1
|
Ekloh W, Asafu-Adjaye A, Tawiah-Mensah CNL, Ayivi-Tosuh SM, Quartey NKA, Aiduenu AF, Gayi BK, Koudonu JAM, Basing LA, Yamoah JAA, Dofuor AK, Osei JHN. A comprehensive exploration of schistosomiasis: Global impact, molecular characterization, drug discovery, artificial intelligence and future prospects. Heliyon 2024; 10:e33070. [PMID: 38988508 PMCID: PMC11234110 DOI: 10.1016/j.heliyon.2024.e33070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Schistosomiasis, one of the neglected tropical diseases which affects both humans and animals, is caused by trematode worms of the genus Schistosoma. The disease is caused by several species of Schistosoma which affect several organs such as urethra, liver, bladder, intestines, skin and bile ducts. The life cycle of the disease involves an intermediate host (snail) and a mammalian host. It affects people who are in close proximity to water bodies where the intermediate host is abundant. Common clinical manifestations of the disease at various stages include fever, chills, headache, cough, dysuria, hyperplasia and hydronephrosis. To date, most of the control strategies are dependent on effective diagnosis, chemotherapy and public health education on the biology of the vectors and parasites. Microscopy (Kato-Katz) is considered the golden standard for the detection of the parasite, while praziquantel is the drug of choice for the mass treatment of the disease since no vaccines have yet been developed. Most of the previous reviews on schistosomiasis have concentrated on epidemiology, life cycle, diagnosis, control and treatment. Thus, a comprehensive review that is in tune with modern developments is needed. Here, we extend this domain to cover historical perspectives, global impact, symptoms and detection, biochemical and molecular characterization, gene therapy, current drugs and vaccine status. We also discuss the prospects of using plants as potential and alternative sources of novel anti-schistosomal agents. Furthermore, we highlight advanced molecular techniques, imaging and artificial intelligence that may be useful in the future detection and treatment of the disease. Overall, the proper detection of schistosomiasis using state-of-the-art tools and techniques, as well as development of vaccines or new anti-schistosomal drugs may aid in the elimination of the disease.
Collapse
Affiliation(s)
- William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Andy Asafu-Adjaye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Christopher Nii Laryea Tawiah-Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Blessing Kwabena Gayi
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | | | - Laud Anthony Basing
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jennifer Afua Afrifa Yamoah
- Animal Health Division, Council for Scientific and Industrial Research-Animal Research Institute, Adenta-Frafraha, Accra, Ghana
| | - Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
2
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
3
|
Moescheid MF, Puckelwaldt O, Beutler M, Haeberlein S, Grevelding CG. Defining an optimal control for RNAi experiments with adult Schistosoma mansoni. Sci Rep 2023; 13:9766. [PMID: 37328492 PMCID: PMC10276032 DOI: 10.1038/s41598-023-36826-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023] Open
Abstract
In parasites such as Schistosoma mansoni, gene knockdown by RNA interference (RNAi) has become an indispensable tool for functional gene characterization. To distinguish target-specific RNAi effects versus off-target effects, controls are essential. To date, however, there is still no general agreement about suitable RNAi controls, which limits the comparability between studies. To address this point, we investigated three selected dsRNAs for their suitability as RNAi controls in experiments with adult S. mansoni in vitro. Two dsRNAs were of bacterial origin, the neomycin resistance gene (neoR) and the ampicillin resistance gene (ampR). The third one, the green fluorescent protein gene (gfp), originated from jellyfish. Following dsRNA application, we analyzed physiological parameters like pairing stability, motility, and egg production as well as morphological integrity. Furthermore, using RT-qPCR we evaluated the potential of the used dsRNAs to influence transcript patterns of off-target genes, which had been predicted by si-Fi (siRNA-Finder). At the physiological and morphological levels, we observed no obvious changes in the dsRNA treatment groups compared to an untreated control. However, we detected remarkable differences at the transcript level of gene expression. Amongst the three tested candidates, we suggest dsRNA of the E. coli ampR gene as the most suitable RNAi control.
Collapse
Affiliation(s)
- Max F Moescheid
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Mandy Beutler
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
4
|
Genetic manipulations in helminth parasites. J Parasit Dis 2023; 47:203-214. [PMID: 36712591 PMCID: PMC9869838 DOI: 10.1007/s12639-023-01567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Screening of vaccine or drug target in parasitic helminth is hindered by lack of robust tool for functional studies of parasite protein which account for the availability of only a few anti-helminthic vaccines, diagnostic assay and slower pace of development of an anthelmintic drug. With the piling up of parasite transcriptomic and genomic data, in silico screening for possible vaccine/drug target could be validated by functional characterization of proteins by RNA interference or CRISPR/Cas9. These reverse genetic engineering tools have opened up a better avenue and opportunity for screening parasitic proteins in vitro as well as in vivo. RNA interference provides a technique for silencing targeted mRNA transcript for understanding a gene function in helminth as evidence by work in Caenorhabditis elegans. Recent genetic engineering tool, CRISPR/Cas9 allows knock-out/deletion of the desired gene in parasitic helminths and the other provision it provides in terms of gene knock-in/insertion in parasite genome is still to be explored in future. This manuscript discussed the work that has been carried out on RNAi and CRISPR/Cas9 for functional studies of helminth parasitic proteins.
Collapse
|
5
|
Rozario T, Collins JJ, Newmark PA. The good, the bad, and the ugly: From planarians to parasites. Curr Top Dev Biol 2022; 147:345-373. [PMID: 35337455 DOI: 10.1016/bs.ctdb.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Platyhelminthes can perhaps rightly be described as a phylum of the good, the bad, and the ugly: remarkable free-living worms that colonize land, river, and sea, which are often rife with color and can display extraordinary regenerative ability; parasitic worms like schistosomes that cause devastating disease and suffering; and monstrous tapeworms that are the stuff of nightmares. In this chapter, we will explore how our research expanded beyond free-living planarians to their gruesome parasitic cousins. We start with Schistosoma mansoni, which is not a new model; however, approaching these parasites from a developmental perspective required a reinvention that may hold generalizable lessons to basic biologists interested in pivoting to disease models. We then turn to our (re)establishment of the rat tapeworm Hymenolepis diminuta, a once-favorite model that had been largely forgotten by the molecular biology revolution. Here we tell our stories in three, first-person narratives in order to convey personal views of our experiences. Welcome to the dark side.
Collapse
Affiliation(s)
- Tania Rozario
- Center for Tropical and Emerging Global Diseases and Department of Genetics, University of Georgia, Athens, GA, United States.
| | - James J Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States.
| | - Phillip A Newmark
- Howard Hughes Medical Institute, Morgridge Institute for Research, Department of Integrative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
6
|
Guerrero-Hernández J, Bobes RJ, García-Varela M, Castellanos-Gonzalez A, Laclette JP. Identification and functional characterization of the siRNA pathway in Taenia crassiceps by silencing Enolase A. Acta Trop 2022; 225:106197. [PMID: 34688628 DOI: 10.1016/j.actatropica.2021.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
A gene silencing procedure on cysticerci of the taeniid cestode Taenia crassiceps is described. This is the first time this technique is reported in this species that is widely used as an animal model for human cysticercosis. Genome database searches were performed in order to find out if relevant genes involved in gene silencing and non-coding RNA processing, Argonaute and Dicer (AGO and Dcr) are present in T. crassiceps. We found three AGO and two Dcr orthologues that were designed TcAGO1, Tc2 and Tc3, as well as TcDcr1 and TcDcr2. In order to elucidate the evolutionary relationships of T. crassiceps TcAGO and TcDcr genes, separate phylogenetic analyses were carried out for each, including AGO and Dcr orthologues of other 20 platyhelminthes. Our findings showed a close phylogenetic relationship of TcAGO and TcDcr with those previously described for Echinococcus spp. Our RT-PCR studies demonstrated expression of all TcAGO and TcDcr orthologues. Our results show that the gene silencing machinery in T. crassiceps is functionally active by inducing silencing of TcEnoA (∼90%). These results clearly show that gene silencing using siRNAs can be used as a molecular methodology to study gene function in taeniid cestodes.
