1
|
Zhang S, Anang S, Zhang Z, Nguyen HT, Ding H, Kappes JC, Sodroski J. Conformations of membrane human immunodeficiency virus (HIV-1) envelope glycoproteins solubilized in Amphipol A18 lipid-nanodiscs. J Virol 2024; 98:e0063124. [PMID: 39248459 PMCID: PMC11495050 DOI: 10.1128/jvi.00631-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Upon binding to the host cell receptor, CD4, the pretriggered (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer undergoes transitions to downstream conformations important for virus entry. State 1 is targeted by most broadly neutralizing antibodies (bNAbs), whereas downstream conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. Extraction of Env from the membranes of viruses or Env-expressing cells disrupts the metastable State-1 Env conformation, even when detergent-free approaches like styrene-maleic acid lipid nanoparticles (SMALPs) are used. Here, we combine three strategies to solubilize and purify mature membrane Envs that are antigenically native (i.e., recognized by bNAbs and not pNAbs): (1) solubilization of Env with a novel amphipathic copolymer, Amphipol A18; (2) use of stabilized pretriggered Env mutants; and (3) addition of the State-1-stabilizing entry inhibitor, BMS-806. Amphipol A18 was superior to the other amphipathic copolymers tested (SMA and AASTY 11-50) for preserving a native Env conformation. A native antigenic profile of A18 Env-lipid-nanodiscs was maintained for at least 7 days at 4°C and 2 days at 37°C in the presence of BMS-806 and was also maintained for at least 1 h at 37°C in a variety of adjuvants. The damaging effects of a single cycle of freeze-thawing on the antigenic profile of the A18 Env-lipid-nanodiscs could be prevented by the addition of 10% sucrose or 10% glycerol. These results underscore the importance of the membrane environment to the maintenance of a pretriggered (State-1) Env conformation and provide strategies for the preparation of lipid-nanodiscs containing native membrane Envs.IMPORTANCEThe human immunodeficiency virus (HIV-1) envelope glycoproteins (Envs) mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins like Env rely on purification procedures that maintain their natural conformation. In this study, we show that an amphipathic copolymer A18 can directly extract HIV-1 Env from a membrane without the use of detergents. A18 promotes the formation of nanodiscs that contain Env and membrane lipids. Env in A18-lipid nanodiscs largely preserves features recognized by broadly neutralizing antibodies (bNAbs) and conceals features potentially recognized by poorly neutralizing antibodies (pNAbs). Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful for future studies of HIV-1 Env structure, interaction with receptors and antibodies, and immunogenicity.
Collapse
Affiliation(s)
- Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wang G, Wang Y, Ma F. Exploiting bacterial-origin immunostimulants for improved vaccination and immunotherapy: current insights and future directions. Cell Biosci 2024; 14:24. [PMID: 38368397 PMCID: PMC10874560 DOI: 10.1186/s13578-024-01207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Vaccination is a valid strategy to prevent and control newly emerging and reemerging infectious diseases in humans and animals. However, synthetic and recombinant antigens are poor immunogenic to stimulate efficient and protective host immune response. Immunostimulants are indispensable factors of vaccines, which can promote to trigger fast, robust, and long-lasting immune responses. Importantly, immunotherapy with immunostimulants is increasing proved to be an effective and promising treatment of cancer, which could enhance the function of the immune system against tumor cells. Pattern recognition receptors (PRRs) play vital roles in inflammation and are central to innate and adaptive immune responses. Toll-like receptors (TLRs)-targeting immunostimulants have become one of the hotspots in adjuvant research and cancer therapy. Bacterial-origin immunoreactive molecules are usually the ligands of PRRs, which could be fast recognized by PRRs and activate immune response to eliminate pathogens. Varieties of bacterial immunoreactive molecules and bacterial component-mimicking molecules have been successfully used in vaccines and clinical therapy so far. This work provides a comprehensive review of the development, current state, mechanisms, and applications of bacterial-origin immunostimulants. The exploration of bacterial immunoreactive molecules, along with their corresponding mechanisms, holds immense significance in deepening our understanding of bacterial pathogenicity and in the development of promising immunostimulants.
Collapse
Affiliation(s)
- Guangyu Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Yongkang Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| |
Collapse
|
3
|
Jin B, Guo Z, Chen Z, Chen H, Li S, Deng Y, Jin L, Liu Y, Zhang Y, He N. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B 2023; 11:1609-1627. [PMID: 36744587 DOI: 10.1039/d2tb02579e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aptamers, a class of oligonucleotides that can bind with molecular targets with high affinity and specificity, have been widely applied in research fields including biosensing, imaging, diagnosing, and therapy of diseases. However, compared with the rapid development in the research fields, the clinical application of aptamers is progressing at a much slower speed, especially in the therapy of cancer. Obstructions including nuclease degradation, renal clearance, a complex selection process, and potential side effects have inhibited the clinical transformation of aptamer-conjugated drugs. To overcome these problems, taking certain measures to improve the biocompatibility and stability of aptamer-conjugated drugs in vivo is necessary. In this review, the obstructions mentioned above are thoroughly discussed and the methods to overcome these problems are introduced in detail. Furthermore, landmark research works and the most recent studies on aptamer-conjugated drugs for cancer therapy are also listed as examples, and the future directions of research for aptamer clinical transformation are discussed.
