1
|
Feng L, Sun X, Wang J, Xie T, Wu Z, Xu J, Wang Z, Yang G. Performance and microbial mechanism in sulfide-driven autotrophic denitrification by different inoculation sources in face of various sulfide and sulfate stress. BIORESOURCE TECHNOLOGY 2024; 413:131443. [PMID: 39241813 DOI: 10.1016/j.biortech.2024.131443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
To develop a reliable sulfide (S2-) autotrophic denitrification (SAD) process under S2- and SO42- salinity stresses, the biofilm performance and microbial mechanisms were comparatively studied using different inocula of activated sludge (AS) and intertidal sediment (IS). Biofilm IS enriched more denitrification genes (0.34 %) and S2- oxidation genes (0.29 %) than those with AS. Higher denitrification performance was obtained under S2- (100 mg/L) and SO42- (5-15 g/L Na2SO4) stresses, but no significantly differences were observed under levels of 0-200 mg/L S2- and 30 g/L Na2SO4. Notably, biofilm samples in SAD systems with IS still had more S2- oxidation genes at high S2- levels of 100-200 mg/L and Na2SO4 level of 30 g/L. The key functional genus Thiobacillus accumulated well at 30 g/L Na2SO4, but was strongly inhibited at 200 mg/L S2-. The findings were advantage to SAD application under sulfide and salinity stresses.
Collapse
Affiliation(s)
- Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Xiaoran Sun
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Junqiang Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Tianna Xie
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Zhangli Wu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Jingke Xu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Zixuan Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
2
|
Chen H, Tang M, He L, Xiao X, Yang F, He Q, Sun S, Gao Y, Zhou L, Li Y, Sun J, Zhang W. Exploring the impact of fulvic acid on electrochemical hydrogen-driven autotrophic denitrification system: Performance, microbial characteristics and mechanism. BIORESOURCE TECHNOLOGY 2024; 412:131432. [PMID: 39236909 DOI: 10.1016/j.biortech.2024.131432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
In this study, the effect of modulating fulvic acid (FA) concentrations (0, 25 and 50 mg/L) on nitrogen removal in a bioelectrochemical hydrogen autotrophic denitrification system (BHDS) was investigated. Results showed that FA increased the nitrate (NO3--N) removal rate of the BHDSs from 37.8 to 46.2 and 45.2 mg N/(L·d) with a current intensity of 40 mA. The metagenomic analysis revealed that R2 (25 mg/L) was predominantly populated by autotrophic denitrifying microorganisms, which enhanced denitrification performance by facilitating electron transfer. Conversely, R3 (50 mg/L) exhibited an increase in genes related to the heterotrophic process, which improved the denitrification performance through the collaborative action of both autotrophic and heterotrophic denitrification pathways. Besides, the study also identified a potential for nitrogen removal in Serpentinimonas, which have been rarely studied. The interesting set of findings provide valuable reference for optimizing BHDS for nitrogen removal and promoting specific denitrifying genera within the system.
Collapse
Affiliation(s)
- Haolin Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Meiyi Tang
- China West Construction Hunan Group Co. Ltd., Changsha 410114, China
| | - Liang He
- Hunan Hengyong Expressway Construction and Development Co. Ltd., Hengyang 421600, China
| | - Xinxin Xiao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Fei Yang
- Hunan Hengyong Expressway Construction and Development Co. Ltd., Hengyang 421600, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Julong Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
3
|
AbuBakr SM, Najar FZ, Duncan KE. Detection of Nitrate-Reducing/Denitrifying Bacteria from Contaminated and Uncontaminated Tallgrass Prairie Soil: Limitations of PCR Primers. Microorganisms 2024; 12:1981. [PMID: 39458290 PMCID: PMC11509419 DOI: 10.3390/microorganisms12101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Contamination of soil by spills of crude oil and oilfield brine is known to affect the species composition and functioning of soil microbial communities. However, the effect of such contamination on nitrogen cycling, an important biogeochemical cycle in tallgrass prairie soil, is less well known. Detecting nitrate-reducing (NR) and denitrifying (DN) bacteria via PCR amplification of the genes essential for these processes depends on how well PCR primers match the sequences of these bacteria. In this study, we enriched for NR and DN bacteria from oil/brine tallgrass prairie soil contaminated 5-10 years previously versus those cultured from uncontaminated soil, confirmed the capacity of 75 strains isolated from the enrichments to reduce nitrate and/nitrite, then screened the strains with primers specific to seven nitrogen cycle functional genes. The strains comprised a phylogenetically diverse group of NR and DN bacteria, with proportionately more γ-Proteobacteria in oil-contaminated sites and more Bacilli in brine-contaminated sites, suggesting some residual effect of the contaminants on the NR and DN species distribution. Around 82% of the strains shown to reduce nitrate/nitrite would not be identified as NR and DN bacteria by the battery of NR and DN primers used. Our results indicate an urgent need to expand the NR/DN functional gene primer database by first identifying novel NR/DN strains through their capacity to reduce nitrate/nitrite.
Collapse
Affiliation(s)
- Samer M. AbuBakr
- Biology Program, School of Integrated Sciences, Sustainability, and Public Health, College of Health, Science, and Technology, University of Illinois at Springfield, Springfield, IL 62703, USA
| | - Fares Z. Najar
- High Performance Computing Center, Division of the Vice President for Research, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Kathleen E. Duncan
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA;
| |
Collapse
|
4
|
Ming Y, Abdullah Al M, Zhang D, Zhu W, Liu H, Cai L, Yu X, Wu K, Niu M, Zeng Q, He Z, Yan Q. Insights into the evolutionary and ecological adaption strategies of nirS- and nirK-type denitrifying communities. Mol Ecol 2024; 33:e17507. [PMID: 39158107 DOI: 10.1111/mec.17507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Denitrification is a crucial process in the global nitrogen cycle, in which two functionally equivalent genes, nirS and nirK, catalyse the critical reaction and are usually used as marker genes. The nirK gene can function independently, whereas nirS requires additional genes to encode nitrite reductase and is more sensitive to environmental factors than nirK. However, the ecological differentiation mechanisms of those denitrifying microbial communities and their adaptation strategies to environmental stresses remain unclear. Here, we conducted metagenomic analysis for sediments and bioreactor samples from Lake Donghu, China. We found that nirS-type denitrifying communities had a significantly lower horizontal gene transfer frequency than that of nirK-type denitrifying communities, and nirS gene phylogeny was more congruent with taxonomy than that of nirK gene. Metabolic reconstruction of metagenome-assembled genomes further revealed that nirS-type denitrifying communities have robust metabolic systems for energy conservation, enabling them to survive under environmental stresses. Nevertheless, nirK-type denitrifying communities seemed to adapt to oxygen-limited environments with the ability to utilize various carbon and nitrogen compounds. Thus, this study provides novel insights into the ecological differentiation mechanism of nirS and nirK-type denitrifying communities, as well as the regulation of the global nitrogen cycle and greenhouse gas emissions.
Collapse
Affiliation(s)
- Yuzhen Ming
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mamun Abdullah Al
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Dandan Zhang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China
| | - Wengen Zhu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Huanping Liu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaoli Yu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China
| | - Kun Wu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China
| | - Mingyang Niu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Miralles-Robledillo JM, Martínez-Espinosa RM, Pire C. Transcriptomic profiling of haloarchaeal denitrification through RNA-Seq analysis. Appl Environ Microbiol 2024; 90:e0057124. [PMID: 38814058 PMCID: PMC11218638 DOI: 10.1128/aem.00571-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Denitrification, a crucial biochemical pathway prevalent among haloarchaea in hypersaline ecosystems, has garnered considerable attention in recent years due to its ecological implications. Nevertheless, the underlying molecular mechanisms and genetic regulation governing this respiration/detoxification process in haloarchaea remain largely unexplored. In this study, RNA-sequencing was used to compare the transcriptomes of the haloarchaeon Haloferax mediterranei under oxic and denitrifying conditions, shedding light on the intricate metabolic alterations occurring within the cell, such as the accurate control of the metal homeostasis. Furthermore, the investigation identifies several genes encoding transcriptional regulators and potential accessory proteins with putative roles in denitrification. Among these are bacterioopsin-like transcriptional activators, proteins harboring a domain of unknown function (DUF2249), and cyanoglobin. In addition, the study delves into the genetic regulation of denitrification, finding a regulatory motif within promoter regions that activates numerous denitrification-related genes. This research serves as a starting point for future molecular biology studies in haloarchaea, offering a promising avenue to unravel the intricate mechanisms governing haloarchaeal denitrification, a pathway of paramount ecological importance.IMPORTANCEDenitrification, a fundamental process within the nitrogen cycle, has been subject to extensive investigation due to its close association with anthropogenic activities, and its contribution to the global warming issue, mainly through the release of N2O emissions. Although our comprehension of denitrification and its implications is generally well established, most studies have been conducted in non-extreme environments with mesophilic microorganisms. Consequently, there is a significant knowledge gap concerning extremophilic denitrifiers, particularly those inhabiting hypersaline environments. The significance of this research was to delve into the process of haloarchaeal denitrification, utilizing the complete denitrifier haloarchaeon Haloferax mediterranei as a model organism. This research led to the analysis of the metabolic state of this microorganism under denitrifying conditions and the identification of regulatory signals and genes encoding proteins potentially involved in this pathway, serving as a valuable resource for future molecular studies.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, Universitat d'Alacant, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, Universitat d'Alacant, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Carmen Pire
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, Universitat d'Alacant, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| |
Collapse
|
6
|
Mulec J, Skok S, Pašić L. Low Bacterial Diversity and Nitrate Levels in Cores from Deep Boreholes in Pristine Karst. Life (Basel) 2024; 14:677. [PMID: 38929661 PMCID: PMC11204850 DOI: 10.3390/life14060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigates the nitrate gradients within the deep biosphere of karst carbonate rocks and their resident microbiota. Samples were taken from borehole cores at depths down to 350 m below the surface, collected during geological site investigations for proposed railway tunnels and analysed using 16S rRNA amplicon sequencing. 16S rRNA amplicon sequencing analysis revealed relatively low microbial diversity, which can serve as a reliable indicator of the pristine nature of deep karst. However, some local hotspots of diversity are independent of depth. Pseudomonadota dominated the samples, with Gammaproteobacteria dominating at the class level. The low nitrate content in deep karst, in contrast to higher values closer to the surface, serves as an additional marker of its undisturbed and unpolluted status. Based on the prediction of functional profiles from 16S rRNA sequencing data, nitrates remain low due to indigenous microbial denitrification and assimilatory nitrate reduction. Pathways related to nitrogen fixation, ammonia assimilation, and nitrification were not confirmed. When elevated nitrate levels are observed in karst, they are most probably related to anthropogenic activities. Environmental factors other than depth and nitrate content play an important role in shaping bacterial communities.
