1
|
Rojas-Pirela M, Kemmerling U, Quiñones W, Michels PAM, Rojas V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases? Biomolecules 2023; 13:biom13040599. [PMID: 37189347 DOI: 10.3390/biom13040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Trypanosomiases are a group of tropical diseases that have devastating health and socio-economic effects worldwide. In humans, these diseases are caused by the pathogenic kinetoplastids Trypanosoma brucei, causing African trypanosomiasis or sleeping sickness, and Trypanosoma cruzi, causing American trypanosomiasis or Chagas disease. Currently, these diseases lack effective treatment. This is attributed to the high toxicity and limited trypanocidal activity of registered drugs, as well as resistance development and difficulties in their administration. All this has prompted the search for new compounds that can serve as the basis for the development of treatment of these diseases. Antimicrobial peptides (AMPs) are small peptides synthesized by both prokaryotes and (unicellular and multicellular) eukaryotes, where they fulfill functions related to competition strategy with other organisms and immune defense. These AMPs can bind and induce perturbation in cell membranes, leading to permeation of molecules, alteration of morphology, disruption of cellular homeostasis, and activation of cell death. These peptides have activity against various pathogenic microorganisms, including parasitic protists. Therefore, they are being considered for new therapeutic strategies to treat some parasitic diseases. In this review, we analyze AMPs as therapeutic alternatives for the treatment of trypanosomiases, emphasizing their possible application as possible candidates for the development of future natural anti-trypanosome drugs.
Collapse
|
2
|
Hu X, Zhao J, Zhao J, Yang E, Jia M. Genome-wide liver transcriptomic profiling of a malaria mouse model reveals disturbed immune and metabolic responses. Parasit Vectors 2023; 16:40. [PMID: 36717945 PMCID: PMC9885691 DOI: 10.1186/s13071-023-05672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The liver is responsible for a range of functions in vertebrates, such as metabolism and immunity. In malaria, the liver plays a crucial role in the interaction between the parasite and host. Although malarial hepatitis is a common clinical complication of severe malaria, other malaria-related liver changes have been overlooked during the blood stage of the parasite life-cycle, in contrast to the many studies that have focused on parasite invasion of and replication in the liver during the hepatic stage of the parasite. METHODS A rodent model of malaria was established using Plasmodium yoelii strain 17XL, a lethal strain of rodent malaria, for liver transcriptomic profiling. RESULTS Differentially expressed messenger RNAs were associated with innate and adaptive immune responses, while differentially expressed long noncoding RNAs were enriched in the regulation of metabolism-related pathways, such as lipid metabolism. The coexpression network showed that host genes were related to cellular transport and tissue remodeling. Hub gene analysis of P. yoelii indicated that ubiquitination genes that were coexpressed with the host were evolutionarily conserved. CONCLUSIONS Our analysis yielded evidence of activated immune responses, aberrant metabolic processes and tissue remodeling changes in the livers of mice with malaria during the blood stage of the parasite, which provided a systematic outline of liver responses during Plasmodium infection.
Collapse
Affiliation(s)
- Xueyan Hu
- grid.11135.370000 0001 2256 9319Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Jie Zhao
- grid.11135.370000 0001 2256 9319Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Junhui Zhao
- grid.11135.370000 0001 2256 9319Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Ence Yang
- grid.11135.370000 0001 2256 9319Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Mozhi Jia
- grid.11135.370000 0001 2256 9319Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| |
Collapse
|
3
|
Lee JH, Kim HR, Lee JH, Lee SK, Chun Y, Han SO, Yoo HY, Park C, Kim SW. Enhanced In-Vitro Hemozoin Polymerization by Optimized Process using Histidine-Rich Protein II (HRPII). Polymers (Basel) 2019; 11:E1162. [PMID: 31288462 PMCID: PMC6680884 DOI: 10.3390/polym11071162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/27/2023] Open
Abstract
Conductive biopolymers, an important class of functional materials, have received attention in various fields because of their unique electrical, optical, and physical properties. In this study, the polymerization of heme into hemozoin was carried out in an in vitro system by the newly developed heme polymerase (histidine-rich protein 2 (HRP-II)). The HRP-II was produced by recombinant E. coli BL21 from the Plasmodium falciparum gene. To improve the hemozoin production, the reaction conditions on the polymerization were investigated and the maximum production was achieved after about 790 μM at 34 °C with 200 rpm for 24 h. As a result, the production was improved about two-fold according to the stepwise optimization in an in vitro system. The produced hemozoin was qualitatively analyzed using the Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Finally, it was confirmed that the enzymatically polymerized hemozoin had similar physical properties to chemically synthesized hemozoin. These results could represent a significant potential for nano-biotechnology applications, and also provide guidance in research related to hemozoin utilization.