Collapse
Affiliation(s)
- Baijiang Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhukang Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yuan Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanying Zhang
- Department of Molecular Biology, Jiangsu Cancer Hospital, Nanjing 210009, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China. .,Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
4
|
Aartsma-Rus A, Garanto A, van Roon-Mom W, McConnell EM, Suslovitch V, Yan WX, Watts JK, Yu TW. Consensus Guidelines for the Design and In Vitro Preclinical Efficacy Testing N-of-1 Exon Skipping Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:17-25. [PMID: 36516128 PMCID: PMC9940807 DOI: 10.1089/nat.2022.0060] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antisense oligonucleotides (ASOs) can modulate pre-mRNA splicing. This offers therapeutic opportunities for numerous genetic diseases, often in a mutation-specific and sometimes even individual-specific manner. Developing therapeutic ASOs for as few as even a single patient has been shown feasible with the development of Milasen for an individual with Batten disease. Efforts to develop individualized ASOs for patients with different genetic diseases are ongoing globally. The N = 1 Collaborative (N1C) is an umbrella organization dedicated to supporting the nascent field of individualized medicine. N1C recently organized a workshop to discuss and advance standards for the rigorous design and testing of splice-switching ASOs. In this study, we present guidelines resulting from that meeting and the key recommendations: (1) dissemination of standardized experimental designs, (2) use of standardized reference ASOs, and (3) a commitment to data sharing and exchange.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Dutch Center for RNA Therapeutics, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,N = 1 Collaborative
| | - Alejandro Garanto
- Dutch Center for RNA Therapeutics, the Netherlands.,Department of Pediatrics and Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA Therapeutics, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Victoria Suslovitch
- N = 1 Collaborative.,Department of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Jonathan K Watts
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Timothy W Yu
- N = 1 Collaborative.,Department of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Division of Genetics and Genomics, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
6
|
Croze RH, Kotterman M, Burns CH, Schmitt CE, Quezada M, Schaffer D, Kirn D, Francis P. Viral Vector Technologies and Strategies: Improving on Nature. Int Ophthalmol Clin 2021; 61:59-89. [PMID: 34196318 PMCID: PMC8253506 DOI: 10.1097/iio.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ratnapriya S, Perez-Greene E, Schifanella L, Herschhorn A. Adjuvant-mediated enhancement of the immune response to HIV vaccines. FEBS J 2021; 289:3317-3334. [PMID: 33705608 DOI: 10.1111/febs.15814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
Protection from human immunodeficiency virus (HIV) acquisition will likely require an effective vaccine that elicits antibodies against the HIV-1 envelope glycoproteins (Envs), which are the sole target of neutralizing antibodies and a main focus of vaccine development. Adjuvants have been widely used to augment the magnitude and longevity of the adaptive immune responses to immunizations with HIV-1 Envs and to guide the development of specific immune responses. Here, we review the adjuvants that have been used in combination with HIV-1 Envs in several preclinical and human clinical trials in recent years. We summarize the interactions between the HIV-1 Envs and adjuvants, and highlight the routes of vaccine administration for various formulations. We then discuss the use of combinations of different adjuvants, the potential effect of adjuvants on the elicitation of antibodies enriched in somatic hypermutation and containing long complementarity-determining region 3 of the antibody heavy chain, and the elicitation of non-neutralizing antibodies.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Eva Perez-Greene
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA.,The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Kuijper EC, Bergsma AJ, Pijnappel WP, Aartsma‐Rus A. Opportunities and challenges for antisense oligonucleotide therapies. J Inherit Metab Dis 2021; 44:72-87. [PMID: 32391605 PMCID: PMC7891411 DOI: 10.1002/jimd.12251] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Antisense oligonucleotide (AON) therapies involve short strands of modified nucleotides that target RNA in a sequence-specific manner, inducing targeted protein knockdown or restoration. Currently, 10 AON therapies have been approved in the United States and Europe. Nucleotides are chemically modified to protect AONs from degradation, enhance bioavailability and increase RNA affinity. Whereas single stranded AONs can efficiently be delivered systemically, delivery of double stranded AONs requires capsulation in lipid nanoparticles or binding to a conjugate as the uptake enhancing backbone is hidden in this conformation. With improved chemistry, delivery vehicles and conjugates, doses can be lowered, thereby reducing the risk and occurrence of side effects. AONs can be used to knockdown or restore levels of protein. Knockdown can be achieved by single stranded or double stranded AONs binding the RNA transcript and activating RNaseH-mediated and RISC-mediated degradation respectively. Transcript binding by AONs can also prevent translation, hence reducing protein levels. For protein restoration, single stranded AONs are used to modulate pre-mRNA splicing and either include or skip an exon to restore protein production. Intervening at a genetic level, AONs provide therapeutic options for inherited metabolic diseases as well. This review provides an overview of the different AON approaches, with a focus on AONs developed for inborn errors of metabolism.
Collapse
Affiliation(s)
- Elsa C. Kuijper
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Atze J. Bergsma
- Department of PediatricsCenter for Lysosomal and Metabolic Diseases, Erasmus Medical CenterRotterdamThe Netherlands
- Department of Clinical GeneticsCenter for Lysosomal and Metabolic Diseases, Erasmus Medical CenterRotterdamThe Netherlands
| | - W.W.M. Pim Pijnappel
- Department of PediatricsCenter for Lysosomal and Metabolic Diseases, Erasmus Medical CenterRotterdamThe Netherlands
- Department of Clinical GeneticsCenter for Lysosomal and Metabolic Diseases, Erasmus Medical CenterRotterdamThe Netherlands
| | | |
Collapse
|
9
|
Discrepant antitumor efficacies of three CpG oligodeoxynucleotide classes in monotherapy and co-therapy with PD-1 blockade. Pharmacol Res 2020; 161:105293. [PMID: 33176206 DOI: 10.1016/j.phrs.2020.105293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Unmethylated CpG oligodeoxynucleotides (ODNs) activate plasmacytoid dendritic cells (pDCs) and B cells to induce humoral and cellular immunity, and are under development for the treatment of multiple cancers. However, the specific differences in antitumor effects among the three CpG ODN classes when administered as a monotherapy or in co-therapy with the anti-PD-1 antibody are unclear. We compared the immunostimulatory effects in vitro and antitumor effects in a CT26 subcutaneous mouse tumor model among the three CpG ODN classes. We found that CpG-A slightly suppressed tumor growth but possessed no synergistic antitumor effects with the anti-PD-1 antibody. CpG-B at low doses significantly inhibited tumor growth and possessed synergistic antitumor effects with the anti-PD-1 antibody. A high dose of CpG-C was required to achieve antitumor effects comparable to those of CpG-B, which was consistent with the immunostimulatory effects in B-cell proliferation and TLR9-NF-κB activation. Importantly, CpG-C in combination with anti-PD-1 antibody inhibited tumor growth more quickly and effectively than CpG-B because CpG-B significantly upregulated PD-L1 expression on multiple host immune cells to promote tumor immune escape. Moreover, co-therapy increased the infiltration of effector memory T cells. In summary, CpG-B and CpG-C with different optimal concentrations possessed strong antitumor effects, while CpG-C was more rapid and effective for co-therapy with the anti-PD-1 antibody.
Collapse
|
10
|
Salmonella enterica Requires Lipid Metabolism Genes To Replicate in Proinflammatory Macrophages and Mice. Infect Immun 2019; 88:IAI.00776-19. [PMID: 31611277 DOI: 10.1128/iai.00776-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/28/2022] Open
Abstract
To survive and replicate during infection, pathogens utilize different carbon and energy sources depending on the nutritional landscape of their host microenvironment. Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen that occupies diverse cellular niches. While it is clear that Salmonella Typhimurium requires access to glucose during systemic infection, data on the need for lipid metabolism are mixed. We report that Salmonella Typhimurium strains lacking lipid metabolism genes were defective for systemic infection of mice. Bacterial lipid import, β-oxidation, and glyoxylate shunt genes were required for tissue colonization upon oral or intraperitoneal inoculation. In cultured macrophages, lipid import and β-oxidation genes were required for bacterial replication and/or survival only when the cell culture medium was supplemented with nonessential amino acids. Removal of glucose from tissue culture medium further enhanced these phenotypes and, in addition, conferred a requirement for glyoxylate shunt genes. We also observed that Salmonella Typhimurium needs lipid metabolism genes in proinflammatory but not anti-inflammatory macrophages. These results suggest that during systemic infection, the Salmonella Typhimurium that relies upon host lipids to replicate is within proinflammatory macrophages that have access to amino acids but not glucose. An improved understanding of the host microenvironments in which pathogens have specific metabolic requirements may facilitate the development of targeted approaches to treatment.
