1
|
Tang J, Chisholm SA, Yeoh LM, Gilson PR, Papenfuss AT, Day KP, Petter M, Duffy MF. Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences. Epigenetics Chromatin 2020; 13:50. [PMID: 33225957 PMCID: PMC7682024 DOI: 10.1186/s13072-020-00365-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background The malaria parasite Plasmodium falciparum has an unusually euchromatic genome with poorly conserved positioning of nucleosomes in intergenic sequences and poorly understood mechanisms of gene regulation. Variant histones and histone modifications determine nucleosome stability and recruit trans factors, but their combinatorial contribution to gene regulation is unclear. Results Here, we show that the histone H3 acetylations H3K18ac and H3K27ac and the variant histone Pf H2A.Z are enriched together at regulatory sites upstream of genes. H3K18ac and H3K27ac together dynamically mark regulatory regions of genes expressed during the asexual life cycle. In contrast, H3K4me1 is depleted in intergenic sequence and dynamically depleted upstream of expressed genes. The temporal pattern of H3K27ac and H3K18ac enrichment indicates that they accumulate during S phase and mitosis and are retained at regulatory sequences until at least G1 phase and after cessation of expression of the cognate genes. We integrated our ChIPseq data with existing datasets to show that in schizont stages H3K18ac, H3K27ac and Pf H2A.Z colocalise with the transcription factor PfAP2-I and the bromodomain protein PfBDP1 and are enriched at stably positioned nucleosomes within regions of exposed DNA at active transcriptional start sites. Using transient transfections we showed that sequences enriched with colocalised H3K18ac, H3K27ac and Pf H2A.Z possess promoter activity in schizont stages, but no enhancer-like activity. Conclusions The dynamic H3 acetylations define P. falciparum regulatory sequences and contribute to gene activation. These findings expand the knowledge of the chromatin landscape that regulates gene expression in P. falciparum.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - Scott A Chisholm
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.,Bio21 Institute, Parkville, VIC, 3052, Australia
| | - Lee M Yeoh
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, 3004, Australia.,Monash University, Melbourne, VIC, 3800, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Mathematics and Statistics, University of Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Karen P Day
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Michaela Petter
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,Erlangen University, 91054, Erlangen, Germany
| | - Michael F Duffy
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia. .,Bio21 Institute, Parkville, VIC, 3052, Australia. .,Peter Doherty Institute, Melbourne, VIC, 3000, Australia. .,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
2
|
Briquet S, Ourimi A, Pionneau C, Bernardes J, Carbone A, Chardonnet S, Vaquero C. Identification of Plasmodium falciparum nuclear proteins by mass spectrometry and proposed protein annotation. PLoS One 2018; 13:e0205596. [PMID: 30379851 PMCID: PMC6209197 DOI: 10.1371/journal.pone.0205596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022] Open
Abstract
The nuclear proteome of Plasmodium falciparum results from the continual shuttle of proteins between the cell cytoplasm-nucleus and vice versa. Using shotgun proteomics tools, we explored the nuclear proteins of mixed populations of Plasmodium falciparum extracted from infected erythrocytes. We combined GeLC-MS/MS and 2D-LC-MS/MS with a peptide ion exclusion procedure in order to increase the detection of low abundant proteins such as those involved in gene expression. We have identified 446 nuclear proteins covering all expected nuclear protein families involved in gene regulation. All structural ribosomal (40S and 60S) proteins were identified which is consistent with the nuclear localization of ribosomal biogenesis. Proteins involved in the translation machinery were also found suggesting that translational events might occur in the nucleus in P. falciparum as previously hypothesized in eukaryotes. These data were compared to the protein list established by PlasmoDB and submitted to Plasmobase a recently reported Plasmodium annotation website to propose new functional putative annotation of several unknown proteins found in the nuclear extracts.
Collapse
Affiliation(s)
- Sylvie Briquet
- Sorbonne Université, INSERM, CNRS, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, Paris, France
| | - Asma Ourimi
- Sorbonne Université, INSERM, CNRS, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, INSERM, UMS Omique, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Juliana Bernardes
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 4 place Jussieu, Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 4 place Jussieu, Paris, France
- Institut Universitaire de France, Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, INSERM, UMS Omique, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Catherine Vaquero
- Sorbonne Université, INSERM, CNRS, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, Paris, France
| |
Collapse
|
3
|
Child MA, Harris PK, Collins CR, Withers-Martinez C, Yeoh S, Blackman MJ. Molecular determinants for subcellular trafficking of the malarial sheddase PfSUB2. Traffic 2013; 14:1053-64. [PMID: 23834729 DOI: 10.1111/tra.12092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/29/2022]
Abstract
The malaria merozoite invades erythrocytes in the vertebrate host. Iterative rounds of asexual intraerythrocytic replication result in disease. Proteases play pivotal roles in erythrocyte invasion, but little is understood about their mode of action. The Plasmodium falciparum malaria merozoite surface sheddase, PfSUB2, is one such poorly characterized example. We have examined the molecular determinants that underlie the mechanisms by which PfSUB2 is trafficked initially to invasion-associated apical organelles (micronemes) and then across the surface of the free merozoite. We show that authentic promoter activity is important for correct localization of PfSUB2, likely requiring canonical features within the intergenic region 5' of the pfsub2 locus. We further demonstrate that trafficking of PfSUB2 beyond an early compartment in the secretory pathway requires autocatalytic protease activity. Finally, we show that the PfSUB2 transmembrane domain is required for microneme targeting, while the cytoplasmic domain is essential for surface translocation of the protease to the parasite posterior following discharge from micronemes. The interplay of pre- and post-translational regulatory elements that coordinate subcellular trafficking of PfSUB2 provides the parasite with exquisite control over enzyme-substrate interactions.
