1
|
Teixeira BVF, Teles ALB, da Silva SG, Brito CCB, de Freitas HF, Pires ABL, Froes TQ, Castilho MS. Dual and selective inhibitors of pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Leishmania chagasi. J Enzyme Inhib Med Chem 2019; 34:1439-1450. [PMID: 31409157 PMCID: PMC6713189 DOI: 10.1080/14756366.2019.1651311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Leishmaniasis is a tropical disease found in more than 90 countries. The drugs available to treat this disease have nonspecific action and high toxicity. In order to develop novel therapeutic alternatives to fight this ailment, pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHF-TS) have been targeted, once Leishmania is auxotrophic for folates. Although PTR1 and DHFR-TS from other protozoan parasites have been studied, their homologs in Leishmania chagasi have been poorly characterized. Hence, this work describes the optimal conditions to express the recombinant LcPTR1 and LcDHFR-TS enzymes, as well as balanced assay conditions for screening. Last but not the least, we show that 2,4 diaminopyrimidine derivatives are low-micromolar competitive inhibitors of both enzymes (LcPTR1 Ki = 1.50-2.30 µM and LcDHFR Ki = 0.28-3.00 µM) with poor selectivity index. On the other hand, compound 5 (2,4-diaminoquinazoline derivative) is a selective LcPTR1 inhibitor (Ki = 0.47 µM, selectivity index = 20).
Collapse
Affiliation(s)
| | - André Lacerda Braga Teles
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Bahia, Salvador, BA, Brazil
- Departamento de Ciências da Vida, Universidade do Estado da Bahia, Salvador, BA, Brazil
| | | | | | - Humberto Fonseca de Freitas
- Programa de Pós-Graduação em Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | | | - Thamires Quadros Froes
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | - Marcelo Santos Castilho
- Programa de Pós-Graduação em Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| |
Collapse
|
2
|
Assessment of drug resistance associated genetic diversity in Mauritanian isolates of Plasmodium vivax reveals limited polymorphism. Malar J 2018; 17:416. [PMID: 30409138 PMCID: PMC6225721 DOI: 10.1186/s12936-018-2548-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023] Open
Abstract
Background Plasmodium vivax is the predominant malaria species in northern Mauritania. Molecular data on P. vivax isolates circulating in West Africa are scarce. The present study analysed molecular markers associated with resistance to antifolates (Pvdhfr and Pvdhps), chloroquine (Pvmdr1), and artemisinin (Pvk12) in P. vivax isolates collected in two cities located in the Saharan zone of Mauritania. Methods Blood samples were obtained from P. vivax-infected patients recruited for chloroquine therapeutic efficacy study in 2013 and febrile patients spontaneously consulting health facilities in Nouakchott and Atar in 2015–2016. Fragments of Pvdhfr (codons 13, 33, 57, 58, 61, 117, and 174), Pvdhps (codons 382, 383, 512, 553, and 585), Pvmdr1 (codons 976 and 1076) and Pvk12 (codon 552) genes were amplified by PCR and sequenced. Results Most of the isolates in Nouakchott (126/154, 81.8%) and Atar (44/45, 97.8%) carried the wild-type Pvdhfr allelic variant (IPFSTSI). In Nouakchott, all mutants (28/154; 18.2%) had double Pvdhfr mutations in positions 58 and 61 (allelic variant IPFRMSI), whereas in Atar only 1 isolate was mutant (S117N, allelic variant IPFSTNI). The wild-type Pvdhps allelic variant (SAKAV) was found in all tested isolates (Nouakchott, n = 93; Atar, n = 37). Few isolates in Nouakchott (5/115, 4.3%) and Atar (3/79, 3.8%) had the mutant Pvmdr1 allele 976F or 1076L, but not both, including in pre-treatment isolates obtained from patients treated successfully with chloroquine. All isolates (59 in Nouakchott and 48 in Atar) carried the wild-type V552 allele in Pvk12. Conclusions Polymorphisms in Pvdhfr, Pvdhps, Pvmdr1, and Pvk12 were limited in P. vivax isolates collected recently in Nouakchott and Atar. Compared to the isolates collected in Nouakchott in 2007–2009, there was no evidence for selection of mutants. The presence of one, but not both, of the two potential markers of chloroquine resistance in Pvmdr1 in pre-treatment isolates did not influence the clinical outcome, putting into question the role of Pvmdr1 mutant alleles 976F and 1076L in treatment failure. Molecular surveillance is an important component of P. vivax malaria control programme in the Saharan zone of Mauritania to predict possible emergence of drug-resistant parasites.
Collapse
|
3
|
Mutational Analysis of Plasmodium vivax dhfr Gene Among Cases in South East of Iran. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.57697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Serrão VHB, Romanello L, Cassago A, de Souza JRT, Cheleski J, DeMarco R, Brandão-Neto J, Pereira HD. Structure and kinetics assays of recombinant Schistosoma mansoni dihydrofolate reductase. Acta Trop 2017; 170:190-196. [PMID: 28288799 DOI: 10.1016/j.actatropica.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
The parasite Schistosoma mansoni possesses all pathways for pyrimidine biosynthesis, in which dihydrofolate reductase (DHFR), thymidylate cycle participants, is essential for nucleotide metabolism to obtain energy and structural nucleic acids. Thus, DHFRs have been widely suggested as therapeutic targets for the treatment of infectious diseases. In this study, we expressed recombinant SmDHFR in a heterologous manner to obtain structural, biochemical and kinetic information. X-ray diffraction of recombinant SmDHFR at 1.95Å resolution showed that the structure exhibited the canonical DHFR fold. Isothermal titration calorimetry was used to determine the kinetic constants for NADP+ and dihydrofolate. Moreover, inhibition assays were performed using the commercial folate analogs methotrexate and aminopterin; these analogs are recognized as folate competitors and are used as chemotherapeutic agents in cancer and autoimmune diseases. This study provides information that may prove useful for the future discovery of novel drugs and for understanding these metabolic steps from this pathway of S. mansoni, thus aiding in our understanding of the function of these essential pathways for parasite metabolism.
Collapse
|
5
|
Wong HE, Pack SP, Kwon I. Positional effects of hydrophobic non-natural amino acid mutagenesis into the surface region of murine dihydrofolate reductase on enzyme properties. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Sharifi-Sarasiabi K, Haghighi A, Kazemi B, Taghipour N, Mojarad EN, Gachkar L. MOLECULAR SURVEILLANCE OF Plasmodium vivax AND Plasmodium falciparum DHFR MUTATIONS IN ISOLATES FROM SOUTHERN IRAN. Rev Inst Med Trop Sao Paulo 2016; 58:16. [PMID: 27007559 PMCID: PMC4804553 DOI: 10.1590/s1678-9946201658016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/16/2015] [Indexed: 11/23/2022] Open
Abstract
In Iran, both Plasmodium vivax and P. falciparum
malaria have been detected, but P. vivax is the predominant species.
Point mutations in dihydrofolate reductase (dhfr) gene in both
Plasmodia are the major mechanisms of pyrimethamine resistance.