Collapse
|
11
|
Gagnon KT, Corey DR. Guidelines for Experiments Using Antisense Oligonucleotides and Double-Stranded RNAs. Nucleic Acid Ther 2019; 29:116-122. [PMID: 30907681 PMCID: PMC6555184 DOI: 10.1089/nat.2018.0772] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
After decades of research and development, synthetic nucleic acids are beginning to enjoy significant success in the clinic. Approved drugs have increased interest in the field, and many basic research studies have focused on synthetic nucleic acids to control the action of messenger RNA and noncoding RNAs. Unfortunately, experimental designs are often inadequate, resulting in misleading interpretation of data and unconvincing work that wastes resources and does little to advance the field. The goal of this commentary is to outline the problems facing many researchers, especially those new to the use of synthetic oligonucleotides. We describe the minimum control experiments necessary to build a strong case for real effects that are likely due to interactions at the intended molecular target. A common set of standards for preparing and judging experiments should facilitate better interpretation of data and publications that contribute positively to using synthetic nucleic acids as tools and drugs.
Collapse
Affiliation(s)
- Keith T Gagnon
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois.,2 Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois
| | - David R Corey
- 3 Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
12
|
Seth PP, Swayze EE. The Medicinal Chemistry of RNase H-activating Antisense Oligonucleotides. ADVANCES IN NUCLEIC ACID THERAPEUTICS 2019. [DOI: 10.1039/9781788015714-00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on the properties that an RNase H-activating antisense oligonucleotide (ASO) drug must have to function effectively in animals, as well as on medicinal chemistry strategies to achieve these properties. The biochemistry and structural requirements for activating RNase H are briefly summarized, as well as chemical modifications that can effect activation of RNase H when an ASO is bound to target RNA. The key modifications available to the medicinal chemist to engineer desired properties of the ASO are briefly reviewed, as are ASO design strategies to achieve optimal activity in animal systems. Lastly, the interactions of ASOs with proteins and strategies to control these interactions to improve the profile of ASOs are discussed.
Collapse
Affiliation(s)
- Punit P. Seth
- Ionis Pharmaceuticals 2855 Gazelle Court Carlsbad CA 92010 USA
| | - Eric E. Swayze
- Ionis Pharmaceuticals 2855 Gazelle Court Carlsbad CA 92010 USA
| |
Collapse
|
13
|
Bruno JG. Potential Inherent Stimulation of the Innate Immune System by Nucleic Acid Aptamers and Possible Corrective Approaches. Pharmaceuticals (Basel) 2018; 11:ph11030062. [PMID: 29937498 PMCID: PMC6161019 DOI: 10.3390/ph11030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/25/2023] Open
Abstract
It is well known that unmethylated 2′-deoxycytidine-phosphate-2′-guanine (CpG) sequences alone or in longer DNA and RNA oligonucleotides can act like pathogen-associated molecular patterns (PAMPs) and trigger the innate immune response leading to deleterious cytokine production via Toll-like receptors (TLRs). Clearly, such CpG or CpG-containing sequences in aptamers intended for therapy could present very damaging side effects to patients. Previous antisense oligonucleotide developers were faced with the same basic CpG dilemma and devised not only avoidance, but other effective strategies from which current aptamer developers can learn to ameliorate or eliminate damaging CpG effects. These strategies include obvious methylation of cytosines in the aptamer structure, as long as it does not affect aptamer binding in vivo, truncation of the aptamer to its essential binding site, backbone modifications, co-administration of antagonistic or suppressive oligonucleotides, or other novel drugs under development to lessen the toxic CpG effect on innate immunity.
Collapse
Affiliation(s)
- John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite 100, San Antonio, TX 78229, USA.
| |
Collapse
|
14
|
Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T. Aptamer Therapeutics in Cancer: Current and Future. Cancers (Basel) 2018; 10:cancers10030080. [PMID: 29562664 PMCID: PMC5876655 DOI: 10.3390/cancers10030080] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Aptamer-related technologies represent a revolutionary advancement in the capacity to rapidly develop new classes of targeting ligands. Structurally distinct RNA and DNA oligonucleotides, aptamers mimic small, protein-binding molecules and exhibit high binding affinity and selectivity. Although their molecular weight is relatively small—approximately one-tenth that of monoclonal antibodies—their complex tertiary folded structures create sufficient recognition surface area for tight interaction with target molecules. Additionally, unlike antibodies, aptamers can be readily chemically synthesized and modified. In addition, aptamers’ long storage period and low immunogenicity are favorable properties for clinical utility. Due to their flexibility of chemical modification, aptamers are conjugated to other chemical entities including chemotherapeutic agents, siRNA, nanoparticles, and solid phase surfaces for therapeutic and diagnostic applications. However, as relatively small sized oligonucleotides, aptamers present several challenges for successful clinical translation. Their short plasma half-lives due to nuclease degradation and rapid renal excretion necessitate further structural modification of aptamers for clinical application. Since the US Food and Drug Administration (FDA) approval of the first aptamer drug, Macugen® (pegaptanib), which treats wet-age-related macular degeneration, several aptamer therapeutics for oncology have followed and shown promise in pre-clinical models as well as clinical trials. This review discusses the advantages and challenges of aptamers and introduces therapeutic aptamers under investigation and in clinical trials for cancer treatments.
Collapse
Affiliation(s)
- Yoshihiro Morita
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - Macall Leslie
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - Hiroyasu Kameyama
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - David E Volk
- McGovern Medical School, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, USA.
| | - Takemi Tanaka
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, 940 SL Young Blvd, Oklahoma City, OK 73104, USA.
| |
Collapse
|
15
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
16
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
17
|
Recent Advances in the Characterization and Analysis of Therapeutic Oligonucleotides by Analytical Separation Methods Coupling with Mass Spectrometry. ADVANCES IN CHROMATOGRAPHY 2016. [DOI: 10.1201/9781315370385-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Abstract
Oligonucleotide-based therapeutics have made rapid progress in the clinic for treatment of a variety of disease indications. Unmodified oligonucleotides are polyanionic macromolecules with poor drug-like properties. Over the past two decades, medicinal chemists have identified a number of chemical modification and conjugation strategies which can improve the nuclease stability, RNA-binding affinity, and pharmacokinetic properties of oligonucleotides for therapeutic applications. In this perspective, we present a summary of the most commonly used nucleobase, sugar and backbone modification, and conjugation strategies used in oligonucleotide medicinal chemistry.
Collapse
Affiliation(s)
- W Brad Wan
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
19
|
Zhang H, Gao XD. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:935-946. [PMID: 27772724 DOI: 10.1016/j.msec.2016.03.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022]
Abstract
Synthetic oligodeoxynucleotides containing immunostimulatory CpG motif mimic bacterial DNA and are potent activator of innate and adaptive immune responses. Therefore, CpG ODNs have significant potentials as immunotherapeutic agent for treatment of infectious diseases, allergy and cancer. Many clinical trials involving CpG ODNs either used alone or as adjuvant have been initiated. However, delivery of CpG ODNs to target sites still remains a great challenge due to their extreme susceptibility to nuclease degradation in serum and poor cellular uptake. Chemical modification of CpG ODNs backbone can protect them against degradation by nucleases, but have raised concern regarding several severe side effects. Development of efficient CpG ODNs delivery systems to address these issues and enhance their immunostimulatory effect are highly desirable. In recent years, the emergence of nanotechnology has provided unprecedented opportunities to encapsulate CpG ODN into various nanocarriers or synthesize CpG ODNs nanostructures. This review provides an overview of the delivery systems based on nanomaterials and nanostructures newly developed for enhancing the immunostimulatory effect of CpG ODNs, together with a brief discussion on perspectives for future studies in this field.