Collapse
Affiliation(s)
- Ju Hun Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Hyeong Ryeol Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Ja Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
- Department of Food Science and Engineering, Dongyang Mirae University, 445, Gyeongin-ro, Guro-gu, Seoul 08221, Korea
| | - Soo Kweon Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Youngsang Chun
- Department of Interdisciplinary Bio-Micro System Technology, College of Engineering, Korea University, 145 Anam-ro 5, Seongbuk-gu, Seoul 02841, Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Korea.
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea.
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
4
|
Quantification of labile heme in live malaria parasites using a genetically encoded biosensor. Proc Natl Acad Sci U S A 2017; 114:E2068-E2076. [PMID: 28242687 PMCID: PMC5358388 DOI: 10.1073/pnas.1615195114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Malaria parasites degrade substantial quantities of hemoglobin to release heme within a specialized digestive vacuole. Most of this heme is sequestered in an inert crystal. However, the concentration of bioavailable, labile heme in the parasite’s cytosol was unknown. We developed a biosensor to provide the first quantitative insights into labile heme concentrations in malaria parasites. We find that ∼1.6 µM labile cytosolic heme is maintained, including during a period coincident with intense hemoglobin degradation. The heme-binding antimalarial drug, chloroquine, which interferes with heme crystallization, specifically induces an increase in labile heme. The ability to quantify labile heme in malaria parasites opens opportunities for better understanding heme homeostasis, signaling, and metabolism, and its association with antimalarial potency. Heme is ubiquitous, yet relatively little is known about the maintenance of labile pools of this cofactor, which likely ensures its timely bioavailability for proper cellular function. Quantitative analysis of labile heme is of fundamental importance to understanding how nature preserves access to the diverse chemistry heme enables, while minimizing cellular damage caused by its redox activity. Here, we have developed and characterized a protein-based sensor that undergoes fluorescence quenching upon heme binding. By genetically encoding this sensor in the human malarial parasite, Plasmodium falciparum, we have quantified cytosolic labile heme levels in intact, blood-stage parasites. Our findings indicate that a labile heme pool (∼1.6 µM) is stably maintained throughout parasite development within red blood cells, even during a period coincident with extensive hemoglobin degradation by the parasite. We also find that the heme-binding antimalarial drug chloroquine specifically increases labile cytosolic heme, indicative of dysregulation of this homeostatic pool that may be a relevant component of the antimalarial activity of this compound class. We propose that use of this technology under various environmental perturbations in P. falciparum can yield quantitative insights into fundamental heme biology.
Collapse
|
5
|
Behzadi H, Esrafili MD, van der Spoel D, Hadipour NL, Parsafar G. A theoretical study of repeating sequence in HRP II: a combination of molecular dynamics simulations and (17)O quadrupole coupling tensors. Biophys Chem 2008; 137:76-80. [PMID: 18708277 DOI: 10.1016/j.bpc.2008.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/08/2008] [Accepted: 07/12/2008] [Indexed: 10/21/2022]
Abstract
Histidine rich protein II derived peptide (HRP II 169-182) was investigated by molecular dynamics, MD, simulation and (17)O electric field gradient, EFG, tensor calculations. MD simulation was performed in water at 300 K with alpha-helix initial structure. It was found that peptide loses its initial alpha-helix structure rapidly and is converted to random coil and bent secondary structures. To understand how peptide structure affects EFG tensors, initial structure and final conformations resulting from MD simulations were used to calculate (17)O EFG tensors of backbone carbonyl oxygens. Calculations were performed using B3LYP method and 6-31+G basis set. Calculated (17)O EFG tensors were used to evaluate quadrupole coupling constants, QCC, and asymmetry parameters, eta(Q). Difference between the calculated QCC and eta(Q) values revealed how hydrogen-bonding interactions affect EFG tensors at the sites of each oxygen nucleus.