From April 2007 to June 2009, a total of 134 blood samples in two endemic areas of
southern Iran were collected from patients infected with P. vivax
and P. falciparum. The isolates were analyzed for P.
vivax dihydrofolate reductase (pvdhfr) and P.
falciparum dihydrofolate reductase (pfdhfr) point
mutations using various PCR-based methods. The majority of the isolates (72.9%) had
wild type amino acids at five codons of pvdhfr. Amongst mutant
isolates, the most common pvdhfr alleles were double mutant in 58
and 117 amino acids (58R-117N). Triple mutation in 57, 58, and 117 amino acids
(57L/58R/117N) was identified for the first time in the pvdhfr gene
of Iranian P. vivax isolates. All the P.
falciparumsamples analyzed (n = 16) possessed a double mutant
pfdhfrallele (59R/108N) and retained a wild-type mutation at
position 51. This may be attributed to the fact that the falciparum
malaria patients were treated using sulfadoxine-pyrimethamine (SP) in Iran. The
presence of mutant haplotypes in P. vivax is worrying, but has not
yet reached an alarming threshold regarding drugs such as SP. The results of this
study reinforce the importance of performing a molecular surveillance by means of a
continuous chemoresistance assessment.
Collapse
Affiliation(s)
| | - Ali Haghighi
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Latif Gachkar
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Abstract
BACKGROUND Malaria is an infection caused by mosquitoes in human beings which can be dangerous if untreated. A well known plant product, quassinoids are known to have antimalarial activity. These bioactive phytochemicals belong to the triterpene family. Quassinoids are used in the present study to act against malarial dihydrofolate reductase (Pf-DHFR), a potential antimalarial target. Nevertheless, viṣama jvara (~malaria) has been treated with the bark of Cinchona since a long time. AIM The aim of the present experiment is to perform the protein-ligand docking for Pf- DHFR and Quassinoids and study their binding affinities. SETTING AND DESIGN The software used for the present study is the discovery studio (Accelrys 2.1), Protein Data Bank (PDB), and Chemsketch. MATERIALS AND METHODS The protein for the present study was imported from protein data bank with the PDB Id, 4dpd and was prepared for docking. The ligands used for the study are the quassinoids. They were drawn using chemsketch and the 3D structures were generated. The docking was done subsequently. STATISTICAL ANALYSIS USED Molecular modeling technique was used for the protein-ligand docking analysis. RESULTS The docking results showed that the Quassinoids Model_1 showed the highest dock score of 40.728. CONCLUSION The present study proves the promising potential of quassinoids as novel drugs against malaria. The dock results conclude that the quassinoids can be adopted as an alternative drug against malaria.
Collapse
Affiliation(s)
- Shailima Rampogu
- Department of Biochemistry, Cachet Labs, Yousufguda, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Srinivasan B, Skolnick J. Insights into the slow-onset tight-binding inhibition of Escherichia coli dihydrofolate reductase: detailed mechanistic characterization of pyrrolo [3,2-f] quinazoline-1,3-diamine and its derivatives as novel tight-binding inhibitors. FEBS J 2015; 282:1922-38. [PMID: 25703118 DOI: 10.1111/febs.13244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/11/2022]
Abstract
Dihydrofolate reductase (DHFR) is a pivotal enzyme involved in the de novo pathway of purine synthesis, and hence, represents an attractive target to disrupt systems that require rapid DNA turnover. The enzyme acquires resistance to available drugs by various molecular mechanisms, which necessitates the continuous discovery of novel antifolates. Previously, we identified a set of novel molecules that showed binding to E. coli DHFR by means of a thermal shift without establishing whether they inhibited the enzyme. Here, we show that a fraction of those molecules represent potent and novel inhibitors of DHFR activity. 7-[(4-aminophenyl)methyl]-7H-pyrrolo [3,2-f] quinazoline-1,3-diamine, a molecule with no reported inhibition of DHFR, potently inhibits the enzyme with a Ki value of 7.42 ± 0.92 nm by competitive displacement of the substrate dihydrofolic acid. It shows uncompetitive inhibition vis-à-vis NADPH, indicating that the inhibitor has markedly increased affinity for the NADPH-bound form of the enzyme. Further, we demonstrate that the mode of binding of the inhibitor to the enzyme-NADPH binary complex conforms to the slow-onset, tight-binding model. By contrast, mechanistic characterization of the parent molecule 7H-pyrrolo [3,2-f] quinazoline-1,3-diamine shows that lack of (4-aminophenyl)-methyl group at the seventh position abolishes the slow onset of inhibition. This finding provides novel insights into the role of substitutions on inhibitors of E. coli DHFR and represents the first detailed kinetic investigation of a novel diaminopyrroloquinazoline derivative on a prokaryotic DHFR. Furthermore, marked differences in the potency of inhibition for E. coli and human DHFR makes this molecule a promising candidate for development as an antibiotic.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
9
|
Wang W, Gao J, Wang J, Liu C, Meng Y. Cloning, expression and enzymatic properties analysis of dihydrofolate reductase gene from the silkworm, Bombyx mori. Mol Biol Rep 2012; 39:10285-91. [PMID: 23065260 DOI: 10.1007/s11033-012-1905-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for aromatic acid hydroxylases, which control the levels of monoamine neurotransmitters. BH4 deficiency has been associated with many neuropsychological disorders. Dihydrofolate reductase (DHFR) can catalyze 7,8-dihydrobiopterin to 5,6,7,8-tetrahydrobiopterin (BH4) in the salvage pathway of BH4 synthesis from sepiapterin (SP), a major pigment component contained in the integument of silkworm Bombyx mori mutant lemon (lem) in high concentration. In this study, we report the cloning of DHFR gene from the silkworm B. mori (BmDhfr) and identification of enzymatic properties of BmDHFR. BmDhfr is located on scaffold Bm_199 with a predicted gene model BGIBMGA013340, which encodes a 185-aa polypeptide with a predicted molecular mass of about 21 kDa. Biochemical analyses showed that the recombinant BmDHFR protein exhibited high enzymatic activity and suitable parameters to substrate. Together with our previous studies on SP reductase of B. mori (BmSPR) and the lem mutant, it may be an effective way to industrially extract SP from the lem silkworms in large scale to produce BH4 in vitro by co-expressing BmSPR and BmDHFR and using the extracted SP as a substrate in the future.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | | | | | | | | |
Collapse
|
10
|
Tirakarn S, Riangrungroj P, Kongsaeree P, Imwong M, Yuthavong Y, Leartsakulpanich U. Cloning and heterologous expression of Plasmodium ovale dihydrofolate reductase-thymidylate synthase gene. Parasitol Int 2012; 61:324-32. [PMID: 22234170 PMCID: PMC3444756 DOI: 10.1016/j.parint.2011.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/09/2011] [Accepted: 12/25/2011] [Indexed: 11/17/2022]
Abstract
Plasmodial bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a validated antimalarial drug target. In this study, expression of the putative dhfr-ts of Plasmodium ovale rescued the DHFR chemical knockout and a TS null bacterial strain, demonstrating its DHFR and TS catalytic functions. PoDHFR-TS was expressed in Escherichia coli BL21 (DE3) and affinity purified by Methotrexate Sepharose column. Biochemical and enzyme kinetics characterizations indicated that PoDHFR-TS is similar to other plasmodial enzymes, albeit with lower catalytic activity but better tolerance of acidic pH. Importantly, the PoDHFR from Thai isolate EU266602 remains sensitive to the antimalarials pyrimethamine and cycloguanil, in contrast to P. falciparum and P. vivax isolates where resistance to these drugs is widespread.