Collapse
Affiliation(s)
- Huijie Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Kang SA, Tsolmon B, Mann AP, Zheng W, Zhao L, Zhao YD, Volk DE, Lokesh GLR, Morris L, Gupta V, Razaq W, Rui H, Suh KS, Gorenstein DG, Tanaka T. Safety evaluation of intravenously administered mono-thioated aptamer against E-selectin in mice. Toxicol Appl Pharmacol 2015; 287:86-92. [PMID: 26048585 DOI: 10.1016/j.taap.2015.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
The medical applications of aptamers have recently emerged. We developed an antagonistic thioaptamer (ESTA) against E-selectin. Previously, we showed that a single injection of ESTA at a dose of 100μg inhibits breast cancer metastasis in mice through the functional blockade of E-selectin. In the present study, we evaluated the safety of different doses of intravenously administered ESTA in single-dose acute and repeat-dose subacute studies in ICR mice. Our data indicated that intravenous administration of up to 500μg ESTA did not result in hematologic abnormality in either study. Additionally, intravenous injection of ESTA did not affect the levels of plasma cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, GM-CSF, IFN-γ, and TNF-α) or complement split products (C3a and C5a) in either study. However, repeated injections of ESTA slightly increased plasma ALT and AST activities, in accordance with the appearance of small necrotic areas in the liver. In conclusion, our data demonstrated that intravenous administration of ESTA does not cause overt hematologic, organs, and immunologic responses under the experimental conditions.
Collapse
Affiliation(s)
- Shin-Ae Kang
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, United States
| | - Bilegtsaikhan Tsolmon
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, United States
| | - Aman P Mann
- Institute of Molecular Medicine, Department of NanoMedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, United States
| | - Wei Zheng
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, United States
| | - Lichao Zhao
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, United States
| | - Yan Daniel Zhao
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, United States
| | - David E Volk
- Institute of Molecular Medicine, Department of NanoMedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, United States
| | - Ganesh L-R Lokesh
- Institute of Molecular Medicine, Department of NanoMedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, United States
| | - Lynsie Morris
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, United States
| | - Vineet Gupta
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, United States
| | - Wajeeha Razaq
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, United States
| | - Hallgeir Rui
- Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, United States
| | - K Stephen Suh
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, United States
| | - David G Gorenstein
- Institute of Molecular Medicine, Department of NanoMedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, United States
| | - Takemi Tanaka
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, United States.
| |
Collapse
|
21
|
Engelhardt JA, Fant P, Guionaud S, Henry SP, Leach MW, Louden C, Scicchitano MS, Weaver JL, Zabka TS, Frazier KS. Scientific and Regulatory Policy Committee Points-to-consider Paper*: Drug-induced Vascular Injury Associated with Nonsmall Molecule Therapeutics in Preclinical Development: Part 2. Antisense Oligonucleotides. Toxicol Pathol 2015; 43:935-44. [PMID: 25717082 DOI: 10.1177/0192623315570341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Drug-induced vascular injury (DIVI) is a recurrent challenge in the development of novel pharmaceutical agents. In recent years, DIVI has been occasionally observed in nonhuman primates given RNA-targeting therapeutics such as antisense oligonucleotide therapies (ASOs) during chronic toxicity studies. While DIVI in laboratory animal species has been well characterized for vasoactive small molecules, and immune-mediated responses against large molecule biotherapeutics have been well described, there is little published information regarding DIVI induced by ASOs to date. Preclinical DIVI findings in monkeys have caused considerable delays in development of promising new ASO therapies, because of the uncertainty about whether DIVI in preclinical studies is predictive of effects in humans, and the lack of robust biomarkers of DIVI. This review of DIVI discusses clinical and microscopic features of vasculitis in monkeys, their pathogenic mechanisms, and points to consider for the toxicologist and pathologist when confronted with ASO-related DIVI. Relevant examples of regulatory feedback are included to provide insight into risk assessment of ASO therapies.
Collapse
Affiliation(s)
| | | | | | | | - Michael W Leach
- Pfizer-Drug Safety Research and Development, Andover, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Frazier KS. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist's perspective. Toxicol Pathol 2014; 43:78-89. [PMID: 25385330 DOI: 10.1177/0192623314551840] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many antisense oligonucleotides (ASOs) from several classes of molecules are currently in drug development. Despite over 20 years of pharmaceutical research, few ASOs have been marketed due to problems with clinical efficacy or preclinical toxicologic challenges. However, a number of recent developments have renewed interest in this class including the registration of mipomersen, the advent of successful screening strategies to eliminate more toxic molecules, and new understanding of the risks of off-target nucleotide binding and mitigation of potential off-target effects. Recent advances in backbone chemistries, conjugation to other moieties, and new delivery systems have allowed better tissue penetration, enhanced intracellular targeting, and less frequent dosing, resulting in fewer toxicities. While these new developments provide invigorated interest in these platforms, a few lingering challenges and preclinical/clinical toxicity issues remain to be completely resolved, including: (1) proinflammatory effects (vasculitis/inflammatory infiltrates); (2) nephrotoxicity and hepatotoxicity unrelated to lysosomal accumulation; and (3) thrombocytopenia. Recent investigative work by several laboratories have helped elucidate mechanisms for these issues, allowing a better understanding of the clinical relevance and implications of particular toxicities. It is important for toxicologists, pathologists, and regulatory reviewers to be familiar with new developments in the ASO field and their implications, as a greater number of new types of antisense molecules undergo preclinical toxicity testing.
Collapse
|
23
|
Seth PP, Swayze EE. Unnatural Nucleoside Analogs for Antisense Therapy. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Nkolola JP, Cheung A, Perry JR, Carter D, Reed S, Schuitemaker H, Pau MG, Seaman MS, Chen B, Barouch DH. Comparison of multiple adjuvants on the stability and immunogenicity of a clade C HIV-1 gp140 trimer. Vaccine 2014; 32:2109-16. [PMID: 24556505 DOI: 10.1016/j.vaccine.2014.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/28/2014] [Accepted: 02/04/2014] [Indexed: 01/06/2023]
Abstract
Immunogens based on the human immunodeficiency virus type-1 (HIV-1) Envelope (Env) glycoprotein have to date failed to elicit potent and broadly neutralizing antibodies against diverse HIV-1 strains. An understudied area in the development of HIV-1 Env-based vaccines is the impact of various adjuvants on the stability of the Env immunogen and the magnitude of the induced humoral immune response. We hypothesize that optimal adjuvants for HIV-1 gp140 Env trimers will be those with high potency but also those that preserve structural integrity of the immunogen and those that have a straightforward path to clinical testing. In this report, we systematically evaluate the impact of 12 adjuvants on the stability and immunogenicity of a clade C (CZA97.012) HIV-1 gp140 trimer in guinea pigs and a subset in non-human primates. Oil-in-water emulsions (GLA-emulsion, Ribi, Emulsigen) resulted in partial aggregation and loss of structural integrity of the gp140 trimer. In contrast, alum (GLA-alum, Adju-Phos, Alhydrogel), TLR (GLA-aqueous, CpG, MPLA), ISCOM (Matrix M) and liposomal (GLA-liposomes, virosomes) adjuvants appeared to preserve trimer integrity as measured by size exclusion chromatography. However, multiple classes of adjuvants similarly augmented Env-specific binding and neutralizing antibody responses in guinea pigs and non-human primates.