Collapse
Affiliation(s)
- Hadi Behzadi
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Guha M, Kumar S, Choubey V, Maity P, Bandyopadhyay U. Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway. FASEB J 2006; 20:1224-6. [PMID: 16603602 DOI: 10.1096/fj.05-5338fje] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hepatic dysfunction is a common clinical complication in malaria, although its pathogenesis remains largely unknown. Using a variety of in vivo and ex vivo approaches, we have shown for the first time that malarial infection induces hepatic apoptosis through augmentation of oxidative stress. Apoptosis in hepatocyte has been confirmed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin-nick-end labeling assay (TUNEL) and caspase-3 activation. Gene expression analysis using RT-PCR indicates the significant down-regulation of Bcl-2 and up-regulation of Bax expression in liver of malaria infected mice suggesting the involvement of mitochondrial pathway of apoptosis. The levels of Fas expression and caspase-8 activity in infected liver were same as that of uninfected control mice indicating death receptor (Fas) pathway did not contribute to liver apoptosis during malarial infection. Moreover, evidence has been presented by confocal microscopy to show the translocation of Bax from cytosol to mitochondria in apoptotic hepatocyte, resulting in opening of permeability transition pores, which in turn decreases mitochondrial membrane potential and induces cytochrome c release into cytosol. Malarial infection induces the generation of hydroxyl radical (*OH) in liver, which may be responsible for the induction of oxidative stress and apoptosis as administration of *OH specific antioxidant as well as spin trap, alpha-phenyl-tert-butyl-nitrone in malaria-infected mice significantly inhibits the development of oxidative stress as well as induction of apoptosis. Thus, results suggest the implication of oxidative stress induced-mitochondrial pathway of apoptosis in the pathophysiology of hepatic dysfunction in malaria.
Collapse
Affiliation(s)
- Mithu Guha
- Division of Drug Target Discovery and Development, Central Drug Research Institute, Chatter Manzil Palace, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
8
|
Moritz E, Seidensticker S, Gottwald A, Maier W, Hoerauf A, Njuguna JT, Kaiser A. The efficacy of inhibitors involved in spermidine metabolism in Plasmodium falciparum, Anopheles stephensi and Trypanosoma evansi. Parasitol Res 2004; 94:37-48. [PMID: 15278440 DOI: 10.1007/s00436-004-1162-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 06/17/2004] [Indexed: 11/25/2022]
Abstract
In the present study, we have tested the effect of different polyamine inhibitors of the spermidine metabolizing enzymes deoxyhypusine synthase and homospermidine synthase in different chloroquine resistant Plasmodium falciparum strains, in the mosquito Anopheles stephensi (Diptera: Culicidae) and in a Trypanosoma evansi clone I from strain STIB 806 K China. Recent experiments have shown that agmatine is a growth inhibitor of the malaria parasite P. falciparum (Kaiser et al. 2001) in vitro. A comparison of agmatine efficacy with the new antimalarials artemisinin, triclosan and conventional chloroquine showed similar or even better results on the basis of growth inhibition and the reduction of developmental forms. However, no effect of triclosan or agmatine was observed at the ribonucleic acid level. In a second set of experiments, we tested the effect of 1,7-diaminoheptane and agmatine on oocyst formation in A. stephensi after infection with Plasmodium yoelii. Agmatine had an antisporozoite effect since 1,000 microM led to a 59.5% inhibition of oocysts. A much weaker inhibitor of oocyst formation was 1,7-diaminoheptane. The most effective in in vitro inhibition of T. evansi was dicyclohexylamine, an inhibitor of spermidine biosynthesis with an IC(50 ) value of 47.44 microM and the deoxyhypusine inhibitor 1,7-diaminoheptane with an IC(50) value of 47.80 microM. However, both drugs were ineffective in in vivo experiments in a Trypanosoma mouse model. Two different spermidine analogues, 1,8-diaminooctane and 1,3-diaminopropane with IC(50) values of 171 microM and 181.37 microM, respectively, were moderate inhibitors in vitro and ineffective in vivo.
