers the switch between asexual reproduction and gametocytogenesis. Arresting the progression through the sexual cycle would block transmission of this disease. Here we identify a novel gene in P. falciparum that when genetically silenced reduces gametocyte production by a factor of 6, and when complemented up-regulates gametocyte-specific gene transcription.
Collapse
Affiliation(s)
- Donald L Gardiner
- Malaria Biology Laboratory, The Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research, 300 Herston Road, Herston, Qld 4006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gissot M, Refour P, Briquet S, Boschet C, Coupé S, Mazier D, Vaquero C. Transcriptome of 3D7 and its gametocyte-less derivative F12 Plasmodium falciparum clones during erythrocytic development using a gene-specific microarray assigned to gene regulation, cell cycle and transcription factors. Gene 2004; 341:267-77. [PMID: 15474309 DOI: 10.1016/j.gene.2004.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2004] [Revised: 06/21/2004] [Accepted: 07/05/2004] [Indexed: 11/19/2022]
Abstract
During the complex life cycle of Plasmodium falciparum, through mosquito and human, the erythrocytic cycle is responsible for malarial disease and transmission. The regulation of events that occur during parasite development, such as proliferation and differentiation, implies a fine control of transcriptional activities that in turn governs the expression profiles of sets of genes. Pathways that underline gametocyte commitment are yet poorly understood even though kinases and transcription factors have been assumed to play a crucial role in this event. In order to understand the molecular mechanisms controlling the variation of gene expression profiles that might participate in early gametocytogenesis, the transcriptome of two clones, 3D7 and its gametocyte-less derivative F12, was compared at five time points of the erythrocytic asexual development. We have used a thematic DNA microarray containing 150 PCR fragments, representative of P. falciparum genes involved in signal transduction, cell cycle and transcriptional regulation. We identified several genes eliciting different expression profiles among which some implicated in gene regulation or encoding putative transcription factors. The differential expression of transcription factor and kinase transcripts observed in the two clones may enlighten genes that might have a role in impairment of the early gametocytogenesis of the F12 clone.
Collapse
Affiliation(s)
- Mathieu Gissot
- INSERM U511, CHU Pitié-Salpêtrière, Université Paris 6, 91 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- David A Baker
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
26
|
Talman AM, Domarle O, McKenzie FE, Ariey F, Robert V. Gametocytogenesis: the puberty of Plasmodium falciparum. Malar J 2004; 3:24. [PMID: 15253774 PMCID: PMC497046 DOI: 10.1186/1475-2875-3-24] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 07/14/2004] [Indexed: 11/16/2022] Open
Abstract
The protozoan Plasmodium falciparum has a complex life cycle in which asexual multiplication in the vertebrate host alternates with an obligate sexual reproduction in the anopheline mosquito. Apart from the apparent recombination advantages conferred by sex, P. falciparum has evolved a remarkable biology and adaptive phenotypes to insure its transmission despite the dangers of sex. This review mainly focuses on the current knowledge on commitment to sexual development, gametocytogenesis and the evolutionary significance of various aspects of gametocyte biology. It goes further than pure biology to look at the strategies used to improve successful transmission. Although gametocytes are inevitable stages for transmission and provide a potential target to fight malaria, they have received less attention than the pathogenic asexual stages. There is a need for research on gametocytes, which are a fascinating stage, responsible to a large extent for the success of P. falciparum.