Collapse
Affiliation(s)
- Julio Guerrero-Hernández
- Biomedical Research Institute. Universidad Nacional Autónoma de México, México, 04510, Coyoacán, Cd. de México, México
| | - Raúl J Bobes
- Biomedical Research Institute. Universidad Nacional Autónoma de México, México, 04510, Coyoacán, Cd. de México, México
| | - Martín García-Varela
- Biology Institute. Universidad Nacional Autónoma de México, 04510, Coyoacán, Cd. de México, México
| | - Alejandro Castellanos-Gonzalez
- Division of Infectious Diseases, University of Texas Medical Branch, United States; Center for Tropical Diseases, University of Texas Medical Branch, United States..
| | - Juan P Laclette
- Biomedical Research Institute. Universidad Nacional Autónoma de México, México, 04510, Coyoacán, Cd. de México, México.
| |
Collapse
|
7
|
McCusker P, Hussain W, McVeigh P, McCammick E, Clarke NG, Robb E, McKay FM, Brophy PM, Timson DJ, Mousley A, Marks NJ, Maule AG. RNA interference dynamics in juvenile Fasciola hepatica are altered during in vitro growth and development. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:46-55. [PMID: 32866764 PMCID: PMC7475519 DOI: 10.1016/j.ijpddr.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022]
Abstract
For over a decade RNA interference (RNAi) has been an important molecular tool for functional genomics studies in parasitic flatworms. Despite this, our understanding of RNAi dynamics in many flatworm parasites, such as the temperate liver fluke (Fasciola hepatica), remains rudimentary. The ability to maintain developing juvenile fluke in vitro provides the opportunity to perform functional studies during development of the key pathogenic life stage. Here, we investigate the RNAi competence of developing juvenile liver fluke. Firstly, all life stages examined possess, and express, core candidate RNAi effectors encouraging the hypothesis that all life stages of F. hepatica are RNAi competent. RNAi effector analyses supported growing evidence that parasitic flatworms have evolved a separate clade of RNAi effectors with unknown function. Secondly, we assessed the impact of growth/development during in vitro culture on RNAi in F. hepatica juveniles and found that during the first week post-excystment liver fluke juveniles exhibit quantitatively lower RNAi mediated transcript knockdown when maintained in growth inducing media. This did not appear to occur in older in vitro juveniles, suggesting that rapidly shifting transcript dynamics over the first week following excystment alters RNAi efficacy after a single 24 h exposure to double stranded (ds)RNA. Finally, RNAi efficiency was found to be improved through use of a repeated dsRNA exposure methodology that has facilitated silencing of genes in a range of tissues, thereby increasing the utility of RNAi as a functional genomics tool in F. hepatica.
Collapse
Affiliation(s)
- Paul McCusker
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | - Wasim Hussain
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Paul McVeigh
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Erin McCammick
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Nathan G Clarke
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Emily Robb
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Fiona M McKay
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Peter M Brophy
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - David J Timson
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Angela Mousley
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Nikki J Marks
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Aaron G Maule
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
8
|
Abstract
Helminth parasitology is an important discipline, which poses often unique technical challenges. One challenge is that helminth parasites, particularly those in humans, are often difficult to obtain alive and in sufficient quantities for study; another is the challenge of studying these organisms in vitro – no helminth parasite life cycle has been fully recapitulated outside of a host. Arguably, the key issue retarding progress in helminth parasitology has been a lack of experimental tools and resources, certainly relative to the riches that have driven many parasitologists to adopt free-living model organisms as surrogate systems. In response to these needs, the past 10–12 years have seen the beginnings of helminth parasitology's journey into the ‘omics’ era, with the release of abundant sequencing resources, and the functional genomics tools with which to test biological hypotheses. To reflect this progress, the 2019 Autumn Symposium of the British Society for Parasitology was held in Queen's University Belfast on the topic of ‘post-genomic progress in helminth parasitology’. This issue presents examples of the current state of play in the field, while this editorial summarizes how genomic datasets and functional genomic tools have stimulated impressive recent progress in our understanding of parasite biology.
Collapse
|
9
|
Rinaldi G, Dell'Oca N, Castillo E, Tort JF. Gene Silencing in the Liver Fluke Fasciola hepatica: RNA Interference. Methods Mol Biol 2020; 2137:67-92. [PMID: 32399922 DOI: 10.1007/978-1-0716-0475-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The chronic infection with the liver fluke of the genus Fasciola spp. is the most prevalent foodborne trematodiasis, affecting at least one-fourth of the world livestock grazing in areas where the parasite is present. Moreover, fascioliasis is considered a major zoonosis mainly in rural areas of central South America, Northern Africa, and Central Asia. Increasing evidences of resistance against triclabendazole may compromise its use as drug of choice; thus, novel control strategies are desperately needed. Functional genomic approaches play a key role in the validation and characterization of new targets for drug and vaccine development. So far, RNA interference has been the only gene silencing approach successfully employed in liver flukes of the genus Fasciola spp. Herein, we describe a detailed step-by-step protocol to perform gene silencing mediated by RNAi in Fasciola hepatica.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - Nicolás Dell'Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República, UdelaR, Montevideo, Uruguay
| | - Estela Castillo
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, UdelaR, Montevideo, Uruguay
| | - José F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, UdelaR, Montevideo, Uruguay.
| |
Collapse
|
10
|
Buddenborg SK, Kamel B, Hanelt B, Bu L, Zhang SM, Mkoji GM, Loker ES. The in vivo transcriptome of Schistosoma mansoni in the prominent vector species Biomphalaria pfeifferi with supporting observations from Biomphalaria glabrata. PLoS Negl Trop Dis 2019; 13:e0007013. [PMID: 31568484 PMCID: PMC6797213 DOI: 10.1371/journal.pntd.0007013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 10/17/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The full scope of the genes expressed by schistosomes during intramolluscan development has yet to be characterized. Understanding the gene products deployed by larval schistosomes in their snail hosts will provide insights into their establishment, maintenance, asexual reproduction, ability to castrate their hosts, and their prolific production of human-infective cercariae. Using the Illumina platform, the intramolluscan transcriptome of Schistosoma mansoni was investigated in field-derived specimens of the prominent vector species Biomphalaria pfeifferi at 1 and 3 days post infection (d) and from snails shedding cercariae. These S. mansoni samples were derived from the same snails used in our complementary B. pfeifferi transcriptomic study. We supplemented this view with microarray analyses of S. mansoni from B. glabrata at 2d, 4d, 8d, 16d, and 32d to highlight robust features of S. mansoni transcription, even when a different technique and vector species was used. PRINCIPAL FINDINGS Transcripts representing at least 7,740 (66%) of known S. mansoni genes were expressed during intramolluscan development, with the greatest number expressed in snails shedding cercariae. Many transcripts were constitutively expressed throughout development featuring membrane transporters, and metabolic enzymes involved in protein and nucleic acid synthesis and cell division. Several proteases and protease inhibitors were expressed at all stages, including some proteases usually associated with cercariae. Transcripts associated with G-protein coupled receptors, germ cell perpetuation, and stress responses and defense were well represented. We noted transcripts homologous to planarian anti-bacterial factors, several neural development or neuropeptide transcripts including neuropeptide Y, and receptors that may be associated with schistosome germinal cell maintenance that could also impact host reproduction. In at least one snail the presence of larvae of another digenean species (an amphistome) was associated with repressed S. mansoni transcriptional activity. CONCLUSIONS/SIGNIFICANCE This in vivo study, emphasizing field-derived snails and schistosomes, but supplemented with observations from a lab model, provides a distinct view from previous studies of development of cultured intramolluscan stages from lab-maintained organisms. We found many highly represented transcripts with suspected or unknown functions, with connection to intramolluscan development yet to be elucidated.
Collapse
Affiliation(s)
- Sarah K. Buddenborg
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- * E-mail:
| | - Bishoy Kamel
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Ben Hanelt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairob,i Kenya
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
11
|
Wang H, Li J, Zhang C, Guo B, Wei Q, Li L, Yang N, Peter McManus D, Gao X, Zhang W, Wen H. Echinococcus granulosus sensu stricto: silencing of thioredoxin peroxidase impairs the differentiation of protoscoleces into metacestodes. ACTA ACUST UNITED AC 2018; 25:57. [PMID: 30474598 PMCID: PMC6254101 DOI: 10.1051/parasite/2018055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/29/2018] [Indexed: 01/14/2023]
Abstract
Cystic echinococcosis (CE) is a cosmopolitan parasitic disease caused by infection with the larval stage of Echinococcus granulosus sensu lato. Thioredoxin peroxidase (TPx) may play an essential role in the antioxidant defence system of E. granulosus s.l. as neither catalase nor glutathione peroxidase activities have been detected in the parasite. However, it is not known whether TPx affects the survival and growth of E. granulosus s.l. during development. In this study, three fragments of siRNA specific for EgTPx (siRNA-1/2/3) were designed and transfected into protoscoleces of E. granulosus sensu stricto by electroporation. Quantitative real-time PCR and Western blotting analysis showed that siRNA-3 significantly reduced the expression of EgTPx. Coincidentally, knockdown of EgTPx expression in protoscoleces with siRNA-3 significantly reduced the viability of the parasite under oxidative stress induced by 0.6 mM H2O2. In vitro culture studies showed that protoscoleces treated with siRNA-3 reduced pre-microcyst formation. In vivo experiments showed that injecting mice intraperitoneally with protoscoleces treated with siRNA-3 resulted in a significant reduction in the number, size and weight of CE cysts compared with those of control animals. Silencing of EgTPx led to the impairment of growth of E. granulosus s.s. both in vitro and in vivo, indicating that EgTPx is an important factor for protoscoleces survival and plays an important role in the antioxidant defence against the host during development.