Collapse
Affiliation(s)
- Joseph P Nkolola
- Center for Virology & Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ann Cheung
- Center for Virology & Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - James R Perry
- Center for Virology & Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Steve Reed
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | | | | | - Michael S Seaman
- Center for Virology & Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Bing Chen
- Division of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Dan H Barouch
- Center for Virology & Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Ragon Institute of MGH, MIT and Harvard, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Byadgi O, Puteri D, Lee YH, Lee JW, Cheng TC. Identification and expression analysis of cobia (Rachycentron canadum) Toll-like receptor 9 gene. FISH & SHELLFISH IMMUNOLOGY 2014; 36:417-427. [PMID: 24378677 DOI: 10.1016/j.fsi.2013.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
Cobia culture is hindered by bacterial infection (Photobacterium damselae subsp. piscicida) and in order to study the effect of P. damselae subsp. piscicida challenge and CpG ODN stimulation on cobia Toll like receptor 9 (RCTLR9), we used PCR to clone RCTLR9 gene and qRT-PCR to quantify gene expression. The results indicated that RCTLR9 cDNA contains 3141 bp. It encodes 1047 amino acids containing 16 typical structures of leucine-rich repeats (LRRs) including an LRRTYP, LRRCT and a motif involved in PAMP binding was identified at position 240-253 amino acid. Broad expression of RCTLR9 was found in larval, juvenile and adult stages irrespective of the tissues. In larval stage, RCTLR9 mRNA expression decreased at 5 d and then increased at 10 dph. At juvenile stage cobia, the expression was significantly high (p < 0.05) in spleen and intestine compared to gill, kidney, liver and skin. However, at adult stage, the significant high expression was found in gill and intestine. Cobia challenged with P. damselae subsp. piscicida showed significant increase in RCTLR9 expression at 24 h post challenge in intestine, spleen and liver, while in kidney the expression was peak at 12 h and later it decreased at 24 h. The highest expression was 40 fold increase in spleen and the lowest expression was ∼3.6 fold increase in liver. Cobia stimulated with CpG oligonucleotides showed that the induction of these genes was CpG ODN type and time dependent. In spleen and liver, CpG ODNs 1668 and 2006 injected group showed high expression of RCTLR9, IL-1β, chemokine CC compared to other groups. Meanwhile, CpG ODN 2006 has induced high expression of IgM. The CpG ODNs 2395 have induced significant high expression of Mx in spleen and liver. These results demonstrates the potential of using CpG ODN to enhance cobia resistance to P. damselae subsp. piscicida infection and use as an adjuvant in vaccine development.
Collapse
Affiliation(s)
- Omkar Byadgi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Dinda Puteri
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Fisheries and Marine Science, University of Brawijaya, Malang, Indonesia
| | - Yan-Horn Lee
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Council of Agriculture, Pingtung, Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ta-Chih Cheng
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
26
|
Wilson KD, Tam YK. Lipid-based delivery of CpG oligodeoxynucleotides for cancer immunotherapy. Expert Rev Clin Pharmacol 2014; 2:181-93. [DOI: 10.1586/17512433.2.2.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Murray S, Ittig D, Koller E, Berdeja A, Chappell A, Prakash TP, Norrbom M, Swayze EE, Leumann CJ, Seth PP. TricycloDNA-modified oligo-2'-deoxyribonucleotides reduce scavenger receptor B1 mRNA in hepatic and extra-hepatic tissues--a comparative study of oligonucleotide length, design and chemistry. Nucleic Acids Res 2012; 40:6135-43. [PMID: 22467214 PMCID: PMC3401458 DOI: 10.1093/nar/gks273] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the evaluation of 20-, 18-, 16- and 14-mer phosphorothioate (PS)-modified tricycloDNA (tcDNA) gapmer antisense oligonucleotides (ASOs) in Tm, cell culture and animal experiments and compare them to their gap-matched 20-mer 2′-O-methoxyethyl (MOE) and 14-mer 2′,4′-constrained ethyl (cEt) counterparts. The sequence-matched 20-mer tcDNA and MOE ASOs showed similar Tm and activity in cell culture under free-uptake and cationic lipid-mediated transfection conditions, while the 18-, 16- and 14-mer tcDNA ASOs were moderate to significantly less active. These observations were recapitulated in the animal experiments where the 20-mer tcDNA ASO formulated in saline showed excellent activity (ED50 3.9 mg/kg) for reducing SR-B1 mRNA in liver. The tcDNA 20-mer ASO also showed better activity than the MOE 20-mer in several extra-hepatic tissues such as kidney, heart, diaphragm, lung, fat, gastrocnemius and quadriceps. Interestingly, the 14-mer cEt ASO showed the best activity in the animal experiments despite significantly lower Tm and 5-fold reduced activity in cell culture relative to the 20-mer tcDNA and MOE-modified ASOs. Our experiments establish tcDNA as a useful modification for antisense therapeutics and highlight the role of chemical modifications in influencing ASO pharmacology and pharmacokinetic properties in animals.
Collapse
Affiliation(s)
- Sue Murray
- Isis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Visciano ML, Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Effects of adjuvants on IgG subclasses elicited by virus-like particles. J Transl Med 2012; 10:4. [PMID: 22221900 PMCID: PMC3311067 DOI: 10.1186/1479-5876-10-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 01/05/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Virus-Like Particles (VLPs) represent an efficient strategy to present and deliver conformational antigens to the immune system, inducing both arms of the adaptive immune response. Moreover, their particulate structure surrounded by cell membrane provides an adjuvanted effect to VLP-based immunizations. In the present study, the elicitation of different patterns of IgG subclasses by VLPs, administered in CpG ODN1826 or poly(I:C) adjuvants, has been evaluated in an animal model. RESULTS Adjuvanted VLPs elicited a higher titer of total specific IgG compared to VLPs alone. Furthermore, while VLPs alone induced a balanced TH2 pattern, VLPs formulated with either adjuvant elicited a TH1-biased IgG subclasses (IgG2a and IgG3), with poly(I:C) more potent than CpG ODN1826. CONCLUSIONS The results confirmed that adjuvants efficiently improve antigen immunogenicity and represent a suitable strategy to skew the adaptive immune response toward the differentiation of the desired T helper subset, also using VLPs as antigen.
