1
|
Kruth PS, Lane T, Barta JR. Organellar genome dynamics of exogenous stages of Eimeria tenella. Parasit Vectors 2024; 17:428. [PMID: 39396981 PMCID: PMC11476305 DOI: 10.1186/s13071-024-06498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Coccidia are a group of intracellular protozoal parasites within the phylum Apicomplexa. Eimeria tenella, one of the species that cause intestinal coccidiosis in poultry, can cause significant mortality and morbidity. Diploid oocysts of Eimeria species are shed in the feces of an infected host and must sporulate to achieve infectivity. This process results in eight haploid infectious units, called sporozoites, held within a single oocyst. Each Eimeria spp. parasite possesses a single apicoplast and a single mitochondrion, both of which carry multiple copies of their respective organellar genomes. Reports of copy numbers of organellar genomes have varied widely. METHODS We report the application of quantitative polymerase chain reaction (qPCR), supported by next-generation sequencing, for the quantification of the extranuclear genomes relative to the nuclear genome over the course of sporulation and following its completion. RESULTS At 64 elapsed hours, 93.0% of oocysts were fully sporulated; no increase in percent sporulation was observed after this time. Apicoplast relative genome copy number showed several significant shifts up to 72 elapsed hours, after which no significant shifts were observed. Oocysts were shed with approximately 60% the amount of apicoplast DNA present at 72 h, after which point no significant shifts in apicoplast genome relative abundance occurred. Mitogenome relative copy number showed only two significant shifts, from 16 to 24 elapsed hours and from 24 to 32 elapsed hours. Oocysts were shed with approximately 28% the amount of mitochondrial DNA that was present at the time sporulation was deemed morphologically complete, at 64 elapsed hours. CONCLUSIONS The characterization of the dynamics of genome abundance in exogenous stages sheds new light on the basic biology of Eimeria spp. and supports the use of extranuclear targets for molecular modes of parasite quantification and identification with improved sensitivity and accuracy.
Collapse
|
2
|
Araújo RSD, Barbosa MRF, Dropa M, Araujo de Castro VC, Galvani AT, Padula JA, Bruni ADC, Brandão CJ, Lallo MA, Sato MIZ. Environmental surveillance of Cryptosporidium and Giardia in surface supply water and treated sewage intended for reuse from an urban area in Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125089. [PMID: 39389245 DOI: 10.1016/j.envpol.2024.125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Environmental monitoring of protozoa, with the potential to trigger diseases, is essential for decision-making by managing authorities and for the control of water surveillance. This study aimed to detect and quantify Cryptosporidium oocysts and Giardia cysts in surface water for drinking water supply and treated sewage for reuse in the city of São Paulo. Samples collected bimonthly for one year were concentrated using the USEPA 1623.1 and 1693 methods for surface water and treated effluents, respectively. Immunofluorescence and nucleic acid amplification techniques were used to detect and quantify (oo)cysts. The cloning technique followed by sequencing and phylogenetic analyses were performed to characterize species and genotypes. The immunofluorescence detected Cryptosporidium spp. and Giardia spp. in 69.2% (9/13) and 100% (13/13) of the surface water samples (0.1-41 oocysts/L and 7.2-354 cysts/L, respectively). In the reuse samples, 85.7% (12/14) were positive for both protozoa and the concentrations varied from 0.4 to 100.6 oocysts/L and 1.2 and 93.5 cysts/L. qPCR assays showed that 100% of surface water (0.1-14.6 oocysts/L and 0.3-639.8 cysts/L) and reused samples (0.1-26.6 oocysts/L and 0.3-92.5 cysts/L) were positive for both protozoa. Species C. parvum, C. hominis, and C. muris were identified using the 18S rRNA gene, demonstrating anthroponotic and zoonotic species in the samples. Multilocus SSU rRNAanalyses of the SSU rRNA, tpi, and gdh genes from Giardia intestinalis identified the AII, BII, and BIV assemblages, revealing that contamination in the different matrices comes from human isolates. The study showed the circulation of these protozoa in the São Paulo city area and the impairment of surface water supply in metropolitan regions impacted by the discharge of untreated or inadequately treated sewage regarding the removal of protozoa, emphasizing the need to implement policies for water safety, to prevent the spread of these protozoa in the population.
Collapse
Affiliation(s)
- Ronalda Silva de Araújo
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil.
| | - Mikaela Renata Funada Barbosa
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| | - Milena Dropa
- Department of Environmental Health, School of Public Health, University of São Paulo (FSP-USP), Brazil
| | - Vanessa Cristina Araujo de Castro
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| | - Ana Tereza Galvani
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| | - José Antônio Padula
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| | | | - Carlos Jesus Brandão
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| | - Maria Anete Lallo
- Department of Environmental and Experimental Pathology of Universidade Paulista (UNIP), Brazil
| | - Maria Inês Zanoli Sato
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| |
Collapse
|
3
|
Stensvold CR, Martí-Marco A, Moratal S, Lebbad M, Carmena D. Cryptosporidium occultus in disguise. J Microbiol Methods 2024; 222:106957. [PMID: 38777182 DOI: 10.1016/j.mimet.2024.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
As data accumulate in GenBank, the difficulties of delineating species of Cryptosporidium based on nuclear small subunit ribosomal RNA (ssu rRNA) gene information alone becomes increasingly evident. Here, we summarize currently available evidence suggesting that several ssu rDNA sequences primarily referred to as Cryptosporidium suis (some of them from non-suid hosts) should be considered Cryptosporidium occultus.
Collapse
Affiliation(s)
- Christen Rune Stensvold
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark.
| | - Alba Martí-Marco
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca 46115, Valencia, Spain; Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain
| | - Samantha Moratal
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca 46115, Valencia, Spain
| | | | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Ctra. Majadahonda-Pozuelo km 2, 28220 Majadahonda, Spain; CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Wang D, Jiang P, Yang X, Zhang J, Chen T, Hu M, Cacciò SM, Yin J, Zhu G. Novel strategy to quantify the viability of oocysts of Cryptosporidium parvum and C. hominis, a risk factor of the waterborne protozoan pathogens of public health concern. WATER RESEARCH 2024; 258:121788. [PMID: 38810599 DOI: 10.1016/j.watres.2024.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
While waters might be contaminated by oocysts from >40 Cryptosporidium species, only viable oocysts of C. parvum and C. hominis truly pose the main health risk to the immunocompetent population. Oocyst viability is also an important but often neglected risk factor in monitoring waterborne parasites. However, commonly used methods in water monitoring and surveys cannot distinguish species (microscopic observation) or oocyst viability (PCR), as dead oocysts in water could retain gross structure and DNA content for weeks to months. Here, we report new TaqMan qRT-PCR/qPCR assays for quantitative detection of viable C. parvum and C. hominis oocysts. By targeting a hypothetical protein-encoding gene cgd6_3920 that is highly expressed in oocysts and variable between species, the qRT-PCR/qPCR assays achieve excellent analytical specificity and sensitivity (limit of quantification [LOQ] = 0.25 and 1.0 oocyst/reaction). Using calibration curves, the number and ratio of viable oocysts in specimens could be calculated. Additionally, we also establish a TaqMan-18S qPCR for cost-effective screening of pan-Cryptosporidium-positive specimens (LOQ = 0.1 oocyst/reaction). The assay feasibility is validated using field water (N = 43) and soil (79) specimens from 17 locations in Changchun, China, which detects four Cryptosporidium species from seven locations, including three gp60-subtypes (i.e., IIdA19G1, IIdA17G1 and IIdA24G2) of C. parvum oocysts showing varied viability ratios. These new TaqMan q(RT)-PCR assays supplement current methods in the survey of waters and other samples (e.g., surfaces, foods and beverages), and are applicable to assessing the efficiency of oocyst deactivation protocols.
Collapse
Affiliation(s)
- Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoxuan Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jifei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Hachimi O, Falender R, Davis G, Wafula RV, Sutton M, Bancroft J, Cieslak P, Kelly C, Kaya D, Radniecki T. Evaluation of molecular-based methods for the detection and quantification of Cryptosporidium spp. in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174219. [PMID: 38917908 DOI: 10.1016/j.scitotenv.2024.174219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Cryptosporidium poses significant public health risks as a cause of waterborne disease worldwide. Clinical surveillance of cryptosporidiosis is largely underreported due to the asymptomatic and mildly symptomatic infections, clinical misdiagnoses, and barriers to access testing. Wastewater surveillance overcomes these limitations and could serve as an effective tool for identifying cryptosporidiosis at the population level. Despite its potential, the lack of standardized wastewater surveillance methods for Cryptosporidium spp. challenges implementation design and the comparability between studies. Thus, this study compared and contrasted Cryptosporidium wastewater surveillance methods for concentrating wastewater oocysts, extracting oocyst DNA, and detecting Cryptosporidium genetic markers. The evaluated concentration methods included electronegative membrane filtration, Envirocheck HV capsule filtration, centrifugation, and Nanotrap Microbiome Particles, with and without additional immunomagnetic separation purification (except for the Nanotrap Microbiome Particles). Oocyst DNA extraction by either the DNeasy Powersoil Pro kit and the QIAamp DNA Mini kit were evaluated and the impact of bead beating and freeze-thaw pretreatments on DNA recoveries was assessed. Genetic detection via qPCR assays targeting either the Cryptosporidium 18S rRNA gene or the Cryptosporidium oocyst wall protein gene were tested. Oocyst recovery percentages were highest for centrifugation (39-77 %), followed by the Nanotrap Microbiome Particles (24 %), electronegative filtration with a PBST elution (22 %), and Envirocheck HV capsule filtration (13 %). Immunomagnetic separation purification was found to be unsuitable due to interference from the wastewater matrix. Bead-beating pretreatment enhanced DNA recoveries from both the DNeasy Powersoil Pro kit (314 gc/μL DNA) and the QIAamp DNA Mini kit (238 gc/μL DNA). In contrast, freeze-thaw pretreatment reduced DNA recoveries to under 92 gc/μL DNA, likely through DNA degradation. Finally, while both qPCR assays were specific to Cryptosporidium spp., the 18S rRNA assay had a 5-fold lower detection limit and could detect a wider range of Cryptosporidium spp. than the Cryptosporidium oocyst wall protein assay.