Collapse
Affiliation(s)
- Janez Mulec
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, Titov trg 2, 6230 Postojna, Slovenia;
- UNESCO Chair on Karst Education, University of Nova Gorica, 5271 Vipava, Slovenia
| | - Sara Skok
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, Titov trg 2, 6230 Postojna, Slovenia;
| | - Lejla Pašić
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Hrasnička cesta 3a, 71000 Sarajevo, Bosnia and Herzegovina;
| |
Collapse
|
7
|
Hoang PH, Nguyen MT, Phan KS, Bui HG, Le TTH, Chu NH, Ho NA, Pham QH, Tran XK, Ha PT. Multilayer immobilizing of denitrifying Bacillus sp. and TiO 2-AgNPs on floating expanded clay carrier for co-treatment of nitrite and pathogens in aquaculture. RSC Adv 2024; 14:1984-1994. [PMID: 38196911 PMCID: PMC10774862 DOI: 10.1039/d3ra07361k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Nitrite contamination and the spread of pathogens can seriously degrade water quality. To simultaneously control these factors, an innovative approach of fabricating a remediation agent that contained denitrifying bacteria and TiO2-AgNPs co-immobilized on floating expanded clay (EC) was proposed in this study. The EC was fabricated from a mixture of clay and rice husk through pyrolysis at a high temperature of 1200 °C, followed by a rapid cooling step to create a porous structure for the material. TiO2NPs were modified with Ag to shift the absorbance threshold of TiO2-AgNPs into the visible region of 700-800 nm. The experimental results showed that the stirring speed of 250 rpm was suitable for immobilizing TiO2-AgNPs on EC and achieved the highest Ti and Ag content of 639.38 ± 3.04 and 200.51 ± 3.71 ppm, respectively. Coating TiO2-Ag/EC with chitosan (0.5%) significantly reduced the detachment level of immobilized TiO2-AgNPs compared to that of the material with no coating. In particular, this functionalized material inhibited 99.93 ± 0.1% of Vibrio parahaemolyticus pathogen but did not adversely affect the denitrifying bacteria after 2 h of visible light irradiation. Based on the electrostatic bond between oppositely charged polymers, the denitrifying bacteria, Bacillus sp., in alginate solution was successfully immobilized on the chitosan-coated TiO2-Ag/EC with a bacteria density of (76.67 ± 9.43) × 107 CFU g-1, retaining its nitrite removal efficiency at 99.0 ± 0.27% through six treatment cycles. These findings provide solid evidence for further investigating the combination of biodegradation and photodegradation in wastewater treatment.
Collapse
Affiliation(s)
- Phuong Ha Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Minh Thi Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Ke Son Phan
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Huong Giang Bui
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Thi Thu Huong Le
- Vietnam National University of Agriculture Trau Quy, Gia Lam District Hanoi 100000 Vietnam
| | - Nhat Huy Chu
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Ngoc Anh Ho
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Quang Huy Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Xuan Khoi Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Phuong Thu Ha
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| |
Collapse
|
8
|
Bell E, Chen J, Richardson WDL, Fustic M, Hubert CRJ. Denitrification genotypes of endospore-forming Bacillota. ISME COMMUNICATIONS 2024; 4:ycae107. [PMID: 39263550 PMCID: PMC11388526 DOI: 10.1093/ismeco/ycae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Denitrification is a key metabolic process in the global nitrogen cycle and is performed by taxonomically diverse microorganisms. Despite the widespread importance of this metabolism, challenges remain in identifying denitrifying populations and predicting their metabolic end-products based on their genotype. Here, genome-resolved metagenomics was used to explore the denitrification genotype of Bacillota enriched in nitrate-amended high temperature incubations with confirmed N2O and N2 production. A set of 12 hidden Markov models (HMMs) was created to target the diversity of denitrification genes in members of the phylum Bacillota. Genomic potential for complete denitrification was found in five metagenome-assembled genomes from nitrate-amended enrichments, including two novel members of the Brevibacillaceae family. Genomes of complete denitrifiers encode N2O reductase gene clusters with clade II-type nosZ and often include multiple variants of the nitric oxide reductase gene. The HMM set applied to all genomes of Bacillota from the Genome Taxonomy Database identified 17 genera inferred to contain complete denitrifiers based on their gene content. Among complete denitrifiers it was common for three distinct nitric oxide reductases to be present (qNOR, bNOR, and sNOR) that may reflect the metabolic adaptability of Bacillota in environments with variable redox conditions.
Collapse
Affiliation(s)
- Emma Bell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jianwei Chen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - William D L Richardson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Milovan Fustic
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Department of Geology, Nazarbayev University, 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
9
|
Li Z, Kong L, Hu L, Wei J, Zhang X, Guo W, Shi W. Greenhouse gas emissions from constructed wetlands: A bibliometric analysis and mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167582. [PMID: 37797756 DOI: 10.1016/j.scitotenv.2023.167582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Constructed wetlands (CWs) have been widely applied in wastewater treatment; however, the degradation of organic pollutants within CWs leads to substantial emissions of greenhouse gases (GHGs), such as carbon dioxide, methane and nitrous oxide. Under the low-carbon economy, GHG emissions have emerged as a major concern, and have been intensively studied in the CW field. In this study, we conducted a bibliometric review using CiteSpace and a global-scale analysis of GHG emission levels based on 286 records and proposed potential approaches for the future control of GHG emissions in CWs. We found that the research has generally evolved through three stages over the past 15 years: GHG emission level assessment (2007-2010), mechanisms (2011-2016), and control (2017-2022). The type of CWs is closely related to GHG emissions, with free water surface CWs emitting higher levels of methane and vertical subsurface flow CWs emitting higher levels of carbon dioxide and nitrous oxide. By optimizing CW operation, it is conceivable to synergistically reduce GHG emissions while enhancing pollutant removal.
Collapse
Affiliation(s)
- Ziqian Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Liping Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jun Wei
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Xinzhi Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Weijie Guo
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Wenqing Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
10
|
Bender SF, Schulz S, Martínez-Cuesta R, Laughlin RJ, Kublik S, Pfeiffer-Zakharova K, Vestergaard G, Hartman K, Parladé E, Römbke J, Watson CJ, Schloter M, van der Heijden MGA. Simplification of soil biota communities impairs nutrient recycling and enhances above- and belowground nitrogen losses. THE NEW PHYTOLOGIST 2023; 240:2020-2034. [PMID: 37700504 DOI: 10.1111/nph.19252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
Agriculture is a major source of nutrient pollution, posing a threat to the earth system functioning. Factors determining the nutrient use efficiency of plant-soil systems need to be identified to develop strategies to reduce nutrient losses while ensuring crop productivity. The potential of soil biota to tighten nutrient cycles by improving plant nutrition and reducing soil nutrient losses is still poorly understood. We manipulated soil biota communities in outdoor lysimeters, planted maize, continuously collected leachates, and measured N2 O- and N2 -gas emissions after a fertilization pulse to test whether differences in soil biota communities affected nutrient recycling and N losses. Lysimeters with strongly simplified soil biota communities showed reduced crop N (-20%) and P (-58%) uptake, strongly increased N leaching losses (+65%), and gaseous emissions (+97%) of N2 O and N2 . Soil metagenomic analyses revealed differences in the abundance of genes responsible for nutrient uptake, nitrate reduction, and denitrification that helped explain the observed nutrient losses. Soil biota are major drivers of nutrient cycling and reductions in the diversity or abundance of certain groups (e.g. through land-use intensification) can disrupt nutrient cycling, reduce agricultural productivity and nutrient use efficiency, and exacerbate environmental pollution and global warming.
Collapse
Affiliation(s)
- S Franz Bender
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Rubén Martínez-Cuesta
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Technical University of Munich, Chair for Environmental Microbiology, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Ronald J Laughlin
- Agri-Environment Branch, Agri-Food & Biosciences Institute, Belfast, BT9 5PX, UK
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Kristina Pfeiffer-Zakharova
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kyle Hartman
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Eloi Parladé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Jörg Römbke
- ECT Ökotoxikologie GmbH, Böttgerstr. 2-14, D-65439, Flörsheim, Germany
| | - Catherine J Watson
- Agri-Environment Branch, Agri-Food & Biosciences Institute, Belfast, BT9 5PX, UK
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Technical University of Munich, Chair for Environmental Microbiology, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Marcel G A van der Heijden
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| |
Collapse
|
11
|
Qin J, Ying J, Li H, Qiu R, Lin C. Rainwater input reduces greenhouse gas emission and arsenic uptake in paddy rice systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166096. [PMID: 37558067 DOI: 10.1016/j.scitotenv.2023.166096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/23/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
This work aimed to test the hypothesis that rainwater-borne hydrogen peroxide (H2O2) can affect arsenic uptake by rice plants and emission of greenhouse gases in paddy rice systems. A mesocosm rice plant growth experiment, in conjunction with rainwater monitoring, was conducted to examine the effects of rainwater input on functional groups of soil microorganisms related to transformation of arsenic, carbon and nitrogen as well as various arsenic species in the soil and plant systems. The fluxes of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) were measured during selected rainfall events. The results showed that rainwater-borne H2O2 effectively reacted with Fe2+ present in paddy soil to trigger a Fenton-like reaction to produce •OH. Both H2O2 and •OH inhibited As(V)-reducing microbes but promoted As(III)-oxidizing microbes, leading to a net increase in arsenate-As that is less phytoavailable compared to arsenite-As. This impeded uptake of soil-borne As by the rice plant roots, and consequently reduced the accumulation of As in the rice grains. The input of H2O2 into the soil caused more inhibition to methanogens than to methane-oxidizing microbes, resulting in a reduction in CH4 flux. The microbes mediating the transformation of inorganic nitrogen were also under oxidative stresses upon exposure to the rainwater-derived H2O2. And the limited conversion of NO3- to NO played a crucial role in reducing N2O emission from the paddy soils. The results also indicated that the rainwater-borne H2O2 could significantly affect other biogeochemical processes that shape the wider ecosystems, which is worth further investigations.
Collapse
Affiliation(s)
- Junhao Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jidong Ying
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC 3125, Australia.
| |
Collapse
|
12
|
Feng L, Wu G, Zhang Z, Tian Z, Li B, Cheng J, Yang G. Improving denitrification performance of biofilm technology with salt-tolerant denitrifying bacteria agent for treating high-strength nitrate and sulfate wastewater from lab-scale to pilot-scale. BIORESOURCE TECHNOLOGY 2023; 387:129696. [PMID: 37598804 DOI: 10.1016/j.biortech.2023.129696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
This study focused on the application of salt-tolerant denitrifying bacteria (DBA) in an optimized biofilm process to treat high sulfate-nitrate wastewater from lab-scale to pilot-scale. Lab-scale results demonstrated the salinity, DBA inoculum, supplementary carbon and phosphorus source significantly varied the startup periods at the range of 36-74 d, and the optimum initial start-up conditions were as follows: >0.6 g/L of DBA, 2-4 of C/N ratio, 0.3-0.6 mg/L of phosphorus and a salinity-gradient domestication method. A pilot scale of biofilm technology with DBA was further developed for treating real wastewater from the desulfuration and denitration with both high nitrate (≈200 mg/L) and sulfate (2.7%). The denitrification efficiency reached above 90% after one-month gradient-salinity of 0.5%-2.7%. Mature biofilm had dominant genera Hyphomicrobium (31.80%-61.35%), Methylotenera (0.85%-20.21%) and Thauera (1.42%-8.40%), etc. Notably, the largest genera Hyphomicrobium covered the complete denitrification genes.