Collapse
Affiliation(s)
- Matthew A Child
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK; Present address: Pathology Department, Stanford University School of Medicine, CA, USA
| | | | | | | | | | | |
Collapse
|
4
|
Russell K, Hasenkamp S, Emes R, Horrocks P. Analysis of the spatial and temporal arrangement of transcripts over intergenic regions in the human malarial parasite Plasmodium falciparum. BMC Genomics 2013; 14:267. [PMID: 23601558 PMCID: PMC3681616 DOI: 10.1186/1471-2164-14-267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/06/2013] [Indexed: 11/25/2022] Open
Abstract
Background The ability of the human malarial parasite Plasmodium falciparum to invade, colonise and multiply within diverse host environments, as well as to manifest its virulence within the human host, are activities tightly linked to the temporal and spatial control of gene expression. Yet, despite the wealth of high throughput transcriptomic data available for this organism there is very little information regarding the location of key transcriptional landmarks or their associated cis-acting regulatory elements. Here we provide a systematic exploration of the size and organisation of transcripts within intergenic regions to yield surrogate information regarding transcriptional landmarks, and to also explore the spatial and temporal organisation of transcripts over these poorly characterised genomic regions. Results Utilising the transcript data for a cohort of 105 genes we demonstrate that the untranscribed regions of mRNA are large and apportioned predominantly to the 5′ end of the open reading frame. Given the relatively compact size of the P. falciparum genome, we suggest that whilst transcriptional units are likely to spatially overlap, temporal co-transcription of adjacent transcriptional units is actually limited. Critically, the size of intergenic regions is directly dependent on the orientation of the two transcriptional units arrayed over them, an observation we extend to an analysis of the complete sequences of twelve additional organisms that share moderately compact genomes. Conclusions Our study provides a theoretical framework that extends our current understanding of the transcriptional landscape across the P. falciparum genome. Demonstration of a consensus gene-spacing rule that is shared between P. falciparum and ten other moderately compact genomes of apicomplexan parasites reveals the potential for our findings to have a wider impact across a phylum that contains many organisms important to human and veterinary health.
Collapse
Affiliation(s)
- Karen Russell
- Institute for Science and Technology in Medicine, Keele University, Huxley Building, Staffordshire ST5 5BG, United Kingdom
| | | | | | | |
Collapse
|
5
|
Wong EH, Hasenkamp S, Horrocks P. Analysis of the molecular mechanisms governing the stage-specific expression of a prototypical housekeeping gene during intraerythrocytic development of P. falciparum. J Mol Biol 2011; 408:205-21. [PMID: 21354176 PMCID: PMC3081073 DOI: 10.1016/j.jmb.2011.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 01/22/2023]
Abstract
Gene expression during the intraerythrocytic development cycle of the human malarial parasite Plasmodium falciparum is subject to tight temporal control, resulting in a cascade of gene expression to meet the physiological demands of growth, replication, and reinvasion. The roles of the different molecular mechanisms that drive this temporal program of gene expression are poorly understood. Here we report the use of the bxb1 integrase system to reconstitute all aspects of the absolute and temporal control of the prototypical housekeeping gene encoding the proliferating cell nuclear antigen (Pfpcna) around an integrated luciferase reporter cassette. A quantitative analysis of the effect of the serial deletion of 5′ and 3′ genetic elements and sublethal doses of histone deacetylase inhibitors demonstrates that while the absolute control of gene expression could be perturbed, no effect on the temporal control of gene expression was observed. These data provide support for a novel model for the temporal control of potentially hundreds of genes during the intraerythrocytic development of this important human pathogen.
Collapse
Affiliation(s)
- Eleanor H. Wong
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Sandra Hasenkamp
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Corresponding author. Institute for Science and Technology in Medicine, Keele University, Huxley Building, Staffordshire ST5 5BG, UK.
| |
Collapse
|
6
|
Campbell TL, De Silva EK, Olszewski KL, Elemento O, Llinás M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog 2010; 6:e1001165. [PMID: 21060817 PMCID: PMC2965767 DOI: 10.1371/journal.ppat.1001165] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum.