Collapse
Affiliation(s)
- Oumaima Hachimi
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Rebecca Falender
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Gabriel Davis
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Rispa Vranka Wafula
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Melissa Sutton
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - June Bancroft
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Paul Cieslak
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Christine Kelly
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Tyler Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA.
| |
Collapse
|
6
|
Huang W, Tang K, Chen C, Arrowood MJ, Chen M, Guo Y, Li N, Roellig DM, Feng Y, Xiao L. Sequence introgression from exogenous lineages underlies genomic and biological differences among Cryptosporidium parvum IOWA lines. WATER RESEARCH 2024; 254:121333. [PMID: 38402753 PMCID: PMC10994760 DOI: 10.1016/j.watres.2024.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The IOWA strain of Cryptosporidium parvum is widely used in studies of the biology and detection of the waterborne pathogens Cryptosporidium spp. While several lines of the strain have been sequenced, IOWA-II, the only reference of the original subtype (IIaA15G2R1), exhibits significant assembly errors. Here we generated a fully assembled genome of IOWA-CDC of this subtype using PacBio and Illumina technologies. In comparative analyses of seven IOWA lines maintained in different laboratories (including two sequenced in this study) and 56 field isolates, IOWA lines (IIaA17G2R1) with less virulence had mixed genomes closely related to IOWA-CDC but with multiple sequence introgressions from IOWA-II and unknown lineages. In addition, the IOWA-IIaA17G2R1 lines showed unique nucleotide substitutions and loss of a gene associated with host infectivity, which were not observed in other isolates analyzed. These genomic differences among IOWA lines could be the genetic determinants of phenotypic traits in C. parvum. These data provide a new reference for comparative genomic analyses of Cryptosporidium spp. and rich targets for the development of advanced source tracking tools.
Collapse
Affiliation(s)
- Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Chengyi Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Michael J Arrowood
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Ming Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Bartley PM, Standar JH, Katzer F. Genetic characterisation of Cryptosporidium parvum in dairy cattle and calves during the early stages of a calving season. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 5:100160. [PMID: 38116366 PMCID: PMC10727939 DOI: 10.1016/j.crpvbd.2023.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Cryptosporidium parvum is a causative agent of cryptosporidiosis, an infectious gastroenteritis in neonatal ruminants, which can be fatal in severe cases. The aim of this study was to determine the prevalence of infections in dairy cattle/calves during the early stages of a calving season and the species/genotypes of the Cryptosporidium present. Faecal samples collected from pre- and post-partum dams (n = 224) as well as calves from age ∼1 day onwards (n = 312) were examined. Oocysts were concentrated, DNA extracted and tested by Cryptosporidium 18S rRNA gene PCR and sequencing, while genotypes of C. parvum were determined by gp60 and VNTR analysis. Results showed that 31.3% and 30.4% of pre- and post-partum dams tested positive for Cryptosporidium, respectively. In the adults, C. parvum (n = 52), C. bovis (n = 4) and C. andersoni (n = 19) were identified, while in the calves 248 out of 312 (79.5%) were PCR-positive for C. parvum. The proportion of positive calf samples was significantly higher (P < 0.0001) than the proportion of positive adult cattle during the first seven weeks of the calving season. In adult cattle, three distinct gp60 genotypes were identified, a predominant genotype IIaA15G2R1 (n = 36) and genotypes IIaA15R1 (n = 2) and IIaA14G2R1 (n = 1). In the calves, only genotype IIaA15G2R1 was detected (n = 125). Although C. parvum was observed in adult cattle two weeks after the start of the calving season, the predominant genotypes were not detected until Week 4 in both adults and calves, meaning it is still unclear whether adult cattle are the initial source of C. parvum infections on the farm. Historically calves on this dairy farm demonstrated the IIaA19G2R1 genotype, which, has now clearly been replaced with the IIaA15G2R1 genotype that is now found in both adults and calves. During the study season, significantly higher levels of neonatal calf mortality were observed compared to the seasons before (P = 0.046) and after (P = 0.0002). This study has shown comparable levels of C. parvum infection in both pre- and post-partum dams but higher levels of infection in neonatal calves.
Collapse
Affiliation(s)
- Paul M. Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom
| | - Johan H. Standar
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom
| |
Collapse
|
8
|
Argamjav B, Morioka K, Rosyadi I, Yunus M, Sato H. Eimerian and capillariid infection in farmed ring-necked pheasants (Phasianus colchicus karpowi) in Ehime, Japan, with special reference to their phylogenetic relationships with congeners. Parasitol Res 2023; 122:3189-3203. [PMID: 37947873 DOI: 10.1007/s00436-023-08014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
We performed a parasitological examination of the gastrointestinal tract of farmed ring-necked pheasants (Phasianus colchicus karpowi) on two farms in Ehime, Japan. Fecal examination through flotation and sedimentation methods (43, 103, and 50 samples in three consecutive years from 2020, respectively) detected coccidian oocysts (5-58%), or capillarid (40-56%) and heterakid eggs (45-72%). Following artificial sporology, most sporulated coccidian oocysts were ellipsoidal without micropyle nor residuum, but with 1-3 polar refractile granules, morphologically reminiscent of Eimeria phasiani (Apicomplexa: Eucoccidiorida: Eimeriidae). Intensive sequencing of mitochondrial cytochrome c oxidase subunit I gene (cox-1) using pan-eimerian primers and multiple oocyst samples from different pheasants indicated a single species. We characterized, for the first time, the cox-1 sequence of E. phasiani, known to be prevalent in wild and captive ring-necked pheasants worldwide. Worm recovery under a dissection microscope revealed two capillariid and one heterakid nematode species: Eucoleus perforans (Nematoda: Trichocephalida: Capillariidae) in the esophageal epithelium (prevalence, 8-73%), Capillaria phasianina (Capillariidae) in the cecal mucosa (10-87%), and Heterakis gallinarum (Nematoda: Ascaridida: Heterakidae) in the cecal lumen (69-88%). The small subunit ribosomal RNA gene (SSU rDNA) of E. perforans was perfectly identical to that in a previous isolate from farmed Japanese green pheasants (Phasianus colchicus versicolor) at a distant locality in Japan. The SSU rDNA of C. phasianina was characterized, for the first time, demonstrating a sister relationship with Capillaria anatis, parasites found in the ceca of domestic ducks, geese, and various wild anatid birds.
Collapse
Affiliation(s)
- Bayanzul Argamjav
- Laboratory of Parasitology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Kiyoko Morioka
- Uwajima Branch, Nanyo Livestock Health Center, Uwajima, Ehime, Japan
| | - Imron Rosyadi
- Laboratory of Parasitology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Gadjah Mada University, Sleman, Yogyakarta, Indonesia
| | - Muchammad Yunus
- Department of Parasitology, Faculty of Veterinary Medicine, Airlangga University, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Hiroshi Sato
- Laboratory of Parasitology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
- Department of Parasitology, Faculty of Veterinary Medicine, Airlangga University, Campus C, Mulyorejo, Surabaya, Indonesia.
| |
Collapse
|
9
|
Zhang YY, Zou Y, Li YQ, Ma PP, Liu ZL, Wang S, Sun XL. Subtyping of Nonhuman Primate-Adapted Cryptosporidium hominis in Macaca Fascicularis and Macaca mulatta in Yunnan Province, Southwestern China. Vector Borne Zoonotic Dis 2023. [PMID: 37326984 DOI: 10.1089/vbz.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Background: Cryptosporidium spp. are a type of protozoan parasite responsible for causing diarrheal illness worldwide. They infect a broad range of vertebrate hosts, including both non-human primates (NHPs) and humans. In fact, zoonotic transmission of cryptosporidiosis from NHPs to humans is frequently facilitated by direct contact between the two groups. However, there is a need to enhance the information available on the subtyping of Cryptosporidium spp. in NHPs in the Yunnan province of China. Materials and Methods: Thus, the study investigated the molecular prevalence and species of Cryptosporidium spp. from 392 stool samples of Macaca fascicularis (n = 335) and Macaca mulatta (n = 57) by using nested PCR targeting the large subunit of nuclear ribosomal RNA (LSU) gene. Of the 392 samples, 42 (10.71%) were tested Cryptosporidium-positive. Results: All the samples were identified as Cryptosporidium hominis. Further, the statistical analysis revealed that age is a risk factor for the infection of C. hominis. The probability of detecting C. hominis was found to be higher (odds ratio = 6.23, 95% confidence interval 1.73-22.38) in NHPs aged between 2 and 3 years, as compared with those younger than 2 years. Sequence analysis of the 60 kDa glycoprotein (gp60) identified six (IbA9 n = 4, IiA17 n = 5, InA23 n = 1, InA24 n = 2, InA25 n = 3, and InA26 n = 18) C. hominis subtypes with "TCA" repeats. Among these subtypes, it has been previously reported that the Ib family subtypes are also capable of infecting humans. Conclusion: The findings of this study highlight the genetic diversity of C. hominis infection among M. fascicularis and M. mulatta in Yunnan province. Further, the results confirm that both these NHPs are susceptible to C. hominis infection, posing a potential threat to humans.
Collapse
Affiliation(s)
- Yue-Yue Zhang
- Veterinary Public Health, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Yang Zou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Ya-Qi Li
- Veterinary Public Health, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R. China
| | - Ping-Ping Ma
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, P.R. China
| | - Zhong-Li Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Shuai Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xiao-Lin Sun
- Veterinary Public Health, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R. China
| |
Collapse
|
10
|
Rodríguez-Almonacid CC, Kellogg MK, Karamyshev AL, Karamysheva ZN. Ribosome Specialization in Protozoa Parasites. Int J Mol Sci 2023; 24:ijms24087484. [PMID: 37108644 PMCID: PMC10138883 DOI: 10.3390/ijms24087484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Ribosomes, in general, are viewed as constitutive macromolecular machines where protein synthesis takes place; however, this view has been recently challenged, supporting the hypothesis of ribosome specialization and opening a completely new field of research. Recent studies have demonstrated that ribosomes are heterogenous in their nature and can provide another layer of gene expression control by regulating translation. Heterogeneities in ribosomal RNA and ribosomal proteins that compose them favor the selective translation of different sub-pools of mRNAs and functional specialization. In recent years, the heterogeneity and specialization of ribosomes have been widely reported in different eukaryotic study models; however, few reports on this topic have been made on protozoa and even less on protozoa parasites of medical importance. This review analyzes heterogeneities of ribosomes in protozoa parasites highlighting the specialization in their functions and their importance in parasitism, in the transition between stages in their life cycle, in the change of host and in response to environmental conditions.