Collapse
Affiliation(s)
- E Moritz
- Institut für Medizinische Parasitologie, Sigmund Freud Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Pandey AV, Babbarwal VK, Okoyeh JN, Joshi RM, Puri SK, Singh RL, Chauhan VS. Hemozoin formation in malaria: a two-step process involving histidine-rich proteins and lipids. Biochem Biophys Res Commun 2003; 308:736-43. [PMID: 12927780 DOI: 10.1016/s0006-291x(03)01465-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Major blood stage antimalarial drugs like chloroquine and artemisinin target the heme detoxification process of the malaria parasite. Hemozoin formation reactions in vitro using the Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2), lipids, and auto-catalysis are slow and could not explain the speed of detoxification needed for parasite survival. Here, we show that malarial hemozoin formation is a coordinated two component process involving both lipids and histidine-rich proteins. Hemozoin formation efficiency in vitro is 1-2% with Pfhrp-2 and 0.25-0.5% with lipids. We added lipids after 9h in a 12h Pfhrp-2 mediated reaction that resulted in sixfold increase in hemozoin formation. However, a lipid mediated reaction in which Pfhrp-2 was added after 9h produced only twofold increase in hemozoin production compared to the reaction with Pfhrp-2 alone. Synthetic peptides corresponding to the Pfhrp-2 heme binding sequences, based on repeats of AHHAAD, neither alone nor in combination with lipids were able to generate hemozoin in vitro. These results indicate that hemozoin formation in malaria parasite involves both the lipids and the scaffolding proteins. Histidine-rich proteins might facilitate hemozoin formation by binding with a large number of heme molecules, and facilitating the dimer formation involving iron-carboxylate bond between two heme molecules, and lipids may then subsequently assist the mechanism of long chain formation, held together by hydrogen bonds or through extensive networking of hydrogen bonds.
Collapse
Affiliation(s)
- Amit V Pandey
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143-0978, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Kannan R, Sahal D, Chauhan VS. Heme-artemisinin adducts are crucial mediators of the ability of artemisinin to inhibit heme polymerization. CHEMISTRY & BIOLOGY 2002; 9:321-32. [PMID: 11927257 DOI: 10.1016/s1074-5521(02)00117-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A lack of molecular understanding of the targets and mechanisms of artemisinin action has impeded the improvisation of more efficient antimalarials based on this class of endoperoxide drugs. We have synthesized a heme-artemisinin adduct designated as "hemart" to discover if it mediates the ability of artemisinin to inhibit heme polymerization. Hemart mimics heme in binding to Plasmodium falciparum histidine-rich protein II (PfHRP II) but cannot self-polymerize. Instead, it inhibits all heme polymerizations, including basal and those triggered by PfHRP II, Monooleoyl glycerol (MOG), or P. yoelii extract. Hemart has an edge over heme in displacing heme from PfHRP II, and either low pH or chloroquine dissociates heme but not hemart from PfHRP II. Our results suggest that hemart, by mimicking heme, stalls all mechanisms of heme polymerization, resulting in the death of the malaria parasite.
Collapse
Affiliation(s)
- R Kannan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
11
|
Tripathi AK, Garg SK, Tekwani BL. A physiochemical mechanism of hemozoin (beta-hematin) synthesis by malaria parasite. Biochem Biophys Res Commun 2002; 290:595-601. [PMID: 11779214 DOI: 10.1006/bbrc.2001.6231] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malaria parasite homogenate, the lipid extracts, and an unsaturated fatty acid, linoleic acid, which have been shown to promote beta-hematin formation in vitro, were used to investigate the mechanism of hemozoin biosynthesis, a distinct metabolic function of the malaria parasite. In vitro beta-hematin formation promoted by Plasmodium yoelii homogenate, the lipid extracts, and linoleic acid were blocked by ascorbic acid, reduced glutathione, sodium dithionite, beta-mercaptoethanol, dithiothreitol, and superoxide dismutase. Oxidized glutathione did not show any effect. Preoxidized preparations of the lipids extracts or the P. yoelii homogenate failed to catalyze beta-hematin formation. Depletion of oxygen in the reaction mixtures also inhibited the lipid-catalyzed beta-hematin formation. Under the reaction conditions similar to those used for the in vitro beta-hematin formation assay, the antioxidants and reducing agents mentioned above, except the DTT and beta-mercaptoethanol, did not cause degradation of heme. beta-Hematin formation was also inhibited by p-aminophenol, a free radical chain reaction breaker. Hemozoin biosynthesis within the digestive vacuoles of the malaria parasite may be a lipid-catalyzed physiochemical reaction. An oxidative mechanism may be proposed for lipid-mediated beta-hematin formation, which may be mediated by generation of some free radical intermediates of heme.