Collapse
Affiliation(s)
- Srisuda Tirakarn
- Department of Chemistry, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | | | | | | | | | | |
Collapse
|
11
|
Prediction of residues involved in inhibitor specificity in the dihydrofolate reductase family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1870-9. [DOI: 10.1016/j.bbapap.2011.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 12/11/2022]
|
12
|
Somsak V, Uthaipibull C, Prommana P, Srichairatanakool S, Yuthavong Y, Kamchonwongpaisan S. Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening. Malar J 2011; 10:291. [PMID: 21981896 PMCID: PMC3198988 DOI: 10.1186/1475-2875-10-291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/07/2011] [Indexed: 11/12/2022] Open
Abstract
Background Plasmodium vivax is the most prevalent cause of human malaria in tropical regions outside the African continent. The lack of a routine continuous in vitro culture of this parasite makes it difficult to develop specific drugs for this disease. To facilitate the development of anti-P. vivax drugs, bacterial and yeast surrogate models expressing the validated P. vivax target dihydrofolate reductase-thymidylate synthase (DHFR-TS) have been generated; however, they can only be used as primary screening models because of significant differences in enzyme expression level and in vivo drug metabolism between the surrogate models and P. vivax parasites. Methods Plasmodium falciparum and Plasmodium berghei parasites were transfected with DNA constructs bearing P. vivax dhfr-ts pyrimethamine sensitive (wild-type) and pyrimethamine resistant (mutant) alleles. Double crossover homologous recombination was used to replace the endogenous dhfr-ts of P. falciparum and P. berghei parasites with P. vivax homologous genes. The integration of Pvdhfr-ts genes via allelic replacement was verified by Southern analysis and the transgenic parasites lines validated as models by standard drug screening assays. Results Transgenic P. falciparum and P. berghei lines stably expressing PvDHFR-TS replacing the endogenous parasite DHFR-TS were obtained. Anti-malarial drug screening assays showed that transgenic parasites expressing wild-type PvDHFR-TS were pyrimethamine-sensitive, whereas transgenic parasites expressing mutant PvDHFR-TS were pyrimethamine-resistant. The growth and sensitivity to other types of anti-malarial drugs in the transgenic parasites were otherwise indistinguishable from the parental parasites. Conclusion With the permanent integration of Pvdhfr-ts gene in the genome, the transgenic Plasmodium lines expressing PvDHFR-TS are genetically stable and will be useful for screening anti-P. vivax compounds targeting PvDHFR-TS. A similar approach could be used to generate transgenic models specific for other targets of interest, thus facilitating the development of anti-P. vivax drugs in general.
Collapse
Affiliation(s)
- Voravuth Somsak
- Protein-Ligand Engineering and Molecular Biology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
| | | | | | | | | | | |
Collapse
|
13
|
Zaman J, Shahbazi A, Asgharzadeh M. Plasmodium vivax dhfr mutations among isolates from malarious areas of Iran. THE KOREAN JOURNAL OF PARASITOLOGY 2011; 49:125-31. [PMID: 21738267 PMCID: PMC3121068 DOI: 10.3347/kjp.2011.49.2.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 01/03/2011] [Accepted: 04/05/2011] [Indexed: 11/26/2022]
Abstract
The use of sulfadoxine and pyrimethamine (SP) for treatment of vivax malaria is uncommon in most malarious areas, but Plasmodium vivax isolates are exposed to SP because of mixed infections with other Plasmodium species. As P. vivax is the most prevalent species of human malaria parasites in Iran, monitoring of resistance of the parasite against the drug is necessary. In the present study, 50 blood samples of symptomatic patients were collected from 4 separated geographical regions of south-east Iran. Point mutations at residues 57, 58, 61, and 117 were detected by the PCR-RFLP method. Polymorphism at positions 58R, 117N, and 117T of P. vivax dihydrofolate reductase (Pvdhfr) gene has been found in 12%, 34%, and 2% of isolates, respectively. Mutation at residues F57 and T61 was not detected. Five distinct haplotypes of the Pvdhfr gene were demonstrated. The 2 most prevalent haplotypes were F57S58T61S117 (62%) and F57S58T61N117 (24%). Haplotypes with 3 and 4 point mutations were not found. The present study suggested that P. vivax in Iran is under the pressure of SP and the sensitivity level of the parasite to SP is diminishing and this fact must be considered in development of malaria control programs.
Collapse
Affiliation(s)
- Jalal Zaman
- Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
14
|
Huang F, Zhou S, Zhang S, Li W, Zhang H. Monitoring resistance of Plasmdium vivax: point mutations in dihydrofolate reductase gene in isolates from Central China. Parasit Vectors 2011; 4:80. [PMID: 21586132 PMCID: PMC3108914 DOI: 10.1186/1756-3305-4-80] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/17/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria still represents a significant public health problem in China, and the cases dramatically increased in Central China after 2001. Antifolate resistance in Plasmodium vivax is caused by point mutations in genes encoding dihydrofolate reductase (pvdhfr) and dihydropteroate synthase (pvdhps). In this study, we used direct sequencing to investigate genetic variation in pvdhfr of malaria patients' samples from Central China. RESULTS Among all the samples, 21.4% were wild-type, whereas mutations were detected at three codons (58, 61 and 117) including single mutant (34.6%) and double mutants (43.8%). The most prevalent mutant allele was the one with double mutation at codons 58 and 117 (24.6%). Three types of single mutation (S58R, T61M and S117N) were found in 2.1%, 11.8% and 20.9% of parasite isolates, respectively. The four P. vivax parasite populations in Central China also differed in pvdhfr allele frequencies. CONCLUSIONS This study suggested that P. vivax in Central China may be relatively susceptible to pyrimethamine. And it also highlights genotyping in the pvdhfr genes remains a useful tool to monitor the emergence and spread of P. vivax pyrimethamine resistance.