Collapse
Affiliation(s)
- Tracey L. Campbell
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Erandi K. De Silva
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Kellen L. Olszewski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Olivier Elemento
- Institute for Computational Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Manuel Llinás
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
7
|
Gopalakrishnan AM, López-Estraño C. Role of cis-regulatory elements on the ring-specific hrp3 promoter in the human parasite Plasmodium falciparum. Parasitol Res 2010; 106:833-45. [PMID: 20127361 DOI: 10.1007/s00436-010-1738-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 01/04/2010] [Indexed: 11/30/2022]
Abstract
Identification of promoter elements responsible for regulation of gene expression has been hampered by the AT richness of P. falciparum intergenic regions. Nested deletions of histidine-rich protein 3 (hrp3) promoter suggested the presence of a multipartite ring-specific element. Linker scanning (LS) of this ring-specific promoter showed that the alteration of several promoter regions decreased the luciferase activity compared to the wild-type configuration, indicating that these regions played a role in gene expression. No homology was observed by comparison of putative regulatory elements of other genes identified by bioinformatic analysis with the hrp3 enhancer, implying a different mechanism of gene regulation by the hrp3 promoter. LS and deletion analysis of the 5' untranslated region (UTR) of the hrp3 suggested that this region contains elements which interact with promoter elements to regulate gene expression. Analysis of the intron in the UTR region suggested that this region does not play a role in stage specificity in the hrp3 promoter. Together, our results indicate the presence of multiple mechanisms of gene regulation in the parasite.
Collapse
|
8
|
Bischoff E, Vaquero C. In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum. BMC Genomics 2010; 11:34. [PMID: 20078850 PMCID: PMC2821373 DOI: 10.1186/1471-2164-11-34] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/15/2010] [Indexed: 11/12/2022] Open
Abstract
Background Malaria is the most important parasitic disease in the world with approximately two million people dying every year, mostly due to Plasmodium falciparum infection. During its complex life cycle in the Anopheles vector and human host, the parasite requires the coordinated and modulated expression of diverse sets of genes involved in epigenetic, transcriptional and post-transcriptional regulation. However, despite the availability of the complete sequence of the Plasmodium falciparum genome, we are still quite ignorant about Plasmodium mechanisms of transcriptional gene regulation. This is due to the poor prediction of nuclear proteins, cognate DNA motifs and structures involved in transcription. Results A comprehensive directory of proteins reported to be potentially involved in Plasmodium transcriptional machinery was built from all in silico reports and databanks. The transcription-associated proteins were clustered in three main sets of factors: general transcription factors, chromatin-related proteins (structuring, remodelling and histone modifying enzymes), and specific transcription factors. Only a few of these factors have been molecularly analysed. Furthermore, from transcriptome and proteome data we modelled expression patterns of transcripts and corresponding proteins during the intra-erythrocytic cycle. Finally, an interactome of these proteins based either on in silico or on 2-yeast-hybrid experimental approaches is discussed. Conclusion This is the first attempt to build a comprehensive directory of potential transcription-associated proteins in Plasmodium. In addition, all complete transcriptome, proteome and interactome raw data were re-analysed, compared and discussed for a better comprehension of the complex biological processes of Plasmodium falciparum transcriptional regulation during the erythrocytic development.
Collapse
Affiliation(s)
- Emmanuel Bischoff
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, 25-28 rue du Dr Roux, 75724, Paris cedex 15, France.
| | | |
Collapse
|
9
|
Jurgelenaite R, Dijkstra TMH, Kocken CHM, Heskes T. Gene regulation in the intraerythrocytic cycle of Plasmodium falciparum. ACTA ACUST UNITED AC 2009; 25:1484-91. [PMID: 19336444 DOI: 10.1093/bioinformatics/btp179] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION To date, there is little knowledge about one of the processes fundamental to the biology of Plasmodium falciparum, gene regulation including transcriptional control. We use noisy threshold models to identify regulatory sequence elements explaining membership to a gene expression cluster where each cluster consists of genes active during the part of the developmental cycle inside a red blood cell. Our approach is both able to capture the combinatorial nature of gene regulation and to incorporate uncertainty about the functionality of putative regulatory sequence elements. RESULTS We find a characteristic pattern where the most common motifs tend to be absent upstream of genes active in the first half of the cycle and present upstream of genes active in the second half. We find no evidence that motif's score, orientation, location and multiplicity improves prediction of gene expression. Through comparative genome analysis, we find a list of potential transcription factors and their associated motifs. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rasa Jurgelenaite
- Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Patterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle. EUKARYOTIC CELL 2009; 8:327-38. [PMID: 19151330 DOI: 10.1128/ec.00340-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The relationships among gene regulatory mechanisms in the malaria parasite Plasmodium falciparum throughout its asexual intraerythrocytic developmental cycle (IDC) remain poorly understood. To investigate the level and nature of transcriptional activity and its role in controlling gene expression during the IDC, we performed nuclear run-on on whole-transcriptome samples from time points throughout the IDC and found a peak in RNA polymerase II-dependent transcriptional activity related to both the number of nuclei per parasite and variable transcriptional activity per nucleus over time. These differential total transcriptional activity levels allowed the calculation of the absolute transcriptional activities of individual genes from gene-specific nuclear run-on hybridization data. For half of the genes analyzed, sense-strand transcriptional activity peaked at the same time point as total activity. The antisense strands of several genes were substantially transcribed. Comparison of the transcriptional activity of the sense strand of each gene to its steady-state RNA abundance across the time points assayed revealed both correlations and discrepancies, implying transcriptional and posttranscriptional regulation, respectively. Our results demonstrate that such comparisons can effectively indicate gene regulatory mechanisms in P. falciparum and suggest that genes with diverse transcriptional activity levels and patterns combine to produce total transcriptional activity levels tied to parasite development during the IDC.