Collapse
Affiliation(s)
| | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | |
Collapse
|
11
|
Alja'fari J, Sharvelle S, Brinkman NE, Jahne M, Keely S, Wheaton EA, Garland J, Welty C, Sukop MC, Meixner T. Characterization of roof runoff microbial quality in four U.S. cities with varying climate and land use characteristics. WATER RESEARCH 2022; 225:119123. [PMID: 36166998 PMCID: PMC10236986 DOI: 10.1016/j.watres.2022.119123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 06/04/2023]
Abstract
Roof runoff has the potential to serve as an important local water source in regions with growing populations and limited water supply. Given the scarcity of guidance regulating the use of roof runoff, a need exists to characterize the microbial quality of roof runoff. The objective of this 2-year research effort was to examine roof runoff microbial quality in four U.S. cities: Fort Collins, CO; Tucson, AZ; Baltimore, MD; and Miami, FL. Seven participants, i.e., homeowners and schools, were recruited in each city to collect roof runoff samples across 13 precipitation events. Sample collection was done as part of a citizen science approach. The presence and concentrations of indicator organisms and potentially human-infectious pathogens in roof runoff were determined using culture methods and digital droplet polymerase chain reaction (ddPCR), respectively. The analyzed pathogens included Salmonella spp., Campylobacter spp., Giardia duodenalis, and Cryptosporidium parvum. Several factors were evaluated to study their influence on the presence of potentially human-infectious pathogens including the physicochemical characteristics (total suspended solids, volatile suspended solids, total dissolved solids, chemical oxygen demand, and turbidity) of roof runoff, concentrations of indicator organisms, presence/absence of trees, storm properties (rainfall depth and antecedent dry period), percent of impervious cover surrounding each sampling location, seasonality, and geographical location. E. coli and enterococci were detected in 73.4% and 96.2% of the analyzed samples, respectively. Concentrations of both E. coli and enterococci ranged from <0 log10 to >3.38 log10 MPN/100 mL. Salmonella spp. invA, Campylobacter spp. ceuE, and G. duodenalis β - giardin gene targets were detected in 8.9%, 2.5%, and 5.1% of the analyzed samples, respectively. Campylobacter spp. mapA and C. parvum 18S rRNA gene targets were not detected in any of the analyzed samples. The detection of Salmonella spp. invA was influenced by the geographical location of the sampling site (Chi-square p-value < 0.001) as well as the number of antecedent dry days prior to a rain event (p-value = 0.002, negative correlation). The antecedent dry period was negatively correlated with the occurrence of Campylobacter spp. ceuE as well (p-value = 0.07). On the other hand, the presence of G. duodenalis β-giardin in roof runoff was positively correlated with rainfall depth (p-value = 0.05). While physicochemical parameters and impervious area were not found to be correlated with the presence/absence of potentially human-infectious pathogens, significant correlations were found between meteorological parameters and the presence/absence of potentially human-infectious pathogens. Additionally, a weak, yet significant positive correlation, was found only between the concentrations of E. coli and those of Giardia duodenalis β-giardin. This dataset represents the largest-scale study to date of enteric pathogens in U.S. roof runoff collections and will inform treatment targets for different non-potable end uses for roof runoff. However, the dataset is limited by the low percent detection of bacterial and protozoan pathogens, an issue that is likely to persist challenging the characterization of roof runoff microbial quality given sampling limitations related to the volume and number of samples.
Collapse
Affiliation(s)
- Jumana Alja'fari
- Department of Civil and Environmental Engineering, Colorado State University, 700 Meridian Avenue, Fort Collins, CO 80523, USA.
| | - Sybil Sharvelle
- Department of Civil and Environmental Engineering, Colorado State University, 700 Meridian Avenue, Fort Collins, CO 80523, USA
| | - Nichole E Brinkman
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Michael Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Scott Keely
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Emily A Wheaton
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Jay Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Claire Welty
- Department of Chemical, Biological, and Environmental Engineering and Center for Urban Environmental Research and Education, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Michael C Sukop
- Department of Earth and Environment, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Thomas Meixner
- Department of Hydrology and Atmospheric Sciences, The University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Lagunas-Rangel FA. Ribosomal RNA Transcription Machineries in Intestinal Protozoan Parasites: A Bioinformatic Analysis. Acta Parasitol 2022; 67:1788-1799. [PMID: 36028726 DOI: 10.1007/s11686-022-00612-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Ribosome biogenesis is a key process in all living organisms, energetically expensive and tightly regulated. Currently, little is known about the components of the ribosomal RNA (rRNA) transcription machinery that are present in intestinal parasites, such as Giardia duodenalis, Cryptosporidium parvum, and Entamoeba histolytica. Thus, in the present work, an analysis was carried out looking for the components of the rRNA transcription machinery that are conserved in intestinal parasites and if these could be used to design new treatment strategies. METHODS The different components of the rRNA transcription machinery were searched in the studied parasites with the NCBI BLAST tool in the EuPathDB Bioinformatics Resource Center database. The sequences of the RRN3 and POLR1F orthologs were aligned and important regions identified. Subsequently, three-dimensional models were built with different bioinformatic tools and a structural analysis was performed. RESULTS Among the protozoa examined, C. parvum is the parasite with the fewest identifiable components of the rRNA transcription machinery. TBP, RRN3, POLR1A, POLR1B, POLR1C, POLR1D, POLR1F, POLR1H, POLR2E, POLR2F and POLR2H subunits were identified in all species studied. Furthermore, the interaction regions between RRN3 and POLR1F were found to be conserved and could be used to design drugs that inhibit rRNA transcription in the parasites studied. CONCLUSION The inhibition of the rRNA transcription machinery in parasites might be a new therapeutic strategy against these microorganisms.
Collapse
|
13
|
Fradette MS, Culley AI, Charette SJ. Detection of Cryptosporidium spp. and Giardia spp. in Environmental Water Samples: A Journey into the Past and New Perspectives. Microorganisms 2022; 10:microorganisms10061175. [PMID: 35744692 PMCID: PMC9228427 DOI: 10.3390/microorganisms10061175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
Among the major issues linked with producing safe water for consumption is the presence of the parasitic protozoa Cryptosporidium spp. and Giardia spp. Since they are both responsible for gastrointestinal illnesses that can be waterborne, their monitoring is crucial, especially in water sources feeding treatment plants. Although their discovery was made in the early 1900s and even before, it was only in 1999 that the U.S. Environmental Protection Agency (EPA) published a standardized protocol for the detection of these parasites, modified and named today the U.S. EPA 1623.1 Method. It involves the flow-through filtration of a large volume of the water of interest, the elution of the biological material retained on the filter, the purification of the (oo)cysts, and the detection by immunofluorescence of the target parasites. Since the 1990s, several molecular-biology-based techniques were also developed to detect Cryptosporidium and Giardia cells from environmental or clinical samples. The application of U.S. EPA 1623.1 as well as numerous biomolecular methods are reviewed in this article, and their advantages and disadvantages are discussed guiding the readers, such as graduate students, researchers, drinking water managers, epidemiologists, and public health specialists, through the ever-expanding number of techniques available in the literature for the detection of Cryptosporidium spp. and Giardia spp. in water.
Collapse
Affiliation(s)
- Marie-Stéphanie Fradette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Aménagement et Développement du Territoire (CRAD), Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence:
| | - Alexander I. Culley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Deksne G, Mateusa M, Cvetkova S, Derbakova A, Keidāne D, Troell K, Schares G. Prevalence, risk factor and diversity of Cryptosporidium in cattle in Latvia. Vet Parasitol Reg Stud Reports 2022; 28:100677. [PMID: 35115117 DOI: 10.1016/j.vprsr.2021.100677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
The epidemiology of Cryptosporidium spp. in Latvia was investigated by testing fecal samples from 926 animals aged from one day to 24 years for the presence of Cryptosporidium spp. oocysts. The samples were collected from 87 cattle farms and from four slaughterhouses, and analyzed by conventional and fluorescent microscopy, followed by Cryptosporidium species and C. parvum subtype differentiation. Moreover, using a questionnaire, we surveyed factors that could be relevant as risk factors of Cryptosporidium spp. infection on the farms. Cryptosporidium spp. were shed by 33.8% of the investigated cattle and at least one shedding animal was found on 77.8% of the farms. In the present study, all four Cryptosporidium species reported to commonly infect cattle and two additional Cryptosporidium species (C. scrofarum and C. ubiquitum) were identified. In addition, mix infections of C. parvum/C. bovis, C. bovis/C. ryanae, C. parvum/C. ryanae, C. parvum/C. andersoni and C. bovis/C. andersoni were observed. C. parvum and C. bovis was mostly prevalent in young animals (0-3 months old) and in addition, diarrhea associated with C. parvum infection was observed only in very young animals. Cryptosporidium andersoni and C. ryanae in age group 0-3 months was observed in low prevalence, while a higher proportion of animals with diarrhea associated with C. andersoni infection was observed in very young animals and with C. ryanae in animals age group 4-24 months. Eight previously described C. parvum subtypes were observed. The majority of the subtypes were in the IIa subtype family, while one subtype was identified from the IId subtype family. The most common subtype was IIaA15G2R1, which was found in 34.2% of the C. parvum successfully subtyped samples. The probability of Cryptosporidium spp. associated diarrhea in cattle decreased significantly with the age of the animals and a prolonged period during which calves were fed with milk.
Collapse
Affiliation(s)
- Gunita Deksne
- Institute of Food safety, Animal health and Environment "BIOR", Lejupes Str. 3, Riga LV-1076, Latvia; Faculty of Biology, University of Latvia, Jelgavas Str. 1, Riga LV-1004, Latvia.
| | - Maira Mateusa
- Institute of Food safety, Animal health and Environment "BIOR", Lejupes Str. 3, Riga LV-1076, Latvia; Faculty of Veterinary Medicine, University of Life sciences and Technologies, K. Helmaņa Str. 8, Jelgava LV-3004, Latvia.
| | - Svetlana Cvetkova
- Institute of Food safety, Animal health and Environment "BIOR", Lejupes Str. 3, Riga LV-1076, Latvia.
| | - Alīna Derbakova
- Faculty of Veterinary Medicine, University of Life sciences and Technologies, K. Helmaņa Str. 8, Jelgava LV-3004, Latvia
| | - Dace Keidāne
- Faculty of Veterinary Medicine, University of Life sciences and Technologies, K. Helmaņa Str. 8, Jelgava LV-3004, Latvia.
| | - Karin Troell
- National Veterinary Institute, SE-751 89 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
15
|
Development and evaluation of a molecular based protocol for detection and quantification of Cryptosporidium spp. In wastewater. Exp Parasitol 2022; 234:108216. [DOI: 10.1016/j.exppara.2022.108216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
16
|
Prediger J, Ježková J, Holubová N, Sak B, Konečný R, Rost M, McEvoy J, Rajský D, Kváč M. Cryptosporidium sciurinum n. sp. (Apicomplexa: Cryptosporidiidae) in Eurasian Red Squirrels ( Sciurus vulgaris). Microorganisms 2021; 9:2050. [PMID: 34683369 PMCID: PMC8537388 DOI: 10.3390/microorganisms9102050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptosporidium spp. are common protozoan pathogens in mammals. The diversity and biology of Cryptosporidium in tree squirrels are not well studied. A total of 258 Eurasian red squirrels (Sciurus vulgaris) from 25 and 15 locations in the Czech Republic and Slovakia, respectively, were examined for Cryptosporidium spp. oocysts and specific DNA at the SSU, actin, HSP70, TRAP-C1, COWP, and gp60 loci. Out of 26 positive animals, only juveniles (9/12) were microscopically positive (18,000 to 72,000 OPG), and molecular analyses revealed the presence of Cryptosporidium sp. ferret genotype in all specimens. Oocysts obtained from naturally-infected squirrels measured 5.54-5.22 μm and were not infectious for laboratory mice (BALB/c and SCID), Mongolian gerbils, Guinea pigs, Southern multimammate mice, chickens, or budgerigars. None of naturally infected squirrels showed clinical signs of disease. The frequency of occurrence of the ferret genotype in squirrels did not vary statistically based on host age, gender or country of capture. Phylogenetic analysis of sequences from six loci revealed that Cryptosporidium sp. ferret genotype is genetically distinct from the currently accepted Cryptosporidium species. Morphological and biological data from this and previous studies support the establishment of Cryptosporidium sp. ferret genotype as a new species, Cryptosporidium sciurinum n. sp.