Collapse
Affiliation(s)
- Hui Wang
- Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang 831100, PR China - State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Baoping Guo
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Qin Wei
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Donald Peter McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Xiaoli Gao
- Pharmacy College of Xinjiang Medical University, Urumqi 830011, PR China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China - Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang 831100, PR China
| |
Collapse
|
12
|
A metalloprotease produced by larval Schistosoma mansoni facilitates infection establishment and maintenance in the snail host by interfering with immune cell function. PLoS Pathog 2018; 14:e1007393. [PMID: 30372490 PMCID: PMC6224180 DOI: 10.1371/journal.ppat.1007393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/08/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022] Open
Abstract
Metalloproteases (MPs) have demonstrated roles in immune modulation. In some cases, these enzymes are produced by parasites to influence host immune responses such that parasite infection is facilitated. One of the best examples of parasite-mediated immune modulation is the matrix metalloprotease (MMP) leishmanolysin (Gp63), which is produced by species of the genus Leishmania to evade killing by host macrophages. Leishmanolysin-like proteins appear to be quite common in many invertebrates, however our understanding of the functions of these non-leishmania enzymes is limited. Numerous proteomic and transcriptomic screens of schistosomes, at all life cycle stages of the parasite, have identified leishmanolysin-like MPs as being present in abundance; with the highest levels being found during the intramolluscan larval stages and being produced by cercaria. This study aims to functionally characterize a Schistosoma mansoni variant of leishmanolysin that most resembles the enzyme produced by Leishmania, termed SmLeish. We demonstrate that SmLeish is an important component of S. mansoni excretory/secretory (ES) products and is produced by the sporocyst during infection. The presence of SmLeish interferes with the migration of Biomphalaria glabrata haemocytes, and causes them to present a phenotype that is less capable of sporocyst encapsulation. Knockdown of SmLeish in S. mansoni miracidia prior to exposure to susceptible B. glabrata reduces miracidia penetration success, causes a delay in reaching patent infection, and lowers cercaria output from infected snails. Parasitic flatworms, or digenetic trematodes, cause a wide range of diseases of both medical and agricultural importance. Nearly all species of digenea require specific species of snail for their larval development and transmission. The factors underpinning snail host specificity and how they dictate infection establishment and maintenance are interesting areas of research, both from the perspective of evolutionary immunology and potential application in the design of tools that aim to prevent trematode transmission. Currently, our understanding of snail-trematode associations is one-sided, being predominantly derived from studies that have focused on the snail immune response, with almost nothing known about how the parasite facilitates infection. Metalloproteases, such as leishmanolysin, are proteolytic enzymes; some of which are produced by parasites to influence host immune responses and facilitate parasite success upon encountering the host defense response. Here, we have functionally characterized a leishmanolysin-like metalloprotease (SmLeish) from Schistosoma mansoni, a causative agent of human schistosomiasis, which afflicts over 260 million people globally. We demonstrate that SmLeish is associated with developing sporocysts and is also located in S. mansoni excretory/secretory products and interferes with snail haemocyte morphology and migration. Knockdown of SmLeish in S. mansoni miracidia prior to exposure to Biomphalaria glabrata snails reduces miracidia penetration success, delays attainment of patent infections, and lowers cercaria output from infected snails.
Collapse
|
13
|
Sokol SL, Primack AS, Nair SC, Wong ZS, Tembo M, Verma SK, Cerqueira-Cezar CK, Dubey JP, Boyle JP. Dissection of the in vitro developmental program of Hammondia hammondi reveals a link between stress sensitivity and life cycle flexibility in Toxoplasma gondii. eLife 2018; 7:36491. [PMID: 29785929 PMCID: PMC5963921 DOI: 10.7554/elife.36491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022] Open
Abstract
Most eukaryotic parasites are obligately heteroxenous, requiring sequential infection of different host species in order to survive. Toxoplasma gondii is a rare exception to this rule, having a uniquely facultative heteroxenous life cycle. To understand the origins of this phenomenon, we compared development and stress responses in T. gondii to those of its its obligately heteroxenous relative, Hammondia hammondi and have identified multiple H. hammondi growth states that are distinct from those in T. gondii. Of these, the most dramatic difference was that H. hammondi was refractory to stressors that robustly induce cyst formation in T. gondii, and this was reflected most dramatically in its unchanging transcriptome after stress exposure. We also found that H. hammondi could be propagated in vitro for up to 8 days post-excystation, and we exploited this to generate the first ever transgenic H. hammondi line. Overall our data show that H. hammondi zoites grow as stringently regulated, unique life stages that are distinct from T. gondii tachyzoites, and implicate stress sensitivity as a potential developmental innovation that increased the flexibility of the T. gondii life cycle.
Collapse
Affiliation(s)
- Sarah L Sokol
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Abby S Primack
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Sethu C Nair
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Zhee S Wong
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Maiwase Tembo
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Shiv K Verma
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - Camila K Cerqueira-Cezar
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - J P Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - Jon P Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
14
|
Carson J, Thomas CM, McGinty A, Takata G, Timson DJ. The tegumental allergen-like proteins of Schistosoma mansoni: A biochemical study of SmTAL4-TAL13. Mol Biochem Parasitol 2018; 221:14-22. [PMID: 29453993 DOI: 10.1016/j.molbiopara.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022]
Abstract
Schistosoma mansoni, like other trematodes, expresses a number of unusual calcium binding proteins which consist of an EF-hand domain joined to a dynein light chain-like (DLC-like) domain by a flexible linker. These proteins have been implicated in host immune responses and drug binding. Three members of this protein family from S. mansoni (SmTAL1, SmTAL2 and SmTAL3) have been well characterised biochemically. Here we characterise the remaining family members from this species (SmTAL4-13). All of these proteins form homodimers and all except SmTAL5 bind to calcium and manganese ions. SmTAL9, 10 and 11 also bind to magnesium ions. The antischistosomal drug, praziquantel interacts with SmTAL4, 5 and 8. Some family members also bind to calmodulin antagonists such as chlorpromazine and trifluoperazine. Molecular modelling suggests that all ten proteins adopt similar overall folds with the EF-hand and DLC-like domains folding discretely. Bioinformatics analyses suggest that the proteins may fall into two main categories: (i) those which bind calcium ions reversibly at the second EF-hand and may play a role in signalling (SmTAL1, 2, 8 and 12) and (ii) those which bind calcium ions at the first EF-hand and may play either signalling or structural roles (SmTAL7, 9, 10 and 13). The remaining proteins include those which do not bind calcium ions (SmTAL3 and 5) and three other proteins (SmTAL4, 6 and 11). The roles of these proteins are less clear, but they may also have structural roles.
Collapse
Affiliation(s)
- Jack Carson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Charlotte M Thomas
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK
| | - Aaron McGinty
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Whitla Medical Building, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Gustavo Takata
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
15
|
A mysterious family of calcium-binding proteins from parasitic worms. Biochem Soc Trans 2017; 44:1005-10. [PMID: 27528745 DOI: 10.1042/bst20150270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/23/2022]
Abstract
There is a family of proteins from parasitic worms which combine N-terminal EF-hand domains with C-terminal dynein light chain-like domains. Data are accumulating on the biochemistry and cell biology of these proteins. However, little is known about their functions in vivo Schistosoma mansoni expresses 13 family members (SmTAL1-SmTAL13). Three of these (SmTAL1, SmTAL2 and SmTAL3) have been subjected to biochemical analysis which demonstrated that they have different molecular properties. Although their overall folds are predicted to be similar, small changes in the EF-hand domains result in differences in their ion binding properties. Whereas SmTAL1 and SmTAL2 are able to bind calcium (and some other) ions, SmTAL3 appears to be unable to bind any divalent cations. Similar biochemical diversity has been seen in the CaBP proteins from Fasciola hepatica Four family members are known (FhCaBP1-4). All of these bind to calcium ions. However, FhCaBP4 dimerizes in the presence of calcium ions, FhCaBP3 dimerizes in the absence of calcium ions and FhCaBP2 dimerizes regardless of the prevailing calcium ion concentration. In both the SmTAL and FhCaBP families, the proteins also differ in their ability to bind calmodulin antagonists and related drugs. Interestingly, SmTAL1 interacts with praziquantel (the drug of choice for treating schistosomiasis). The pharmacological significance (if any) of this finding is unknown.
Collapse
|
16
|
Identification and functional characterization of Oncomelania hupensis macrophage migration inhibitory factor involved in the snail host innate immune response to the parasite Schistosoma japonicum. Int J Parasitol 2017; 47:485-499. [DOI: 10.1016/j.ijpara.2017.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/09/2023]
|
17
|
Gava SG, Tavares NC, Salim ACDM, Araújo FMGD, Oliveira G, Mourão MM. Schistosoma mansoni: Off-target analyses using nonspecific double-stranded RNAs as control for RNAi experiments in schistosomula. Exp Parasitol 2017; 177:98-103. [DOI: 10.1016/j.exppara.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 11/25/2022]
|
18
|
Abstract
Schistosomes are flatworm parasites that claim the lives of more than 200,000 people in poverty-stricken regions every year. Much of the pathology due to infection is the direct result of injury spurred by the parasite's eggs becoming lodged in host tissues. Thus, asking basic questions about germ cell biology may not only identify novel therapeutic approaches, but could also uncover conserved mechanisms that regulate the germline in diverse metazoa. Here, we detail useful methods for studying the schistosome germline including EdU labeling, whole-mount in situ hybridization, and RNA interference. These methods will hopefully lead to new insights about germline development in the schistosome and facilitate new investigators to begin asking questions about these important and fascinating parasites.