Collapse
|
11
|
Horrocks P, Wong E, Russell K, Emes RD. Control of gene expression in Plasmodium falciparum - ten years on. Mol Biochem Parasitol 2008; 164:9-25. [PMID: 19110008 DOI: 10.1016/j.molbiopara.2008.11.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/24/2023]
Abstract
Ten years ago this journal published a review with an almost identical title detailing how the then recent introduction of transfection technology had advanced our understanding of the molecular control of transcriptional processes in Plasmodium falciparum, particularly in terms of promoter structure and function. In the succeeding years, sequencing of several Plasmodium spp. genomes and application of high throughput global postgenomic technologies have proven as significant, if not more, as has the ability to genetically manipulate these parasites in dissecting the molecular control of gene expression. Here we aim to review our current understanding of the control of gene expression in P. falciparum, including evidence available from other Plasmodium spp. and apicomplexan parasites. Specifically, however, we will address the current polarised debate regarding the level at which control is mediated, and attempt to identify some of the challenges this field faces in the next 10 years.
Collapse
Affiliation(s)
- Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
12
|
Abstract
The review considers the up to date achievements in the role of membrane phosphoinositides and keys enzymes of the lipid branch of the phosphoinositide signal pathway (PI-pathway) in unicellular eukaryotes. Particular attention is paid to mechanisms of phospholipase C (PLC) activation and the PLC interaction both with cell surface receptors and with the effector cytoplasm targets. The role of protein kinase C (PKC) in intracellular signaling and the relationship of the PI-pathway key enzymes with protein tyrosine kinases (PTK)-signaling and cAMP-protein kinase A (PKA) pathway are discussed.
Collapse
Affiliation(s)
- Irina V Shemarova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
13
|
Coleman BI, Duraisingh MT. Transcriptional control and gene silencing in Plasmodium falciparum. Cell Microbiol 2008; 10:1935-46. [PMID: 18637022 DOI: 10.1111/j.1462-5822.2008.01203.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infection with the apicomplexan parasite Plasmodium falciparum is associated with a high burden of morbidity and mortality across the developing world, yet the mechanisms of transcriptional control in this organism are poorly understood. While P. falciparum possesses many of the characteristics common to eukaryotic transcription, including much of the canonical machinery, it also demonstrates unique patterns of gene expression and possesses unusually AT-rich intergenic sequences. Importantly, several biological processes that are critical to parasite virulence involve highly regulated patterns of gene expression and silencing. The relative scarcity of transcription-associated proteins and specific cis-regulatory motifs recognized in the P. falciparum genome have been thought to reflect a reduced role for transcription factors in transcriptional control in these parasites. New approaches and technologies, however, have led to the discovery of many more of these elements, including an expanded family of DNA-binding proteins, and a re-assessment of this hypothesis is required. We review the current understanding of transcriptional control in P. falciparum, specifically highlighting promoter-driven and epigenetic mechanisms involved in the control of transcription initiation.
Collapse
Affiliation(s)
- Bradley I Coleman
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Olivieri A, Silvestrini F, Sanchez M, Alano P. A 140-bp AT-rich sequence mediates positive and negative transcriptional control of a Plasmodium falciparum developmentally regulated promoter. Int J Parasitol 2008; 38:299-312. [DOI: 10.1016/j.ijpara.2007.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 11/26/2022]
|
15
|
Young JA, Johnson JR, Benner C, Yan SF, Chen K, Le Roch KG, Zhou Y, Winzeler EA. In silico discovery of transcription regulatory elements in Plasmodium falciparum. BMC Genomics 2008; 9:70. [PMID: 18257930 PMCID: PMC2268928 DOI: 10.1186/1471-2164-9-70] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 02/07/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND With the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (approximately 90% AT) presents significant challenges to in silico cis-regulatory element discovery. RESULTS We have developed an algorithm called Gene Enrichment Motif Searching (GEMS) that uses a hypergeometric-based scoring function and a position-weight matrix optimization routine to identify with high-confidence regulatory elements in the nucleotide-biased and repeat sequence-rich P. falciparum genome. When applied to promoter regions of genes contained within 21 co-expression gene clusters generated from P. falciparum life cycle microarray data using the semi-supervised clustering algorithm Ontology-based Pattern Identification, GEMS identified 34 putative cis-regulatory elements associated with a variety of parasite processes including sexual development, cell invasion, antigenic variation and protein biosynthesis. Among these candidates were novel motifs, as well as many of the elements for which biological experimental evidence already exists in the Plasmodium literature. To provide evidence for the biological relevance of a cell invasion-related element predicted by GEMS, reporter gene and electrophoretic mobility shift assays were conducted. CONCLUSION This GEMS analysis demonstrates that in silico regulatory element discovery can be successfully applied to challenging repeat-sequence-rich, base-biased genomes such as that of P. falciparum. The fact that regulatory elements were predicted from a diverse range of functional gene clusters supports the hypothesis that cis-regulatory elements play a role in the transcriptional control of many P. falciparum biological processes. The putative regulatory elements described represent promising candidates for future biological investigation into the underlying transcriptional control mechanisms of gene regulation in malaria parasites.