Collapse
Affiliation(s)
- Maria Luisa Visciano
- Lab, of Molecular Biology and Viral Oncogenesis, Istituto Nazionale Tumori Fond, G, Pascale, Naples-Italy
| | | | | | | | | |
Collapse
|
29
|
Tafaghodi M, Eskandari M, Khamesipour A, Jaafari MR. Alginate microspheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN induced partial protection and enhanced immune response against murine model of leishmaniasis. Exp Parasitol 2011; 129:107-14. [PMID: 21767536 DOI: 10.1016/j.exppara.2011.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 07/02/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
A suitable adjuvant and delivery system are needed to enhance efficacy of vaccines against leishmaniasis. In this study, alginate microspheres as an antigen delivery system and CpG-ODN as an immunoadjuvant were used to enhance immune response and induce protection against an experimental autoclaved Leishmania major (ALM) vaccine. Alginate microspheres were prepared by an emulsification technique and the characteristics of the preparation such as size, encapsulation efficiency and release profile of encapsulates were studied. Mean diameter of microspheres was determined using SEM (Scanning Electron Microscopy) and particle size analyzer. The encapsulation efficiency was determined using Lowry protein assay method. The integrity of ALM antigens was assessed using SDS-PAGE. Mean diameter of microspheres was 1.8±1.0μm. BALB/c mice were immunized three times in 3-weeks intervals with ALM+CpG-ODN loaded microspheres [(ALM+CpG)(ALG)], ALM encapsulated alginate microspheres [(ALM)(ALG)], (ALM)(ALG)+CpG, ALM+CpG, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection was observed in group of mice immunized with (ALM+CpG)(ALG). The groups of mice received (ALM+CpG)(ALG), (ALM)(ALG)+CpG, (ALM)(ALG) and ALM+CpG were also showed a significantly (P<0.05) smaller footpad swelling compared with the group that received either ALM alone or PBS. The mice immunized with (ALM+CpG)(ALG) or ALM+CpG showed the significantly (P<0.05) highest IgG2a/IgG1 ratio. The IFN-γ level was significantly (P<0.0001) highest in group of mice immunized with either (ALM)(ALG)+CpG or ALM+CpG. It is concluded that alginate microspheres and CpG-ODN adjuvant when are used simultaneously induced protection and enhanced immune response against ALM antigen.
Collapse
Affiliation(s)
- Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | |
Collapse
|
30
|
Hung LH, Tsai PC, Wang CH, Li SL, Huang CC, Lien YY, Chaung HC. Immunoadjuvant efficacy of plasmids with multiple copies of a CpG motif coadministrated with avian influenza vaccine in chickens. Vaccine 2011; 29:4668-75. [DOI: 10.1016/j.vaccine.2011.04.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/11/2011] [Accepted: 04/27/2011] [Indexed: 12/16/2022]
|
31
|
Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN. Parasitol Res 2010; 108:1265-73. [PMID: 21125294 DOI: 10.1007/s00436-010-2176-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
Various adjuvants and delivery systems have been evaluated for increasing the protective immune responses against leishmaniasis and mostly have been shown not to be effective enough. In this study, poly(D,L-lactide-co-glycolide) (PLGA) nanospheres as an antigen delivery system and CpG-ODN as an immunoadjuvant have been used for the first time to enhance the immune response against autoclaved Leishmania major (ALM). PLGA nanospheres were prepared by a double-emulsion (W/O/W) technique. Particulate characteristics were studied by scanning electron microscopy and particle size analysis. Mean diameter of ALM + CpG-ODN-loaded nanospheres was 300 ± 128 nm. BALB/c mice were immunized three times in 3-week intervals using ALM plus CpG-ODN-loaded nanospheres [(ALM + CpG-ODN)(PLGA)], ALM encapsulated PLGA nanospheres [(ALM)(PLGA)], (ALM)(PLGA) + CpG, ALM + CpG, ALM alone, or phosphate buffer solution (PBS). The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P<0.05) smaller footpad, was observed in mice immunized with (ALM + CpG-ODN)(PLGA). The (ALM)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG were also showed a significantly (P<0.05) smaller footpad swelling compared to the groups received either PBS or ALM alone. The mice immunized with (ALM + CpG-ODN)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG showed the highest IgG2a/IgG1 ratio, interferon-γ production, and lowest interleukin-4 production compared to the other groups. It is concluded that when both PLGA nanospheres and CpG-ODN adjuvants were used simultaneously, it induce stronger immune response and enhance protection rate against Leishmania infection.
Collapse
|
32
|
Gupta GK, Agrawal DK. CpG oligodeoxynucleotides as TLR9 agonists: therapeutic application in allergy and asthma. BioDrugs 2010; 24:225-35. [PMID: 20623989 DOI: 10.2165/11536140-000000000-00000] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) dinucleotides in microbial DNA sequences activate Toll-like receptor (TLR) 9, and previous studies have shown that oligodeoxynucleotides (ODNs) containing CpG in specific base sequence motifs (CpG ODNs) can reiterate the majority of the immunomodulatory effects produced by bacterial DNA. Many of the manifestations in allergic diseases are primarily due to T helper (T(h))-2 cell-type responses. CpG ODNs can induce T(h)1 and T-regulatory (T(reg)) cell-type cytokines that can suppress the T(h)2 response. The therapeutic application of TLR9 has been explored extensively in recent years, and many studies are being conducted to assess the safety and efficacy of TLR9 agonists in various diseases, including atopic and infectious diseases, and cancer. Studies in murine models have shown that the development of atopic airway disease can be prevented by treatment with CpG ODNs. Various clinical trials are currently ongoing to determine the efficacy of CpG ODNs as a therapeutic tool for atopic diseases. In this review, we discuss the therapeutic application of CpG ODNs in allergy and asthma. CpG ODNs may be used alone or as an adjuvant to immunotherapy to treat these disorders.
Collapse
Affiliation(s)
- Gaurav K Gupta
- Center for Clinical and Translational Science, Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | |
Collapse
|
33
|
Antigenic features of protein carriers commonly used in immunisation trials. Biotechnol Lett 2010; 32:1215-21. [DOI: 10.1007/s10529-010-0283-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
|
34
|
Hau P, Jachimczak P, Bogdahn U. Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Rev Anticancer Ther 2010; 9:1663-74. [PMID: 19895249 DOI: 10.1586/era.09.138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antisense oligodeoxynucleotides (AS-ODNs) have been widely used to determine gene function, validate drug targets and as novel therapeutics for human diseases. In this review, we describe the development of AS-ODNs, including their modifications, pharmacokinetics and toxicity in animal models and humans, and their preclinical and clinical development in the therapy of human high-grade gliomas. The most advanced AS-ODN for the therapy of high-grade gliomas is a phosphorothioate-modified AS-ODN, AP 12009 (trabedersen), which targets mRNA encoding TGF-beta2. AP 12009 is administered intratumorally using convection-enhanced delivery. A series of Phase I and II clinical trials have evaluated the toxicity profile and optimal dose of the substance. A randomized, controlled international Phase III study was initiated in March 2009 and will compare trabedersen 10 microM versus conventional alkylating chemotherapy in patients with recurrent or refractory anaplastic astrocytoma after standard radio- and chemotherapy.