Collapse
|
19
|
Schistosomiasis as a disease of stem cells. Curr Opin Genet Dev 2016; 40:95-102. [PMID: 27392295 PMCID: PMC5135665 DOI: 10.1016/j.gde.2016.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 11/24/2022]
Abstract
Schistosomiasis is a devastating parasitic disease caused by flatworms of the genus Schistosoma. The complex life cycles and developmental plasticity of these parasites have captured the attention of parsitologists for decades, yet little is known on the molecular level about the developmental underpinnings that have allowed these worms to thrive as obligate parasites. Here, we describe basic schistosome biology and highlight how understanding the functions of stem cells in these worms will transform our understanding of these parasites. Indeed, we propose that schistosomiasis is fundamentally as disease of stem cells. We hope this review will attract new interest in the basic developmental biology of these important organisms.
Collapse
|
20
|
Pila EA, Gordy MA, Phillips VK, Kabore AL, Rudko SP, Hanington PC. Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host. Proc Natl Acad Sci U S A 2016; 113:5305-10. [PMID: 27114544 PMCID: PMC4868488 DOI: 10.1073/pnas.1521239113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Digenean trematodes are a large, complex group of parasitic flatworms that infect an incredible diversity of organisms, including humans. Larval development of most digeneans takes place within a snail (Gastropoda). Compatibility between snails and digeneans is often very specific, such that suitable snail hosts define the geographical ranges of diseases caused by these worms. The immune cells (hemocytes) of a snail are sentinels that act as a crucial barrier to infection by larval digeneans. Hemocytes coordinate a robust and specific immunological response, participating directly in parasite killing by encapsulating and clearing the infection. Hemocyte proliferation and differentiation are influenced by unknown digenean-specific exogenous factors. However, we know nothing about the endogenous control of hemocyte development in any gastropod model. Here, we identify and functionally characterize a progranulin [Biomphalaria glabrata granulin (BgGRN)] from the snail B. glabrata, a natural host for the human blood fluke Schistosoma mansoni Granulins are growth factors that drive proliferation of immune cells in organisms, spanning the animal kingdom. We demonstrate that BgGRN induces proliferation of B. glabrata hemocytes, and specifically drives the production of an adherent hemocyte subset that participates centrally in the anti-digenean defense response. Additionally, we demonstrate that susceptible B. glabrata snails can be made resistant to infection with S. mansoni by first inducing hemocyte proliferation with BgGRN. This marks the functional characterization of an endogenous growth factor of a gastropod mollusc, and provides direct evidence of gain of resistance in a snail-digenean infection model using a defined factor to induce snail resistance to infection.
Collapse
Affiliation(s)
- Emmanuel A Pila
- School of Public Health, University of Alberta, Edmonton, AB, Canada T6G2G7
| | - Michelle A Gordy
- School of Public Health, University of Alberta, Edmonton, AB, Canada T6G2G7
| | - Valerie K Phillips
- School of Public Health, University of Alberta, Edmonton, AB, Canada T6G2G7
| | - Alethe L Kabore
- School of Public Health, University of Alberta, Edmonton, AB, Canada T6G2G7
| | - Sydney P Rudko
- School of Public Health, University of Alberta, Edmonton, AB, Canada T6G2G7
| | | |
Collapse
|
21
|
A Novel Toll-Like Receptor (TLR) Influences Compatibility between the Gastropod Biomphalaria glabrata, and the Digenean Trematode Schistosoma mansoni. PLoS Pathog 2016; 12:e1005513. [PMID: 27015424 PMCID: PMC4807771 DOI: 10.1371/journal.ppat.1005513] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 02/01/2023] Open
Abstract
Schistosomiasis, a devastating disease caused by parasitic flatworms of the genus Schistosoma, affects over 260 million people worldwide especially in tropical and sub-tropical regions. Schistosomes must undergo their larval development within specific species of snail intermediate hosts, a trait that is shared among almost all digenean trematodes. This unique and long-standing host-parasite relationship presents an opportunity to study both the importance of conserved immunological features in novel immunological roles, as well as new immunological adaptations that have arisen to combat a very specific type of immunological challenge. While it is well supported that the snail immune response is important for protecting against schistosome infection, very few specific snail immune factors have been identified and even fewer have been functionally characterized. Here, we provide the first functional report of a snail Toll-like receptor, which we demonstrate as playing an important role in the cellular immune response of the snail Biomphalaria glabrata following challenge with Schistosoma mansoni. This TLR (BgTLR) was identified as part of a peptide screen of snail immune cell surface proteins that differed in abundance between B. glabrata snails that differ in their compatibility phenotype to challenge by S. mansoni. The S. mansoni-resistant strain of B. glabrata (BS-90) displayed higher levels of BgTLR compared to the susceptible (M-line) strain. Transcript expression of BgTLR was found to be very responsive in BS-90 snails when challenged with S. mansoni, increasing 27 fold relative to β-actin (non-immune control gene); whereas expression in susceptible M-line snails was not significantly increased. Knockdown of BgTLR in BS-90 snails via targeted siRNA oligonucleotides was confirmed using a specific anti-BgTLR antibody and resulted in a significant alteration of the resistant phenotype, yielding patent infections in 43% of the normally resistant snails, which shed S. mansoni cercariae 1-week before the susceptible controls. Our results represent the first functional characterization of a gastropod TLR, and demonstrate that BgTLR is an important snail immune receptor that is capable of influencing infection outcome following S. mansoni challenge.
Collapse
|
22
|
Zhang SB, Jiang P, Wang ZQ, Long SR, Liu RD, Zhang X, Yang W, Ren HJ, Cui J. DsRNA-mediated silencing of Nudix hydrolase in Trichinella spiralis inhibits the larval invasion and survival in mice. Exp Parasitol 2016; 162:35-42. [PMID: 26778819 DOI: 10.1016/j.exppara.2016.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/13/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the functions of Trichinella spiralis Nudix hydrolase (TsNd) during the larval invasion of intestinal epithelial cells (IECs), development and survival in host by RNAi. The TsNd-specific double-stranded RNA (dsRNA) was designed to silence the expression of TsNd in T. spiralis larvae. DsRNA were delivered to the larvae by soaking incubation or electroporation. Silencing effect of TsNd transcription and expression was determined by real-time PCR and Western blotting, respectively. The infectivity of larvae treated with dsRNA was investigated by the in vitro larval invasion of IECs and experimental infection in mice. After being soaked with 40 ng/μl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 65.8% and 56.4%, respectively. After being electroporated with 40 ng/μl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 74.2% and 58.2%, respectively. Silencing TsNd expression by both soaking and electroporation inhibited significantly the larval invasion of IECs in a dose-dependent manner (r1 = -0.96798, r2 = -0.98707). Compared with the mice inoculated with untreated larvae, mice inoculated with larvae soaked with TsNd dsRNA displayed a 49.9% reduction in adult worms and 39.9% reduction in muscle larvae, while mice inoculated with larvae electroporated with TsNd dsRNA displayed a 83.4% reduction in adult worms and 69.5% reduction in muscle larvae, indicating that electroporation has a higher efficiency than soaking in inhibiting the larval development and survival in mice. Our results showed that silencing TsNd expression in T. spiralis inhibited significantly the larval invasion and survival in host.
Collapse
Affiliation(s)
- Shuai Bing Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Wei Yang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Hui Jun Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| |
Collapse
|
23
|
Transfection of Platyhelminthes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:206161. [PMID: 26090388 PMCID: PMC4450235 DOI: 10.1155/2015/206161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/15/2014] [Indexed: 01/22/2023]
Abstract
Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.
Collapse
|
24
|
Guidi A, Mansour NR, Paveley RA, Carruthers IM, Besnard J, Hopkins AL, Gilbert IH, Bickle QD. Application of RNAi to Genomic Drug Target Validation in Schistosomes. PLoS Negl Trop Dis 2015; 9:e0003801. [PMID: 25992548 PMCID: PMC4438872 DOI: 10.1371/journal.pntd.0003801] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023] Open
Abstract
Concerns over the possibility of resistance developing to praziquantel (PZQ), has stimulated efforts to develop new drugs for schistosomiasis. In addition to the development of improved whole organism screens, the success of RNA interference (RNAi) in schistosomes offers great promise for the identification of potential drug targets to initiate drug discovery. In this study we set out to contribute to RNAi based validation of putative drug targets. Initially a list of 24 target candidates was compiled based on the identification of putative essential genes in schistosomes orthologous of C. elegans essential genes. Knockdown of Calmodulin (Smp_026560.2) (Sm-Calm), that topped this list, produced a phenotype characterised by waves of contraction in adult worms but no phenotype in schistosomula. Knockdown of the atypical Protein Kinase C (Smp_096310) (Sm-aPKC) resulted in loss of viability in both schistosomula and adults and led us to focus our attention on other kinase genes that were identified in the above list and through whole organism screening of known kinase inhibitor sets followed by chemogenomic evaluation. RNAi knockdown of these kinase genes failed to affect adult worm viability but, like Sm-aPKC, knockdown of Polo-like kinase 1, Sm-PLK1 (Smp_009600) and p38-MAPK, Sm-MAPK p38 (Smp_133020) resulted in an increased mortality of schistosomula after 2-3 weeks, an effect more marked in the presence of human red blood cells (hRBC). For Sm-PLK-1 the same effects were seen with the specific inhibitor, BI2536, which also affected viable egg production in adult worms. For Sm-PLK-1 and Sm-aPKC the in vitro effects were reflected in lower recoveries in vivo. We conclude that the use of RNAi combined with culture with hRBC is a reliable method for evaluating genes important for larval development. However, in view of the slow manifestation of the effects of Sm-aPKC knockdown in adults and the lack of effects of Sm-PLK-1 and Sm-MAPK p38 on adult viability, these kinases may not represent suitable drug targets.