Collapse
Affiliation(s)
- Jason A Young
- Department of Cell Biology, ICND 202, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Garcia CRS, de Azevedo MF, Wunderlich G, Budu A, Young JA, Bannister L. Plasmodium in the postgenomic era: new insights into the molecular cell biology of malaria parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:85-156. [PMID: 18544493 DOI: 10.1016/s1937-6448(07)66003-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review, we bring together some of the approaches toward understanding the cellular and molecular biology of Plasmodium species and their interaction with their host red blood cells. Considerable impetus has come from the development of new methods of molecular genetics and bioinformatics, and it is important to evaluate the wealth of these novel data in the context of basic cell biology. We describe how these approaches are gaining valuable insights into the parasite-host cell interaction, including (1) the multistep process of red blood cell invasion by the merozoite; (2) the mechanisms by which the intracellular parasite feeds on the red blood cell and exports parasite proteins to modify its cytoadherent properties; (3) the modulation of the cell cycle by sensing the environmental tryptophan-related molecules; (4) the mechanism used to survive in a low Ca(2+) concentration inside red blood cells; (5) the activation of signal transduction machinery and the regulation of intracellular calcium; (6) transfection technology; and (7) transcriptional regulation and genome-wide mRNA studies in Plasmodium falciparum.
Collapse
Affiliation(s)
- Celia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Imamura H, Persampieri JH, Chuang JH. Sequences conserved by selection across mouse and human malaria species. BMC Genomics 2007; 8:372. [PMID: 17937810 PMCID: PMC2174483 DOI: 10.1186/1471-2164-8-372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 10/15/2007] [Indexed: 11/22/2022] Open
Abstract
Background Little is known, either experimentally or computationally, about the genomic sequence features that regulate malaria genes. A sequence conservation analysis of the malaria species P. falciparum, P. berghei, P. yoelii, and P. chabaudi could significantly advance knowledge of malaria gene regulation. Results We computationally identify intergenic sequences conserved beyond neutral expectations, using a conservation algorithm that accounts for the strong compositional biases in malaria genomes. We first quantify the composition-specific divergence at silent positions in coding sequence. Using this as a background, we examine gene 5' regions, identifying 610 blocks conserved far beyond neutral expectations across the three mouse malariae, and 81 blocks conserved as strongly across all four species (p < 10-6). Detailed analysis of these blocks indicates that only a minor fraction are likely to be previously unknown coding sequences. Analogous noncoding conserved blocks have been shown to regulate adjacent genes in other phylogenies, making the predicted blocks excellent candidates for novel regulatory functions. We also find three potential transcription factor binding motifs which exhibit strong conservation and overrepresentation among the rodent malariae. Conclusion A broader finding of our analysis is that less malaria intergenic sequence has been conserved by selection than in yeast or vertebrate genomes. This supports the hypothesis that transcriptional regulation is simpler in malaria than other eukaryotic species. We have built a public database containing all sequence alignments and functional predictions, and we expect this to be a valuable resource to the malaria research community.
Collapse
Affiliation(s)
- Hideo Imamura
- Boston College - Department of Biology, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| | | | | |
Collapse
|
18
|
Promoter regions of Plasmodium vivax are poorly or not recognized by Plasmodium falciparum. Malar J 2007; 6:20. [PMID: 17313673 PMCID: PMC1805447 DOI: 10.1186/1475-2875-6-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 02/21/2007] [Indexed: 11/18/2022] Open
Abstract
Background Heterologous promoter analysis in Plasmodium has revealed the existence of conserved cis regulatory elements as promoters from different species can drive expression of reporter genes in heterologous transfection assays. Here, the functional characterization of different Plasmodium vivax promoters in Plasmodium falciparum using luciferase as the reporter gene is presented. Methods Luciferase reporter plasmids harboring the upstream regions of the msp1, dhfr, and vir3 genes as well as the full-length intergenic regions of the vir23/24 and ef-1α genes of P. vivax were constructed and transiently transfected in P. falciparum. Results Only the constructs with the full-length intergenic regions of the vir23/24 and ef-1α genes were recognized by the P. falciparum transcription machinery albeit to values approximately two orders of magnitude lower than those reported by luc plasmids harbouring promoter regions from P. falciparum and Plasmodium berghei. A bioinformatics approach allowed the identification of a motif (GCATAT) in the ef-1α intergenic region that is conserved in five Plasmodium species but is degenerate (GCANAN) in P. vivax. Mutations of this motif in the P. berghei ef-1α promoter region decreased reporter expression indicating it is active in gene expression in Plasmodium. Conclusion Together, this data indicates that promoter regions of P. vivax are poorly or not recognized by the P. falciparum transcription machinery suggesting the existence of P. vivax-specific transcription regulatory elements.