Collapse
Affiliation(s)
- Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasia; Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, PR China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasia; Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, PR China
| | - Shaosen Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasia; Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, PR China
| | - Weidong Li
- Department of Parasitology, Anhui Center for Disease Control and Prevention, Hefei 230061, PR China
| | - Hongwei Zhang
- Department of Parasitology, Henan Center for Disease Control and Prevention, Zhengzhou 450003, PR China
| |
Collapse
|
15
|
Lee WJ, Kim HH, Choi YK, Choi KM, Kim MA, Kim JY, Sattabongkot J, Sohn Y, Kim H, Lee JK, Park HS, Lee HW. Analysis of the dihydrofolate reductase-thymidylate synthase gene sequences in Plasmodium vivax field isolates that failed chloroquine treatment. Malar J 2010; 9:331. [PMID: 21087471 PMCID: PMC2999615 DOI: 10.1186/1475-2875-9-331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/18/2010] [Indexed: 12/04/2022] Open
Abstract
Background To use pyrimethamine as an alternative anti-malarial drug for chloroquine-resistant malaria parasites, it was necessary to determine the enzyme's genetic variation in dihydrofolate reductase-thymidylate syntase (DHFR-TS) among Korean strains. Methods Genetic variation of dhfr-ts genes of Plasmodium vivax clinical isolates from patients who did not respond to drug treatment (n = 11) in Korea were analysed. The genes were amplified using the polymerase chain reaction (PCR) with genomic DNA as a template. Results Sequence analysis showed that the open reading frame (ORF) of 1,857 nucleotides encoded a deduced protein of 618 amino acids (aa). Alignment with the DHFR-TS genes of other malaria parasites showed that a 231-residue DHFR domain and a 286-residue TS domain were seperated by a 101-aa linker region. This ORF shows 98.7% homology with the P. vivax Sal I strain (XM001615032) in the DHFR domain, 100% in the linker region and 99% in the TS domain. Comparison of the DHFR sequences from pyrimethamine-sensitive and pyrimethamine-resistant P. vivax isolates revealed that nine isolates belonged to the sensitive strain, whereas two isolates met the criteria for resistance. In these two isolates, the amino acid at position 117 is changed from serine to asparagine (S117N). Additionally, all Korean isolates showed a deletion mutant of THGGDN in short tandem repetitive sequences between 88 and 106 amino acid. Conclusions These results suggest that sequence variations in the DHFR-TS represent the prevalence of antifolate-resistant P. vivax in Korea. Two of 11 isolates have the Ser to Asn mutation in codon 117, which is the major determinant of pyrimethamine resistance in P. vivax. Therefore, the introduction of pyrimethamine for the treatment of chloroquine-resistant vivax malaria as alternative drug in Korea should be seriously considered.
Collapse
Affiliation(s)
- Won-Ja Lee
- Division of Malaria and Parasitic diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Seoul 122-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Defining the role of mutations in Plasmodium vivax dihydrofolate reductase-thymidylate synthase gene using an episomal Plasmodium falciparum transfection system. Antimicrob Agents Chemother 2010; 54:3927-32. [PMID: 20566761 DOI: 10.1128/aac.00628-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium vivax resistance to antifolates is prevalent throughout Australasia and is caused by point mutations within the parasite dihydrofolate reductase (DHFR)-thymidylate synthase. Several unique mutations have been reported in P. vivax DHFR, and their roles in resistance to classic and novel antifolates are not entirely clear due, in part, to the inability to culture P. vivax in vitro. In this study, we use a homologous system to episomally express both wild-type and various mutant P. vivax dhfr (pvdhfr) alleles in an antifolate-sensitive line of P. falciparum and to assess their influences on the susceptibility of the recipient P. falciparum line to commonly used and new antifolate drugs. Although the wild-type pvdhfr-transfected P. falciparum line was as susceptible to antifolate drugs as the P. falciparum parent line, the single (117N), double (57L/117T and 58R/117T), and quadruple (57L/58R/61M/117T) mutant pvdhfr alleles conferred a marked reduction in their susceptibilities to antifolates. The resistance index increased with the number of mutations in these alleles, indicating that these mutations contribute to antifolate resistance directly. In contrast, the triple mutant allele (58R/61M/117T) significantly reversed the resistance to all antifolates, indicating that 61M may be a compensatory mutation. These findings help elucidate the mechanism of antifolate resistance and the effect of existing mutations in the parasite population on the current and new generation of antifolate drugs. It also demonstrates that the episomal transfection system has the potential to provide a rapid screening system for drug development and for studying drug resistance mechanisms in P. vivax.
Collapse
|
17
|
Zakeri S, Afsharpad M, Ghasemi F, Raeisi A, Safi N, Butt W, Atta H, Djadid ND. Molecular surveillance of Plasmodium vivax dhfr and dhps mutations in isolates from Afghanistan. Malar J 2010; 9:75. [PMID: 20226087 PMCID: PMC2848684 DOI: 10.1186/1475-2875-9-75] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 03/14/2010] [Indexed: 11/21/2022] Open
Abstract
Background Analysis of dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutations in Plasmodium vivax wild isolates has been considered to be a valuable molecular approach for mapping resistance to sulphadoxine-pyrimethamine (SP). The present study investigates the frequency of SNPs-haplotypes in the dhfr and dhps genes in P. vivax clinical isolates circulating in two malaria endemic areas in Afghanistan. Methods P. vivax clinical isolates (n = 171) were collected in two different malaria endemic regions in north-west (Herat) and east (Nangarhar) Afghanistan in 2008. All collected isolates were analysed for SNP-haplotypes at positions 13, 33, 57, 58, 61, 117 and 173 of the pvdhfr and 383 and 553 of the pvdhps genes using PCR-RFLP methods. Results All 171 examined isolates were found to carry wild-type amino acids at positions 13, 33, 57, 61 and 173, while 58R and 117N mutations were detected among 4.1% and 12.3% of Afghan isolates, respectively. Based on the size polymorphism of pvdhfr genes at repeat region, type B was the most prevalent variant among Herat (86%) and Nangarhar (88.4%) isolates. Mixed genotype infections (type A/B and A/B/C) were detected in only 2.3% (2/86) of Herat and 1.2% (1/86) of Nangarhar isolates, respectively. The combination of pvdhfr and pvdhps haplotypes among all 171 samples demonstrated six distinct haplotypes. The two most prevalent haplotypes among all examined samples were wild-type (86%) and single mutant haplotype I13P33F57S58T61N 117I173/A383A553 (6.4%). Double (I13P33S57R58T61N117I173/A383A553) and triple mutant haplotypes (I13P33S57R 58T61N117I173/G383A553) were found in 1.7% and 1.2% of Afghan isolates, respectively. This triple mutant haplotype was only detected in isolates from Herat, but in none of the Nangarhar isolates. Conclusion The present study shows a limited polymorphism in pvdhfr from Afghan isolates and provides important basic information to establish an epidemiological map of drug-resistant vivax malaria, and updating guidelines for anti-malarial policy in Afghanistan. The continuous usage of SP as first-line anti-malarial drug in Afghanistan might increase the risk of mutations in the dhfr and dhps genes in both P. vivax and Plasmodium falciparum isolates, which may lead to a complete SP resistance in the near future in this region. Therefore, continuous surveillance of P. vivax and P. falciparum molecular markers are needed to monitor the development of resistance to SP in the region.