Collapse
Affiliation(s)
- Alessandra Guidi
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nuha R. Mansour
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ross A. Paveley
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ian M. Carruthers
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jérémy Besnard
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew L. Hopkins
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ian H. Gilbert
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Quentin D. Bickle
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
25
|
Hagen J, Scheerlinck JPY, Young ND, Gasser RB, Kalinna BH. Prospects for Vector-Based Gene Silencing to Explore Immunobiological Features of Schistosoma mansoni. ADVANCES IN PARASITOLOGY 2015; 88:85-122. [PMID: 25911366 DOI: 10.1016/bs.apar.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schistosomiasis is a prevalent, socioeconomically important disease of humans caused by parasites of the genus Schistosoma (schistosomes or blood flukes). Currently, more than 200 million people worldwide are infected with schistosomes. Despite major research efforts, there is only one drug routinely used for effective treatment, and no vaccine is available to combat schistosomiasis. The purpose of the present article is to (1) provide a background on the parasites and different forms of disease; (2) describe key immunomolecular aspects of disease induced in the host; and (3) critically appraise functional genomic methods employed to explore parasite biology, parasite-host interactions and disease at the molecular level. Importantly, the article also describes the features and advantages of lentiviral delivery of artificial microRNAs to silence genes. It also discusses the first successful application of such an approach in schistosomes, in order to explore the immunobiological role of selected target proteins known to be involved in egg-induced disease. The lentiviral transduction system provides exciting prospects for future, fundamental investigations of schistosomes, and is likely to have broad applicability to other eukaryotic pathogens and infectious diseases. The ability to achieve effective and stable gene perturbation in parasites has major biotechnological implications, and might facilitate the development of radically new methods for the treatment and control of parasitic diseases.
Collapse
Affiliation(s)
- Jana Hagen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean-Pierre Y Scheerlinck
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Bernd H Kalinna
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Abstract
Schistosomiasis is a neglected tropical disease responsible for the death of more than 300,000 people every year. The disease is caused by intravascular parasitic platyhelminths called schistosomes. Treatment and control of schistosomiasis rely on a single drug, praziquantel, and concern exists over the possible emergence of resistance to this drug. The recent completion of the genome sequences of the three main worm species that cause schistosomiasis in humans has raised hope for the development of new interventions to treat the disease. RNA interference (RNAi), a mechanism by which gene-specific double-stranded RNA (dsRNA) triggers degradation of homologous mRNA transcripts, has emerged as an important tool to evaluate and validate new potential drug targets. In addition, RNAi has been used to explore the basic biology of these debilitating parasites. RNAi can be achieved in all stages of the parasite's life cycle in which it has been tested. In this review, we describe methods for applying RNAi to suppress gene expression in the intra-mammalian life stages (adults and schistosomula) of Schistosoma mansoni. We describe procedures for isolating and culturing the parasites, preparing and delivering dsRNA targeting a specific gene, as well as a procedure to evaluate gene suppression by quantitative real-time PCR.
Collapse
|
27
|
Dell'Oca N, Basika T, Corvo I, Castillo E, Brindley PJ, Rinaldi G, Tort JF. RNA interference in Fasciola hepatica newly excysted juveniles: long dsRNA induces more persistent silencing than siRNA. Mol Biochem Parasitol 2014; 197:28-35. [PMID: 25307443 DOI: 10.1016/j.molbiopara.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/24/2022]
Abstract
In trematodes RNA interference is the current tool of choice for functional analysis of genes since classical reverse genetic approaches remain unavailable. Whereas this approach has been optimized in schistosomes, few reports are available for other trematodes, likely reflecting the difficulties in the establishment of the technology. Here we standardized conditions for RNAi in the liver fluke Fasciola hepatica, the causative agent of fasciolosis, one of the most problematic infections affecting livestock worldwide. Targeting a single copy gene, encoding leucine aminopeptidase (LAP) as a model, we refined delivery conditions which identified electro-soaking, i.e. electroporation and subsequent incubation as efficient for introduction of small RNAs into the fluke. Knock down of LAP was achieved with as little as 2.5 μg/ml dsRNA concentrations, which may reduce or obviate off-target effects. However, at these concentrations, tracking incorporation by fluorescent labeling was difficult. While both long dsRNA and short interfering RNA (siRNA) are equally effective at inducing a short-term knock down, dsRNA induced persistent silencing up to 21 days after treatment, suggesting that mechanisms of amplification of the interfering signal can be present in this pathogen. Persistent silencing of the invasive stage for up to 3 weeks (close to what it takes for the fluke to reach the liver) opens the possibility of using RNAi for the validation of putative therapeutic targets.
Collapse
Affiliation(s)
- Nicolás Dell'Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP 11800 Montevideo, Uruguay.
| | - Tatiana Basika
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP 11800 Montevideo, Uruguay.
| | - Ileana Corvo
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP 11800 Montevideo, Uruguay.
| | - Estela Castillo
- Sección Bioquímica, Facultad de Ciencias, Universidad de la Republica (UDELAR), Iguá 4225, CP 11400 Montevideo, Uruguay.
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA.
| | - Gabriel Rinaldi
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP 11800 Montevideo, Uruguay; Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA.
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP 11800 Montevideo, Uruguay.
| |
Collapse
|
28
|
McVeigh P, McCammick EM, McCusker P, Morphew RM, Mousley A, Abidi A, Saifullah KM, Muthusamy R, Gopalakrishnan R, Spithill TW, Dalton JP, Brophy PM, Marks NJ, Maule AG. RNAi dynamics in Juvenile Fasciola spp. Liver flukes reveals the persistence of gene silencing in vitro. PLoS Negl Trop Dis 2014; 8:e3185. [PMID: 25254508 PMCID: PMC4177864 DOI: 10.1371/journal.pntd.0003185] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/12/2014] [Indexed: 12/02/2022] Open
Abstract
Background Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi) has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (ds)RNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain), validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL) and B (FheCatB) cysteine proteases, and a σ-class glutathione transferase (FheσGST). Methodology/Principal Findings Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200–320 nt) dsRNAs or 27 nt short interfering (si)RNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent) and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively. Conclusions/Significance In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the development of multiple-throughput phenotypic screens for control target validation. RNAi persistence in fluke encourages in vivo studies on gene function using worms exposed to RNAi-triggers prior to infection. RNA interference (RNAi) is a method for selectively silencing (or reducing expression of) mRNA transcripts, an approach which can be used to interrogate the function of genes and proteins, and enables the validation of potential targets for anthelmintic drugs or vaccines, by investigating the impact of silencing a particular gene on parasite survival or behaviour. This study focuses on liver fluke parasites, which cause serious disease in both humans and animals. We have only a handful of drugs with which to treat these infections, to which flukes are developing resistance, and no anti-fluke vaccines have yet been developed. New options for treatment and control of liver fluke parasites are sorely needed, and RNAi is a powerful tool in the development of such treatments. This study developed a set of simple methods for triggering RNAi in juvenile liver fluke, which show that although robust transcriptional suppression can be readily achieved across all targets tested, protein suppression occurs only after a target-specific lag period (likely related to protein half-life), which may require >25 days under current in vitro maintenance conditions. These findings are important for researchers aiming to employ RNAi in investigations of liver fluke biology and target validation.