Collapse
Affiliation(s)
- Jitka Prediger
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.P.); (J.J.); (N.H.); (R.K.); (M.R.)
| | - Jana Ježková
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.P.); (J.J.); (N.H.); (R.K.); (M.R.)
| | - Nikola Holubová
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.P.); (J.J.); (N.H.); (R.K.); (M.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic;
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic;
| | - Roman Konečný
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.P.); (J.J.); (N.H.); (R.K.); (M.R.)
| | - Michael Rost
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.P.); (J.J.); (N.H.); (R.K.); (M.R.)
| | - John McEvoy
- Microbiological Sciences Department, North Dakota State University, 1523 Centennial Blvd, Van Es Hall, Fargo, ND 58102, USA;
| | - Dušan Rajský
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 960 01 Zvolen, Slovakia;
| | - Martin Kváč
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.P.); (J.J.); (N.H.); (R.K.); (M.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic;
| |
Collapse
|
17
|
Ježková J, Limpouchová Z, Prediger J, Holubová N, Sak B, Konečný R, Květoňová D, Hlásková L, Rost M, McEvoy J, Rajský D, Feng Y, Kváč M. Cryptosporidium myocastoris n. sp. (Apicomplexa: Cryptosporidiidae), the Species Adapted to the Nutria ( Myocastor coypus). Microorganisms 2021; 9:813. [PMID: 33921541 PMCID: PMC8069493 DOI: 10.3390/microorganisms9040813] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cryptosporidium spp., common parasites of vertebrates, remain poorly studied in wildlife. This study describes the novel Cryptosporidium species adapted to nutrias (Myocastor coypus). A total of 150 faecal samples of feral nutria were collected from locations in the Czech Republic and Slovakia and examined for Cryptosporidium spp. oocysts and specific DNA at the SSU, actin, HSP70, and gp60 loci. Molecular analyses revealed the presence of C. parvum (n = 1), C. ubiquitum subtype family XIId (n = 5) and Cryptosporidium myocastoris n. sp. XXIIa (n = 2), and XXIIb (n = 3). Only nutrias positive for C. myocastoris shed microscopically detectable oocysts, which measured 4.8-5.2 × 4.7-5.0 µm, and oocysts were infectious for experimentally infected nutrias with a prepatent period of 5-6 days, although not for mice, gerbils, or chickens. The infection was localised in jejunum and ileum without observable macroscopic changes. The microvilli adjacent to attached stages responded by elongating. Clinical signs were not observed in naturally or experimentally infected nutrias. Phylogenetic analyses at SSU, actin, and HSP70 loci demonstrated that C. myocastoris n. sp. is distinct from other valid Cryptosporidium species.
Collapse
Affiliation(s)
- Jana Ježková
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - Zlata Limpouchová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Jitka Prediger
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - Nikola Holubová
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Roman Konečný
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Lenka Hlásková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Michael Rost
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - John McEvoy
- Microbiological Sciences Department, North Dakota State University, 1523 Centennial Blvd, Van Es Hall, Fargo, ND 58102, USA;
| | - Dušan Rajský
- Faculty of Forestry, Technical University in Zvolen, 960 01 Zvolen, Slovakia;
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Martin Kváč
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| |
Collapse
|
18
|
Zahedi A, Ryan U, Rawlings V, Greay T, Hancock S, Bruce M, Jacobson C. Cryptosporidium and Giardia in dam water on sheep farms – An important source of transmission? Vet Parasitol 2020. [DOI: 10.1108/01435129610106083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Cryptosporidium and Giardia in dam water on sheep farms - An important source of transmission? Vet Parasitol 2020; 288:109281. [PMID: 33142151 DOI: 10.1016/j.vetpar.2020.109281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Cryptosporidium and Giardia infections can negatively impact livestock health and reduce productivity, and some species and genotypes infecting livestock have zoonotic potential. Infection occurs via the faecal-oral route. Waterborne infections are a recognised source of infection for humans, but the role of livestock drinking water as a source of infection in livestock has not been described. This study aimed to determine whether contaminated drinking water supplies, such as farm dams, are a likely transmission source for Cryptosporidium and Giardia infections for extensively managed sheep. Dam water samples (n = 47) were collected during autumn, winter and spring from 12 farm dams located on six different farms in south west Western Australia, and faecal samples (n = 349) were collected from sheep with access to these dams. All samples were initially screened for Cryptosporidium spp. at the 18S locus and Giardia spp. at the gdh gene using qPCR, and oocyst numbers were determined directly from the qPCR data using DNA standards calibrated by droplet digital PCR. Cryptosporidium-positive sheep faecal samples were typed and subtyped by sequence analysis of 18S and gp60 loci, respectively. Giardia-specific PCR and Sanger sequencing targeting tpi and gdh loci were performed on Giardia- positive sheep faecal samples to characterise Giardia duodenalis assemblages. To identify Cryptosporidium and Giardia spp. in dam water samples, next-generation sequencing analysis of 18S and gdh amplicons were performed, respectively. Two species of Cryptosporidium (Cryptosporidium xiaoi and Cryptospordium ubiquitum (subtype family XIIa)) were detected in 38/345 sheep faecal samples, and in water from 9/12 farm dams during the study period, with C. xiaoi the species most frequently detected in both faeces and dam water overall. Giardia duodenalis assemblages AI, AII and E were detected in 36/348 faecal samples and water from 10/12 farm dams. For dam water samples where oo/cysts were detected by qPCR, Cryptosporidium oocyst concentration ranged from 518-2429 oocysts/L (n = 14), and Giardia cyst concentration ranged from 102 to 1077 cysts/L (n = 17). Cryptosporidium and Giardia with zoonotic potential were detected in farm dam water, including C. ubiquitum, C. hominis, C. parvum, C. cuniculus, C. xiaoi, and G. duodenalis assemblages A, B and E. The findings suggest that dam water can be contaminated with Cryptosporidium species and G. duodenalis assemblages that may infect sheep and with zoonotic potential, and farm dam water may represent one source of transmission for infections.
Collapse
|
20
|
Cardenas D, Bhalchandra S, Lamisere H, Chen Y, Zeng XL, Ramani S, Karandikar UC, Kaplan DL, Estes MK, Ward HD. Two- and Three-Dimensional Bioengineered Human Intestinal Tissue Models for Cryptosporidium. Methods Mol Biol 2020; 2052:373-402. [PMID: 31452173 PMCID: PMC7058245 DOI: 10.1007/978-1-4939-9748-0_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conventional cell cultures utilizing transformed or immortalized cell lines or primary human epithelial cells have played a fundamental role in furthering our understanding of Cryptosporidium infection. However, they remain inadequate with respect to their inability to emulate in vivo conditions, support long-term growth, and complete the life cycle of the parasite. Previously, we developed a 3D silk scaffold-based model using transformed human intestinal epithelial cells (IECs). This model supported C. parvum infection for up to 2 weeks and resulted in completion of the life cycle of the parasite. However, transformed IECs are not representative of primary human IEC.Human intestinal enteroids (HIEs) are cultures derived from crypts that contain Lgr5+ stem cells isolated from human biopsies or surgical intestinal tissues; these established multicellular cultures can be induced to differentiate into enterocytes, enteroendocrine cells, goblet cells, Paneth cells, and tuft cells. HIEs better represent human intestinal structure and function than immortalized IEC lines. Recently, significant progress has been made in the development of technologies to culture HIEs in vitro. When grown in a 3D matrix, HIEs provide a spatial organization resembling the native human intestinal epithelium. Additionally, they can be dissociated and grown as monolayers in tissue culture plates, permeable supports or silk scaffolds that enable mechanistic studies of pathogen infections. They can also be co-cultured with other human cells such as macrophages and myofibroblasts. The HIEs grown in these novel culture systems recapitulate the physiology, the 3D architecture, and functional diversity of native intestinal epithelium and provide a powerful and promising new tool to study Cryptosporidium-host cell interactions and screen for interventions ex vivo. In this chapter, we describe the 3D silk scaffold-based model using transformed IEC co-cultured with human intestinal myofibroblasts and 2D and 3D HIE-derived models of Cryptosporidium, also co-cultured with human intestinal myofibroblasts.
Collapse
Affiliation(s)
| | | | - Hymlaire Lamisere
- Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Ying Chen
- Tufts University School of Engineering, Medford, MA, USA
| | - Xi-Lei Zeng
- Baylor College of Medicine, Houston, TX, USA
| | | | | | - David L Kaplan
- Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
- Tufts University School of Engineering, Medford, MA, USA
| | | | - Honorine D Ward
- Tufts Medical Center, Boston, MA, USA.
- Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA.
| |
Collapse
|
21
|
Isolation, genotyping and subtyping of single Cryptosporidium oocysts from calves with special reference to zoonotic significance. Vet Parasitol 2019; 271:80-86. [PMID: 31303210 DOI: 10.1016/j.vetpar.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/31/2023]
Abstract
The ability of the small-subunit ribosomal RNA (SSU rRNA) based nested PCR and Restriction Fragment Length Polymorphism (PCR-RFLP) to identify and genotype a single Cryptosporidium oocyst isolated from bovine faecal samples was evaluated in this study. In addition, subtyping was carried out by sequencing the 60 kDa glycoprotein (gp60) gene from the same single oocyst. Faecal samples were collected from 40 pre-weaned calves (5-20 days old) from 7 dairy farms located in 3 different counties within the Finger Lakes region of Upstate New York. All the samples were microscopically positive for Cryptosporidium spp. A total of 400 Cryptosporidium oocysts (10 single oocysts from each calf sample) were individually isolated and analyzed using a nested PCR targeting the SSU rRNA gene. The SSU rRNA gene was amplified in 324 (81%) individual oocysts. All SSU rRNA amplified individual oocysts DNA was genotyped using PCR-RFLP. C. parvum was the only identified species; 107 single oocysts generated PCR products from the A gene, 18 generated PCR products from the B gene and 199 generated PCR products from both. Sequence analysis of the gp60 gene in 99 individual oocysts revealed the presence of only subtype IIaA15G2R1 with 99.4-100% and 99.1-100% identity of nucleotides and amino acids, respectively. These sequences were identical (100%) in oocysts from 35 calves and exhibited mutations in the non-repeat region of the gp60 gene in those of 5 other calves. The examination of DNA from individual oocysts with genotyping and subtyping tools provides methodology to more clearly define the genetic characteristics of Cryptosporidium spp. on farms and within individual animals.