Collapse
Affiliation(s)
- Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Institut Pasteur of Iran, Pasteur Avenue, PO BOX 1316943551, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mutational 'hot-spots' in mammalian, bacterial and protozoal dihydrofolate reductases associated with antifolate resistance: sequence and structural comparison. Drug Resist Updat 2009; 12:28-41. [PMID: 19272832 DOI: 10.1016/j.drup.2009.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/24/2008] [Accepted: 02/04/2009] [Indexed: 12/16/2022]
Abstract
Human dihydrofolate reductase (DHFR) is a primary target for antifolate drugs in cancer treatment, while DHFRs from Plasmodium falciparum, Plasmodium vivax and various bacterial species are primary targets in the treatment of malaria and bacterial infections. Mutations in each of these DHFRs can result in resistance towards clinically relevant antifolates. We review the structural and functional impact of active-site mutations with respect to enzyme activity and antifolate resistance of DHFRs from mammals, protozoa and bacteria. The high structural homology between DHFRs results in a number of cross-species, active-site 'hot-spots' for broad-based antifolate resistance. In addition, we identify mutations that confer species-specific resistance, or antifolate-specific resistance. This comparative review of antifolate binding in diverse species provides new insights into the relationship between antifolate design and the development of mutational resistance. It also presents avenues for designing antifolate-resistant mammalian DHFRs as chemoprotective agents.
Collapse
|
19
|
Molecular characterization of antifolates resistance-associated genes, (dhfr and dhps) in Plasmodium vivax isolates from the Middle East. Malar J 2009; 8:20. [PMID: 19175936 PMCID: PMC2653067 DOI: 10.1186/1475-2875-8-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 01/28/2009] [Indexed: 11/18/2022] Open
Abstract
Background In Iran, co-infections of Plasmodium vivax and Plasmodium falciparum are common and P. vivax infections are often exposed to sulphadoxine-pyrimethamine (SP). In the present study, the frequency distribution of mutations associated to SP resistance was investigated in pvdhfr and pvdhps genes from field isolates. Methods Clinical isolates of P. vivax were collected in two different malaria endemic regions in northern and south-eastern Iran, between 2001 and 2006. All 189 collected isolates were analysed for SNP/haplotypes at positions 13, 33, 57, 58, 61, 117 and 173 of the pvdhfr and 383 and 553 of pvdhps genes using nested PCR-RFLP methods Results All 189 examined isolates were found to carry wild-type amino acids at positions 13, 33, 61 and 173, while 57L and 58R and 117N mutations in pure form was detected among 1.1%, 17.5% and 26% examined samples, respectively, with no polymorphisms in different loci of dhps genes. Based on size polymorphism of pvdhfr genes at repeat region, among northern isolates, the frequency distribution for type A and B were 2.2% and 97.8% respectively. However, in southern samples the prevalence of type A, B and C were 7%, 89.5% and 7.7%, respectively. Mixed genotype infections (type B and C) were detected in only 4.2% (6/143) of southern, but in none of the northern isolates. The combination of pvdhfr and pvdhps haplotypes among all 189 samples demonstrated six distinct haplotypes. The two most prevalent haplotypes among all examined samples were I13P33F57S58T61S117I173/A383A553 (65.6%) and I13P33F57S58T61N117I173 (16.4%). Two other alleles with one point mutation I13P33F57R58T61S117I173/A383A553 and two mutations I13P33F57R58T61N117I173/A383A553 accounted for 7.4% and 9.5% of the total isolates. Conclusion The present molecular data provide important information for making decisions on population based drug use in Iran. In addition, since October 2005, with more availability of SP as first-line treatment, P. vivax isolates are more exposed to SP and the selection or spread of resistant pvdhfr and pvdhps alleles might increase in the near future in this region.
Collapse
|
20
|
Marfurt J, de Monbrison F, Brega S, Barbollat L, Müller I, Sie A, Goroti M, Reeder JC, Beck HP, Picot S, Genton B. Molecular markers of in vivo Plasmodium vivax resistance to amodiaquine plus sulfadoxine-pyrimethamine: mutations in pvdhfr and pvmdr1. J Infect Dis 2008; 198:409-17. [PMID: 18582193 DOI: 10.1086/589882] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Molecular markers for sulfadoxine-pyrimethamine (SP) resistance in Plasmodium vivax have been reported. However, data on the molecular correlates involved in the development of resistance to 4-aminoquinolines and their association with the in vivo treatment response are scarce. METHODS We assessed pvdhfr (F57L/I, S58R, T61M, S117T/N, and I173F/L) and pvmdr1 (Y976F and F1076L) mutations in 94 patients who received amodiaquine (AQ) plus SP in Papua New Guinea (PNG). We then investigated the association between parasite genotype and treatment response. RESULTS The treatment failure (TF) rate reached 13%. Polymorphisms in pvdhfr F57L, S58R, T61M, and S117T/N and in pvmdr1 Y976F were detected in 60%, 67%, 20%, 40%, and 39% of the samples, respectively. The single mutant pvdhfr 57 showed the strongest association with TF (odds ratio [OR], 9.04; P= .01). The combined presence of the quadruple mutant pvdhfr 57L+58R+61M+117T and pvmdr1 mutation 976F was the best predictor of TF (OR, 8.56; P= .01). The difference in TF rates between sites was reflected in the genetic drug-resistance profile of the respective parasites. CONCLUSIONS The present study identified a new molecular marker in pvmdr1 that is associated with the in vivo response to AQ+SP. We suggest suitable marker sets with which to monitor P. vivax resistance against AQ+SP in countries where these drugs are used.
Collapse
Affiliation(s)
- Jutta Marfurt
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nduati E, Diriye A, Ommeh S, Mwai L, Kiara S, Masseno V, Kokwaro G, Nzila A. Effect of folate derivatives on the activity of antifolate drugs used against malaria and cancer. Parasitol Res 2008; 102:1227-34. [PMID: 18259776 PMCID: PMC2292483 DOI: 10.1007/s00436-008-0897-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/21/2008] [Indexed: 11/03/2022]
Abstract
The folate derivatives folic acid (FA) and folinic acid (FNA) decrease the in vivo and in vitro activities of antifolate drugs in Plasmodium falciparum. However, the effects of 5-methyl-tetrahydrofolate (5-Me-THF) and tetrahydrofolate (THF), the two dominant circulating folate forms in humans, have not been explored yet. We have investigated the effects of FA, FNA, 5-Me-THF, and THF on the in vitro activity of the antimalarial antifolates pyrimethamine and chlorcycloguanil and the anticancer antifolates methotrexate (MTX), aminopterin, and trimetrexate (TMX), against P. falciparum. The results indicate that these anticancers are potent against P. falciparum, with IC50 < 50 nM. 5-Me-THF does not significantly decrease the activity of all tested drugs, and none of the tested folate derivatives significantly decrease the activity of these anticancers. Thus, malaria folate metabolism has features different from those in human, and the exploitation of this difference could lead to the discovery of new drugs to treat malaria. For instance, the combination of 5-Me-THF with a low dose of TMX could be used to treat malaria. In addition, the safety of a low dose of MTX in the treatment of arthritis indicates that this drug could be used alone to treat malaria.