Collapse
Affiliation(s)
- Paul McVeigh
- Molecular Biosciences: Parasitology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
- * E-mail:
| | - Erin M. McCammick
- Molecular Biosciences: Parasitology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Paul McCusker
- Molecular Biosciences: Parasitology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Russell M. Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, United Kingdom
| | - Angela Mousley
- Molecular Biosciences: Parasitology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Abbas Abidi
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khalid M. Saifullah
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Raman Muthusamy
- Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | | | - Terry W. Spithill
- AgriBio, the Centre for AgriBioscience, School of Life Sciences, LaTrobe University, Melbourne, Australia
| | - John P. Dalton
- Molecular Biosciences: Parasitology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Peter M. Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, United Kingdom
| | - Nikki J. Marks
- Molecular Biosciences: Parasitology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Aaron G. Maule
- Molecular Biosciences: Parasitology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| |
Collapse
|
29
|
Rinaldi G, Young ND, Honeycutt JD, Brindley PJ, Gasser RB, Hsieh MH. New research tools for urogenital schistosomiasis. J Infect Dis 2014; 211:861-9. [PMID: 25240172 DOI: 10.1093/infdis/jiu527] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Approximately 200,000,000 people have schistosomiasis (schistosome infection). Among the schistosomes, Schistosoma haematobium is responsible for the most infections, which are present in 110 million people globally, mostly in sub-Saharan Africa. This pathogen causes an astonishing breadth of sequelae: hematuria, anemia, dysuria, stunting, uremia, bladder cancer, urosepsis, and human immunodeficiency virus coinfection. Refined estimates of the impact of schistosomiasis on quality of life suggest that it rivals malaria. Despite S. haematobium's importance, relevant research has lagged. Here, we review advances that will deepen knowledge of S. haematobium. Three sets of breakthroughs will accelerate discoveries in the pathogenesis of urogenital schistosomiasis (UGS): (1) comparative genomics, (2) the development of functional genomic tools, and (3) the use of animal models to explore S. haematobium-host interactions. Comparative genomics for S. haematobium is feasible, given the sequencing of multiple schistosome genomes. Features of the S. haematobium genome that are conserved among platyhelminth species and others that are unique to S. haematobium may provide novel diagnostic and drug targets for UGS. Although there are technical hurdles, the integrated use of these approaches can elucidate host-pathogen interactions during this infection and can inform the development of techniques for investigating schistosomes in their human and snail hosts and the development of therapeutics and vaccines for the control of UGS.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Microbiology, Immunology, and Tropical Medicine Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, D.C
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia
| | | | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, D.C
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia Institute of Parasitology and Tropical Veterinary Medicine, Berlin, Germany
| | - Michael H Hsieh
- Biomedical Research Institute, Rockville, Maryland Children's National Health System, Washington, D.C
| |
Collapse
|
30
|
Cabezas-Cruz A, Lancelot J, Caby S, Oliveira G, Pierce RJ. Epigenetic control of gene function in schistosomes: a source of therapeutic targets? Front Genet 2014; 5:317. [PMID: 25309576 PMCID: PMC4159997 DOI: 10.3389/fgene.2014.00317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/24/2014] [Indexed: 12/31/2022] Open
Abstract
The discovery of the epigenetic regulation of gene expression has revolutionized both our understanding of how genomes function and approaches to the therapy of numerous pathologies. Schistosomes are metazoan parasites and as such utilize most, if not all the epigenetic mechanisms in play in their vertebrate hosts: histone variants, histone tail modifications, non-coding RNA and, perhaps, DNA methylation. Moreover, we are acquiring an increasing understanding of the ways in which these mechanisms come into play during the complex schistosome developmental program. In turn, interest in the actors involved in epigenetic mechanisms, particularly the enzymes that carry out epigenetic modifications of histones or nucleic acid, as therapeutic targets has been stimulated by the finding that their inhibitors exert profound effects, not only on survival, but also on the reproductive function of Schistosoma mansoni. Here, we review our current knowledge, and what we can infer, about the role of epigenetic mechanisms in schistosome development, differentiation and survival. We will consider which epigenetic actors can be targeted for drug discovery and what strategies can be employed to develop potent, selective inhibitors as drugs to cure schistosomiasis.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| | - Julien Lancelot
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| | - Stéphanie Caby
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Fundação Oswaldo Cruz, Center for Excellence in Bioinformatics, Centro de Pesquisas René Rachou, National Institute of Science and Technology in Tropical DiseasesBelo Horizonte, Brazil
| | - Raymond J. Pierce
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| |
Collapse
|
31
|
MacDonald K, Buxton S, Kimber MJ, Day TA, Robertson AP, Ribeiro P. Functional characterization of a novel family of acetylcholine-gated chloride channels in Schistosoma mansoni. PLoS Pathog 2014; 10:e1004181. [PMID: 24945827 PMCID: PMC4055736 DOI: 10.1371/journal.ppat.1004181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/28/2014] [Indexed: 12/25/2022] Open
Abstract
Acetylcholine is the canonical excitatory neurotransmitter of the mammalian neuromuscular system. However, in the trematode parasite Schistosoma mansoni, cholinergic stimulation leads to muscle relaxation and a flaccid paralysis, suggesting an inhibitory mode of action. Information about the pharmacological mechanism of this inhibition is lacking. Here, we used a combination of techniques to assess the role of cholinergic receptors in schistosome motor function. The neuromuscular effects of acetylcholine are typically mediated by gated cation channels of the nicotinic receptor (nAChR) family. Bioinformatics analyses identified numerous nAChR subunits in the S. mansoni genome but, interestingly, nearly half of these subunits carried a motif normally associated with chloride-selectivity. These putative schistosome acetylcholine-gated chloride channels (SmACCs) are evolutionarily divergent from those of nematodes and form a unique clade within the larger family of nAChRs. Pharmacological and RNA interference (RNAi) behavioral screens were used to assess the role of the SmACCs in larval motor function. Treatment with antagonists produced the same effect as RNAi suppression of SmACCs; both led to a hypermotile phenotype consistent with abrogation of an inhibitory neuromuscular mediator. Antibodies were then generated against two of the SmACCs for use in immunolocalization studies. SmACC-1 and SmACC-2 localize to regions of the peripheral nervous system that innervate the body wall muscles, yet neither appears to be expressed directly on the musculature. One gene, SmACC-1, was expressed in HEK-293 cells and characterized using an iodide flux assay. The results indicate that SmACC-1 formed a functional homomeric chloride channel and was activated selectively by a panel of cholinergic agonists. The results described in this study identify a novel clade of nicotinic chloride channels that act as inhibitory modulators of schistosome neuromuscular function. Additionally, the iodide flux assay used to characterize SmACC-1 represents a new high-throughput tool for drug screening against these unique parasite ion channels.
Collapse
Affiliation(s)
- Kevin MacDonald
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - Samuel Buxton
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Michael J. Kimber
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Tim A. Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
32
|
Han Y, Fu Z, Hong Y, Zhang M, Han H, Lu K, Yang J, Li X, Lin J. Inhibitory effects and analysis of RNA interference on thioredoxin glutathione reductase expression in Schistosoma japonicum. J Parasitol 2014; 100:463-9. [PMID: 24628421 DOI: 10.1645/13-397.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Schistosomes infect around 280 million people worldwide. The worms survive in the veins of the final host, where thioredoxin glutathione reductase (TGR) activity helps the parasites to survive in the aerobic environment. In the present study, we synthesized 4 small interfering RNAs (siRNA S1, S2, S3, and S4) targeting the Schistosoma japonicum (Sj) TGR gene and used them to knockdown the TGR gene. The knockdown effects of the siRNAs on SjTGR, and the thioredoxin reductase (TrxR) activity of SjTGR, were evaluated in vitro. The results of transfection with the siRNAs via the soaking method in vitro were confirmed by flow cytometry. S2 siRNA at a final concentration of 200 nM partially inhibited the expression of SjTGR at both the transcript and protein levels in vitro. TrxR-activity was lower in worms in the S2 siRNA-treated group compared with the control groups. Further analysis revealed that purified recombinant SjTGR could remove oxygen free radicals but not H(2)O(2) directly, which may explain the incomplete effects of RNA interference on SjTGR. The results of this study indicate that SjTGR may play an important role in the clearance of oxygen free radicals and protection of S. japonicum parasites against oxidative damage.