Collapse
|
19
|
Gunasekera AM, Myrick A, Militello KT, Sims JS, Dong CK, Gierahn T, Le Roch K, Winzeler E, Wirth DF. Regulatory motifs uncovered among gene expression clusters in Plasmodium falciparum. Mol Biochem Parasitol 2007; 153:19-30. [PMID: 17307259 DOI: 10.1016/j.molbiopara.2007.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 11/29/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
Control of gene expression is poorly understood in the Plasmodium system, where relatively few homologues to known eukaryotic transcription factors have been uncovered. Recent evidence suggests that the parasite may utilize a combinatorial mode of gene regulation, with multiple cis-acting sequences contributing to overall activity at individual promoters [1]. To further probe this mechanism of control, we first searched for over-represented sequence motifs among gene clusters sharing similar expression profiles in Plasmodium falciparum. More specifically, we applied bioinformatic tools to a previously characterized micro-array data set from drug-treated asexual stage cultures (Gunasekera et al., submitted). Cluster analysis of 600 drug responsive genes identified only a single 5' motif, GAGAGAA. Two additional 5' motifs, ACTATAAAGA and TGCAC, were also shared among loci displaying patterns of coordinate expression across varying asexual growth stages. Secondly and most importantly, the functional relevance of each motif was tested in two independent assays-transient transfection and gel-retardation experiments. The GAGAGAA and TGCAC motifs were both active in the former. The GAGAGAA and ACTATAAAGA elements formed specific RNA-protein, but not DNA-protein complexes in gel shift assays, suggesting a key level of control at the RNA level. This is the first report of functionally characterized motifs in P. falciparum that were uncovered following clustering analysis of its asexual stage transcriptome. Together, both the bioinformatic and functional data reported here imply that multiple forms of gene regulation, including post-transcriptional control, may be important in the malarial system.
Collapse
Affiliation(s)
- Anusha M Gunasekera
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Harvard University, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Briquet S, Boschet C, Gissot M, Tissandié E, Sevilla E, Franetich JF, Thiery I, Hamid Z, Bourgouin C, Vaquero C. High-mobility-group box nuclear factors of Plasmodium falciparum. EUKARYOTIC CELL 2006; 5:672-82. [PMID: 16607015 PMCID: PMC1459676 DOI: 10.1128/ec.5.4.672-682.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotes, the high-mobility-group (HMG) nuclear factors are highly conserved throughout evolution and are divided into three families, including HGMB, characterized by an HMG box domain. Some HMGB factors are DNA structure specific and preferentially interact with distorted DNA sequences, trigger DNA bending, and hence facilitate the binding of nucleoprotein complexes that in turn activate or repress transcription. In Plasmodium falciparum, two HMGB factors were predicted: PfHMGB1 and PfHMGB2. They are small proteins, under 100 amino acids long, encompassing a characteristic HMG box domain closely related to box B of metazoan factors, which comprises two HMG box domains, A and B, in tandem. Computational analyses supported the conclusion that the Plasmodium proteins were genuine architectural HMGB factors, and in vitro analyses performed with both recombinant proteins established that they were able to interact with distorted DNA structures and bend linear DNA with different affinities. These proteins were detected in both asexual- and gametocyte-stage cells in Western blotting experiments and mainly in the parasite nuclei. PfHMGB1 is preferentially expressed in asexual erythrocytic stages and PfHMGB2 in gametocytes, in good correlation with transcript levels of expression. Finally, immunofluorescence studies revealed differential subcellular localizations: both factors were observed in the nucleus of asexual- and sexual-stage cells, and PfHMGB2 was also detected in the cytoplasm of gametocytes. In conclusion, in light of differences in their levels of expression, subcellular localizations, and capacities for binding and bending DNA, these factors are likely to play nonredundant roles in transcriptional regulation of Plasmodium development in erythrocytes.
Collapse
Affiliation(s)
- Sylvie Briquet
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
- Corresponding author. Mailing address: INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France. Phone: 33 (0) 1 40 77 81 14. Fax: 33 (0) 1 45 83 88 58. E-mail for Sylvie Briquet: . E-mail for Catherine Vaquero:
| | - Charlotte Boschet
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Mathieu Gissot
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Emilie Tissandié
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Elisa Sevilla
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Jean-François Franetich
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Isabelle Thiery
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Zuhal Hamid
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Catherine Bourgouin
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Catherine Vaquero
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
- Corresponding author. Mailing address: INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France. Phone: 33 (0) 1 40 77 81 14. Fax: 33 (0) 1 45 83 88 58. E-mail for Sylvie Briquet: . E-mail for Catherine Vaquero:
| |
Collapse
|
21
|
Ruvalcaba-Salazar OK, del Carmen Ramírez-Estudillo M, Montiel-Condado D, Recillas-Targa F, Vargas M, Hernández-Rivas R. Recombinant and native Plasmodium falciparum TATA-binding-protein binds to a specific TATA box element in promoter regions. Mol Biochem Parasitol 2005; 140:183-96. [PMID: 15760658 DOI: 10.1016/j.molbiopara.2005.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/05/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
RNA polymerase II promoters in Plasmodium spp., like in most eukaryotes, have a bipartite structure. However, the identification of a functional TATA box located within the Plasmodium spp. core promoters has been difficult, mainly because of its high A+T content. Only few putative trans-acting elements have been identified in the malaria parasite genome such as a gene orthologous to the TATA box binding protein (PfTBP). In this study, we demonstrate that PfTBP is part of the DNA-protein complexes formed in the kahrp and gbp-130 gene promoter regions. Supershift and footprinting assays performed with a GST-PfTBP fusion protein showed that PfTBP associates with a consensus TATA box sequence located 81 base pairs upstream of the transcription start site in the kahrp promoter region and with a TATA box-like (TGTAA) sequence at position -186 of the gbp-130 gene promoter region. Chromatin immunoprecipitation assays confirmed that native PfTBP is able to associate in vivo with both TATA box elements. This is the first study that reports the identification of cis-acting sequences (TATAA and TGTAA) and their corresponding trans-acting (PfTBP) factor in P. falciparum.