Collapse
Affiliation(s)
- Eunice Nduati
- Kenya Medical Research Institute/Wellcome Trust Collaborative Research Program, PO Box 230, 80108 Kilifi, Kenya
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kidgell C, Winzeler EA. Using the genome to dissect the molecular basis of drug resistance. Future Microbiol 2007; 1:185-99. [PMID: 17661664 DOI: 10.2217/17460913.1.2.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The need to understand the genetic basis of drug resistance in human pathogens has never been greater. The global incidence of drug-resistant organisms, such as those that cause malaria, continues to rise, while the repertoire of effective, inexpensive drugs is declining. Genomic technologies, such as DNA microarrays and full-genome sequencing offer new hope in advancing our understanding of the underlying genetic processes that facilitate a resistance phenotype. Importantly, evidence that drug resistance in many organisms can be a multigene, complex phenomenon implies that unbiased, genome-wide scans of diversity will be required to fully understand the molecular mechanisms of both established and novel resistance traits. While the potential application of full-genome approaches for deciphering mechanisms of drug resistance has yet to be fully realized, this review evaluates drug resistance in human malaria parasites and discusses the exciting role genome-based systems could play in monitoring drug resistance, as well as guiding the implementation of efficient therapeutic strategies for malaria. The approaches reviewed within this article will be applicable to all known or emerging microbial pathogens.
Collapse
Affiliation(s)
- Claire Kidgell
- The Scripps Research Institute, ICND 202, La Jolla, CA 92037, USA.
| | | |
Collapse
|
23
|
Determination of kinetic parameters from isothermal calorimetry for interaction processes of pyrimethamine with chitosan derivatives. REACT FUNCT POLYM 2007. [DOI: 10.1016/j.reactfunctpolym.2006.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Djapa LY, Zelikson R, Delahodde A, Bolotin-Fukuhara M, Mazabraud A. Plasmodium vivax dihydrofolate reductase as a target of sulpha drugs. FEMS Microbiol Lett 2007; 256:105-11. [PMID: 16487326 DOI: 10.1111/j.1574-6968.2005.00095.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sulpha drugs act as competitive inhibitors of p-amino benzoic acid, an intermediate in the de novo folate pathway. Dihydropteroate synthase condenses sulpha drugs into sulpha-dihydropteroate (sulpha-DHP), which competes with dihydrofolate, the dihydrofolate reductase (DHFR) substrate. This designates DHFR as a possible target of sulpha-DHP. We suggest here that Plasmodium vivax DHFR is indeed the in vivo target of sulpha drugs. The wild-type DHFR expressed in Saccharomyces cerevisiae leads to cell growth inhibition, while sensitivity to the drug is exacerbated in the mutants. Contrary to what is observed with sulphanilamide, methotrexate is less effective on P. vivax-DHFR mutants than on wild-type mutant.
Collapse
Affiliation(s)
- Liselotte Yimga Djapa
- Institut de Génétique et de Microbiologie, CNRS UMR 8621, Université Paris-Sud, Orsay Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Hawkins VN, Joshi H, Rungsihirunrat K, Na-Bangchang K, Sibley CH. Antifolates can have a role in the treatment of Plasmodium vivax. Trends Parasitol 2007; 23:213-22. [PMID: 17368986 DOI: 10.1016/j.pt.2007.03.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 02/01/2007] [Accepted: 03/06/2007] [Indexed: 12/14/2022]
Abstract
Plasmodium vivax is a serious health concern in many regions and is sometimes inadvertently treated with sulfadoxine-pyrimethamine (SP). Mutations in the genes that encode dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) confer resistance to pyrimethamine and sulfadoxine, respectively. Numerous studies have examined the prevalence and diversity of mutations in P. vivax dhfr and some have assessed the relationship between dhfr genotype and clinical or in vitro response to pyrimethamine. Other studies have examined the impact of dhps genotype on response to sulfadoxine. These data indicate that, under certain circumstances, SP could be a valuable tool in the fight against P. vivax.
Collapse
Affiliation(s)
- Vivian N Hawkins
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
26
|
Alam MT, Bora H, Bharti PK, Saifi MA, Das MK, Dev V, Kumar A, Singh N, Dash AP, Das B, Sharma YD. Similar trends of pyrimethamine resistance-associated mutations in Plasmodium vivax and P. falciparum. Antimicrob Agents Chemother 2006; 51:857-63. [PMID: 17194833 PMCID: PMC1803105 DOI: 10.1128/aac.01200-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antifolate drugs sulfadoxine and pyrimethamine are commonly used to treat Plasmodium falciparum malaria. However, they can also affect the Plasmodium vivax parasite if it coexists with P. falciparum, as both species have common drug targets. Resistance to the antifolate drugs arises due to point mutations in the target enzymes of the respective parasite. To assess the cross-species impact of antifolate drug treatment, we describe here the dihydrofolate reductase (DHFR) mutations among field isolates of P. vivax and P. falciparum. The overall DHFR mutation rate for P. vivax was lower than that for P. falciparum. However, both species of Plasmodium followed similar trends of DHFR mutations. Similar to P. falciparum, the DHFR mutation rate of P. vivax also varied from region to region. It was lower in P. vivax-dominant regions but higher in the P. falciparum-dominated areas and highest where antifolates are used as the first line of antimalarial treatment. In conclusion, the antifolate treatment of falciparum malaria is proportionately affecting the DHFR mutations of P. vivax, suggesting that the drug should be used with caution to minimize the development of cross-species resistance in the field.
Collapse
Affiliation(s)
- Mohammad Tauqeer Alam
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kongsaeree P, Khongsuk P, Leartsakulpanich U, Chitnumsub P, Tarnchompoo B, Walkinshaw MD, Yuthavong Y. Crystal structure of dihydrofolate reductase from Plasmodium vivax: pyrimethamine displacement linked with mutation-induced resistance. Proc Natl Acad Sci U S A 2005; 102:13046-51. [PMID: 16135570 PMCID: PMC1201571 DOI: 10.1073/pnas.0501747102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pyrimethamine (Pyr) targets dihydrofolate reductase of Plasmodium vivax (PvDHFR) as well as other malarial parasites, but its use as antimalarial is hampered by the widespread high resistance. Comparison of the crystal structures of PvDHFR from wild-type and the Pyr-resistant (SP21, Ser-58 --> Arg + Ser-117 --> Asn) strain as complexes with NADPH and Pyr or its analog lacking p-Cl (Pyr20) clearly shows that the steric conflict arising from the side chain of Asn-117 in the mutant enzyme, accompanied by the loss of binding to Ser-120, is mainly responsible for the reduction in binding of Pyr. Pyr20 still effectively inhibits both the wild-type and SP21 proteins, and the x-ray structures of these complexes show how Pyr20 fits into both active sites without steric strain. These structural insights suggest a general approach for developing new generations of antimalarial DHFR inhibitors that, by only occupying substrate space of the active site, would retain binding affinity with the mutant enzymes.