Collapse
Affiliation(s)
- Arthur M Talman
- Groupe de Recherche sur le Paludisme, Institut Pasteur de Madagascar, B.P.1274 Antananarivo 101, Madagascar
- Department of Biological Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, UK
| | - Olivier Domarle
- Groupe de Recherche sur le Paludisme, Institut Pasteur de Madagascar, B.P.1274 Antananarivo 101, Madagascar
| | - F Ellis McKenzie
- Fogarty International Centre, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frédéric Ariey
- Groupe de Recherche sur le Paludisme, Institut Pasteur de Madagascar, B.P.1274 Antananarivo 101, Madagascar
| | - Vincent Robert
- Groupe de Recherche sur le Paludisme, Institut Pasteur de Madagascar, B.P.1274 Antananarivo 101, Madagascar
- UR 77 Paludisme Afro-tropical, Institut de Recherche pour le Développement, Madagascar
| |
Collapse
|
27
|
Harrison T, Samuel BU, Akompong T, Hamm H, Mohandas N, Lomasney JW, Haldar K. Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 2003; 301:1734-6. [PMID: 14500986 DOI: 10.1126/science.1089324] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Erythrocytic mechanisms involved in malarial infection are poorly understood. We have found that signaling via the erythrocyte beta2-adrenergic receptor and heterotrimeric guanine nucleotide-binding protein (Galphas) regulated the entry of the human malaria parasite Plasmodium falciparum. Agonists that stimulate cyclic adenosine 3',5'-monophosphate production led to an increase in malarial infection that could be blocked by specific receptor antagonists. Moreover, peptides designed to inhibit Galphas protein function reduced parasitemia in P. falciparum cultures in vitro, and beta-antagonists reduced parasitemia of P. berghei infections in an in vivo mouse model. Thus, signaling via the erythrocyte beta2-adrenergic receptor and Galphas may regulate malarial infection across parasite species.
Collapse
Affiliation(s)
- Travis Harrison
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kongkasuriyachai D, Kumar N. Functional characterisation of sexual stage specific proteins in Plasmodium falciparum. Int J Parasitol 2002; 32:1559-66. [PMID: 12435440 DOI: 10.1016/s0020-7519(02)00184-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The various stages of the malaria parasites in the vertebrate host and in the mosquito vector offer numerous candidates for vaccine and drug development. However, the biological complexity of the parasites and the interaction with the immune system of the host continue to frustrate all such efforts thus far. While most of the targets for drug and vaccine design have focused on the asexual stages, the sexual stages of the parasite are critical for transmission and maintenance of parasites among susceptible vertebrate hosts. Sexual stage parasites undergo a series of morphological and biochemical changes during their development, accompanied by a co-ordinated cascade of a distinct expression pattern of sexual stage specific proteins. Mechanisms underlying the developmental switch from asexual parasite to sexual parasite still remain elusive. Methods that can break the malaria transmission cycle thus occupy a central place in the overall malaria control strategies. This paper provides a review of genes expressed in sexually differentiated Plasmodium. In the past few years, a molecular approach based on targeted gene disruption has revealed fascinating biological roles for many of the sexual stage gene products. In addition, we will briefly discuss other functional genomic approaches employed to study not only sexual but also other aspects of host-parasite biology.
Collapse
Affiliation(s)
- Darin Kongkasuriyachai
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
29
|
Osta M, Gannoun-Zaki L, Bonnefoy S, Roy C, Vial HJ. A 24 bp cis-acting element essential for the transcriptional activity of Plasmodium falciparum CDP-diacylglycerol synthase gene promoter. Mol Biochem Parasitol 2002; 121:87-98. [PMID: 11985865 DOI: 10.1016/s0166-6851(02)00029-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CDP-diacylglycerol synthase (CDS) is a key rate-limiting enzyme in the phospholipid metabolism of Plasmodium falciparum, converting phosphatidic acid to CDP-diacylglycerol. The CDS gene is predominantly expressed in the mature intraerythrocytic stages. Consequently, we physically and functionally characterized the CDS gene promoter. The mRNA transcription initiation site was mapped 121 bp upstream of the CDS gene translation start site. A 1909 bp 5' upstream sequence was isolated and found to be transcriptionally active thus constituting a functional CDS promoter. Mapping of this promoter identified a 44 bp cis-acting sequence, located between -1640 and -1596 bp upstream of the ATG codon, essential for efficient transcriptional activity. This 44 bp sequence binds specifically to nuclear factors from trophozoite stage parasites. We further showed that a 24 bp element, lying within the 44 bp sequence, mediates the specific binding to nuclear proteins and shows no significant homology to known eukaryotic DNA consensus sequence elements that bind transcription factors. The deletion of the 24 bp element abrogated promoter activity, indicating that this cis-acting sequence element is essential for efficient transcription of the CDS gene.
Collapse
Affiliation(s)
- Mike Osta
- UMR 5539 CNRS, Université Montpellier II, France
| | | | | | | | | |
Collapse
|