Collapse
Affiliation(s)
- Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guiyang Wu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zeliang Zhang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhijuan Tian
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Bu Li
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Junmei Cheng
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
13
|
Daigger GT, Kuo J, Derlon N, Houweling D, Jimenez JA, Johnson BR, McQuarrie JP, Murthy S, Regmi P, Roche C, Sturm B, Wett B, Winkler M, Boltz JP. Biological and physical selectors for mobile biofilms, aerobic granules, and densified-biological flocs in continuously flowing wastewater treatment processes: A state-of-the-art review. WATER RESEARCH 2023; 242:120245. [PMID: 37356157 DOI: 10.1016/j.watres.2023.120245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
There have been significant advances in the use of biological and physical selectors for the intensification of continuously flowing biological wastewater treatment (WWT) processes. Biological selection allows for the development of large biological aggregates (e.g., mobile biofilm, aerobic granules, and densified biological flocs). Physical selection controls the solids residence times of large biological aggregates and ordinary biological flocs, and is usually accomplished using screens or hydrocyclones. Large biological aggregates can facilitate different biological transformations in a single reactor and enhance liquid and solids separation. Continuous-flow WWT processes incorporating biological and physical selectors offer benefits that can include reduced footprint, lower costs, and improved WWT process performance. Thus, it is expected that both interest in and application of these processes will increase significantly in the future. This review provides a comprehensive summary of biological and physical selectors and their design and operation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Joshua P Boltz
- Woodard & Curran, 3907 Langley Ave., Foley, AL 36535, USA.
| |
Collapse
|
14
|
Shangjie C, Yongqiong W, Fuqing X, Zhilin X, Xiaoping Z, Xia S, Juan L, Tiantao Z, Shibin W. Synergistic effects of vegetation and microorganisms on enhancing of biodegradation of landfill gas. ENVIRONMENTAL RESEARCH 2023; 227:115804. [PMID: 37003556 DOI: 10.1016/j.envres.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
The uncontrolled release of landfill gas represents a significant hazard to both human health and ecological well-being. However, the synergistic interactions of vegetation and microorganisms can effectively mitigate this threat by removing pollutants. This study provides a comprehensive review of the current status of controlling landfill gas pollution through the process of revegetation in landfill cover. Our survey has identified several common indicator plants such as Setaria faberi, Sarcandra glabra, and Fraxinus chinensis that grow in covered landfill soil. Local herbaceous plants possess stronger tolerance, making them ideal for the establishment of closed landfills. Moreover, numerous studies have demonstrated that cover plants significantly promote methane oxidation, with an average oxidation capacity twice that of bare soil. Furthermore, we have conducted an analysis of the interrelationships among vegetation, landfill gas, landfill cover soil, and microorganisms, thereby providing a detailed understanding of the potential for vegetation restoration in landfill cover. Additionally, we have summarized studies on the rhizosphere effect and have deduced the mechanisms through which plants biodegrade methane and typical non-methane pollutants. Finally, we have suggested future research directions to better control landfill gas using vegetation and microorganisms.
Collapse
Affiliation(s)
- Chen Shangjie
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wang Yongqiong
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xu Fuqing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xing Zhilin
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Zhang Xiaoping
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Su Xia
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Li Juan
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China
| | - Zhao Tiantao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wan Shibin
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
15
|
Xiang H, Hong Y, Wu J, Wang Y, Ye F, Hu Z, Qu Z, Long A. NosZ-II-type N 2O-reducing bacteria play dominant roles in determining the release potential of N 2O from sediments in the Pearl River Estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121732. [PMID: 37116571 DOI: 10.1016/j.envpol.2023.121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
The microbial reduction of N2O serves as a "gatekeeper" for N2O emissions, determining the flux of N2O release into the atmosphere. Estuaries are active regions for N2O emissions, but the microbial functions of N2O-reducing bacteria in estuarine ecosystems are not well understood. In this study, the 15N isotope tracer method, qPCR, and high-throughput sequencing were used to analyze N2O production, reduction, and emission processes in surface sediments of the Pearl River Estuary. The 15N isotope tracer experiment showed that the N2O production rates declined and the N2O reduction potential (Rr, the ratio of N2O reduction rates to N2O production rates) increased from upstream to downstream of the Pearl River Estuary, leading to a corresponding decrease of the N2O emission rates from upstream to downstream. The gene abundance ratio of nosZ/nir gradually increased from upstream to downstream and was negatively correlated with the water N2O saturation. The gene abundance of nosZ II was significantly higher than that of nosZ I in the estuary, and the nosZ II/nosZ I abundance ratio was positively correlated with N2O reduction potential. Furthermore, the community composition of NosZ-I- and NosZ-II-type N2O-reducing bacteria shifted from upstream to downstream. NosZ-II-type N2O-reducing bacteria, especially Myxococcales, Thiotrichales, and Gemmatimonadetes species, contributed to the high N2O reduction potential in the downstream. Our results suggest that NosZ-II-type N2O-reducing bacteria play a dominant role in determining the release potential of N2O from sediments in the Pearl River Estuary. This study provides a new insight into the function of microbial N2O reduction in estuarine ecosystems.
Collapse
Affiliation(s)
- Hua Xiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China; State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China.
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Zheng Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Zhiming Qu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Aimin Long
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
16
|
Wang Y, Fu X, Wang T, Ma J, Gao H, Wang X, Pu W. Large Contribution of Nitrous Acid to Soil-Emitted Reactive Oxidized Nitrogen and Its Effect on Air Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3516-3526. [PMID: 36802547 DOI: 10.1021/acs.est.2c07793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Soil emissions have long been recognized as an important source of nitric oxide (NO), which regulates atmospheric oxidative capacity and the production of air pollutants. Recent research has also indicated that nitrous acid (HONO) can be emitted in significant quantities from soil microbial activities. However, only a few studies have quantified emissions of HONO along with NO from a wide range of soil types. In this study, we measured emissions of HONO and NO from soil samples collected from 48 sites across China and found much higher emissions of HONO than of NO, especially for samples from northern China. We performed a meta-analysis of 52 field studies in China, which revealed that long-term fertilization increased the abundance of nitrite-producing genes much more than the abundance of NO-producing genes. This promotion effect was greater in northern China than in southern China. In simulations using a chemistry transport model with laboratory-derived parametrization, we found that HONO emissions had a greater effect than NO emissions on air quality. Moreover, we determined that with projected continuous reductions in anthropogenic emissions, the contribution from soils to maximum 1 h concentrations of hydroxyl radicals and ozone and daily average concentrations of particulate nitrate in the Northeast Plain will increase to 17%, 4.6%, and 14%, respectively. Our findings highlight the need to consider HONO in the assessment of the loss of reactive oxidized nitrogen from soils to the atmosphere and its effect on air quality.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| | - Xiao Fu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, 730000 Lanzhou, China
| | - Xin Wang
- School of Earth System Science, Tianjin University, Tianjin 300072, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Pu
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Suarez C, Hackl T, Wilen BM, Persson F, Hagelia P, Jetten MSM, Dalcin Martins P. Novel and unusual genes for nitrogen and metal cycling in Planctomycetota- and KSB1-affiliated metagenome-assembled genomes reconstructed from a marine subsea tunnel. FEMS Microbiol Lett 2023; 370:fnad049. [PMID: 37291701 PMCID: PMC10732223 DOI: 10.1093/femsle/fnad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023] Open
Abstract
The Oslofjord subsea road tunnel is a unique environment in which the typically anoxic marine deep subsurface is exposed to oxygen. Concrete biodeterioration and steel corrosion in the tunnel have been linked to the growth of iron- and manganese-oxidizing biofilms in areas of saline water seepage. Surprisingly, previous 16S rRNA gene surveys of biofilm samples revealed microbial communities dominated by sequences affiliated with nitrogen-cycling microorganisms. This study aimed to identify microbial genomes with metabolic potential for novel nitrogen- and metal-cycling reactions, representing biofilm microorganisms that could link these cycles and play a role in concrete biodeterioration. We reconstructed 33 abundant, novel metagenome-assembled genomes (MAGs) affiliated with the phylum Planctomycetota and the candidate phylum KSB1. We identified novel and unusual genes and gene clusters in these MAGs related to anaerobic ammonium oxidation, nitrite oxidation, and other nitrogen-cycling reactions. Additionally, 26 of 33 MAGs also had the potential for iron, manganese, and arsenite cycling, suggesting that bacteria represented by these genomes might couple these reactions. Our results expand the diversity of microorganisms putatively involved in nitrogen and metal cycling, and contribute to our understanding of potential biofilm impacts on built infrastructure.
Collapse
Affiliation(s)
- Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund 221 00, Sweden
| | - Thomas Hackl
- Microbial Ecology Cluster, GELIFES, University of Groningen, Groningen 9747 AG, Netherlands
| | - Britt-Marie Wilen
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Per Hagelia
- Construction Division, The Norwegian Public Roads, Administration, Oslo 0667, Norway
| | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Nijmegen 6525 AJ, Netherlands
| | - Paula Dalcin Martins
- Microbial Ecology Cluster, GELIFES, University of Groningen, Groningen 9747 AG, Netherlands
| |
Collapse
|
18
|
Rempfert KR, Nothaft DB, Kraus EA, Asamoto CK, Evans RD, Spear JR, Matter JM, Kopf SH, Templeton AS. Subsurface biogeochemical cycling of nitrogen in the actively serpentinizing Samail Ophiolite, Oman. Front Microbiol 2023; 14:1139633. [PMID: 37152731 PMCID: PMC10160414 DOI: 10.3389/fmicb.2023.1139633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Nitrogen (N) is an essential element for life. N compounds such as ammonium ( NH 4 + ) may act as electron donors, while nitrate ( NO 3 - ) and nitrite ( NO 2 - ) may serve as electron acceptors to support energy metabolism. However, little is known regarding the availability and forms of N in subsurface ecosystems, particularly in serpentinite-hosted settings where hydrogen (H2) generated through water-rock reactions promotes habitable conditions for microbial life. Here, we analyzed N and oxygen (O) isotope composition to investigate the source, abundance, and cycling of N species within the Samail Ophiolite of Oman. The dominant dissolved N species was dependent on the fluid type, with Mg2+- HCO 3 - type fluids comprised mostly of NO 3 - , and Ca2+-OH- fluids comprised primarily of ammonia (NH3). We infer that fixed N is introduced to the serpentinite aquifer as NO 3 - . High concentrations of NO 3 - (>100 μM) with a relict meteoric oxygen isotopic composition (δ18O ~ 22‰, Δ17O ~ 6‰) were observed in shallow aquifer fluids, indicative of NO 3 - sourced from atmospheric deposition (rainwater NO 3 - : δ18O of 53.7‰, Δ17O of 16.8‰) mixed with NO 3 - produced in situ through nitrification (estimated endmember δ18O and Δ17O of ~0‰). Conversely, highly reacted hyperalkaline fluids had high concentrations of NH3 (>100 μM) with little NO 3 - detectable. We interpret that NH3 in hyperalkaline fluids is a product of NO 3 - reduction. The proportionality of the O and N isotope fractionation (18ε / 15ε) measured in Samail Ophiolite NO 3 - was close to unity (18ε / 15ε ~ 1), which is consistent with dissimilatory NO 3 - reduction with a membrane-bound reductase (NarG); however, abiotic reduction processes may also be occurring. The presence of genes commonly involved in N reduction processes (narG, napA, nrfA) in the metagenomes of biomass sourced from aquifer fluids supports potential biological involvement in the consumption of NO 3 - . Production of NH 4 + as the end-product of NO 3 - reduction via dissimilatory nitrate reduction to ammonium (DNRA) could retain N in the subsurface and fuel nitrification in the oxygenated near surface. Elevated bioavailable N in all sampled fluids indicates that N is not likely limiting as a nutrient in serpentinites of the Samail Ophiolite.