Collapse
Affiliation(s)
- Omar K Ruvalcaba-Salazar
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Apartado Postal 14-740, 07360 México
| | | | | | | | | | | |
Collapse
|
22
|
Polson HEJ, Blackman MJ. A role for poly(dA)poly(dT) tracts in directing activity of the Plasmodium falciparum calmodulin gene promoter. Mol Biochem Parasitol 2005; 141:179-89. [PMID: 15850701 DOI: 10.1016/j.molbiopara.2005.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 02/08/2005] [Accepted: 02/13/2005] [Indexed: 11/30/2022]
Abstract
Expression of the Plasmodium falciparum calmodulin gene (pfcam) is developmentally regulated throughout the blood-stage cycle. The promoter lies within approximately 1 kb of intergenic sequence that separates the pfcam open reading frame (ORF) from an upstream inverted ORF encoding a product homologous to the co-chaperone STI1. Using the oligo-capping method, which selectively reverse-transcribes cDNA from only full-length, capped transcript, we have mapped multiple transcription-initiation sites for both genes. Transcription of the pfSTI1 gene initiates over a 150 bp region centred approximately 350 bp upstream of the ORF. The pfcam transcription start sites cluster into four approximately 30 bp regions lying within 180 bp upstream of the pfcam ORF, generating transcripts with 5' untranslated regions (UTR) of 3-173 nucleotides in length. Remarkably, splicing was found to be related to UTR length, with apparent preferential splicing of longer transcripts. Activity of the pfcam promoter diminished in a linear fashion to undetectable levels upon step-wise removal of sequence between 625 and 230 bp upstream of the start ATG. Electromobility-shift assays demonstrated nuclear factor binding to eight oligonucleotide probes spanning 657 bp of the pfcam ORF proximal upstream sequence. The degree of binding correlated with the density of poly(dA)poly(dT) tracts within the probes, and in all cases could be inhibited by excess synthetic poly(dA)poly(dT), but not by poly(dAdT)poly(dAdT). The multiple transcription-initiation sites of both pfSTI1 and pfcam genes lie just downstream of 25 bp-long poly(dA)poly(dT) tracts, and the intergenic region contains over 20 poly(dA)poly(dT) tracts of 4 bp or more. Our results suggest that the basal pfcam promoter is situated between approximately -300 and -230 bp upstream of the pfcam ORF and that the P. falciparum transcription-initiation complex has a low degree of sequence-specificity for the sites of initiation but preferentially acts downstream of long poly(dA)poly(dT) tracts.
Collapse
Affiliation(s)
- Hannah E J Polson
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
23
|
Boschet C, Gissot M, Briquet S, Hamid Z, Claudel-Renard C, Vaquero C. Characterization of PfMyb1 transcription factor during erythrocytic development of 3D7 and F12 Plasmodium falciparum clones. Mol Biochem Parasitol 2005; 138:159-63. [PMID: 15500927 DOI: 10.1016/j.molbiopara.2004.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Revised: 07/19/2004] [Accepted: 07/20/2004] [Indexed: 11/18/2022]
Affiliation(s)
- Charlotte Boschet
- INSERM U511, CHU Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|
24
|
Gissot M, Briquet S, Refour P, Boschet C, Vaquero C. PfMyb1, a Plasmodium falciparum transcription factor, is required for intra-erythrocytic growth and controls key genes for cell cycle regulation. J Mol Biol 2004; 346:29-42. [PMID: 15663925 DOI: 10.1016/j.jmb.2004.11.045] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/18/2004] [Accepted: 11/18/2004] [Indexed: 11/23/2022]
Abstract
During the complex life cycle of Plasmodium falciparum, divided between mosquito and human hosts, the regulation of morphologic changes implies a fine control of transcriptional regulation. Transcriptional control, however, and in particular its molecular actors, transcription factors and regulatory motifs, are as yet poorly described in Plasmodium. In order to decipher the molecular mechanisms implicated in transcriptional regulation, a transcription factor belonging to the tryptophan cluster family was studied. In a previous work, the PfMyb1 protein, contained in nuclear extracts, was shown to have DNA binding activity and to interact specifically with myb regulatory elements. We used long pfmyb1 double-stranded RNA (dsRNA) to interfere with the cognate messenger expression. Parasite cultures treated with pfmyb1 dsRNA exhibited a 40% growth inhibition when compared with either untreated cultures or cultures treated with unrelated dsRNA, and parasite mortality occurred during trophozoite to schizont transition. In addition, the pfmyb1 transcript and protein decreased by as much as 80% in treated trophozoite cultures at the time of their maximum expression. The global effect of this partial loss of transcript and protein was investigated using a thematic DNA microarray encompassing genes involved in signal transduction, cell cycle and transcriptional regulation. SAM software enabled us to identify several genes that were differentially expressed and probably directly or indirectly under the control of PfMyb1. Using chromatin immuno-precipitation, we demonstrated that PfMyb1 binds, within the parasite nuclei, to several promoters and therefore participates directly in the transcriptional regulation of the corresponding genes. This study provides the first evidence of a regulation network involving a Plasmodium transcription factor.