Collapse
Affiliation(s)
- Peter Hau
- Department of Neurology, University of Regensburg, Medical School, Regensburg, Germany.
| | | | | |
Collapse
|
35
|
Zorro S, Arias M, Riaño F, Paris S, Ramírez LA, Uribe O, García LF, Vásquez G. Response to ODN-CpG by B Cells from patients with systemic lupus erythematosus correlates with disease activity. Lupus 2009; 18:718-26. [PMID: 19502268 DOI: 10.1177/0961203309103098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Different immunological alterations may condition systemic lupus erythematosus (SLE) activity. However, it is not known whether alterations in the phenotype of circulating antigen-presenting cells (APCs) and in the response to CpG oligodeoxynucleotides (ODN-CpG) correlate with disease activity. APC expression of HLA-DR, costimulatory molecules, and TLR9 expression was determined in patients with SLE, other autoimmune diseases, and healthy controls. Monocyte and B cell response to synthetic ODN-CpG sequences was also evaluated. Monocytes from patients with moderate SLE activity had higher expression of CD40 and CD86. Decreased numbers of CD19+CD80+ and BDCA-3+CD40+ cells were found in patients with severe SLE activity. In patients with moderate SLE activity, non-adherent and enriched B cell response to ODN-CpG was similar to healthy controls. Adherent and enriched B cells from patients with severe SLE activity did not increase costimulatory molecule expression or cytokine production after ODN-CpG stimulation. APCs from patients with SLE, regardless of disease activity, displayed higher percentage of TLR9+ cells, as well as increased expression of TLR9, compared to healthy controls. Results suggest that the B cell response to ODN-CpG correlates with the SLE activity, independently of TLR9 expression, indicating that alterations in B cell response in severe activity SLE may be caused by events down-stream to TLR9.
Collapse
Affiliation(s)
- S Zorro
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Department of Immunology, Cancer Center, Scottsdale Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mansoor M, Melendez AJ. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:275-95. [PMID: 19787090 PMCID: PMC2733095 DOI: 10.4137/grsb.s418] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides (As-ODNs) are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt), 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.
Collapse
Affiliation(s)
- Moizza Mansoor
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
37
|
Liu T, Nerren J, Murrell J, Juillard V, El Garch H, Martens R, Cohen N. CpG-Induced Stimulation of Cytokine Expression by Peripheral Blood Mononuclear Cells of Foals and Their Dams. J Equine Vet Sci 2008. [DOI: 10.1016/j.jevs.2008.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Jason TLH, Figueredo R, Ferguson PJ, Vincent MD, Berg RW, Koropatnick J. ODN 491, a novel antisense oligodeoxynucleotide that targets thymidylate synthase, exerts cell-specific effects in human tumor cell lines. DNA Cell Biol 2008; 27:229-40. [PMID: 18358073 DOI: 10.1089/dna.2007.0674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thymidylate synthase (TS) is essential for DNA replication and is a target for cancer chemotherapy. However, toxicity to normal cells and tumor cell drug resistance necessitate development of new therapeutic strategies. One such strategy is to use antisense (AS) technology to reduce TS mRNA and protein levels in treated cells. We have developed oligodeoxynucleotides (ODNs) that target different regions of TS mRNA, inhibit human tumor cell proliferation as single agents, and enhance cytotoxicity of clinically useful TS protein-targeting drugs. Here we describe ODN 491, a novel 20mer AS ODN complementary to a previously untargeted portion of the TS mRNA coding region. AS ODN 491 decreased TS mRNA levels to different degrees in a panel of human tumor-derived cell lines, and induced different physiological effects in a tumor cell line-dependent manner. ODN 491 (like AS TS ODN 83, previously shown to be effective) decreased TS protein levels in HeLa cells with a concomitant increase in sensitivity to TS-targeting chemotherapeutics. However (and contrary to HeLa cell response to an AS ODN 83), it did not, as a single agent, inhibit HeLa cell proliferation. In MCF-7 cells, ODN 491 treatment was less effective at reducing TS mRNA and did not reduce TS protein, nor did it enhance sensitivity to TS-targeting or other chemotherapeutics. Moreover, specifically in MCF-7 cells but not HeLa cells, ODN 491 as a single agent induced apoptosis. These data indicate that AS TS ODN 491 is an effective AS reagent targeting a novel TS mRNA region. However, treatment of tumor cell lines with AS TS ODNs targeting different TS mRNA regions results in a pattern of physiological effects that varies in a tumor cell line-specific fashion. In addition, the capacity of different AS TS ODNs to induce physiological effects does not correlate well with their capacity to reduce TS mRNA and/or protein and, further, depends on the region of TS mRNA selected for targeting. Recognition of tumor cell-specific and mRNA region-specific variability in response to AS TS ODNs will be important in designing AS TS ODNs for potential clinical use.
Collapse
Affiliation(s)
- Tracey L H Jason
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Eugen Uhlmann
- Coley Pharmaceutical GmbH Merowingerplatz 1a D-40225 Düsseldorf Germany
| |
Collapse
|
40
|
Thacker EL, Holtkamp DJ, Khan AS, Brown PA, Draghia-Akli R. Plasmid-mediated growth hormone-releasing hormone efficacy in reducing disease associated with Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus infection. J Anim Sci 2007; 84:733-42. [PMID: 16478966 DOI: 10.2527/2006.843733x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to determine the effects of plasmid-mediated growth hormone releasing hormone (GHRH) supplementation on the clinical outcomes of pigs vaccinated against and challenged with either Mycoplasma hyopneumonia (M. hyo) and/or with porcine reproductive and respiratory syndrome (PRRS) virus. Before the first vaccination, pigs received a single i.m. injection of 0.625 mg of a porcine GHRH-expressing plasmid followed by electroporation of the injection site. Pigs were vaccinated at 2-wk intervals, challenged with either M. hyo and/or PRRS virus 2-wk after the second vaccination, and necropsied at 17 and 36 d after challenge. Clinical parameters associated with M. hyo challenge were improved with the GHRH treatment. Average daily gain between challenge and necropsy was improved (P = 0.04). Respiratory scores for M. hyo-challenged pigs tended to be lower in GHRH-treated animals compared to controls, and coughing scores were improved by the treatment (P = 0.01). Macroscopic lesions associated with M. hyo infection pneumonia were fewer in the group that received the GHRH-expressing plasmid. No differences between treatment groups in the macroscopic pneumonia associated with PRRS virus were observed. No differences in serum antibodies to M. hyo or PRRS virus were observed with GHRH treatment. Nevertheless, IgG in the bronchioalveolar lavage was increased by the GHRH treatment in M. hyo-challenged animals (P < 0.03). The results of this study suggest that GHRH supplementation before vaccination may enhance the protection against M. hyo-induced pneumonia and that a single dose of GHRH-expressing plasmid was sufficient to elicit an improved clinical outcome in this disease challenge model.
Collapse
Affiliation(s)
- E L Thacker
- Department of VMPM, College of Veterinary Medicine, Iowa State University, Ames, 50011, USA.
| | | | | | | | | |
Collapse
|
41
|
Wong JP, Christopher ME, Salazar AM, Dale RMK, Sun LQ, Wang M. Nucleic acid-based antiviral drugs against seasonal and avian influenza viruses. Vaccine 2007; 25:3175-8. [PMID: 17280757 DOI: 10.1016/j.vaccine.2007.01.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Influenza viruses are etiological agents of deadly flu that continue to pose global health threats, and have caused global pandemics that killed millions of people worldwide. The availability of neuraminidase inhibitors and attenuated vaccines improves our ability to defend against influenza, but their benefits can be significantly limited by drug-resistance and virus mutations. Nucleic acid-based drugs may represent a promising class of antiviral agents that could play a role in the prevention and treatment of influenza. Efficacy studies in animals have shown that ds RNA, such as poly ICLC can provide effective and broad-spectrum prophylaxis against lethal challenges against various strains of influenza A virus. Furthermore, similar level of antiviral protection in mice can be provided by using short fragments of oligonucleotides that induce antiviral immunity. Finally, influenza virus expression can also be specifically inhibited or suppressed using antisense oligonucleotides that bind to viral mRNA encoding key viral proteins. The versatility and potency of nucleic acid-based drugs make them potential drug candidates for used in seasonal or pandemic influenza situations.