Collapse
Affiliation(s)
- Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
- *Correspondence: Kaitlin R. Rempfert
| | - Daniel B. Nothaft
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Ciara K. Asamoto
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - R. Dave Evans
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - Juerg M. Matter
- National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
- Alexis S. Templeton
| |
Collapse
|
19
|
Xu B, He J, Zou H, Zhang J, Deng L, Yang M, Liu F. Different responses of representative denitrifying bacterial strains to gatifloxacin exposure in simulated groundwater denitrification environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157929. [PMID: 35952894 DOI: 10.1016/j.scitotenv.2022.157929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The impact of antibiotics on denitrification in the ecological environment has attracted widespread attention. However, the concentration threshold and inhibitory effect of the same antibiotic on denitrification mediated by mixed denitrifying microbes were conflicting in some studies. In this study, Paracoccus denitrificans, Acidovorax sp., and Pseudomonas aeruginosa were selected as representative denitrifying bacterial strains to explore the response of a single strain to gatifloxacin (GAT) exposure in groundwater denitrification. The results showed that the nitrate and nitrite removal efficiencies of Pseudomonas aeruginosa decreased by 34.87-36.25 % and 18.27-23.31 %, respectively, with exposure to 10 μg/L GAT, accompanied by a significant decline in denitrifying enzyme activity and gene expression. In contrast, the elevated denitrifying enzyme activity and gene expression of Paracoccus denitrificans promoted its nitrate and nitrite reduction by 2.09-10.00 % and 0-8.44 %, respectively. Additionally, there were no obvious effects on the removal of nitrate and nitrite by Acidovorax sp. in the presence of 10 μg/L GAT, which was consistent with the variation in denitrifying enzyme activity and total gene expression levels. The fit results of the Monod equation and its modification further elucidated the nitrate degradation characteristics from the perspective of denitrification kinetics. Furthermore, antibiotic resistance gene (ARG) analysis showed that the addition of 10 μg/L GAT (approximately 30 days) did not observably increase the relative abundance of ARGs. This study provides some preliminary understanding of the response differences of representative denitrifying bacterial strains to antibiotic exposure in groundwater denitrification.
Collapse
Affiliation(s)
- Baoshi Xu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China.
| | - Jiangtao He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China.
| | - Hua Zou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China
| | - Jingang Zhang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China
| | - Lu Deng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China
| | - Meiping Yang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China
| | - Fei Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
20
|
Boettger JD, Neubauer C, Kopf SH, Kubicki JD. Microbial Denitrification: Active Site and Reaction Path Models Predict New Isotopic Fingerprints. ACS EARTH & SPACE CHEMISTRY 2022; 6:2582-2594. [PMID: 36425342 PMCID: PMC9677970 DOI: 10.1021/acsearthspacechem.2c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The study of isotopic fingerprints in nitrate (δ15N, δ18O, Δ17O) has enabled pivotal insights into the global nitrogen cycle and revealed new knowledge gaps. Measuring populations of isotopic homologs of intact NO3 - ions (isotopologues) shows promise to advance the understanding of nitrogen cycling processes; however, we need new theory and predictions to guide laboratory experiments and field studies. We investigated the hypothesis that the isotopic composition of the residual nitrate pool is controlled by the N-O bond-breaking step in Nar dissimilatory nitrate reductase using molecular models of the enzyme active sites and associated kinetic isotope effects (KIEs). We integrated the molecular model results into reaction path models representing the reduction of nitrate under either closed-system or steady-state conditions. The predicted intrinsic KIE (15ε and 18ε) of the Nar active site matches observed fractionations in both culture and environmental studies. This is what would be expected if the isotopic composition of marine nitrate were controlled by dissimilatory nitrate reduction by Nar. For a closed system, the molecular models predict a pronounced negative 15N-18O clumping anomaly in residual nitrate. This signal could encode information about the amount of nitrate consumed in a closed system and thus constrain initial nitrate concentration and its isotopic composition. Similar clumped isotope anomalies can potentially be used to distinguish whether a system is open or closed to new nitrate addition. These mechanistic predictions can be tested and refined in combination with emerging ESI-Orbitrap measurements.
Collapse
Affiliation(s)
- Jason D. Boettger
- Department
of Earth, Environmental, and Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Cajetan Neubauer
- Department
of Geological Sciences & Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80303, United States
| | - Sebastian H. Kopf
- Department
of Geological Sciences & Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80303, United States
| | - James D. Kubicki
- Department
of Earth, Environmental, and Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
21
|
Goodwin ZI, Yang X, Hoffman C, Pascual DW. Live mucosal vaccination stimulates potent protection via varied CD4+ and CD8+ T cell subsets against wild-type Brucella melitensis 16M challenge. Front Immunol 2022; 13:995327. [PMID: 36263034 PMCID: PMC9574439 DOI: 10.3389/fimmu.2022.995327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
Re-emerging zoonotic pathogen Brucella spp. continues to impact developing countries and persists in expanding populations of wildlife species in the US, constantly threatening infection of our domestic herds. The development of improved animal and human vaccines remains a priority. In this study, immunity to a novel live attenuated B. melitensis strain, termed znBM-mC, was characterized. An oral prime, intranasal (IN) boost strategy conferred exquisite protection against pulmonary challenge, with wild-type (wt) B. melitensis providing nearly complete protection in the lungs and spleens from brucellae colonization. Vaccination with znBM-mC showed an IFN-γ+ CD8+ T-cell bias in the lungs as opposed to Rev 1-vaccinated mice showing IFN-γ+ CD4+ T-cell inclination. Lung CD4+ and CD8+ effector memory T cells (TEMs) increased over 200-fold; and lung CD4+ and CD8+ resident memory T cells (TRMs) increased more than 250- and 150-fold, respectively. These T cells served as the primary producers of IFN-γ in the lungs, which was essential for vaccine clearance and the predominant cytokine generated pre-and post-challenge with wt B. melitensis 16M; znBM-mC growth could not be arrested in IFN-γ−/− mice. Increases in lung TNF-α and IL-17 were also induced, with IL-17 being mostly derived from CD4+ T cells. Vaccination of CD4−/−, CD8−/−, and B6 mice with znBM-mC conferred full protection in the lungs and spleens post-pulmonary challenge with virulent B. melitensis; vaccination of IL-17−/− mice resulted in the protection of the lungs, but not the spleen. These data demonstrate the efficacy of mucosal vaccine administration for the generation of protective memory T cells against wt B. melitensis.
Collapse
|
22
|
Woehle C, Roy AS, Glock N, Michels J, Wein T, Weissenbach J, Romero D, Hiebenthal C, Gorb SN, Schönfeld J, Dagan T. Denitrification in foraminifera has an ancient origin and is complemented by associated bacteria. Proc Natl Acad Sci U S A 2022; 119:e2200198119. [PMID: 35704763 PMCID: PMC9231491 DOI: 10.1073/pnas.2200198119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origin. However, the prevalence of denitrification genes in foraminifera remains unknown, and the missing denitrification pathway components are elusive. Analyzing transcriptomes and metagenomes of 10 foraminiferal species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer the last common ancestor of denitrifying foraminifera, which enables us to predict the ability to denitrify for additional foraminiferal species. Additionally, an examination of the foraminiferal microbiota reveals evidence for a stable interaction with Desulfobacteraceae, which harbor genes that complement the foraminiferal denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera-associated microbiome. The interaction of foraminifera with their resident bacteria is at the basis of foraminiferal adaptation to anaerobic environments that manifested in ecological success in oxygen depleted habitats.
Collapse
Affiliation(s)
- Christian Woehle
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| | | | - Nicolaas Glock
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Jan Michels
- Zoological Institute, Kiel University, Kiel 24118, Germany
| | - Tanita Wein
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| | - Julia Weissenbach
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| | - Dennis Romero
- Dirección General de Investigaciones Oceanográficas y Cambio Climático, Instituto del Mar del Perú, Callao 01, Peru 17
| | - Claas Hiebenthal
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | | | - Joachim Schönfeld
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| |
Collapse
|
23
|
Li Z, Tang Z, Song Z, Chen W, Tian D, Tang S, Wang X, Wang J, Liu W, Wang Y, Li J, Jiang L, Luo Y, Niu S. Variations and controlling factors of soil denitrification rate. GLOBAL CHANGE BIOLOGY 2022; 28:2133-2145. [PMID: 34964218 DOI: 10.1111/gcb.16066] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The denitrification process profoundly affects soil nitrogen (N) availability and generates its byproduct, nitrous oxide, as a potent greenhouse gas. There are large uncertainties in predicting global denitrification because its controlling factors remain elusive. In this study, we compiled 4301 observations of denitrification rates across a variety of terrestrial ecosystems from 214 papers published in the literature. The averaged denitrification rate was 3516.3 ± 91.1 µg N kg-1 soil day-1 . The highest denitrification rate was 4242.3 ± 152.3 µg N kg-1 soil day-1 under humid subtropical climates, and the lowest was 965.8 ± 150.4 µg N kg-1 under dry climates. The denitrification rate increased with temperature, precipitation, soil carbon and N contents, as well as microbial biomass carbon and N, but decreased with soil clay contents. The variables related to soil N contents (e.g., nitrate, ammonium, and total N) explained the variation of denitrification more than climatic and edaphic variables (e.g., mean annual temperature (MAT), soil moisture, soil pH, and clay content) according to structural equation models. Soil microbial biomass carbon, which was influenced by soil nitrate, ammonium, and total N, also strongly influenced denitrification at a global scale. Collectively, soil N contents, microbial biomass, pH, texture, moisture, and MAT accounted for 60% of the variation in global denitrification rates. The findings suggest that soil N contents and microbial biomass are strong predictors of denitrification at the global scale.
Collapse
Affiliation(s)
- Zhaolei Li
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- College of Resources and Environment, Shandong Agricultural University, Taian, China
| | - Ze Tang
- Chinese Academy for Environmental Planning, Beijing, China
| | - Zhaopeng Song
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Processes, and Sino-French Institute for Earth System Science, Peking University, Beijing, China
| | - Weinan Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Shiming Tang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Wenjie Liu
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Yi Wang
- School of Life Sciences and School of Ecology, State Key Lab of Biological Control, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Lifen Jiang
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Sun H, Jiang S. A review on nirS-type and nirK-type denitrifiers via a scientometric approach coupled with case studies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:221-232. [PMID: 35072673 DOI: 10.1039/d1em00518a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The denitrification process plays an important role in improving water quality and is a source/sink of nitrous oxide to the atmosphere. The second important rate-limiting step of the denitrification process is catalyzed by two enzymes with different structures and unrelated evolutionary relationships, namely, the Cu-type nitrite reductase encoded by the nirK gene and the cytochrome cd1-type nitrite reductase encoded by the nirS gene. Although some relevant reviews have been published on denitrifiers, most of these reviews do not include statistical analysis, and do not compare the nirS and nirK communities in-depth. However, a systematic study of the nirS-type and nirK-type denitrifying communities and their response to environmental factors in different ecosystems is needed. In this review, a scientometric approach combined with case studies was used to study the nirS-type and nirK-type denitrifiers. The scientometric approach demonstrated that Pseudomonas, Paracoccus, and Thauera are the most frequently mentioned nirS-type denitrifiers, while Pseudomonas and Bradyrhizobium are the top two most frequently mentioned nirK-type denitrifiers. Among various environmental factors, the concentrations of nitrite, nitrate and carbon sources were widely reported factors that can influence the abundance and structure of nirS-type and nirK-type denitrifying communities. Case studies indicated that Bradyrhizobium was the major genus detected by high-throughput sequencing in both nirS and nirK-type denitrifiers in soil systems. nirS-type denitrifiers are more sensitive to the soil type, soil moisture, pH, and rhizosphere effect than nirK. To clarify the relationships between denitrifying communities and environmental factors, the DNA stable isotope probe combined with metagenomic sequencing is needed for new denitrifier detections.