Collapse
|
22
|
Batista JMN, de Carvalho C, Pedro WA, Santana BN, Camargo VS, Ferrari ED, Nascimento IG, Meireles MV. Identification of Cryptosporidium bat genotypes XVI-XVIII in bats from Brazil. Parasitol Res 2019; 118:2183-2191. [PMID: 31076871 DOI: 10.1007/s00436-019-06342-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/29/2019] [Indexed: 11/29/2022]
Abstract
Cryptosporidiosis is an emergent zoonotic disease caused by the globally distributed protozoa Cryptosporidium spp. Although several Cryptosporidium studies related to humans and many animal species have been published, there are still limited studies on the epidemiology of Cryptosporidium infection in bats. The aim of this study was to determine the occurrence of Cryptosporidium spp. and to perform the molecular characterization of Cryptosporidium species and genotypes in fecal samples from bats in an urban area of the municipality of Araçatuba, state of São Paulo, Brazil. Nested PCR targeting the 18S rRNA, actin, and HSP-70 genes was performed to screen 141 fecal samples from bats and detected Cryptosporidium spp. in 16.3% (23/141) of the samples. Bidirectional sequencing identified three novel Cryptosporidium bat genotypes (XVI, XVII, and XVIII) and a new genotype (18SH) genetically similar to Cryptosporidium avium in six species of bats. This is the first report on the occurrence and molecular characterization of Cryptosporidium spp. in Brazilian bats. Zoonotic Cryptosporidium species were not found in fecal samples from bats living in an urban area in the municipality of Araçatuba, state of São Paulo, Brazil.
Collapse
Affiliation(s)
- Juliana Maria N Batista
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Cristiano de Carvalho
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Wagner A Pedro
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Bruna N Santana
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Vinícius S Camargo
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Elis D Ferrari
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Isabela G Nascimento
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Marcelo V Meireles
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
23
|
Hrazdilová K, Myśliwy I, Hildebrand J, Buńkowska-Gawlik K, Janaczyk B, Perec-Matysiak A, Modrý D. Paralogs vs. genotypes? Variability of Babesia canis assessed by 18S rDNA and two mitochondrial markers. Vet Parasitol 2019; 266:103-110. [PMID: 30736942 DOI: 10.1016/j.vetpar.2018.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/30/2022]
Abstract
Canine babesiosis caused by Babesia canis sensu stricto became an emerging disease of dogs across Europe calling for attention also in countries where it was an only rare imported disease. An easy accessibility of molecular methods and the growing amount of sequencing data led to the description of intraspecific variability in 18S rDNA sequences designated as "genotypes". Using material from a homogenous cohort of dogs with microscopically confirmed canine babesiosis caused by B. canis, we evaluated Babesia intraspecific variability and amplification sensitivity of three different genes (18S rDNA, COI, Cytb) to assess their potential as diagnostic or phylogenetic markers. In raw sequencing data obtained, we observed at least 3 ambiguous positions in up to 86% of chromatograms within the ∼560 bp fragment of 18S rDNA suggesting the existence of several, not identical copies of this gene. Our COI haplotype analysis resulted in a star-like pattern indicating a recent origin of most haplotypes, but not supporting the existence of two dominant haplotypes. Similarly, the Cytb sequences obtained from samples with all variants of 18S rDNA were identical. We corroborate previous observations from three other European countries and bring the evidence of the existence of 18S rDNA paralogs in B. canis genome replacing currently used "genotype" theory.
Collapse
Affiliation(s)
- Kristýna Hrazdilová
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic; Department of Virology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Izabella Myśliwy
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Joanna Hildebrand
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Katarzyna Buńkowska-Gawlik
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Bartłomiej Janaczyk
- Vetlab, Veterinary Diagnostic Laboratory, Parkowa 13, 51-616, Wrocław, Poland
| | - Agnieszka Perec-Matysiak
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - David Modrý
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic; Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
24
|
Zahedi A, Gofton AW, Greay T, Monis P, Oskam C, Ball A, Bath A, Watkinson A, Robertson I, Ryan U. Profiling the diversity of Cryptosporidium species and genotypes in wastewater treatment plants in Australia using next generation sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:635-648. [PMID: 30743878 DOI: 10.1016/j.scitotenv.2018.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 06/09/2023]
Abstract
Wastewater recycling is an increasingly popular option in worldwide to reduce pressure on water supplies due to population growth and climate change. Cryptosporidium spp. are among the most common parasites found in wastewater and understanding the prevalence of human-infectious species is essential for accurate quantitative microbial risk assessment (QMRA) and cost-effective management of wastewater. The present study conducted next generation sequencing (NGS) to determine the prevalence and diversity of Cryptosporidium species in 730 raw influent samples from 25 Australian wastewater treatment plants (WWTPs) across three states: New South Wales (NSW), Queensland (QLD) and Western Australia (WA), between 2014 and 2015. All samples were screened for the presence of Cryptosporidium at the 18S rRNA (18S) locus using quantitative PCR (qPCR), oocyst numbers were determined directly from the qPCR data using DNA standards calibrated by droplet digital PCR, and positives were characterized using NGS of 18S amplicons. Positives were also screened using C. parvum and C. hominis specific qPCRs. The overall Cryptosporidium prevalence was 11.4% (83/730): 14.3% (3/21) in NSW; 10.8% (51/470) in QLD; and 12.1% (29/239) in WA. A total of 17 Cryptosporidium species and six genotypes were detected by NGS. In NSW, C. hominis and Cryptosporidium rat genotype III were the most prevalent species (9.5% each). In QLD, C. galli, C. muris and C. parvum were the three most prevalent species (7.7%, 5.7%, and 4.5%, respectively), while in WA, C. meleagridis was the most prevalent species (6.3%). The oocyst load/Litre ranged from 70 to 18,055 oocysts/L (overall mean of 3426 oocysts/L: 4746 oocysts/L in NSW; 3578 oocysts/L in QLD; and 3292 oocysts/L in WA). NGS-based profiling demonstrated that Cryptosporidium is prevalent in the raw influent across Australia and revealed a large diversity of Cryptosporidium species and genotypes, which indicates the potential contribution of livestock, wildlife and birds to wastewater contamination.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Telleasha Greay
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Charlotte Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | - Andrew Watkinson
- Seqwater, Ipswich, Queensland, Australia; University of Queensland, St Lucia, Queensland, Australia
| | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Centre for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
25
|
Ren K, Xue Y, Rønn R, Liu L, Chen H, Rensing C, Yang J. Dynamics and determinants of amoeba community, occurrence and abundance in subtropical reservoirs and rivers. WATER RESEARCH 2018; 146:177-186. [PMID: 30243060 DOI: 10.1016/j.watres.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Free-living amoebae are widespread in freshwater ecosystems. Although many studies have investigated changes in their communities across space, the temporal variability and the drivers of community changes across different habitat types are poorly understood. A total of 108 surface water samples were collected on a seasonal basis from four reservoirs and two rivers in Xiamen city, subtropical China. We used high throughput sequencing and qPCR methods to explore the occurrence and abundance of free-living amoebae. In total, 335 amoeba OTUs were detected, and only 32 OTUs were shared by reservoir and river habitats. The reservoirs and rivers harbored unique amoebae communities and exhibited distinct seasonal patterns in community composition. High abundance of the 18S rRNA gene of Acanthamoeba was observed in spring and summer, whereas the abundance was low in autumn and winter. In addition, the abundance of Hartmannella was significantly higher when isolated from reservoirs in summer/autumn and from river in spring/summer. Moreover, the temporal patterns of amoebae communities were significantly associated with water temperature, indicating that temperature is an important variable controlling the ecological dynamics of amoebae populations. However, our comparative analysis indicated that both environmental selection, and neutral processes, significantly contributed to amoeba community assembly. The genera detected here include pathogenic species and species that can act as vectors for microbial pathogens, which can cause human infections.
Collapse
Affiliation(s)
- Kexin Ren
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Regin Rønn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Arctic Station, University of Copenhagen, Qeqertarsuaq, Greenland; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lemian Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and the Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
26
|
Zahedi A, Monis P, Gofton AW, Oskam CL, Ball A, Bath A, Bartkow M, Robertson I, Ryan U. Cryptosporidium species and subtypes in animals inhabiting drinking water catchments in three states across Australia. WATER RESEARCH 2018; 134:327-340. [PMID: 29438893 DOI: 10.1016/j.watres.2018.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
As part of long-term monitoring of Cryptosporidium in water catchments serving Western Australia, New South Wales (Sydney) and Queensland, Australia, we characterised Cryptosporidium in a total of 5774 faecal samples from 17 known host species and 7 unknown bird samples, in 11 water catchment areas over a period of 30 months (July 2013 to December 2015). All samples were initially screened for Cryptosporidium spp. at the 18S rRNA locus using a quantitative PCR (qPCR). Positives samples were then typed by sequence analysis of an 825 bp fragment of the 18S gene and subtyped at the glycoprotein 60 (gp60) locus (832 bp). The overall prevalence of Cryptosporidium across the various hosts sampled was 18.3% (1054/5774; 95% CI, 17.3-19.3). Of these, 873 samples produced clean Sanger sequencing chromatograms, and the remaining 181 samples, which initially produced chromatograms suggesting the presence of multiple different sequences, were re-analysed by Next- Generation Sequencing (NGS) to resolve the presence of Cryptosporidium and the species composition of potential mixed infections. The overall prevalence of confirmed mixed infection was 1.7% (98/5774), and in the remaining 83 samples, NGS only detected one species of Cryptosporidium. Of the 17 Cryptosporidium species and four genotypes detected (Sanger sequencing combined with NGS), 13 are capable of infecting humans; C. parvum, C. hominis, C. ubiquitum, C. cuniculus, C. meleagridis, C. canis, C. felis, C. muris, C. suis, C. scrofarum, C. bovis, C. erinacei and C. fayeri. Oocyst numbers per gram of faeces (g-1) were also determined using qPCR, with medians varying from 6021-61,064 across the three states. The significant findings were the detection of C. hominis in cattle and kangaroo faeces and the high prevalence of C. parvum in cattle. In addition, two novel C. fayeri subtypes (IVaA11G3T1 and IVgA10G1T1R1) and one novel C. meleagridis subtype (IIIeA18G2R1) were identified. This is also the first report of C. erinacei in Australia. Future work to monitor the prevalence of Cryptosporidium species and subtypes in animals in these catchments is warranted.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Charlotte L Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | | | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
27
|
Chelbi H, Essid R, Jelassi R, Bouzekri N, Zidi I, Ben Salah H, Mrad I, Ben Sghaier I, Abdelmalek R, Aissa S, Bouratbine A, Aoun K. High-resolution melting-curve (HRM) analysis for C. meleagridis identification in stool samples. Microb Pathog 2018; 115:332-337. [DOI: 10.1016/j.micpath.2017.12.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
|
28
|
Koehler AV, Korhonen PK, Hall RS, Young ND, Wang T, Haydon SR, Gasser RB. Use of a bioinformatic-assisted primer design strategy to establish a new nested PCR-based method for Cryptosporidium. Parasit Vectors 2017; 10:509. [PMID: 29061171 PMCID: PMC5654123 DOI: 10.1186/s13071-017-2462-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The accurate tracking of Cryptosporidium in faecal, water and/or soil samples in water catchment areas is central to developing strategies to manage the potential risk of cryptosporidiosis transmission to humans. Various PCR assays are used for this purpose. Although some assays achieve specific amplification from Cryptosporidium DNA in animal faecal samples, some do not. Indeed, we have observed non-specificity of some oligonucleotide primers in the small subunit of nuclear ribosomal RNA gene (SSU), which has presented an obstacle to the identification and classification of Cryptosporidium species and genotypes (taxa) from faecal samples. RESULTS Using a novel bioinformatic approach, we explored all available Cryptosporidium genome sequences for new and diagnostically-informative, multi-copy regions to specifically design oligonucleotide primers in the large subunit of nuclear ribosomal RNA gene (LSU) as a basis for an effective nested PCR-based sequencing method for the identification and/or classification of Cryptosporidium taxa. CONCLUSION This newly established PCR, which has high analytical specificity and sensitivity, is now in routine use in our laboratory, together with other assays developed by various colleagues. Although the present bioinformatic workflow used here was for the specific design of primers in nuclear DNA of Cryptosporidium, this approach should be broadly applicable to many other microorganisms.