Collapse
Affiliation(s)
- Yanhui Han
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Ye Q, Dong HF, Grevelding CG, Hu M. In vitro cultivation of Schistosoma japonicum-parasites and cells. Biotechnol Adv 2013; 31:1722-37. [DOI: 10.1016/j.biotechadv.2013.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 11/27/2022]
|
35
|
Ribeiro P, Patocka N. Neurotransmitter transporters in schistosomes: Structure, function and prospects for drug discovery. Parasitol Int 2013; 62:629-38. [DOI: 10.1016/j.parint.2013.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 12/23/2022]
|
36
|
Wang B, Collins JJ, Newmark PA. Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni. eLife 2013; 2:e00768. [PMID: 23908765 PMCID: PMC3728622 DOI: 10.7554/elife.00768] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/20/2013] [Indexed: 02/06/2023] Open
Abstract
Schistosomes infect hundreds of millions of people in the developing world. Transmission of these parasites relies on a stem cell-driven, clonal expansion of larvae inside a molluscan intermediate host. How this novel asexual reproductive strategy relates to current models of stem cell maintenance and germline specification is unclear. Here, we demonstrate that this proliferative larval cell population (germinal cells) shares some molecular signatures with stem cells from diverse organisms, in particular neoblasts of planarians (free-living relatives of schistosomes). We identify two distinct germinal cell lineages that differ in their proliferation kinetics and expression of a nanos ortholog. We show that a vasa/PL10 homolog is required for proliferation and maintenance of both populations, whereas argonaute2 and a fibroblast growth factor receptor-encoding gene are required only for nanos-negative cells. Our results suggest that an ancient stem cell-based developmental program may have enabled the evolution of the complex life cycle of parasitic flatworms. DOI:http://dx.doi.org/10.7554/eLife.00768.001 Schistosomiasis—a disease caused by parasitic flatworms known as schistosomes—affects more than 200 million people worldwide, mainly in tropical regions, and in public health importance is second only to malaria (according to the World Health Organization). Chronic infection leads to damage to internal organs, and the disease is responsible for roughly 250,000 deaths each year. The schistosome parasite has a complex life cycle, and the worms are capable of infecting mammals during just one stage of this cycle. Infection occurs through contact with contaminated freshwater, with the infectious form of the parasite burrowing through skin. Once inside the body, the parasites mature into adults, before reproducing sexually and laying eggs that are excreted by their host back into the water supply. However, to generate the form of the parasite that can infect mammals, schistosomes must first infect an intermediate host, namely a freshwater snail. When the larval form of the parasite—which cannot infect mammals—enters the snail, the larvae undergo an unusual type of asexual embryogenesis. This results in thousands of parasites that are capable of infecting mammals. Studies suggest that a population of cells known as germinal cells are responsible for this transformation and replication process, but little is known about these cells at the molecular level. Here, Wang et al. report the gene expression profile of these cells in a species of schistosome, and use RNA-mediated silencing techniques to explore the functions of the genes. This analysis revealed that the germinal cells have a molecular signature similar to that of neoblasts—adult pluripotent stem cells found in free-living flatworms such as planarians. Neoblasts can develop into any cell type in the body, enabling planarians to repair or even replace damaged body parts. The similarity between neoblasts and germinal cells led Wang et al. to suggest that schistosomes may have evolved their parasitic life cycle partly by adapting a program of development based on stem cells in non-parasitic worms. DOI:http://dx.doi.org/10.7554/eLife.00768.002
Collapse
Affiliation(s)
- Bo Wang
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign , Urbana , United States ; Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , United States
| | | | | |
Collapse
|
37
|
Affiliation(s)
- James J. Collins
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Phillip A. Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
38
|
Pouchkina-Stantcheva NN, Cunningham LJ, Hrčkova G, Olson PD. RNA-mediated gene suppression and in vitro culture in Hymenolepis microstoma. Int J Parasitol 2013; 43:641-6. [PMID: 23639265 DOI: 10.1016/j.ijpara.2013.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 02/01/2023]
Abstract
Hymenolepis microstoma, the mouse bile-duct tapeworm, is a classical rodent-hosted model that provides easy laboratory access to all stages of the life cycle. Recent characterisation of its genome has greatly advanced its utility for molecular research, albeit contemporary techniques such as those for assaying gene function have yet to be developed in the system. Here we present research on the development of RNA-mediated gene suppression via RNA interference (RNAi), and on in vitro culture of the enteric, adult phase of the life cycle to support this work. We demonstrate up to 80% quantitative suppression of a Hox transcript via soaking activated juvenile worms with double-stranded RNAs. However, we were unable to achieve segmentation of the worms in culture despite extensive manipulations of the culture media and supplements, preventing functional interpretation. An alternative, in vivo approach to RNAi was also tested by exposing cysticercoids prior to inoculation in mice, but fluorescent labelling showed that the RNAs did not sufficiently penetrate the cyst body and no difference in expression was found between exposed and control groups grown in vivo. Genomic and transcriptomic data revealed that H. microstoma has two orthologs each of Dicer, Drosha and Ago-1-like genes and that expression of one of the Ago-1 genes appears exclusive to germline development, suggesting that two or more independent RNA-mediated pathways are in operation. These studies demonstrate the viability of RNAi in H. microstoma and extend the utility of the model for research in the genomic era.
Collapse
|
39
|
Soares CS, Morais ER, Magalhães LG, Machado CB, Moreira ÉBDC, Teixeira FR, Rodrigues V, Yoshino TP. Molecular and functional characterization of a putative PA28γ proteasome activator orthologue in Schistosoma mansoni. Mol Biochem Parasitol 2013; 189:14-25. [PMID: 23611749 DOI: 10.1016/j.molbiopara.2013.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
PA28γ is a proteasome activator involved in the regulation of the cellular proliferation, differentiation and growth. In the present study, we identified and characterized a cDNA from Schistosoma mansoni exhibiting significant homology to PA28γ of diverse taxa ranging from mammals (including humans) to simple invertebrates. Designated SmPA28γ, this transcript has a 753bp predicted ORF encoding a protein of 250 amino acid residues. Alignment of SmPA28γ with multiple PA28γ orthologues revealed an average similarity of ~40% among the investigated organisms, and 90% similarity with PA28γ from Schistosoma japonicum. In addition, phylogenetic analysis demonstrated a close linkage between SmPA28γ to its sister group that contains well-characterized PA28γ sequences from Drosophila spp., as well as sharing the same branch with PA28γ from S. japonicum. Gene expression profiling of SmPA28γ using real-time quantitative PCR revealed elevated steady-state transcript levels in the eggs, miracidia and paired adult worms compared to other stages. In parallel with gene expression profiles, an affinity-purified anti-SmPA28γ antibody produced against recombinant protein exhibited strongest reactivity in Western blot analyses to endogenous SmPA28γ from miracidia, sporocysts and paired adult worms. Given its known regulatory function in other organisms, we hypothesized that the high level of SmPA28γ transcript and protein in these stages may be correlated with an important role of the PA28γ in the cellular growth and/or development of this parasite. To address this hypothesis, miracidia were transformed in vitro to sporocysts in the presence of SmPA28γ double-stranded RNAs (dsRNAs) and cultivated for 4 days, after which time steady-state transcript and protein levels, and phenotypic changes were evaluated. SmPA28γ dsRNA treatment resulted in gene and protein knockdown of ~60% and ~80%, respectively, which were correlated with a significant decrease in larval length compared to its controls. These findings are consistent with a putative role of SmPA28γ in larval growth/development of the S. mansoni.
Collapse
Affiliation(s)
- Cláudia Sossai Soares
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 2013; 494:476-9. [PMID: 23426263 PMCID: PMC3586782 DOI: 10.1038/nature11924] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/18/2013] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is among the most prevalent human parasitic diseases, affecting more than 200 million people worldwide1. The etiological agents of this disease are trematode flatworms (Schistosoma) that live and lay eggs within the vasculature of the host. These eggs lodge in host tissues, causing inflammatory responses that are the primary cause of morbidity. Because these parasites can live and reproduce within human hosts for decades2, elucidating the mechanisms that promote their longevity is of fundamental importance. Although adult pluripotent stem cells, called neoblasts, drive long-term homeostatic tissue maintenance in long-lived free-living flatworms3,4 (e.g., planarians), and neoblast-like cells have been described in some parasitic tapeworms5, little is known about whether similar cell types exist in any trematode species. Here, we describe a population of neoblast-like cells in the trematode Schistosoma mansoni. These cells resemble planarian neoblasts morphologically and share their ability to proliferate and differentiate into derivatives of multiple germ layers. Capitalizing on available genomic resources6,7 and RNAseq-based gene expression profiling, we find that these schistosome neoblast-like cells express a fibroblast growth factor receptor ortholog. Using RNA interference we demonstrate that this gene is required for the maintenance of these neoblast-like cells. Our observations suggest that adaptation of developmental strategies shared by free-living ancestors to modern-day schistosomes likely contributed to the success of these animals as long-lived obligate parasites. We expect that future studies deciphering the function of these neoblast-like cells will have important implications for understanding the biology of these devastating parasites.
Collapse
|
41
|
Korsunenko A, Chrisanfova G, Arifov A, Ryskov A, Semyenova S. Characterization of randomly amplified polymorphic DNA (RAPD) fragments revealing clonal variability in cercariae of avian schistosome <i>Trichobilharzia szidati</i> (Trematoda: Schistosomatidae). ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojgen.2013.33017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Pereira TC, Evangelista CCS, Borges G, Zanotti-Magalhães EM, Magalhães LA, Lopes-Cendes I. Applications of RNA Interference in Schistosomiasis: Gene Function Identification and Development of New Therapies. ISRN PARASITOLOGY 2012; 2013:247036. [PMID: 27335847 PMCID: PMC4890885 DOI: 10.5402/2013/247036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/01/2012] [Indexed: 12/19/2022]
Abstract
The study of Schistosoma species has undergone a dramatic change in recent years mainly due to transcriptome, proteome, and genome analyses. In order to better understand the biology of the parasite and to develop new and more efficient/specific drugs, scientists have now the task to translate genetic information into functional data. The present paper aims to review the use of RNA interference (RNAi), a versatile technique used in gene silencing, for the dissection of the cellular/molecular biology of Schistosoma spp. In addition, we will review information on the recent development of a new generation of RNA-based drugs. Examples of specific experimental approaches will be presented and discussed, such as identification of gene function, development of therapies by targeting eggs, miracidia (as a strategy for environmental use), sporocysts (for infestation control in the intermediate host), and schistosomula/adult worms (as a treatment strategy). Furthermore, some of the main advantages, drawbacks, and future directions of these new applications and techniques will also be discussed.