Collapse
Affiliation(s)
- Haishu Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
25
|
Genomic Features and Pervasive Negative Selection in Rhodanobacter Strains Isolated from Nitrate and Heavy Metal Contaminated Aquifer. Microbiol Spectr 2022; 10:e0259121. [PMID: 35107332 PMCID: PMC8809349 DOI: 10.1128/spectrum.02591-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rhodanobacter species dominate in the Oak Ridge Reservation (ORR) subsurface environments contaminated with acids, nitrate, metal radionuclides, and other heavy metals. To uncover the genomic features underlying adaptations to these mixed-waste environments and to guide genetic tool development, we sequenced the whole genomes of eight Rhodanobacter strains isolated from the ORR site. The genome sizes ranged from 3.9 to 4.2 Mb harboring 3,695 to 4,035 protein-coding genes and GC contents approximately 67%. Seven strains were classified as R. denitrificans and one strain, FW510-R12, as R. thiooxydans based on full length 16S rRNA sequences. According to gene annotation, the top two Cluster of Orthologous Groups (COGs) with high pan-genome expansion rates (Pan/Core gene ratio) were “replication, recombination and repair” and “defense mechanisms.” The denitrifying genes had high DNA homologies except the predicted protein structure variances in NosZ. In contrast, heavy metal resistance genes were diverse with between 7 to 34% of them were located in genomic islands, and these results suggested origins from horizontal gene transfer. Analysis of the methylation patterns in four strains revealed the unique 5mC methylation motifs. Most orthologs (78%) had ratios of nonsynonymous to synonymous substitutions (dN/dS) less than one when compared to the type strain 2APBS1, suggesting the prevalence of negative selection. Overall, the results provide evidence for the important roles of horizontal gene transfer and negative selection in genomic adaptation at the contaminated field site. The complex restriction-modification system genes and the unique methylation motifs in Rhodanobacter strains suggest the potential recalcitrance to genetic manipulation. IMPORTANCE Despite the dominance of Rhodanobacter species in the subsurface of the contaminated Oak Ridge Reservation (ORR) site, very little is known about the mechanisms underlying their adaptions to the various stressors present at ORR. Recently, multiple Rhodanobacter strains have been isolated from the ORR groundwater samples from several wells with varying geochemical properties. Using Illumina, PacBio, and Oxford Nanopore sequencing platforms, we obtained the whole genome sequences of eight Rhodanobacter strains. Comparison of the whole genomes demonstrated the genetic diversity, and analysis of the long nanopore reads revealed the heterogeneity of methylation patterns in strains isolated from the same well. Although all strains contained a complete set of denitrifying genes, the predicted tertiary structures of NosZ differed. The sequence comparison results demonstrate the important roles of horizontal gene transfer and negative selection in adaptation. In addition, these strains may be recalcitrant to genetic manipulation due to the complex restriction-modification systems and methylations.
Collapse
|
26
|
Hu B, Gu X, Wang Y, Leng J, Zhang K, Zhao J, Wu P, Li X, Wan C, Xu J. Revealing the effects of static magnetic field on the anoxic/oxic sequencing batch reactor from the perspective of electron transport and microbial community shifts. BIORESOURCE TECHNOLOGY 2022; 345:126535. [PMID: 34896533 DOI: 10.1016/j.biortech.2021.126535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The effects of static magnetic field (SMF) on an anoxic/oxic sequencing batch reactor were investigated from the perspective of electron transport via determining the variations of reduced/oxidized nicotinamide adenine dinucleotide (NADH/NAD+) ratio, NADH concentration, electron transport system activity (ETSA), poly-β-hydroxybutyrate (PHB), extracellular polymeric substances (EPS), as well as the gene expression under different conditions. Moreover, the shifts of microbial community were also analyzed. The application of SMF with an appropriate intensity significantly improved the performance of the process, the abundance of the anoxic denitrifiers, and the activity of the aerobic denitrifiers. The NADH content, as well as ETSA were also enhanced, therefore, the total nitrogen removal efficiency of the process was increased. However, the overhigh SMF intensity resulted in the change of microbial community, meanwhile, had negative effects on the metabolism of microorganisms. Selecting a proper intensity is crucial for the SMF-enhanced biological wastewater treatment process.
Collapse
Affiliation(s)
- Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China.
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Bureau of Housing and Urban-Rural Development of Chencang District, Baoji City, China
| | - Juntong Leng
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Kai Zhang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Jianqiang Zhao
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China; School of Water and Environment, Chang' an University, Xi'an, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Xiaoling Li
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Chengjie Wan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Jingtong Xu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| |
Collapse
|
27
|
Schwartz SL, Momper L, Rangel LT, Magnabosco C, Amend JP, Fournier GP. Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in the phylum Chloroflexi. Microbiologyopen 2022; 11:e1258. [PMID: 35212484 PMCID: PMC8756737 DOI: 10.1002/mbo3.1258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/09/1999] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from marine and terrestrial ecosystems. The flux of nitrogen species through this pathway has a widespread impact, affecting ecological carrying capacity, agriculture, and climate. Nitrite reductase (Nir) and nitric oxide reductase (NOR) are the two central enzymes in this pathway. Here we present a previously unreported Nir domain architecture in members of phylum Chloroflexi. Phylogenetic analyses of protein domains within Nir indicate that an ancestral horizontal transfer and fusion event produced this chimeric domain architecture. We also identify an expanded genomic diversity of a rarely reported NOR subtype, eNOR. Together, these results suggest a greater diversity of denitrification enzyme arrangements exist than have been previously reported.
Collapse
Affiliation(s)
- Sarah L. Schwartz
- Microbiology Graduate ProgramMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Lily Momper
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Exponent Inc.PasadenaCaliforniaUSA
| | - Luiz Thiberio Rangel
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Jan P. Amend
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
28
|
Bidaud CC, Monteil CL, Menguy N, Busigny V, Jézéquel D, Viollier É, Travert C, Skouri-Panet F, Benzerara K, Lefevre CT, Duprat É. Biogeochemical Niche of Magnetotactic Cocci Capable of Sequestering Large Polyphosphate Inclusions in the Anoxic Layer of the Lake Pavin Water Column. Front Microbiol 2022; 12:789134. [PMID: 35082768 PMCID: PMC8786505 DOI: 10.3389/fmicb.2021.789134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are microorganisms thriving mostly at oxic–anoxic boundaries of aquatic habitats. MTB are efficient in biomineralising or sequestering diverse elements intracellularly, which makes them potentially important actors in biogeochemical cycles. Lake Pavin is a unique aqueous system populated by a wide diversity of MTB with two communities harbouring the capability to sequester not only iron under the form of magnetosomes but also phosphorus and magnesium under the form of polyphosphates, or calcium carbonates, respectively. MTB thrive in the water column of Lake Pavin over a few metres along strong redox and chemical gradients representing a series of different microenvironments. In this study, we investigate the relative abundance and the vertical stratification of the diverse populations of MTB in relation to environmental parameters, by using a new method coupling a precise sampling for geochemical analyses, MTB morphotype description, and in situ measurement of the physicochemical parameters. We assess the ultrastructure of MTB as a function of depth using light and electron microscopy. We evidence the biogeochemical niche of magnetotactic cocci, capable of sequestering large PolyP inclusions below the oxic–anoxic transition zone. Our results suggest a tight link between the S and P metabolisms of these bacteria and pave the way to better understand the implication of MTB for the P cycle in stratified environmental conditions.
Collapse
Affiliation(s)
- Cécile C Bidaud
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France.,Aix-Marseille University, CNRS, CEA, UMR 7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France.,Université de Paris, Centre de Recherches Interdisciplinaires (CRI), Paris, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR 7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Vincent Busigny
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Didier Jézéquel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France.,INRAE & Université Savoie Mont Blanc, UMR CARRTEL, Thonon-les-Bains, France
| | - Éric Viollier
- LSCE, CEA/CNRS/UVSQ/IPSL, Université Paris Saclay & Université de Paris France, Gif-sur-Yvette Cedex, France
| | - Cynthia Travert
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Fériel Skouri-Panet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR 7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Élodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| |
Collapse
|
29
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6521440. [DOI: 10.1093/femsec/fiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
|
30
|
Hu L, Wang X, Chen C, Chen J, Wang Z, Chen J, Hrynshpan D, Savitskaya T. NosZ gene cloning, reduction performance and structure of Pseudomonas citronellolis WXP-4 nitrous oxide reductase. RSC Adv 2022; 12:2549-2557. [PMID: 35425296 PMCID: PMC8979117 DOI: 10.1039/d1ra09008a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. To alleviate the N2O emission, emerging approaches aim at microbiome biotechnology. In this study, the genome sequence of facultative anaerobic bacteria Pseudomonas citronellolis WXP-4, which efficiently degrades N2O, was obtained by de novo sequencing for the first time, and then, four key reductase structure coding genes related to complete denitrification were identified. The single structural encoding gene nosZ with a length of 1914 bp from strain WXP-4 was cloned in Escherichia coli BL21(DE3), and the N2OR protein (76 kDa) was relatively highly efficiently expressed under the optimal inducing conditions of 1.0 mM IPTG, 5 h, and 30 °C. Denitrification experiment results confirmed that recombinant E. coli had strong denitrification ability and reduced 10 mg L−1 of N2O to N2 within 15 h under the optimal conditions of pH 7.0 and 40 °C, its corresponding N2O reduction rate was almost 2.3 times that of Alcaligenes denitrificans strain TB, but only 80% of that of wild strain WXP-4, meaning that nos gene cluster auxiliary gene deletion decreased the activity of N2OR. The 3D structure of N2OR predicted on the basis of sequence homology found that electron transfer center CuA had only five amino acid ligands, and the S2 of the catalytically active center CuZ only bound one CuI atom. The unique 3D structure was different from previous reports and may be closely related to the strong N2O reduction ability of strain WXP-4 and recombinant E. coli. The findings show a potential application of recombinant E. coli in alleviating the greenhouse effect and provide a new perspective for researching the relationship between structure and function of N2OR. Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. The recombinant E. coli and wild strain WXP-4 demonstrate strong N2O reduction ability.![]()
Collapse
Affiliation(s)
- Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoping Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
31
|
Kou Y, Liu Y, Li J, Li C, Tu B, Yao M, Li X. Patterns and Drivers of nirK-Type and nirS-Type Denitrifier Community Assembly along an Elevation Gradient. mSystems 2021; 6:e0066721. [PMID: 34726497 PMCID: PMC8562487 DOI: 10.1128/msystems.00667-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
nirK-type and nirS-type denitrifier communities mediate the conversion of nitrite to nitric oxide, which is the key step in denitrification. Results of previous studies have indicated that nirK-type and nirS-type denitrifiers may occupy different niches; however, the mechanisms and drivers of their responses to environmental changes within community assembly are poorly understood. In this study, we evaluated the distribution and assembly of nirK-type and nirS-type denitrifier communities along an elevation gradient from 1,800 to 4,100 m at Mount Gongga, China. Results showed that elevational patterns of alpha diversity in nirK-type and nirS-type denitrifier communities followed hump-backed patterns along the elevation gradient. However, nirK-type denitrifier communities formed two distinct clusters that were primarily separated by elevation, whereas nirS-type denitrifier communities formed three distinct clusters that were primarily separated by forest type along the elevation gradient. Moreover, deterministic processes were dominant in governing the assemblages of nirK-type and nirS-type denitrifiers. Soil pH was a key factor influencing the alpha and beta diversity of the nirK-type denitrifier communities, whereas plant richness was a primary variable influencing nirS-type denitrifiers. Additionally, our work revealed that soil denitrification potential was mainly explained by the variation in the beta diversity of denitrifier communities rather than the alpha diversity of denitrifier communities or denitrifier abundances over a large elevation gradient, and nirK-type denitrifiers played more important roles in soil denitrification. These results may contribute to predicting the consequences of global changes on denitrifier communities and their ecological services. IMPORTANCE Mount Gongga is the highest peak in the Hengduan Mountain region and is located at the southeastern fringe of the Tibetan Plateau, Sichuan Province, southwest China. As a transitional zone between the Tibetan Plateau and Sichuan Basin, Gongga Mountain features particularly diverse topography, geology, climate, and biodiversity and is a globally significant hot spot of biodiversity. In this contribution, we comprehensively describe the diversity and assembly of denitrifier communities along an elevation gradient on Gongga Mountain. Our findings established for the first time that the distribution patterns of beta diversity and driving factors differed between nirK-type and nirS-type denitrifier communities, and deterministic processes were dominant in shaping communities of denitrifiers. Moreover, the beta diversity of denitrifier communities rather than alpha diversity or denitrifier abundance played an important role in explaining denitrification potential, and the beta diversity of nirK-type denitrifier communities was more important than nirS-type denitrifier communities in soil denitrification. This work provides crucial insights into the spatial distribution of denitrifier communities and their ecological function and increases our understanding of the mechanisms underlying spatial distribution of community assembly along large elevation gradients.