Collapse
Affiliation(s)
- Palangpon Kongsaeree
- Department of Chemistry and Center for Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | | | | | | | | | | | | |
Collapse
|
28
|
Brega S, de Monbrison F, Severini C, Udomsangpetch R, Sutanto I, Ruckert P, Peyron F, Picot S. Real-time PCR for dihydrofolate reductase gene single-nucleotide polymorphisms in Plasmodium vivax isolates. Antimicrob Agents Chemother 2004; 48:2581-7. [PMID: 15215112 PMCID: PMC434159 DOI: 10.1128/aac.48.7.2581-2587.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the dhfr gene of Plasmodium vivax (pvdhfr) are associated with resistance to the antifolate antimalarial drugs. Polymorphisms in the pvdhfr gene were assessed by hybridization probe technology on the LightCycler instrument with 134 P. vivax-infected blood samples from Turkey (n = 24), Azerbaijan (n = 39), Thailand (n = 16), Indonesia (n = 53), and travelers (n = 19). Double mutations (S58R and S117N) or quadruple mutations (F57L/I, S58R, T61M, and S117N) in the pvdhfr genes were found in all Thai samples (100%). pvdhfr mutant-type alleles were significantly more common in samples from travelers (42%) than in those from patients from Indonesia (5%). Surprisingly, the pvdhfr single-mutation allele (S117N) was identified at a high frequency in parasites from Turkey and Azerbaijan (71 and 36%, respectively), where sulfadoxine-pyrimethamine is not recommended for the treatment of P. vivax malaria by the World Health Organization and the Malaria National Programs.
Collapse
Affiliation(s)
- Sara Brega
- Service de Parasitologie, Faculté de Médecine, 8 avenue Rockefeller, 69373 Lyon cedex 08, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
de Pécoulas PE, Tahar R, Yi P, Thai KH, Basco LK. Genetic variation of the dihydrofolate reductase gene in Plasmodium vivax in Snoul, northeastern Cambodia. Acta Trop 2004; 92:1-6. [PMID: 15301969 DOI: 10.1016/j.actatropica.2004.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Revised: 03/01/2004] [Accepted: 03/05/2004] [Indexed: 11/22/2022]
Abstract
In Plasmodium vivax, pyrimethamine resistance is associated with amino acid substitutions Ser117Asn and Ser58Arg in dihydrofolate reductase (DHFR), which correspond to Ser108Asn and Cys59Arg in the Plasmodium falciparum homolog, respectively. Sequence variations within the DHFR domain of 32 P. vivax isolates from Snoul, Cambodia, were analyzed by direct sequencing of polymerase chain reaction (PCR) products. Sequence polymorphisms within the entire DHFR domain were limited to codons 58 and 117 and GGDN tandem repeat units. A large majority (30 of 32) of isolates were characterized to be double mutants (Arg-58 and Asn-117) and associated with the presence of two GGDN repeat units. Only one isolate was of wild-type with three GGDN repeat units, and an additional isolate was of mixed type. Our data suggest that most Cambodian P. vivax isolates display double dhfr mutations associated with pyrimethamine resistance, as in the neighboring countries in Southeast Asia. Further molecular characterization of P. vivax isolates from different endemic areas may be a useful alternative approach to establish the epidemiology of drug-resistant malaria.
Collapse
Affiliation(s)
- Philippe Eldin de Pécoulas
- Laboratoire de Parasitologie et de Mycologie, Unité de Formation et de Recherche (UFR) des Sciences Pharmaceutiques, 1 boulevard Becquerel, 14032 Caen, France
| | | | | | | | | |
Collapse
|
30
|
Caccamo MA, Malone CS, Rasche ME. Biochemical characterization of a dihydromethanopterin reductase involved in tetrahydromethanopterin biosynthesis in Methylobacterium extorquens AM1. J Bacteriol 2004; 186:2068-73. [PMID: 15028691 PMCID: PMC374392 DOI: 10.1128/jb.186.7.2068-2073.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 12/11/2003] [Indexed: 11/20/2022] Open
Abstract
During growth on one-carbon (C1) compounds, the aerobic alpha-proteobacterium Methylobacterium extorquens AM1 synthesizes the tetrahydromethanopterin (H4MPT) derivative dephospho-H4MPT as a C1 carrier in addition to tetrahydrofolate. The enzymes involved in dephospho-H4MPT biosynthesis have not been identified in bacteria. In archaea, the final step in the proposed pathway of H4MPT biosynthesis is the reduction of dihydromethanopterin (H2MPT) to H4MPT, a reaction analogous to the reaction of the bacterial dihydrofolate reductase. A gene encoding a dihydrofolate reductase homolog has previously been reported for M. extorquens and assigned as the putative H2MPT reductase gene (dmrA). In the present work, we describe the biochemical characterization of H2MPT reductase (DmrA), which is encoded by dmrA. The gene was expressed with a six-histidine tag in Escherichia coli, and the recombinant protein was purified by nickel affinity chromatography and gel filtration. Purified DmrA catalyzed the NAD(P)H-dependent reduction of H2MPT with a specific activity of 2.8 micromol of NADPH oxidized per min per mg of protein at 30 degrees C and pH 5.3. Dihydrofolate was not a substrate for DmrA at the physiological pH of 6.8. While the existence of an H2MPT reductase has been proposed previously, this is the first biochemical evidence for such an enzyme in any organism, including archaea. Curiously, no DmrA homologs have been identified in the genomes of known methanogenic archaea, suggesting that bacteria and archaea produce two evolutionarily distinct forms of dihydromethanopterin reductase. This may be a consequence of different electron donors, NAD(P)H versus reduced F420, used, respectively, in bacteria and methanogenic archaea.
Collapse
Affiliation(s)
- Marco A Caccamo
- Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | |
Collapse
|
31
|
Elvin CM, Liyou NE, Pearson R, Kemp DH, Dixon NE. Molecular cloning and expression of the dihydrofolate reductase (DHFR) gene from adult buffalo fly (Haematobia irritans exigua): effects of antifolates. INSECT MOLECULAR BIOLOGY 2003; 12:173-183. [PMID: 12653939 DOI: 10.1046/j.1365-2583.2003.00399.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The folate analogues methotrexate, aminopterin and pyrimethamine were toxic when fed in a blood meal to adult buffalo flies (Haematobia irritans exigua), but aminopterin caused greater mortality than methotrexate, while trimethoprim was not toxic to adult flies. This is the first recorded instance of mortality in adult insects caused by ingestion of folate analogues. In order to investigate the mechanism of this toxicity, the dihydrofolate reductase (DHFR) gene was cloned from adult buffalo fly cDNA using a PCR-based approach. The full-length DHFR coding sequence (BF-DHFR) was 887 bp and contained an open reading frame encoding a protein of 188 amino acids. The deduced protein sequence identities between BF-DHFR and the other known insect DHFR sequences were: Drosophila melanogaster, 75%; Aedes albopictus, 54%; Heliothis virescens, 43%. The BF-DHFR gene has a single 52 bp intron, an organization more similar to Dipteran species (Drosophila and Aedes). The cDNA encoding BF-DHFR was inserted into an Escherichia coli expression vector and the recombinant protein was expressed to levels representing about 25% of total cell protein. The active enzyme was purified by affinity chromatography on methotrexate-agarose and displayed a relatively low affinity (IC50 = 30 nm) for methotrexate.