Collapse
Affiliation(s)
- Abhai K Tripathi
- Division of Biochemistry, Central Drug Research Institute, Lucknow-226001 (UP), India
| | | | | |
Collapse
|
12
|
Papalexis V, Siomos MA, Campanale N, Guo X, Kocak G, Foley M, Tilley L. Histidine-rich protein 2 of the malaria parasite, Plasmodium falciparum, is involved in detoxification of the by-products of haemoglobin degradation. Mol Biochem Parasitol 2001; 115:77-86. [PMID: 11377742 DOI: 10.1016/s0166-6851(01)00271-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The histidine-rich protein 2 (PfHRP2) of Plasmodium falciparum has been implicated in the detoxification of ferriprotoporphyrin IX (FP) moieties that are produced as by-products of the digestion of haemoglobin. In this work, we have used a spectroscopic analysis to confirm that recombinant PfHRP2 binds FP. A monoclonal antibody that recognises both recombinant and authentic PfHRP2 was used in immunofluorescence microscopy studies. We found that PfHRP2 is mainly located in the erythrocyte cytosol of infected erythrocytes, however, dual labelling studies suggest that the location of a sub-population of the PfHRP2 molecules overlaps with that of the food vacuole-associated protein, P-glycoprotein homologue (Pgh-1). A semi-quantitative analysis of the level of PfHRP2 in infected erythrocytes suggests a concentration of a few micromolar in the food vacuole. Under conditions designed to mimic the parasite food vacuole, we found that 1.2 microM PfHRP2 is sufficient to catalyse the conversion of about 30% of a 100 microM sample of FP to beta-haematin within 24 h. Moreover, PfHRP2 is capable of promoting the H(2)O(2)-induced degradation of FP at pH 5.2. PfHRP2 also efficiently enhances the ability of FP to catalyse the H(2)O(2)-mediated oxidation of the model co-factor, ortho-phenylene diamine (OPD). These data suggest that PfHRP2 may promote the detoxification of FP and reactive oxygen species within the food vacuole. By contrast, PfHRP2 inhibits the destruction of FP by glutathione (GSH) at pH 7.4. This suggests that PfHRP2 is not a catalyst of FP degradation outside the food vacuole.
Collapse
Affiliation(s)
- V Papalexis
- Department of Biochemistry, La Trobe University, Bundoora, 3083, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Pandey AV, Bisht H, Babbarwal VK, Srivastava J, Pandey KC, Chauhan VS. Mechanism of malarial haem detoxification inhibition by chloroquine. Biochem J 2001; 355:333-8. [PMID: 11284719 PMCID: PMC1221743 DOI: 10.1042/0264-6021:3550333] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The haem detoxification pathway of the malaria parasite Plasmodium falciparum is a potential biochemical target for drug development. Free haem, released after haemoglobin degradation, is polymerized by the parasite to form haemozoin pigment. Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2) has been implicated as the catalytic scaffold for detoxification of haem in the malaria parasite. Previously we have shown that a hexapeptide repeat sequence (Ala-His-His-Ala-Ala-Asp), which appears 33 times in Pfhrp-2, may be the major haem binding site in this protein. The haem binding studies carried out by ourselves indicate that up to 18 equivalents of haem could be bound by this protein with an observed K(d) of 0.94 microM. Absorbance spectroscopy provides evidence that chloroquine is capable of extracting haem bound to Pfhrp-2. This was supported by the K(d) value, of 37 nM, observed for the haem-chloroquine complex. The native PAGE studies reveal that the formation of the haem-Pfhrp-2 complex is disrupted by chloroquine. These results indicate that chloroquine may be acting by inhibiting haem detoxification/binding to Pfhrp-2. Moreover, the higher affinity of chloroquine for haem than Pfhrp-2 suggests a possible mechanism of action for chloroquine; it may remove the haem bound to Pfhrp-2 and form a complex that is toxic to the parasite.