Collapse
Affiliation(s)
- Yongping Kou
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yanjiao Liu
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chaonan Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bo Tu
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Minjie Yao
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
32
|
Mangi AH, Yan Q, Song X, Song J, Lan X, Zhou J, Cai ZH. Oyster Biodeposition Alleviates Sediment Nutrient Overload: A Case Study at Shenzhen Bay, China. Front Microbiol 2021; 12:716201. [PMID: 34858359 PMCID: PMC8631438 DOI: 10.3389/fmicb.2021.716201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Oysters are ecological engineers, and previous studies have examined their role as competent facilitators of ecological restoration. However, the decisive role of oysters in the aquatic environment is still debatable because oyster biodeposition (OBD) may also increase the nutrients enriched in sediments. In order to better interpret this problem, we sampled sediment cores from representative oyster culture areas and uncultured areas in Shenzhen Bay. The results have shown that the TOC (total organic carbon) and TN (total nitrogen) decreased significantly (p < 0.05) at the surface sediment layer (0-20-cm deep) and the sediment layer (20-40-cm deep) of the oyster site compared with the reference site. The decreased TOC and TN were also observed at 60- to 100-cm sediment depth in the oyster site. This indicated that the OBD significantly impacted the concentration of TOC and TN in the sediment. To confirm the alleviative role of OBD, we conducted stable isotope (δ13C and δ15N) analyses, which further demonstrated the presence of heavier and less lighter forms of organic carbon and nitrogen sediment. The surface sediment layer (0-20 cm) at the oyster site showed 8% more δ13C‰ compared with the control site (p < 0.05), reflecting the reduction in the TOC. In order to reveal the potential microbial mechanisms involved in OBD, we performed a functional analysis using the Geochip5 advanced microarray technology. Regarding carbon metabolism, we observed that genes (encoding pullulanase, glucoamylase, exoglucanase, cellobiase, and xylanase) involved in the degradation of relatively labile C-based molecules (e.g., starch, cellulose, and hemicellulose) were highly represented in an experimental area (p < 0.05). In addition, microbes in the experimental area exhibited a greater capacity for degrading recalcitrant C (e.g., lignin), which involves glyoxal oxidase (glx), manganese peroxidase (mnp), and phenol oxidase. Among the genes controlling nitrogen metabolism, the genes involved in denitrification, assimilation, ammonification, and nitrification were differentially expressed compared with the control area. These results indicated that microbial metabolic roles might have enhanced the C/N-flux speed and reduced the overall nutrient status. We concluded that OBD alleviates sediment nutrient overload under oyster farming from a microbial ecological perspective in a rapidly urbanized coastal area.
Collapse
Affiliation(s)
- Autif Hussain Mangi
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Qi Yan
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiao Song
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Junting Song
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Xia Lan
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
33
|
Zhang Q, Zhang C, Zhu Y, Yuan C, Zhao T. Effect of bacteria-to-algae volume ratio on treatment performance and microbial community of a novel heterotrophic nitrification-aerobic denitrification bacteria-chlorella symbiotic system. BIORESOURCE TECHNOLOGY 2021; 342:126025. [PMID: 34600093 DOI: 10.1016/j.biortech.2021.126025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
A novel symbiotic system combined by heterotrophic nitrification-aerobic denitrification (HN-AD) mixed bacteria and Chlorella pyrenoidosa was firstly proposed to resolve the poor tolerance and nitrogen removal performance of traditional symbiotic system for treating high ammonia biogas slurry. Results showed that the volume ratio of bacteria to algae had significant effects on nitrogen removal efficiency, microbial community structure, functional bacteria and genes. The optimal ratio was 1/3, and the average removal efficiency of TN and TP increased by 28.9% and 67.6% respectively, compared to those of HN-AD bacteria. High-throughput sequencing indicated nitrogen removal was jointly completed by HN-AD and heterotrophic denitrification. HN-AD bacteria Halomonas and Pseudomonas played a key role in nitrogen removal, and Rhodocyclaceae and Paracoccus took an important part in phosphorus removal. According to the functional gene prediction, the total relative abundance of nitrogen removal genes (0.0127%) and narG, narH and narL genes (0.0054%) were highest in 1/3 system.
Collapse
Affiliation(s)
- Qian Zhang
- Chongqing University of Technology School of Chemistry and Chemical Engineering, Chongqing 40054, China
| | - Chu Zhang
- Chongqing University of Technology School of Chemistry and Chemical Engineering, Chongqing 40054, China
| | - Yunan Zhu
- Chongqing University of Technology School of Chemistry and Chemical Engineering, Chongqing 40054, China
| | - Chunbo Yuan
- Chongqing University of Technology School of Chemistry and Chemical Engineering, Chongqing 40054, China
| | - Tiantao Zhao
- Chongqing University of Technology School of Chemistry and Chemical Engineering, Chongqing 40054, China.
| |
Collapse
|
34
|
Zhao B, Li X, Wang Y, Tan X, Qi W, Li H, Wei J, You Y, Shi W, Zhang Q. Dissimilatory nitrate reduction and functional genes in two subtropical rivers, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68155-68173. [PMID: 34264489 DOI: 10.1007/s11356-021-15197-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Dissimilatory nitrate reduction processes, including denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA), are important pathways of nitrate transformation in the aquatic environments. In this study, we investigated potential rates of denitrification, anammox, and DNRA in the sediments of two subtropical rivers, Jinshui River and Qi River, with different intensities of human activities in their respective catchment, China. Our objectives were to assess the seasonality of dissimilatory nitrate reduction rates, quantify their respective contributions to nitrate reduction, and reveal the relationship between dissimilatory nitrate reduction rates, functional gene abundances, and physicochemicals in the river ecosystems. Our results showed higher rates of denitrification and anammox in the intensively disturbed areas in autumn and spring, and higher potential DNRA in the slightly disturbed areas in summer. Generally, denitrification, anammox, and DNRA were higher in summer, autumn, and spring, respectively. Relative contributions of nitrate reduction from denitrification, anammox, and DNRA were quite different in different seasons. Dissimilatory nitrate reduction rates and gene abundances correlated significantly with water temperature, dissolved organic carbon (DOC), sediment total organic carbon (SOC), NO3-, NH4+, DOC/NO3-, iron ions, and sulfide. Understanding dissimilatory nitrate reduction is essential for restoring nitrate reduction capacity and improving and sustaining ecohealth of the river ecosystems.
Collapse
Affiliation(s)
- Binjie Zhao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinshuai Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Tan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wenhua Qi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongran Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junwei Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa, 850000, China
- College of Science, Tibet University, Lhasa, 850000, China
| | - Yong You
- College of Land and Resources, China West Normal University, Nanchong, 637009, China
| | - Wenjun Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
35
|
Pang Y, Wang J. Various electron donors for biological nitrate removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148699. [PMID: 34214813 DOI: 10.1016/j.scitotenv.2021.148699] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrate (NO3-) pollution in water and wastewater has become a serious global issue. Biological denitrification, which reduces NO3- to N2 (nitrogen gas) by denitrifying microorganisms, is an efficient and economical process for the removal of NO3- from water and wastewater. During the denitrification process, electron donor is required to provide electrons for reduction of NO3-. A variety of electron donors, including organic and inorganic compounds, can be used for denitrification. This paper reviews the state of the art of various electron donors used for biological denitrification. Depending on the types of electron donors, denitrification can be classified into heterotrophic and autotrophic denitrification. Heterotrophic denitrification utilizes organic compounds as electron donors, including low-molecular-weight organics (e.g. acetate, methanol, glucose, benzene, methane, etc.) and high-molecular-weight organics (e.g. cellulose, polylactic acid, polycaprolactone, etc.); while autotrophic denitrification utilizes inorganic compounds as electron donors, including hydrogen (H2), reduced sulfur compounds (e.g. sulfide, element sulfur and thiosulfate), ferrous iron (Fe2+), iron sulfides (e.g. FeS, Fe1-xS and FeS2), arsenite (As(Ш)) and manganese (Mn(II)). The biological denitrification processes and the representative denitrifying microorganisms are summarized based on different electron donors, and their denitrification performance, operating costs and environmental impacts are compared and discussed. The pilot- or full-scale applications were summarized. The concluding remarks and future prospects were provided. The biodegradable polymers mediated heterotrophic denitrification, as well as H2 and sulfur mediated autotrophic denitrification are promising denitrification processes for NO3- removal from various types of water and wastewater.
Collapse
Affiliation(s)
- Yunmeng Pang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
36
|
Wei W, Isobe K, Shiratori Y, Yano M, Toyoda S, Koba K, Yoshida N, Shen H, Senoo K. Revisiting the involvement of ammonia oxidizers and denitrifiers in nitrous oxide emission from cropland soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117494. [PMID: 34182387 DOI: 10.1016/j.envpol.2021.117494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Nitrous oxide (N2O), an ozone-depleting greenhouse gas, is generally produced by soil microbes, particularly NH3 oxidizers and denitrifiers, and emitted in large quantities after N fertilizer application in croplands. N2O can be produced via multiple processes, and reduced, with the involvement of more diverse microbes with different physiological constraints than previously thought; therefore, there is a lack of consensus on the production processes and microbes involved under different agricultural practices. In this study, multiple approaches were applied, including N2O isotopocule analyses, microbial gene transcript measurements, and selective inhibition assays, to revisit the involvement of NH3 oxidizers and denitrifiers, including the previously-overlooked taxa, in N2O emission from a cropland, and address the biological and environmental factors controlling the N2O production processes. Then, we synthesized the results from those approaches and revealed that the overlooked denitrifying bacteria and fungi were more involved in N2O production than the long-studied ones. We also demonstrated that the N2O production processes and soil microbes involved were different based on fertilization practices (plowing or surface application) and fertilization types (manure or urea). In particular, we identified the following intensified activities: (1) N2O production by overlooked denitrifying fungi after manure fertilization onto soil surface; (2) N2O production by overlooked denitrifying bacteria and N2O reduction by long-studied N2O-reducing bacteria after manure fertilization into the plowed layer; and (3) N2O production by NH3-oxidizing bacteria and overlooked denitrifying bacteria and fungi when urea fertilization was applied into the plowed layer. We finally propose the conceptual scheme of N flow after fertilization based on distinct physiological constraints among the diverse NH3 oxidizers and denitrifiers, which will help us understand the environmental context-dependent N2O emission processes.