Collapse
Affiliation(s)
- C M Elvin
- CSIRO Livestock Industries, Department of Physiology, University of Queensland, St Lucia, Queensland, Australia.
| | | | | | | | | |
Collapse
|
32
|
Tjitra E, Baker J, Suprianto S, Cheng Q, Anstey NM. Therapeutic efficacies of artesunate-sulfadoxine-pyrimethamine and chloroquine-sulfadoxine-pyrimethamine in vivax malaria pilot studies: relationship to Plasmodium vivax dhfr mutations. Antimicrob Agents Chemother 2002; 46:3947-53. [PMID: 12435700 PMCID: PMC132782 DOI: 10.1128/aac.46.12.3947-3953.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin-derivative combination therapies (ACT) are highly efficacious against multidrug-resistant Plasmodium falciparum malaria. Few efficacy data, however, are available for vivax malaria. With high rates of chloroquine (CQ) resistance in both vivax and falciparum malaria in Papua Province, Indonesia, new combination therapies are required for both species. We recently found artesunate plus sulfadoxine-pyrimethamine (ART-SP) to be highly effective (96%) in the treatment of falciparum malaria in Papua Province. Following a preliminary study of CQ plus sulfadoxine-pyrimethamine (CQ-SP) for the treatment of Plasmodium vivax infection, we used modified World Health Organization criteria to evaluate the efficacy of ART-SP for the treatment of vivax malaria in Papua. Nineteen of 22 patients treated with ART-SP could be evaluated on day 28, with no early treatment failures. Adequate clinical and parasitological responses were found by day 14 in all 20 (100%) of the patients able to be evaluated and by day 28 in 17 patients (89.5%). Fever and parasite clearance times were short, with hematological improvement observed in 70.6% of the patients. Double (at positions 58 and 117) and quadruple (at positions 57, 58, 61, and 117) mutations in the P. vivax dihydrofolate reductase (PvDHFR) were common in Papuan P. vivax isolates (46 and 18%, respectively). Treatment failure with SP-containing regimens was significantly higher with isolates with this PvDHFR quadruple mutation, which included a novel T-->M mutation at residue 61 linked to an S-->T (but not an S-->N) mutation at residue 117. ART-SP ACT resulted in a high cure rate for both major Plasmodium species in Papua, though progression of DHFR mutations in both species due to the continued use of SP monotherapy for clinically diagnosed malaria threatens the future utility of this combination.
Collapse
Affiliation(s)
- Emiliana Tjitra
- National Institute of Health Research and Development, Ministry of Health, Australia
| | | | | | | | | |
Collapse
|
33
|
Ridley RG. Chemotherapeutic hope on the horizon for Plasmodium vivax malaria? Proc Natl Acad Sci U S A 2002; 99:13362-4. [PMID: 12374849 PMCID: PMC129674 DOI: 10.1073/pnas.232483699] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Robert G Ridley
- Product Research and Development, Tropical Disease Research, World Health Organization, CH-1211 Geneva 27, Switzerland
| |
Collapse
|
34
|
Hastings MD, Sibley CH. Pyrimethamine and WR99210 exert opposing selection on dihydrofolate reductase from Plasmodium vivax. Proc Natl Acad Sci U S A 2002; 99:13137-41. [PMID: 12198181 PMCID: PMC130599 DOI: 10.1073/pnas.182295999] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax is a major public health problem in Asia and South and Central America where it is most prevalent. Until very recently, the parasite has been effectively treated with chloroquine, but resistance to this drug has now been reported in several areas. Affordable alternative treatments for vivax malaria are urgently needed. Pyrimethamine-sulfadoxine is an inhibitor of dihydrofolate reductase (DHFR) that has been widely used to treat chloroquine-resistant Plasmodium falciparum malaria. DHFR inhibitors have not been considered for treatment of vivax malaria, because initial trials showed poor efficacy against P. vivax. P. vivax cannot be grown in culture; the reason for its resistance to DHFR inhibitors is unknown. We show that, like P. falciparum, point mutations in the dhfr gene can cause resistance to pyrimethamine in P. vivax. WR99210 is a novel inhibitor of DHFR, effective even against the most pyrimethamine-resistant P. falciparum strains. We have found that it is also an extremely effective inhibitor of the P. vivax DHFR, and mutations that confer high-level resistance to pyrimethamine render the P. vivax enzyme exquisitely sensitive to WR99210. These data suggest that pyrimethamine and WR99210 would exert opposing selective forces on the P. vivax population. If used in combination, these two drugs could greatly slow the selection of parasites resistant to both drugs. If that is the case, this novel class of DHFR inhibitors could provide effective and affordable treatment for chloroquine- and pyrimethamine-resistant vivax and falciparum malaria for many years to come.
Collapse
Affiliation(s)
- Michele D Hastings
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, WA 98195-7730
| | | |
Collapse
|
35
|
Leartsakulpanich U, Imwong M, Pukrittayakamee S, White NJ, Snounou G, Sirawaraporn W, Yuthavong Y. Molecular characterization of dihydrofolate reductase in relation to antifolate resistance in Plasmodium vivax. Mol Biochem Parasitol 2002; 119:63-73. [PMID: 11755187 DOI: 10.1016/s0166-6851(01)00402-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The genes encoding the wild-type and six (five single and one double) mutant dihydrofolate reductase (DHFR) domains of the human malaria parasite, Plasmodium vivax (Pv), were cloned and expressed in Escherichia coli. The catalytic activities and the kinetic parameters of the purified recombinant wild-type and the mutant PvDHFRs were determined. Generally, all the PvDHFR mutants yielded enzymes with poorer catalytic activities when compared to the wild type enzyme. The widely used antifolates, pyrimethamine and cycloguanil, were effective inhibitors of the wild-type PvDHFR, but were approximately 60 to >4000 times less active against the mutant enzymes. In contrast to the analogous S108N mutation of Plasmodium falciparum DHFR (PfDHFR), the single S117N mutation in PvDHFR conferred approximately 4000- and approximately 1600-fold increased resistance to pyrimethamine and cycloguanil, respectively, compared to the wild-type PvDHFR. The S58R+S117N double mutant PvDHFR was 10- to 25-fold less resistant than the S117N mutant to the inhibitors, but also exhibited higher kcat/Km value than the single mutant. The antifolate WR99210 was equally effective against both the wild-type and SP21 (S58R+S117N) mutant DHFRs, but was much less effective against some of the single mutants. Data on kinetic parameters and inhibitory constant suggest that the wild-type P. vivax is susceptible to antimalarial antifolates and that point mutations in the DHFR domain of P. vivax are responsible for antifolate resistance.
Collapse
Affiliation(s)
- Ubolsree Leartsakulpanich
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Rama 6 Road, 10400, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|