Collapse
Affiliation(s)
- Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ross S Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
29
|
Cryptosporidium infecting wild cricetid rodents from the subfamilies Arvicolinae and Neotominae. Parasitology 2017; 145:326-334. [PMID: 28870264 DOI: 10.1017/s0031182017001524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We undertook a study on Cryptosporidium spp. in wild cricetid rodents. Fecal samples were collected from meadow voles (Microtus pennsylvanicus), southern red-backed voles (Myodes gapperi), woodland voles (Microtus pinetorum), muskrats (Ondatra zibethicus) and Peromyscus spp. mice in North America, and from bank voles (Myodes glareolus) and common voles (Microtus arvalis) in Europe. Isolates were characterized by sequence and phylogenetic analyses of the small subunit ribosomal RNA (SSU) and actin genes. Overall, 33·2% (362/1089) of cricetids tested positive for Cryptosporidium, with a greater prevalence in cricetids from North America (50·7%; 302/596) than Europe (12·1%; 60/493). Principal Coordinate analysis separated SSU sequences into three major groups (G1-G3), each represented by sequences from North American and European cricetids. A maximum likelihood tree of SSU sequences had low bootstrap support and showed G1 to be more heterogeneous than G2 or G3. Actin and concatenated actin-SSU trees, which were better resolved and had higher bootstrap support than the SSU phylogeny, showed that closely related cricetid hosts in Europe and North America are infected with closely related Cryptosporidium genotypes. Cricetids were not major reservoirs of human pathogenic Cryptosporidium spp.
Collapse
|
30
|
Piva S, Caffara M, Pasquali F, Castagnetti C, Iacono E, Massella E, Zanoni RG, Galuppi R. Detection and quantification of Cryptosporidium oocysts in environmental surfaces of an Equine Perinatology Unit. Prev Vet Med 2016; 131:67-74. [PMID: 27544254 DOI: 10.1016/j.prevetmed.2016.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/18/2016] [Accepted: 04/23/2016] [Indexed: 11/29/2022]
Abstract
The presence of Cryptosporidium in institutions such as veterinary teaching hospitals, where students and staff are in frequent contact with animals, could represent a serious public health risk. In this study the detection and quantification of the Cryptosporidium oocysts present on the environmental surfaces of an Equine Perinatology Unit (EPU) were investigated. During 3 foaling seasons 175 samples obtained by swabbing an area of the floor and walls of boxes and utility rooms of EPU with sterile gauze, in 3 different moments. Samples were collected at the end of foaling season (July), after washing procedures (September) and after washing and disinfecting procedures, at the beginning of a new foaling season (December). All the samples were subjected to nested-PCR, followed by genotyping and sub-typing methods and to qPCR, allowing the oocyst quantification. Cryptosporidium spp. was detected in 14 samples, of which 11 were from walls and three were from floors. The highest number of oocysts was found in a sample collected from the floor of one utility room used for setting up therapies and treatments. In most cases, oocyst numbers, estimated by qPCR, were reduced or eliminated after washing and disinfecting procedures. The genotyping and sub-typing methods allowed identification of 2 subtypes of C. parvum (IIaA15G2R1 and IIdA23G1) and 1 of Cryptosporidium horse genotype (VIaA15G4) that were described in foals hospitalized at the EPU in the same years. The results of the present study show that qPCR can be used to evaluate Cryptosporidium contamination of environmental surfaces of a veterinary teaching hospital and the efficacy of the disinfection procedures.
Collapse
Affiliation(s)
- Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy.
| | - Monica Caffara
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Frédérique Pasquali
- Department of Agricultural and Food Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Carolina Castagnetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Elisa Massella
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Renato Giulio Zanoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
31
|
The Brief Case: Cryptosporidiosis in a Severely Immunocompromised HIV Patient. J Clin Microbiol 2016; 54:2219-21. [PMID: 27578154 DOI: 10.1128/jcm.00212-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Prevalence of Cryptosporidium spp., Enterocytozoon bieneusi, Encephalitozoon spp. and Giardia intestinalis in Wild, Semi-Wild and Captive Orangutans (Pongo abelii and Pongo pygmaeus) on Sumatra and Borneo, Indonesia. PLoS One 2016; 11:e0152771. [PMID: 27031241 PMCID: PMC4816420 DOI: 10.1371/journal.pone.0152771] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/18/2016] [Indexed: 11/19/2022] Open
Abstract
Background Orangutans are critically endangered primarily due to loss and fragmentation of their natural habitat. This could bring them into closer contact with humans and increase the risk of zoonotic pathogen transmission. Aims To describe the prevalence and diversity of Cryptosporidium spp., microsporidia and Giardia intestinalis in orangutans at seven sites on Sumatra and Kalimantan, and to evaluate the impact of orangutans’ habituation and location on the occurrence of these zoonotic protists. Result The overall prevalence of parasites in 298 examined animals was 11.1%. The most prevalent microsporidia was Encephalitozoon cuniculi genotype II, found in 21 animals (7.0%). Enterocytozoon bieneusi genotype D (n = 5) and novel genotype Pongo 2 were detected only in six individuals (2.0%). To the best of our knowledge, this is the first report of these parasites in orangutans. Eight animals were positive for Cryptosporidium spp. (2.7%), including C. parvum (n = 2) and C. muris (n = 6). Giardia intestinalis assemblage B, subtype MB6, was identified in a single individual. While no significant differences between the different human contact level groups (p = 0.479–0.670) or between the different islands (p = 0.992) were reported in case of E. bieneusi or E. cuniculi, Cryptosporidium spp. was significantly less frequently detected in wild individuals (p < 2×10−16) and was significantly more prevalent in orangutans on Kalimantan than on Sumatra (p < 2×10−16). Conclusion Our results revealed that wild orangutans are significantly less frequently infected by Cryptosporidium spp. than captive and semi-wild animals. In addition, this parasite was more frequently detected at localities on Kalimantan. In contrast, we did not detect any significant difference in the prevalence of microsporidia between the studied groups of animals. The sources and transmission modes of infections were not determined, as this would require repeated sampling of individuals, examination of water sources, and sampling of humans and animals sharing the habitat with orangutans.
Collapse
|
33
|
Molecular phylogenetic analyses of tissue coccidia (sarcocystidae; apicomplexa) based on nuclear 18s RDNA and mitochondrial COI sequences confirms the paraphyly of the genus Hammondia. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/pao.2015.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYPartial mitochondrial cytochromecoxidase subunit I (mt COI) sequences were generated from:Toxoplasma gondii(strains CTG, GTI, MAS, ME49, PTG, TgCatBr5, TgCat, Br64, TgCgCal, TgToucan);Neospora caninum(Strain NC1);Hammondia hammondi(Strain H.H–20);H. heydorni; H. cf.triffittae; Cystoisospora felis; C. suis; C. canis; C. rivolta; C. cf.ohioensis; Caryospora bigenetica; Sarcocystis rileyi; andS. neurona. Nuclear 18S rDNA sequences were generated forH. heydorni, H. hammondi, C. suis, C. canis, C. felis, C. rivolta, C. cf.ohioensis, S. neurona, andS. rileyi. Aligned, concatenated 18S rDNA and COI sequences were Bayesian analysed using partitioned nucleotide substitution models [HKY + I + G for 18S; GTR + I + G codon (code = metmt) for COI]. Phylogenetic hypotheses supported a monophyletic Sarcocystidae and its subfamilie with two major clades within the Toxoplasmatinae: (1) a monophyletic clade ofCystoisosporaspp. withNephroisospora eptesici; and (2) a clade ofToxoplasma, NeosporaandHammondia. Within the latter,Hammondiawas shown to be paraphyletic;H. heydorniandH. triffittaewere monophyletic withN. caninum[canine definitive hosts (DHs)], whereasH. hammondiwas monophyletic withT. gondii(feline DHs). A new genus is erected to resolve the paraphyly of the genusHammondiaconfirmed using mt COI and combined 18S/COI sequence datasets.