Collapse
Affiliation(s)
- Wei Wei
- School of Agricultural Engineering, Jiangsu University, Jiangsu, 212013, China; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuo Isobe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Yutaka Shiratori
- Niigata Agricultural Research Institute, Niigata, 940-0826, Japan
| | - Midori Yano
- Center for Ecological Research, Kyoto University, Shiga, 5202113, Japan
| | - Sakae Toyoda
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Keisuke Koba
- Center for Ecological Research, Kyoto University, Shiga, 5202113, Japan
| | - Naohiro Yoshida
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan; Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550, Japan; National Institute of Information and Communications Technology, Tokyo, 184-8795, Japan
| | - Haoyang Shen
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Keishi Senoo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
37
|
Hu Y, Hong Y, Ye J, Wu J, Wang Y, Ye F, Chang X, Long A. Shift of DNRA bacterial community composition in sediment cores of the Pearl River Estuary and the impact of environmental factors. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1689-1703. [PMID: 33411163 DOI: 10.1007/s10646-020-02321-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Dissimilatory nitrate reduction to ammonia (DNRA) process, competing with denitrification and anaerobic ammonia oxidation (anammox) for nitrate, is an important nitrogen retention pathway in the environment. Previous studies on DNRA bacterial diversity and composition focused on the surface sediments in estuaries, but studies on the deep sediments are limited, and the linkage between DNRA community structure and complex estuarine environment remains unclear. In this study, through high-throughput sequencing of nrfA gene followed by high-resolution sample inference, we examined spatially and temporally the composition and diversity of DNRA bacteria along a salinity gradient in five sediment cores of the Pearl River Estuary (PRE). We found a higher diversity and richness of DNRA bacteria in sediments with lower organic carbon, where sea water intersects fresh water. Moreover, the DNRA bacterial communities had the specific spatially distribution coupling with their metabolic difference along the salinity gradient of the Pearl River Estuary, but no obvious difference along the sediment depth. The distribution of DNRA bacteria in the PRE was largely driven by various environmental factors, including salinity, Oxidation-Reduction Potential (ORP), ammonium, nitrate and Corg/NO3-. Furthermore, dominant DNRA bacteria were found to be the key populations of DNRA communities in the PRE sediments by network analysis. Collectively, our results showed that niche difference of DNRA bacteria indeed occurs in the Pearl River Estuary.
Collapse
Affiliation(s)
- Yaohao Hu
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, PR China.
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, PR China.
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, PR China
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, PR China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, PR China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, PR China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, PR China
| | - Xiangyang Chang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, PR China
| | - Aimin Long
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, PR China.
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| |
Collapse
|
38
|
Gupta RK, Poddar BJ, Nakhate SP, Chavan AR, Singh AK, Purohit HJ, Khardenavis AA. Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process: A non-conventional nitrogen removal pathway in wastewater treatment. Lett Appl Microbiol 2021; 74:159-184. [PMID: 34402087 DOI: 10.1111/lam.13553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022]
Abstract
Bacterial species capable of performing both nitrification and denitrification in a single vessel under similar conditions have gained significance in the wastewater treatment scenario considering their unique character of performing the above reactions under heterotrophic and aerobic conditions respectively. Such a novel strategy often referred to as simultaneous nitrification and denitrification (SND) has a tremendous potential in dealing with various wastewaters having low C:N content, considering that the process needs very little or no external carbon source and oxygen supply thus adding to its cost-effective and environmentally friendly nature. Though like other microorganisms, heterotrophic nitrifiers and aerobic denitrifiers convert inorganic or organic nitrogen-containing substances into harmless dinitrogen gas in the wastewater, their ecophysiological role in the global nitrogen cycle is still not yet fully understood. Attempts to highlight the role played by the heterotrophic nitrifiers and aerobic denitrifiers in dealing with nitrogen pollution under various environmental operating conditions will help in developing a mechanistic understanding of the SND process to address the issues faced by the traditional methods of aerobic autotrophic nitrification-anaerobic heterotrophic denitrification.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
39
|
Blohm A, Kumar S, Knebl A, Herrmann M, Küsel K, Popp J, Frosch T. Activity and electron donor preference of two denitrifying bacterial strains identified by Raman gas spectroscopy. Anal Bioanal Chem 2021; 414:601-611. [PMID: 34297136 PMCID: PMC8748363 DOI: 10.1007/s00216-021-03541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Human activities have greatly increased the input of reactive nitrogen species into the environment and disturbed the balance of the global N cycle. This imbalance may be offset by bacterial denitrification, an important process in maintaining the ecological balance of nitrogen. However, our understanding of the activity of mixotrophic denitrifying bacteria is not complete, as most research has focused on heterotrophic denitrification. The aim of this study was to investigate substrate preferences for two mixotrophic denitrifying bacterial strains, Acidovorax delafieldii and Hydrogenophaga taeniospiralis, under heterotrophic, autotrophic or mixotrophic conditions. This complex analysis was achieved by simultaneous identification and quantification of H2, O2, CO2, 14N2, 15N2 and 15N2O in course of the denitrification process with help of cavity-enhanced Raman spectroscopic (CERS) multi-gas analysis. To disentangle electron donor preferences for both bacterial strains, microcosm-based incubation experiments under varying substrate conditions were conducted. We found that Acidovorax delafieldii preferentially performed heterotrophic denitrification in the mixotrophic sub-experiments, while Hydrogenophaga taeniospiralis preferred autotrophic denitrification in the mixotrophic incubation. These observations were supported by stoichiometric calculations. The results demonstrate the prowess of advanced Raman multi-gas analysis to study substrate use and electron donor preferences in denitrification, based on the comprehensive quantification of complex microbial gas exchange processes.
Collapse
Affiliation(s)
- Annika Blohm
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Swatantar Kumar
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Andreas Knebl
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Martina Herrmann
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
- Abbe Centre of Photonics, Friedrich Schiller University, 07743, Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany.
- Abbe Centre of Photonics, Friedrich Schiller University, 07743, Jena, Germany.
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstraße 25, 64283, Darmstadt, Germany.
| |
Collapse
|
40
|
Bernabeu E, Miralles-Robledillo JM, Giani M, Valdés E, Martínez-Espinosa RM, Pire C. In Silico Analysis of the Enzymes Involved in Haloarchaeal Denitrification. Biomolecules 2021; 11:biom11071043. [PMID: 34356667 PMCID: PMC8301774 DOI: 10.3390/biom11071043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
During the last century, anthropogenic activities such as fertilization have led to an increase in pollution in many ecosystems by nitrogen compounds. Consequently, researchers aim to reduce nitrogen pollutants following different strategies. Some haloarchaea, owing to their denitrifier metabolism, have been proposed as good model organisms for the removal of not only nitrate, nitrite, and ammonium, but also (per)chlorates and bromate in brines and saline wastewater. Bacterial denitrification has been extensively described at the physiological, biochemical, and genetic levels. However, their haloarchaea counterparts remain poorly described. In previous work the model structure of nitric oxide reductase was analysed. In this study, a bioinformatic analysis of the sequences and the structural models of the nitrate, nitrite and nitrous oxide reductases has been described for the first time in the haloarchaeon model Haloferax mediterranei. The main residues involved in the catalytic mechanism and in the coordination of the metal centres have been explored to shed light on their structural characterization and classification. These results set the basis for understanding the molecular mechanism for haloarchaeal denitrification, necessary for the use and optimization of these microorganisms in bioremediation of saline environments among other potential applications including bioremediation of industrial waters.
Collapse
Affiliation(s)
- Eric Bernabeu
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Elena Valdés
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence: ; Tel.: +34-965903400 (ext. 2064)
| |
Collapse
|
41
|
Gushchin I, Aleksenko VA, Orekhov P, Goncharov IM, Nazarenko VV, Semenov O, Remeeva A, Gordeliy V. Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. Int J Mol Sci 2021; 22:5933. [PMID: 34072989 PMCID: PMC8199190 DOI: 10.3390/ijms22115933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Under anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vladimir A. Aleksenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan M. Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vera V. Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
42
|
Asamoto CK, Rempfert KR, Luu VH, Younkin AD, Kopf SH. Enzyme-Specific Coupling of Oxygen and Nitrogen Isotope Fractionation of the Nap and Nar Nitrate Reductases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5537-5546. [PMID: 33687201 DOI: 10.1021/acs.est.0c07816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dissimilatory nitrate reduction (DNR) to nitrite is the first step in denitrification, the main process through which bioavailable nitrogen is removed from ecosystems. DNR is catalyzed by both cytosolic (Nar) and periplasmic (Nap) nitrate reductases and fractionates the stable isotopes of nitrogen (14N, 15N) and oxygen (16O, 18O), which is reflected in residual environmental nitrate pools. Data on the relationship between the pattern in oxygen vs nitrogen isotope fractionation (18ε/15ε) suggests that systematic differences exist between marine and terrestrial ecosystems that are not fully understood. We examined the 18ε/15ε of nitrate-reducing microorganisms that encode Nar, Nap, or both enzymes, as well as gene deletion mutants of Nar and Nap to test the hypothesis that enzymatic differences alone could explain the environmental observations. We find that the distribution of 18ε/15ε fractionation ratios of all examined nitrate reductases forms two distinct peaks centered around an 18ε/15ε proportionality of 0.55 (Nap) and 0.91 (Nar), with the notable exception of the Bacillus Nar reductases, which cluster isotopically with the Nap reductases. Our findings may explain differences in 18ε/15ε fractionation between marine and terrestrial systems and challenge current knowledge about Nar 18ε/15ε signatures.
Collapse
Affiliation(s)
- Ciara K Asamoto
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kaitlin R Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Victoria H Luu
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Adam D Younkin
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sebastian H Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
43
|
Nitrate-responsive suppression of DMSO respiration in a facultative anaerobic haloarchaeon Haloferax volcanii. J Bacteriol 2021; 203:e0065520. [PMID: 33820797 DOI: 10.1128/jb.00655-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Haloferax volcanii is a facultative anaerobic haloarchaeon that can grow using nitrate or dimethyl sulfoxide (DMSO) as respiratory substrates in an anaerobic condition. Comparative transcriptome analysis of denitrifying and aerobic cells of H. volcanii indicated extensive changes in the gene expression involving activation of denitrification, suppression of DMSO respiration, and conversion of the heme biosynthetic pathway under denitrifying condition. Anaerobic growth of H. volcanii by DMSO respiration was inhibited at nitrate concentrations lower than 1 mM, whereas the nitrate-responsive growth inhibition was not observed in the ΔnarO mutant. A reporter assay experiment demonstrated that transcription of the dms operon was suppressed by nitrate. In contrast, anaerobic growth of the ΔdmsR mutant by denitrification was little affected by addition of DMSO. NarO has been identified as an activator of the denitrification-related genes in response to anaerobic conditions, and here we found that NarO is also involved in nitrate-responsive suppression of the dms operon. Nitrate-responsive suppression of DMSO respiration is known in several bacteria, such as Escherichia coli and photosynthetic Rhodobacter sp. This is the first report to show that a regulatory mechanism that suppresses DMSO respiration in response to nitrate exists not only in bacteria but also in the haloarchaea.IMPORTANCE Haloferax volcanii can grow anaerobically by denitrification (nitrate respiration) or DMSO respiration. In the facultative anaerobic bacteria that can grow by both nitrate respiration and DMSO respiration, nitrate respiration is preferentially induced when both nitrate and DMSO are available as respiratory substrates. The results of transcriptome analysis, growth phenotyping, and reporter assay indicated that DMSO respiration is suppressed in response to nitrate in H. volcanii The haloarchaea-specific regulator NarO, which activates denitrification under anaerobic conditions, is suggested to be involved in the nitrate-responsive suppression of DMSO respiration.
Collapse
|
44
|
Duffner C, Wunderlich A, Schloter M, Schulz S, Einsiedl F. Strategies to Overcome Intermediate Accumulation During in situ Nitrate Remediation in Groundwater by Hydrogenotrophic Denitrification. Front Microbiol 2021; 12:610437. [PMID: 33763037 PMCID: PMC7982820 DOI: 10.3389/fmicb.2021.610437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bioremediation of polluted groundwater is one of the most difficult actions in environmental science. Nonetheless, the clean-up of nitrate polluted groundwater may become increasingly important as nitrate concentrations frequently exceed the EU drinking water limit of 50 mg L-1, largely due to intensification of agriculture and food production. Denitrifiers are natural catalysts that can reduce increasing nitrogen loading of aquatic ecosystems. Porous aquifers with high nitrate loading are largely electron donor limited and additionally, high dissolved oxygen concentrations are known to reduce the efficiency of denitrification. Therefore, denitrification lag times (time prior to commencement of microbial nitrate reduction) up to decades were determined for such groundwater systems. The stimulation of autotrophic denitrifiers by the injection of hydrogen into nitrate polluted regional groundwater systems may represent a promising remediation strategy for such environments. However, besides high costs other drawbacks, such as the transient or lasting accumulation of the cytotoxic intermediate nitrite or the formation of the potent greenhouse gas nitrous oxide, have been described. In this article, we detect causes of incomplete denitrification, which include environmental factors and physiological characteristics of the underlying bacteria and provide possible mitigation approaches.