Collapse
Affiliation(s)
- Mathieu Gissot
- INSERM U511, CHU Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | |
Collapse
|
25
|
Militello KT, Dodge M, Bethke L, Wirth DF. Identification of regulatory elements in the Plasmodium falciparum genome. Mol Biochem Parasitol 2004; 134:75-88. [PMID: 14747145 DOI: 10.1016/j.molbiopara.2003.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is little information regarding regulatory sequences in the newly sequenced genome of the malaria parasite, Plasmodium falciparum. Thus, for the first time, a bioinformatic strategy was utilized to identify regulatory elements in this genome using the P. falciparum heat shock protein (hsp) gene family as a model system. Our analysis indicates that the P. falciparum hsp genes do not contain standard eukaryotic regulatory elements. However, a novel G-rich regulatory element named the G-box was identified upstream of several P. falciparum hsp genes and the P. yoelii yoelii, P. berghei, and P. vivax hsp86 genes. Remarkably, the Plasmodium sp. G-boxes were required for maximal reporter gene expression in transient transfection assays. The G-box is not homologous to known eukaryotic elements, and is the best-defined functional element elucidated from Plasmodium sp. Our analysis also revealed several other elements necessary for reporter gene expression including an upstream sequence element, the region surrounding the transcription start site, and the 5' and 3' untranslated regions. These data demonstrate that unique regulatory elements are conserved in the genomes of Plasmodium sp., and demonstrate the feasibility of bioinformatic approaches for their identification.
Collapse
Affiliation(s)
- Kevin T Militello
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
26
|
Myrick A, Munasinghe A, Patankar S, Wirth DF. Mapping of the Plasmodium falciparum multidrug resistance gene 5'-upstream region, and evidence of induction of transcript levels by antimalarial drugs in chloroquine sensitive parasites. Mol Microbiol 2003; 49:671-83. [PMID: 12864851 DOI: 10.1046/j.1365-2958.2003.03597.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Plasmodium falciparum multidrug resistance gene, pfmdr1, has been shown to be involved in the mediation of the parasite's response to various antimalarial drugs. Previous studies of pfmdr1 expression have shown that transcript levels are increased in drug-resistant isolates. However, a detailed examination of the transcriptional regulation of this gene has not been completed. The aim of this study was to map the 5' UTR of pfmdr1, and to examine the transcriptional profile of the gene in sensitive parasites treated with four different antimalarial drugs. RT-PCR and 5'-RACE mapping showed that the 5' UTR has a length of 1.94 kb. A putative promoter has been identified via transient transfection. Northern analysis revealed a 2.1- to 2.7-fold increase in pfmdr1 expression in 3D7 parasites treated with 50 nM chloroquine for 6 h, confirming results from Serial Analysis of Gene Expression. 3D7 parasites were subsequently treated with experimentally derived IC50 concentrations of mefloquine, quinine and pyrimethamine. pfmdr1 transcript levels specifically increased 2.5-fold at 6 h in mefloquine-treated parasites and threefold in parasites treated with quinine for 30 min. There was no evidence of transcript induction in pyrimethamine-treated parasites. This is the first evidence of induction of pfmdr1 expression in sensitive cells; and suggests a novel method of transcriptional control for this gene.
Collapse
Affiliation(s)
- Alissa Myrick
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Parasitic protozoa are surrounded by membrane structures that have a different lipid and protein composition relative to membranes of the host. The parasite membranes are essential structurally and also for parasite specific processes, like host cell invasion, nutrient acquisition or protection against the host immune system. Furthermore, intracellular parasites can modulate membranes of their host, and trafficking of membrane components occurs between host membranes and those of the intracellular parasite. Phospholipids are major membrane components and, although many parasites scavenge these phospholipids from their host, most parasites also synthesise phospholipids de novo, or modify a large part of the scavenged phospholipids. It was recently shown that some parasites like Plasmodium have unique phospholipid metabolic pathways. This review will focus on new developments in research on phospholipid metabolism of parasitic protozoa in relation to parasite-specific membrane structures and function, as well as on several targets for interference with the parasite phospholipid metabolism with a view to developing new anti-parasitic drugs.
Collapse
Affiliation(s)
- Henri J Vial
- Dynamique Moléculaire des Interactions Membranaires, CNRS UMR 5539, cc107, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier, France.
| | | | | | | |
Collapse
|