Collapse
Affiliation(s)
- A V Pandey
- Malaria Research Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
14
|
Lynn A, Chandra S, Malhotra P, Chauhan VS. Heme binding and polymerization by Plasmodium falciparum histidine rich protein II: influence of pH on activity and conformation. FEBS Lett 1999; 459:267-71. [PMID: 10518033 DOI: 10.1016/s0014-5793(99)01260-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The histidine rich protein II (HRPII) from Plasmodium falciparum has been implicated as a heme polymerase which detoxifies free heme by its polymerization to inactive hemozoin. Histidine-iron center coordination is the dominant mechanism of interaction between the amino acid and heme. The protein also contains aspartate allowing for ionic/coordination interactions between the carboxylate side chain and the heme metal center. The pH profile of heme binding and polymerization shows the possibility of these two types of binding sites being differentiated by pH. Circular dichroism studies of the protein show that pH and heme binding cause a change in conformation above pH 6 implying the involvement of His-His+ transitions. Heme binding at pHs above 6 perturbs HRPII conformation, causing an increase in helicity.
Collapse
Affiliation(s)
- A Lynn
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
15
|
|
16
|
Pandey AV, Tekwani BL, Singh RL, Chauhan VS. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem 1999; 274:19383-8. [PMID: 10383451 DOI: 10.1074/jbc.274.27.19383] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoperoxide antimalarials based on the ancient Chinese drug Qinghaosu (artemisinin) are currently our major hope in the fight against drug-resistant malaria. Rational drug design based on artemisinin and its analogues is slow as the mechanism of action of these antimalarials is not clear. Here we report that these drugs, at least in part, exert their effect by interfering with the plasmodial hemoglobin catabolic pathway and inhibition of heme polymerization. In an in vitro experiment we observed inhibition of digestive vacuole proteolytic activity of malarial parasite by artemisinin. These observations were further confirmed by ex vivo experiments showing accumulation of hemoglobin in the parasites treated with artemisinin, suggesting inhibition of hemoglobin degradation. We found artemisinin to be a potent inhibitor of heme polymerization activity mediated by Plasmodium yoelii lysates as well as Plasmodium falciparum histidine-rich protein II. Interaction of artemisinin with the purified malarial hemozoin in vitro resulted in the concentration-dependent breakdown of the malaria pigment. Our results presented here may explain the selective and rapid toxicity of these drugs on mature, hemozoin-containing, stages of malarial parasite. Since artemisinin and its analogues appear to have similar molecular targets as chloroquine despite having different structures, they can potentially bypass the quinoline resistance machinery of the malarial parasite, which causes sublethal accumulation of these drugs in resistant strains.
Collapse
Affiliation(s)
- A V Pandey
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, P. O. Box 10504, New Delhi 110 067, India
| | | | | | | |
Collapse
|
17
|
Pandey AV, Singh N, Tekwani BL, Puri SK, Chauhan VS. Assay of beta-hematin formation by malaria parasite. J Pharm Biomed Anal 1999; 20:203-7. [PMID: 10704024 DOI: 10.1016/s0731-7085(99)00021-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Novel leads are urgently required for designing antimalarials due to the reduced efficacy of presently available drugs. The malaria parasite has a unique reaction of heme polymerization, which has attracted much attention in the recent past as a target for the design of antimalarial drugs. The process is hampered by non-availability of a proper assay method. Currently available methods are cumbersome and require advanced instrumentation or radioactive substrates. Here, we are describing an assay for hemozoin formation that is simple and reproducible. This assay has routinely been used by us for the identification of potential compounds with antimalarial activity.
Collapse
Affiliation(s)
- A V Pandey
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | | | |
Collapse
|