Collapse
Affiliation(s)
- Clara Duffner
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | - Anja Wunderlich
- Chair of Hydrogeology, TUM Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Munich, Germany
| | - Michael Schloter
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | - Stefanie Schulz
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | - Florian Einsiedl
- Chair of Hydrogeology, TUM Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Munich, Germany
| |
Collapse
|
45
|
Deng Y, Ruan Y, Taherzadeh MJ, Chen J, Qi W, Kong D, Ma B, Xu X, Lu H. Carbon availability shifts the nitrogen removal pathway and microbial community in biofilm airlift reactor. BIORESOURCE TECHNOLOGY 2021; 323:124568. [PMID: 33360950 DOI: 10.1016/j.biortech.2020.124568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the response of nitrogen removal performance and microbial community to different carbon composites in biofilm airlift reactors for wastewater treatment. Three reactors were filled with poly (butylene succinate) and bamboo powder composite at the blending ratio of 9:1, 1:1 and 1:9. Increasing the component of bamboo powder in the carrier reduced the carbon availability and had an adverse effect on nitrate removal efficiency. However, bamboo powder improved the ammonia removal rate which mainly through autotrophic nitrification. Three reactors exhibited distinct microbial compositions in both bacterial and fungal diversity. High inclusion of bamboo power decreased the relative abundance of denitrifiers Denitromonas and increased the relative abundance of nitrifiers, including Nitromonas, Nitrospina and Nitrospira. Moreover, correlation network revealed a competitive interaction between the taxa responsible for ammonia removal and nitrate removal processes. Those results indicated the feasibility of steering nitrogen removal pathway through carrier formulation in wastewater treatment.
Collapse
Affiliation(s)
- Yale Deng
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University, WD Wageningen 6708, The Netherlands
| | - Yunjie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China.
| | | | - Jishuang Chen
- Institute of Bioresource Engineering, Nanjing Technology University, Nanjing 210009, China
| | - Wanhe Qi
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Dedong Kong
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huifeng Lu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
46
|
Nitrate Respiration in Thermus thermophilus NAR1: from Horizontal Gene Transfer to Internal Evolution. Genes (Basel) 2020; 11:genes11111308. [PMID: 33158244 PMCID: PMC7694296 DOI: 10.3390/genes11111308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Genes coding for enzymes of the denitrification pathway appear randomly distributed among isolates of the ancestral genus Thermus, but only in few strains of the species Thermus thermophilus has the pathway been studied to a certain detail. Here, we review the enzymes involved in this pathway present in T. thermophilus NAR1, a strain extensively employed as a model for nitrate respiration, in the light of its full sequence recently assembled through a combination of PacBio and Illumina technologies in order to counteract the systematic errors introduced by the former technique. The genome of this strain is divided in four replicons, a chromosome of 2,021,843 bp, two megaplasmids of 370,865 and 77,135 bp and a small plasmid of 9799 pb. Nitrate respiration is encoded in the largest megaplasmid, pTTHNP4, within a region that includes operons for O2 and nitrate sensory systems, a nitrate reductase, nitrate and nitrite transporters and a nitrate specific NADH dehydrogenase, in addition to multiple insertion sequences (IS), suggesting its mobility-prone nature. Despite nitrite is the final product of nitrate respiration in this strain, the megaplasmid encodes two putative nitrite reductases of the cd1 and Cu-containing types, apparently inactivated by IS. No nitric oxide reductase genes have been found within this region, although the NorR sensory gene, needed for its expression, is found near the inactive nitrite respiration system. These data clearly support that partial denitrification in this strain is the consequence of recent deletions and IS insertions in genes involved in nitrite respiration. Based on these data, the capability of this strain to transfer or acquire denitrification clusters by horizontal gene transfer is discussed.
Collapse
|
47
|
Soil Salinity and Moisture Control the Processes of Soil Nitrification and Denitrification in a Riparian Wetlands in an Extremely Arid Regions in Northwestern China. WATER 2020. [DOI: 10.3390/w12102815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil nitrification and denitrification are key nitrogen (N) removal processes in riparian wetlands in extremely arid regions, but the driving factors of the two N processes in these wetlands are still unclear. We measured soil nitrification and denitrification rates and related environmental properties in a typical riparian wetland in the middle reaches of the Heihe River, northwestern China. Our results showed that rates of soil nitrification and denitrification exhibited moderate variability, ranging from 52.77 to 221.18 μg kg−1 h−1 and 91.25 to 428.26 μg kg−1 h−1, respectively. Soil salinity was high, with mean electrical conductivity (EC) of 6.8 mS cm−1. Soil salinity and moisture were the key factors influencing nitrification and denitrification in this riparian wetland in an extremely arid region. Soil salinity exerted significant inhibitory impact on soil nitrification when EC was > 4.05 mS cm−1. Soil nitrification increased with an increase in soil moisture when soil water content < 27.03% and decreased with an increase in soil moisture when soil water content > 27.03%. Denitrification had a significantly negative relationship with soil salinity, and significantly positive relationship with soil moisture. The interaction of soil salinity and moisture played a central role in regulating soil denitrification. Based on these results, we propose that water consumption of riparian wetlands, and the planting of halophytes, should be increased to reduce soil salinity and increase soil moisture, which is essential for sustaining soil N removal function in riparian wetlands in extremely arid regions.
Collapse
|
48
|
Carreira C, Nunes RF, Mestre O, Moura I, Pauleta SR. The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase. J Biol Inorg Chem 2020; 25:927-940. [PMID: 32851479 DOI: 10.1007/s00775-020-01812-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/12/2020] [Indexed: 11/27/2022]
Abstract
Increasing atmospheric concentration of N2O has been a concern, as it is a potent greenhouse gas and promotes ozone layer destruction. In the N-cycle, release of N2O is boosted upon a drop of pH in the environment. Here, Marinobacter hydrocarbonoclasticus was grown in batch mode in the presence of nitrate, to study the effect of pH in the denitrification pathway by gene expression profiling, quantification of nitrate and nitrite, and evaluating the ability of whole cells to reduce NO and N2O. At pH 6.5, accumulation of nitrite in the medium occurs and the cells were unable to reduce N2O. In addition, the biochemical properties of N2O reductase isolated from cells grown at pH 6.5, 7.5 and 8.5 were compared for the first time. The amount of this enzyme at acidic pH was lower than that at pH 7.5 and 8.5, pinpointing to a post-transcriptional regulation, though pH did not affect gene expression of N2O reductase accessory genes. N2O reductase isolated from cells grown at pH 6.5 has its catalytic center mainly as CuZ(4Cu1S), while that from cells grown at pH 7.5 or 8.5 has it as CuZ(4Cu2S). This study evidences that an in vivo secondary level of regulation is required to maintain N2O reductase in an active state.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Rute F Nunes
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Olga Mestre
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
49
|
Galland W, Piola F, Mathieu C, Bouladra L, Simon L, Haichar FEZ. Does Biological Denitrification Inhibition (BDI) in the Field Induce an Increase in Plant Growth and Nutrition in Apium graveolens L. Grown for a Long Period? Microorganisms 2020; 8:microorganisms8081204. [PMID: 32784635 PMCID: PMC7466050 DOI: 10.3390/microorganisms8081204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
Intensive agriculture uses a lot of nitrogen fertilizers to increase crop productivity. These crops are in competition with soil-denitrifying microorganisms that assimilate nitrogen in the form of nitrate and transform it into N2O, a greenhouse gas, or N2. However, certain plant species exude secondary metabolites, called procyanidins, which inhibit denitrifiers and increase the nitrate pool in the soil available for plant nutrition. This phenomenon is called biological denitrification inhibition. Previously, we showed that the addition of exogenous procyanidins to a lettuce crop induces denitrifier inhibition and increases nitrate content in the soil, affecting lettuce morphological traits. Here, the effects of procyanidin amendments in the field on a more long-term and nitrogen-consuming crop species such as celery were tested. The effects of procyanidin amendment on celery growth with those of conventional ammonium nitrate amendments were, therefore, compared. Denitrification activity, nitrate concentration, the abundance of denitrifying bacteria in the soil, and traits related to celery growth were measured. It was shown that the addition of procyanidins inhibits denitrifiers and increases the soil nitrate level, inducing an improvement in celery morphological traits. In addition, procyanidin amendment induces the lowest nitrogen concentration in tissues and reduces N2O emissions.
Collapse
Affiliation(s)
- William Galland
- Université de Lyon, UMR 5557 LEM, Université Lyon 1, CNRS, INRA 1418, F-69622 Villeurbanne CEDEX, France; (W.G.); (L.B.)
- Université de Lyon, UMR5023 LEHNA, Université Lyon 1, CNRS, ENTPE, F-69622 Villeurbanne CEDEX, France; (F.P.); (L.S.)
| | - Florence Piola
- Université de Lyon, UMR5023 LEHNA, Université Lyon 1, CNRS, ENTPE, F-69622 Villeurbanne CEDEX, France; (F.P.); (L.S.)
| | - Céline Mathieu
- Station d’Expérimentation Rhône-Alpes Information Légumes (SERAIL), 123 Chemin du Finday Les Hoteaux, 69126 Brindas, France;
| | - Lyna Bouladra
- Université de Lyon, UMR 5557 LEM, Université Lyon 1, CNRS, INRA 1418, F-69622 Villeurbanne CEDEX, France; (W.G.); (L.B.)
| | - Laurent Simon
- Université de Lyon, UMR5023 LEHNA, Université Lyon 1, CNRS, ENTPE, F-69622 Villeurbanne CEDEX, France; (F.P.); (L.S.)
| | - Feth el Zahar Haichar
- Université de Lyon, UMR 5557 LEM, Université Lyon 1, CNRS, INRA 1418, F-69622 Villeurbanne CEDEX, France; (W.G.); (L.B.)
- INSA-Lyon, Université Claude Bernard Lyon1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ Lyon, 10 Rue Raphaël Dubois, 69622 Villeurbanne, France
- Correspondence:
| |
Collapse
|
50
|
Simultaneous removal characteristics of ammonium and phenol by Alcaligenes faecalis strain WY-01 with the addition of acetate. Bioprocess Biosyst Eng 2020; 44:27-38. [PMID: 32748276 DOI: 10.1007/s00449-020-02416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
In this study, simultaneous removal of ammonium plus phenol could be achieved by Alcaligenes faecalis strain WY-01 with the addition of acetate, although acetate delayed the phenol degradation, probably due to the delayed expression of phenol hydroxylase gene under the presence of acetate. Moreover, the successful expression of key enzyme genes in strain WY-01 provided some evidence to illustrate its metabolic pathways of ammonium and phenol under aerobic conditions. Furthermore, SEM was used to clarify the role of acetate in resisting phenol toxicity, and these results demonstrated that strain WY-01 has the ability to form cell flocs when sodium acetate is used as co-substrate for a high concentration of phenol, and these flocs could protect cells against the toxicity of phenol, further enhancing phenol degradation in a high concentration of phenol. All these will provide further insights into the efficacy of strain WY-01 for treating wastewater cocontaminated by ammonium and phenol.
Collapse
|