Collapse
|
34
|
Rapid and sensitive detection of Babesia bovis and Babesia bigemina by loop-mediated isothermal amplification combined with a lateral flow dipstick. Vet Parasitol 2016; 219:71-6. [DOI: 10.1016/j.vetpar.2016.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 11/20/2022]
|
35
|
Chelladurai JJ, Clark ME, Kváč M, Holubová N, Khan E, Stenger BLS, Giddings CW, McEvoy J. Cryptosporidium galli and novel Cryptosporidium avian genotype VI in North American red-winged blackbirds (Agelaius phoeniceus). Parasitol Res 2016; 115:1901-6. [DOI: 10.1007/s00436-016-4930-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
36
|
Song J, Kim CY, Chang SN, Abdelkader TS, Han J, Kim TH, Oh H, Lee JM, Kim DS, Kim JT, Oh HS, Hur M, Suh JH, Park JH. Detection and Molecular Characterization of Cryptosporidium spp. from Wild Rodents and Insectivores in South Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:737-43. [PMID: 26797442 PMCID: PMC4725228 DOI: 10.3347/kjp.2015.53.6.737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/10/2015] [Accepted: 09/10/2015] [Indexed: 11/23/2022]
Abstract
In order to examine the prevalence of Cryptosporidium infection in wild rodents and insectivores of South Korea and to assess their potential role as a source of human cryptosporidiosis, a total of 199 wild rodents and insectivore specimens were collected from 10 regions of South Korea and screened for Cryptosporidium infection over a period of 2 years (2012-2013). A nested-PCR amplification of Cryptosporidium oocyst wall protein (COWP) gene fragment revealed an overall prevalence of 34.2% (68/199). The sequence analysis of 18S rRNA gene locus of Cryptosporidium was performed from the fecal and cecum samples that tested positive by COWP amplification PCR. As a result, we identified 4 species/genotypes; chipmunk genotype I, cervine genotype I, C. muris, and a new genotype which is closely related to the bear genotype. The new genotype isolated from 12 Apodemus agrarius and 2 Apodemus chejuensis was not previously identified as known species or genotype, and therefore, it is supposed to be a novel genotype. In addition, the host spectrum of Cryptosporidium was extended to A. agrarius and Crosidura lasiura, which had not been reported before. In this study, we found that the Korean wild rodents and insectivores were infected with various Cryptosporidium spp. with large intra-genotypic variationa, indicating that they may function as potential reservoirs transmitting zoonotic Cryptosporidium to livestock and humans.
Collapse
Affiliation(s)
- Juha Song
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 03080, Korea
| | - C-Yoon Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 03080, Korea
| | - Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 03080, Korea
| | - Tamer Said Abdelkader
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 03080, Korea
| | - Juhee Han
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 03080, Korea
| | - Tae-Hyun Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 03080, Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 03080, Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 03080, Korea
| | - Dong-Su Kim
- Shinpoong Pharmaceutical Co. Ltd., Ansan 15610 Korea
| | - Jong-Taek Kim
- Department of Wildlife Animal Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon 24289 Korea
| | - Hong-Shik Oh
- Department of Science Education, Jeju National University, Jeju 63241, Korea
| | - Moonsuk Hur
- Biosafety Research Team, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Jae-Hwa Suh
- Biosafety Research Team, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
37
|
Le Govic Y, Guyot K, Certad G, Deschildre A, Novo R, Mary C, Sendid B, Viscogliosi E, Favennec L, Dei-Cas E, Fréalle E, Dutoit E. Assessment of microscopic and molecular tools for the diagnosis and follow-up of cryptosporidiosis in patients at risk. Eur J Clin Microbiol Infect Dis 2015; 35:137-48. [PMID: 26610340 DOI: 10.1007/s10096-015-2519-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/30/2015] [Indexed: 11/29/2022]
Abstract
Cryptosporidiosis is an important though underreported public health concern. Molecular tools might be helpful in improving its diagnosis. In this study, ZR Fecal DNA MiniPrep™ Kit (ZR) and NucliSens® easyMAG® (EM) were compared using four Cryptosporidium-seeded feces and 29 Cryptosporidium-positive stools. Thereafter, ZR was selected for prospective evaluation of Cryptosporidium detection by 18S rDNA and LAXER quantitative PCR (qPCR) in 69 stools from 56 patients after Cryptosporidium detection by glycerin, modified Ziehl-Neelsen (ZN) and auramine-phenol (AP) stainings. The combination of any of the two extraction methods with 18S qPCR yielded adequate detection of Cryptosporidium in seeded stools, but the ZR kit showed the best performance. All 29 Cryptosporidium-positive samples were positive with 18S qPCR, after both ZR and EM extraction. However, false-negative results were found with LAXER qPCR or nested PCR. Cryptosporidiosis was diagnosed in 7/56 patients. All the microscopic methods enabled the initial diagnosis, but Cryptosporidium was detected in 12, 13, and 14 samples from these seven patients after glycerin, ZN, and AP staining respectively. Among these samples, 14 and 12 were positive with 18S and LAXER qPCR respectively. In two patients, Cryptosporidium DNA loads were found to be correlated with clinical evolution. Although little known, glycerin is a sensitive method for the initial detection of Cryptosporidium. When combined with 18S qPCR, ZR extraction, which had not been evaluated so far for Cryptosporidium, was an accurate tool for detecting Cryptosporidium and estimating the oocyst shedding in the course of infection.
Collapse
Affiliation(s)
- Y Le Govic
- Laboratoire de Parasitologie-Mycologie, CHRU de Lille & Faculté de Médecine de Lille, Université de Lille, Villeneuve-d'Ascq, France.,Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire d'Angers, France; Groupe d'Etude des Interactions Hôte-Pathogène, UPRES-EA 3142, UNAM Université, Université d'Angers, Angers, France
| | - K Guyot
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - G Certad
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - A Deschildre
- Unité de pneumologie-allergologie pédiatrique, pôle enfant, clinique de pédiatrie Jeanne de Flandre, CHRU de Lille, Université de Lille, Lille, France
| | - R Novo
- Unité de Néphrologie Pédiatrique, CHRU de Lille, Lille, France
| | - C Mary
- Aix-Marseille Université, Faculté de Médecine, UMR MD3, et APHM, Laboratoire de Parasitologie-Mycologie, Hôpital de la Timone, Marseille, France
| | - B Sendid
- Laboratoire de Parasitologie-Mycologie, CHRU de Lille & Faculté de Médecine de Lille, Université de Lille, Villeneuve-d'Ascq, France.,Inserm U995, Université de Lille, Lille, France
| | - E Viscogliosi
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - L Favennec
- Laboratoire de Parasitologie, EA 3800-IRIB, CHRU de Rouen, Rouen, France
| | - E Dei-Cas
- Laboratoire de Parasitologie-Mycologie, CHRU de Lille & Faculté de Médecine de Lille, Université de Lille, Villeneuve-d'Ascq, France.,Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - E Fréalle
- Laboratoire de Parasitologie-Mycologie, CHRU de Lille & Faculté de Médecine de Lille, Université de Lille, Villeneuve-d'Ascq, France. .,Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| | - E Dutoit
- Laboratoire de Parasitologie-Mycologie, CHRU de Lille & Faculté de Médecine de Lille, Université de Lille, Villeneuve-d'Ascq, France
| | | |
Collapse
|
38
|
The development and implementation of a method using blue mussels (Mytilus spp.) as biosentinels of Cryptosporidium spp. and Toxoplasma gondii contamination in marine aquatic environments. Parasitol Res 2015; 114:4655-67. [DOI: 10.1007/s00436-015-4711-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
39
|
Hadfield SJ, Pachebat JA, Swain MT, Robinson G, Cameron SJ, Alexander J, Hegarty MJ, Elwin K, Chalmers RM. Generation of whole genome sequences of new Cryptosporidium hominis and Cryptosporidium parvum isolates directly from stool samples. BMC Genomics 2015; 16:650. [PMID: 26318339 PMCID: PMC4552982 DOI: 10.1186/s12864-015-1805-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022] Open
Abstract
Background Whole genome sequencing (WGS) of Cryptosporidium spp. has previously relied on propagation of the parasite in animals to generate enough oocysts from which to extract DNA of sufficient quantity and purity for analysis. We have developed and validated a method for preparation of genomic Cryptosporidium DNA suitable for WGS directly from human stool samples and used it to generate 10 high-quality whole Cryptosporidium genome assemblies. Our method uses a combination of salt flotation, immunomagnetic separation (IMS), and surface sterilisation of oocysts prior to DNA extraction, with subsequent use of the transposome-based Nextera XT kit to generate libraries for sequencing on Illumina platforms. IMS was found to be superior to caesium chloride density centrifugation for purification of oocysts from small volume stool samples and for reducing levels of contaminant DNA. Results The IMS-based method was used initially to sequence whole genomes of Cryptosporidium hominis gp60 subtype IbA10G2 and Cryptosporidium parvum gp60 subtype IIaA19G1R2 from small amounts of stool left over from diagnostic testing of clinical cases of cryptosporidiosis. The C. parvum isolate was sequenced to a mean depth of 51.8X with reads covering 100 % of the bases of the C. parvum Iowa II reference genome (Bioproject PRJNA 15586), while the C. hominis isolate was sequenced to a mean depth of 34.7X with reads covering 98 % of the bases of the C. hominis TU502 v1 reference genome (Bioproject PRJNA 15585). The method was then applied to a further 17 stools, successfully generating another eight new whole genome sequences, of which two were C. hominis (gp60 subtypes IbA10G2 and IaA14R3) and six C. parvum (gp60 subtypes IIaA15G2R1 from three samples, and one each of IIaA17G1R1, IIaA18G2R1, and IIdA22G1), demonstrating the utility of this method to sequence Cryptosporidium genomes directly from clinical samples. This development is especially important as it reduces the requirement to propagate Cryptosporidium oocysts in animal models prior to genome sequencing. Conclusion This represents the first report of high-quality whole genome sequencing of Cryptosporidium isolates prepared directly from human stool samples.
Collapse
Affiliation(s)
- Stephen J Hadfield
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| | - Justin A Pachebat
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Martin T Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| | - Simon Js Cameron
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Jenna Alexander
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Matthew J Hegarty
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Kristin Elwin
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| |
Collapse
|
40
|
Paparini A, Gofton A, Yang R, White N, Bunce M, Ryan UM. Comparison of Sanger and next generation sequencing performance for genotyping Cryptosporidium isolates at the 18S rRNA and actin loci. Exp Parasitol 2015; 151-152:21-7. [DOI: 10.1016/j.exppara.2015.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/27/2015] [Accepted: 02/01/2015] [Indexed: 11/24/2022]
|
41
|
Multiplex PCR for the detection and quantification of zoonotic taxa of Giardia, Cryptosporidium and Toxoplasma in wastewater and mussels. Mol Cell Probes 2015; 29:122-5. [DOI: 10.1016/j.mcp.2015.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 02/04/2023]
|
42
|
Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus). INFECTION GENETICS AND EVOLUTION 2015; 32:113-23. [PMID: 25772204 DOI: 10.1016/j.meegid.2015.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships.