Collapse
Affiliation(s)
- Tiago Campos Pereira
- Department of Biology, Faculty of Philosophy, Sciences and Languages of Ribeirao Preto, University of Sao Paulo (USP), 14040 901 Ribeirao Preto, SP, Brazil
| | - Cláudia Carolina Silva Evangelista
- Department of Biology, Faculty of Philosophy, Sciences and Languages of Ribeirao Preto, University of Sao Paulo (USP), 14040 901 Ribeirao Preto, SP, Brazil
| | - Gustavo Borges
- Department of Biology, Faculty of Philosophy, Sciences and Languages of Ribeirao Preto, University of Sao Paulo (USP), 14040 901 Ribeirao Preto, SP, Brazil
| | | | - Luiz Augusto Magalhães
- Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| |
Collapse
|
43
|
McVeigh P, Atkinson L, Marks NJ, Mousley A, Dalzell JJ, Sluder A, Hammerland L, Maule AG. Parasite neuropeptide biology: Seeding rational drug target selection? Int J Parasitol Drugs Drug Resist 2012; 2:76-91. [PMID: 24533265 PMCID: PMC3862435 DOI: 10.1016/j.ijpddr.2011.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023]
Abstract
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Collapse
Affiliation(s)
- Paul McVeigh
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Louise Atkinson
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Nikki J. Marks
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Angela Mousley
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Johnathan J. Dalzell
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Ann Sluder
- Scynexis Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, USA
| | | | - Aaron G. Maule
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
44
|
New frontiers in schistosoma genomics and transcriptomics. J Parasitol Res 2012; 2012:849132. [PMID: 23227308 PMCID: PMC3512318 DOI: 10.1155/2012/849132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
Schistosomes are digenean blood flukes of aves and mammals comprising 23 species. Some species are causative agents of human schistosomiasis, the second major neglected disease affecting over 230 million people worldwide. Modern technologies including the sequencing and characterization of nucleic acids and proteins have allowed large-scale analyses of parasites and hosts, opening new frontiers in biological research with potential biomedical and biotechnological applications. Nuclear genomes of the three most socioeconomically important species (S. haematobium, S. japonicum, and S. mansoni) have been sequenced and are under intense investigation. Mitochondrial genomes of six Schistosoma species have also been completely sequenced and analysed from an evolutionary perspective. Furthermore, DNA barcoding of mitochondrial sequences is used for biodiversity assessment of schistosomes. Despite the efforts in the characterization of Schistosoma genomes and transcriptomes, many questions regarding the biology and evolution of this important taxon remain unanswered. This paper aims to discuss some advances in the schistosome research with emphasis on genomics and transcriptomics. It also aims to discuss the main challenges of the current research and to point out some future directions in schistosome studies.
Collapse
|
45
|
He Y, Cai G, Ni Y, Li Y, Zong H, He L. siRNA-mediated knockdown of two tyrosinase genes from Schistosoma japonicum cultured in vitro. Exp Parasitol 2012; 132:394-402. [PMID: 23073288 DOI: 10.1016/j.exppara.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 01/08/2023]
Abstract
The cross-linking process of eggshell proteins in helminths is dependent on the activities of tyrosinases (TYRs), which can be inhibited by phenol oxidase inhibitors. Two genes encoding TYRs, SjTYR1 and SjTYR2, have been identified in Schistosoma japonicum. In this study, siRNA-mediated RNA interference (RNAi) was performed to silence these two SjTYR genes to evaluate their roles in eggshell formation. The effects of individual or double knockdown of the SjTYR genes were compared by determining SjTYR1/SjTYR2 transcript levels, enzyme activities, and by observing the morphology and amounts of intrauterine eggs. Results showed that SjTYR transcript levels were significantly reduced on the 3rd day post-RNAi. Significant reductions in TYR enzyme activities, as well as obvious changes in morphology and the number of intrauterine eggs followed the reductions in SjTYR transcript levels. On the 8th day after simultaneous knockdown of both SjTYR genes, which effected a 40% reduction in SjTYR1 transcript level and a 59% reduction in SjTYR2 transcript level, we observed an 80% reduction in diphenol oxidase (DPO) activity of TYRs, and a 74% reduction in the number of normal eggs in female uteri. Knockdown of both SjTYR genes has a greater effect than single knockdown of the SjTYR genes. These results demonstrate that both SjTYRs play an important role in eggshell sclerotization of S. japonicum, and that their enzyme activities depend on the transcript levels of two SjTYR genes.
Collapse
Affiliation(s)
- Yuan He
- Department of Parasitology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
46
|
Developments in RNA interference and genetic transformation to define gene function in parasitic helminths. Parasitology 2012; 139:557-9. [PMID: 22459432 DOI: 10.1017/s0031182012000108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Wilson RA. The cell biology of schistosomes: a window on the evolution of the early metazoa. PROTOPLASMA 2012; 249:503-518. [PMID: 21976269 DOI: 10.1007/s00709-011-0326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
This review of schistosome cell biology has a dual purpose; its intent is to alert two separate research communities to the activities of the other. Schistosomes are by far and away the best-characterised platyhelminths, due to their medical and economic importance, but seem to be almost totally ignored by researchers on the free-living lower metazoans. Equally, in their enthusiasm for the parasitic way of life, schistosome researchers seldom pay attention to the work on free-living animals that could inform their molecular investigations. The publication of transcriptomes and/or genomes for Schistosoma mansoni and Schistosoma japonicum, the sponge Archimedon, the cnidarians Nematostella and Hydra and the planarian Schmidtea provide the raw material for comparisons. Apart from interrogation of the databases for molecular similarities, there have been differences in technical approach to these lower metazoans; widespread application of whole mount in situ hybridisation to Schmidtea contrasts with the application of targeted proteomics to schistosomes. Using schistosome cell biology as the template, the key topics of cell adhesion, development, signalling pathways, nerve and muscle, and epithelia, are reviewed, where possible interspersing comparisons with the sponge, cnidarian and planarian data. The biggest jump in the evolution of cellular capabilities appears to be in the transition from a diploblast to triploblast level of organisation associated with development of a mobile and plastic body form.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
48
|
Hagen J, Lee EF, Fairlie WD, Kalinna BH. Functional genomics approaches in parasitic helminths. Parasite Immunol 2012; 34:163-82. [PMID: 21711361 DOI: 10.1111/j.1365-3024.2011.01306.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As research on parasitic helminths is moving into the post-genomic era, an enormous effort is directed towards deciphering gene function and to achieve gene annotation. The sequences that are available in public databases undoubtedly hold information that can be utilized for new interventions and control but the exploitation of these resources has until recently remained difficult. Only now, with the emergence of methods to genetically manipulate and transform parasitic worms will it be possible to gain a comprehensive understanding of the molecular mechanisms involved in nutrition, metabolism, developmental switches/maturation and interaction with the host immune system. This review focuses on functional genomics approaches in parasitic helminths that are currently used, to highlight potential applications of these technologies in the areas of cell biology, systems biology and immunobiology of parasitic helminths.
Collapse
Affiliation(s)
- J Hagen
- Department of Veterinary Science, Centre for Animal Biotechnology, The University of Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
49
|
MicroRNAs: potentially important regulators for schistosome development and therapeutic targets against schistosomiasis. Parasitology 2012; 139:669-79. [PMID: 22309492 DOI: 10.1017/s0031182011001855] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small, endogenous non-coding RNA molecules that regulate gene expression post-transcriptionally by targeting the 3' untranslated region (3' UTR) of messenger RNAs. Since the discovery of the first miRNA in Caenorhabditis elegans, important regulatory roles for miRNAs in many key biological processes including development, cell proliferation, cell differentiation and apoptosis of many organisms have been described. Hundreds of miRNAs have been identified in various multicellular organisms and many are evolutionarily conserved. Schistosomes are multi-cellular eukaryotes with a complex life-cycle that require genes to be expressed and regulated precisely. Recently, miRNAs have been identified in two major schistosome species, Schistosoma japonicum and S. mansoni. These miRNAs are likely to play critical roles in schistosome development and gene regulation. Here, we review recent studies on schistosome miRNAs and discuss the potential roles of miRNAs in schistosome development and gene regulation. We also summarize the current status for targeting miRNAs and the potential of this approach for therapy against schistosomiasis.
Collapse
|
50
|
Abstract
Parasitic diseases cause important losses in public and veterinary health worldwide. Novel drugs, more reliable diagnostic techniques and vaccine candidates are urgently needed. Due to the complexity of parasites and the intricate relationship with their hosts, development of successful tools to fight parasites has been very limited to date. The growing information on individual parasite genomes is now allowing the use of a broader range of potential strategies to gain deeper insights into the host-parasite relationship and has increased the possibilities to develop molecular-based tools in the field of parasitology. Nevertheless, functional studies of respective genes are still scarce. The RNA interference phenomenon resulting in the regulation of protein expression through the specific degradation of defined mRNAs, and more specifically the possibility of artificially induce it, has shown to be a powerful tool for the investigation of proteins function in many organisms. Recent advances in the design and delivery of targeting molecules allow efficient and highly specific gene silencing in different types of parasites, pointing out this technology as a powerful tool for the identification of novel vaccine candidates or drug targets at the high-throughput level in the near future, and could enable researchers to functionally annotate parasite genomes. The aim of this review is to provide a comprehensive overview on the current advances and pitfalls in gene silencing mechanisms, techniques, applications and prospects in animal parasites.
Collapse
|