Collapse
|
43
|
Yang R, Paparini A, Monis P, Ryan U. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int J Parasitol 2014; 44:1105-13. [PMID: 25229177 DOI: 10.1016/j.ijpara.2014.08.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
Abstract
Clinical microbiology laboratories rely on quantitative PCR for its speed, sensitivity, specificity and ease-of-use. However, quantitative PCR quantitation requires the use of a standard curve or normalisation to reference genes. Droplet digital PCR provides absolute quantitation without the need for calibration curves. A comparison between droplet digital PCR and quantitative PCR-based analyses was conducted for the enteric parasite Cryptosporidium, which is an important cause of gastritis in both humans and animals. Two loci were analysed (18S rRNA and actin) using a range of Cryptosporidium DNA templates, including recombinant plasmids, purified haemocytometer-counted oocysts, commercial flow cytometry-counted oocysts and faecal DNA samples from sheep, cattle and humans. Each method was evaluated for linearity, precision, limit of detection and cost. Across the same range of detection, both methods showed a high degree of linearity and positive correlation for standards (R(2)⩾0.999) and faecal samples (R(2)⩾0.9750). The precision of droplet digital PCR, as measured by mean Relative Standard Deviation (RSD;%), was consistently better compared with quantitative PCR, particularly for the 18S rRNA locus, but was poorer as DNA concentration decreased. The quantitative detection of quantitative PCR was unaffected by DNA concentration, but droplet digital PCR quantitative PCR was less affected by the presence of inhibitors, compared with quantitative PCR. For most templates analysed including Cryptosporidium-positive faecal DNA, the template copy numbers, as determined by droplet digital PCR, were consistently lower than by quantitative PCR. However, the quantitations obtained by quantitative PCR are dependent on the accuracy of the standard curve and when the quantitative PCR data were corrected for pipetting and DNA losses (as determined by droplet digital PCR), then the sensitivity of both methods was comparable. A cost analysis based on 96 samples revealed that the overall cost (consumables and labour) of droplet digital PCR was two times higher than quantitative PCR. Using droplet digital PCR to precisely quantify standard dilutions used for high-throughput and cost-effective amplifications by quantitative PCR would be one way to combine the advantages of the two technologies.
Collapse
Affiliation(s)
- Rongchang Yang
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Andrea Paparini
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Una Ryan
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
44
|
Jex AR, Gasser RB. Diagnostic and analytical mutation scanning ofCryptosporidium: utility and advantages. Expert Rev Mol Diagn 2014; 9:179-85. [DOI: 10.1586/14737159.9.2.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Silva SOS, Richtzenhain LJ, Barros IN, Gomes AMMC, Silva AV, Kozerski ND, de Araújo Ceranto JB, Keid LB, Soares RM. A new set of primers directed to 18S rRNA gene for molecular identification of Cryptosporidium spp. and their performance in the detection and differentiation of oocysts shed by synanthropic rodents. Exp Parasitol 2013; 135:551-7. [PMID: 24036321 DOI: 10.1016/j.exppara.2013.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/26/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022]
Abstract
Cryptosporidium spp. are cosmopolitan protozoa that infect fishes, reptiles, amphibians, birds and mammals. More than 20 species are recognized within this genus. Rodents are a group of abundant and ubiquitous organisms that have been considered reservoirs of Cryptosporidium for humans and livestock. The aim of this study was to design specific primers for the gene encoding 18S rRNA, potentially capable of amplifying any species or genotype of Cryptosporidium spp. and evaluate the diagnostic attributes of the nested-PCR based on such probes. The primers were designed to amplify the shortest segment as possible to maximize the sensitivity of the test, but preserving the discriminatory potential of the amplified sequences for phylogenetic inferences. The nested-PCR standardized in this study (nPCR-SH) was compared in terms of sensitivity with another similar assay (nPCR-XIAO) that has been largely used for the detection and identification of Cryptosporidium spp. worldwide. We also aimed to molecularly characterize samples of Cryptosporidum spp. isolated from synanthropic rodents using these probes. Forty-five rodents were captured in urban areas of the municipality of Umuarama, Paraná State, Brazil. Fecal samples were submitted to three molecular tests (nested-PCRs), two of them targeted to the 18S rDNA gene (nPCR-SH and nPCR-XIAO) and the third targeted to the gene encoding actin (nPCR-actin). The nPCR-SH was tested positive on samples of Cryptosporidum parvum, Cryptosporidum andersoni, Cryptosporidum meleagridis, Cryptosporidum hominis, Cryptosporidum canis, and Cryptosporidum serpentis. Sixteen samples of rodents were positive by nPCR-SH, six by nPCR-XIAO and five by nPCR-actin. Sequencing of amplified fragments allowed the identification of Cryptosporidum muris in three samples of Rattus rattus, and two genotypes of Cryptosporidium, the genotypes mouse II and III. Cryptosporidium genotype mouse II was found in one sample of Mus musculus and genotype mouse III, in twelve samples, being five from R. rattus and seven from M. musculus. The results of this study demonstrated that the primers designed for detection of Cryptosporidium spp. were more efficient than those used in the nPCR-XIAO. Genotypes or species of Cryptosporidium that can be usually transmitted for human beings and livestock were not found in synanthropic rodents, suggesting that the importance of these animals in zoonotic transmission of cryptosporidiosis should be revisited.
Collapse
Affiliation(s)
- Sheila O S Silva
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Avenida Orlando Marques de Paiva, 87, 05508-270 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lalonde LF, Reyes J, Gajadhar AA. Application of a qPCR assay with melting curve analysis for detection and differentiation of protozoan oocysts in human fecal samples from Dominican Republic. Am J Trop Med Hyg 2013; 89:892-8. [PMID: 24019437 DOI: 10.4269/ajtmh.13-0106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A quantitative polymerase chain reaction assay with melt curve analysis (qPCR-MCA) was applied for the detection of protozoan oocysts in 501 human fecal samples collected in Dominican Republic. Samples were subjected to qPCR using universal coccidia primers targeting 18S rDNA to detect oocysts followed by MCA to identify oocyst species based on amplicon melting temperature. Putative positive samples were also tested by conventional PCR and microscopy. Cystoisospora belli (×3), Cryptosporidium parvum (×3), Cryptosporidium hominis (×5), Cryptosporidium meleagridis (×1), Cryptosporidium canis (×1), and Cyclospora cayetanensis (×9) were detected by qPCR-MCA and confirmed by sequencing. This assay consistently detected 10 copies of the cloned target fragment and can be considered more efficient and sensitive than microscopy flotation methods for detecting multiple species of oocysts in human feces. The qPCR-MCA is a reliable protozoan oocyst screening assay for use on clinical and environmental samples in public health, food safety and veterinary programs.
Collapse
Affiliation(s)
- Laura F Lalonde
- Centre for Food-Borne and Animal Parasitology, Canadian Food Inspection Agency, Saskatoon, Saskatchewan, Canada; Facultad de Ciencias de la Salud, Pontificia Universidad Católica Madre y Maestra, Santiago, Dominican Republic
| | | | | |
Collapse
|
47
|
Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification. Int J Parasitol 2013; 43:679-85. [DOI: 10.1016/j.ijpara.2013.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/18/2022]
|
48
|
Kokuzawa T, Ichikawa-Seki M, Itagaki T. Determination of phylogenetic relationships among Eimeria species, which parasitize cattle, on the basis of nuclear 18S rDNA sequence. J Vet Med Sci 2013; 75:1427-31. [PMID: 23803494 PMCID: PMC3942970 DOI: 10.1292/jvms.13-0273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We analyzed almost complete 18S rDNA sequences of 10 bovine Eimeria
species, namely Eimeria alabamensis, E. auburnensis,
E. bovis, E. bukidnonensis, E.
canadensis, E. cylindrica, E. ellipsoidalis,
E. subspherica, E. wyomingensis and E.
zuernii. Although these sequences showed intraspecific variation in 8 species,
the sequences of each species were clustered in monophyletic groups in all species, except
E. auburnensis. The sequences constituted 3 distinct clusters in a
phylogenetic tree with relatively high bootstrap values; however, the members including
each cluster shared no similarities in oocyst morphology.
Collapse
Affiliation(s)
- Takuya Kokuzawa
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan
| | | | | |
Collapse
|
49
|
Abstract
Cryptosporidium is a protozoan parasite of medical and veterinary importance that causes gastroenteritis in a variety of vertebrate hosts. Several studies have reported different degrees of pathogenicity and virulence among Cryptosporidium species and isolates of the same species as well as evidence of variation in host susceptibility to infection. The identification and validation of Cryptosporidium virulence factors have been hindered by the renowned difficulties pertaining to the in vitro culture and genetic manipulation of this parasite. Nevertheless, substantial progress has been made in identifying putative virulence factors for Cryptosporidium. This progress has been accelerated since the publication of the Cryptosporidium parvum and C. hominis genomes, with the characterization of over 25 putative virulence factors identified by using a variety of immunological and molecular techniques and which are proposed to be involved in aspects of host-pathogen interactions from adhesion and locomotion to invasion and proliferation. Progress has also been made in the contribution of host factors that are associated with variations in both the severity and risk of infection. Here we provide a review comprised of the current state of knowledge on Cryptosporidium infectivity, pathogenesis, and transmissibility in light of our contemporary understanding of microbial virulence.
Collapse
|
50
|
Ware MW, Keely SP, Villegas EN. Development and evaluation of an off-the-slide genotyping technique for identifying Giardia cysts and Cryptosporidium oocysts directly from US EPA Method 1623 slides. J Appl Microbiol 2013; 115:298-309. [PMID: 23594204 DOI: 10.1111/jam.12223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 12/01/2022]
Abstract
AIMS This study developed and systematically evaluated performance and limit of detection of an off-the-slide genotyping procedure for both Cryptosporidium oocysts and Giardia cysts. METHODS AND RESULTS Slide standards containing flow-sorted (oo)cysts were used to evaluate the off-the-slide genotyping procedure by microscopy and PCR. Results show approximately 20% of cysts and oocysts are lost during staining. Although transfer efficiency from the slide to the PCR tube could not be determined by microscopy, it was observed that the transfer process aided in the physical lysis of the (oo)cysts likely releasing DNA. PCR detection rates for a single event on a slide were 44% for Giardia and 27% for Cryptosporidium, and a minimum of five cysts and 20 oocysts are required to achieve a 90% PCR detection rate. A Poisson distribution analysis estimated the relative PCR target densities and limits of detection, it showed that 18 Cryptosporidium and five Giardia replicates are required for a 95% probability of detecting a single (oo)cyst on a slide. CONCLUSIONS This study successfully developed and evaluated recovery rates and limits of detection of an off-the-slide genotyping procedure for both Cryptosporidium and Giardia (oo)cysts from the same slide. SIGNIFICANCE AND IMPACT OF THE STUDY This off-the-slide genotyping technique is a simple and low cost tool that expands the applications of US EPA Method 1623 results by identifying the genotypes and assemblages of the enumerated Cryptosporidium and Giardia. This additional information will be useful for microbial risk assessment models and watershed management decisions.
Collapse
Affiliation(s)
- M W Ware
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268, USA
| | | | | |
Collapse
|