Collapse
Affiliation(s)
- J P Wong
- Defence R&D Canada - Suffield, Ralston, AB, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Delivery of G3139 using releasable PEG-linkers: impact on pharmacokinetic profile and anti-tumor efficacy. J Control Release 2006; 119:143-52. [PMID: 17397960 DOI: 10.1016/j.jconrel.2006.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/13/2006] [Accepted: 12/18/2006] [Indexed: 01/13/2023]
Abstract
In order to overcome the problems of enzymatic degradation and short plasma half life, which can limit the delivery of antisense oligonucleotides, and the potential immuno-stimulatory effects of CpG motifs, we utilized a polyethylene glycol (PEG) technology that employed various releasable linkers (rPEG). 5'-20 kDa-PEGylation of an anti-Bcl-2 5'-aminoalkyl-oligonucleotide with the same sequence as G3139 (Compound 1) did not alter its binding to the heparin-binding protein bFGF, nor the release of cytochrome c from isolated mitochondria treated with the conjugates. However, in 518A2 melanoma cells in vitro, PEGylation resulted in greatly diminished cellular uptake. In striking contrast, PEGylation of 1 resulted in dramatically improved pharmacokinetic profiles in vivo, with a prolonged half-life (t1/2), increased plasma concentration, and increased area under the plasma concentration-time curve (AUC). In an in vivo melanoma 518A2 xenograft mouse model, treatment with either 5'-20 kDa-PEG-1 or 1 demonstrated similar tumor growth inhibition. Furthermore, in an in vitro mouse splenocyte culture system, attachment of a PEG moiety to 1 through releasable linkers abolished the immunostimulatory response that was observed for G3139. Our results demonstrate the potential of the in vivo use of PEGylated oligonucleotides, and point out the profound differences between in vitro and in vivo models of oligonucleotide activity.
Collapse
|
43
|
Ross BS, Han M, Ravikumar VT. Efficient large-scale synthesis of 5'-O-dimethoxytrityl-N4-benzoyl-5-methyl-2'-deoxycytidine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:765-70. [PMID: 16898414 DOI: 10.1080/15257770600726059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An efficient process to synthesize 5'-O-dimethoxytrityl-N4-benzoyl-5-methyl-2'-deoxycytidine in high yield and quality is described. Final benzoylation was improved by developing a method to selectively hydrolyze benzoyl ester impurities. This inexpensive approach was scaled up to multikilogram quantities for routine use in oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Bruce S Ross
- Isis Pharmaceuticals, Inc., 2282 Faraday Ave., Carlsbad, CA 92008, USA
| | | | | |
Collapse
|
44
|
CpG oligodeoxynucleotide-induced immunity prevents growth of germinal center-derived B lymphoma cells. Int Immunopharmacol 2006; 6:2057-68. [PMID: 17161362 DOI: 10.1016/j.intimp.2006.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 08/10/2006] [Accepted: 08/12/2006] [Indexed: 01/06/2023]
Abstract
Therapeutic efficacy of CpG oligodeoxynucleotide (ODN) ISS 1018 was tested in a murine B cell lymphoma model. Previous studies showed that the B lymphoma cells of SJL mice stimulate vigorous proliferation of host CD4(+) TH cells that is unaccompanied by development of tumor-specific CTL. In the presence of ISS 1018, however, tumor cells stimulated high levels of CTL activity in vitro, and this cytotoxic activity was inhibited when anti-IL-12 mAb was added to the cultures. Tumor cells pre-incubated with ISS 1018 were also able to generate CTL without addition of exogenous ODN, and FACS analysis revealed that following incubation with ISS 1018 for 24 h, tumor cells exhibited upregulation of MHC I, MHC II, and co-stimulatory molecule CD80. Finally, tumor-injected mice treated with ISS 1018 showed significantly less growth of tumor cells in lymph nodes and spleen, and exhibited prolonged survival compared to mice treated with a control ODN. The documented effects of CpG ODNs to stimulate cytokines, such as IL-12, from antigen presenting cells, and to upregulate expression of MHC Class I and Class II, as well as co-stimulatory molecules on tumor cells, are also the likely mechanisms by which CTL are generated by ISS 1018 in the SJL B cell lymphoma model.
Collapse
|
45
|
Mao D, Kai G, Gaofu Q, Zheng Z, Li Z, Jie W, Jingjing L, Rongyue C. Intramuscular immunization with a DNA vaccine encoding a 26-amino acid CETP epitope displayed by HBc protein and containing CpG DNA inhibits atherosclerosis in a rabbit model of atherosclerosis. Vaccine 2006; 24:4942-50. [PMID: 16697088 DOI: 10.1016/j.vaccine.2006.03.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 03/03/2006] [Accepted: 03/20/2006] [Indexed: 01/03/2023]
Abstract
Rabbits were intramuscularly immunized with the plasmid pCR-X8-HBc-CETP encoding a B-cell epitope of cholesteryl ester transfer protein (CETP) C-terminal fragment (CETPC) displayed by Hepatitis B virus core (HBc) particle. This plasmid also contained immunostimulatory sequences (ISS) which included eight CpG motifs 5'-GACGTT-3', functioning as immunomodulators. After anti-CETP antibodies were successfully produced, rabbits were fed with a high-cholesterol diet for 15 weeks, and then the antiatherogenic effects of this DNA immunization were evaluated. The results showed that the fraction of plasma cholesterol in HDL significantly increased and the fraction of plasma cholesterol in LDL decreased in the pCR-X8-HBc-CETP immunized rabbits compared with those in the saline control group and one group treated with the plasmid pCR-X8-HBc containing ISS but lacking CETP epitope. More importantly, DNA immunization with pCR-X8-HBc-CETP markedly reduced the average percentage of aortic lesions in the entire aorta area by 80.60% compared with the saline control (3.78% versus 19.48%) and the average thickness of hyperplastic coronary artery in this group was also significantly less than in the saline control group (146+/-11 microm versus 248+/-18 microm). Our data also showed that CpG DNA alone could be antiatherogenic in this model because the average percentage of aortic lesions in pCR-X8-HBc immunized rabbits was 16.53% lower than that of the saline control group and the average thickness of hyperplastic coronary artery was also substantially lower than saline control group (155+/-13 microm versus 248+/-18 microm). Thus, plasmid pCR-X8-HBc-CETP could significantly inhibit the progression of atherosclerosis and be potentially developed as a suitable DNA vaccine against atherosclerosis.
Collapse
Affiliation(s)
- Dan Mao
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing 210009, Jiangsu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu C, Leung MYK, Koon JCM, Zhu LF, Hui YZ, Yu B, Fung KP. Macrophage activation by polysaccharide biological response modifier isolated from Aloe vera L. var. chinensis (Haw.) Berg. Int Immunopharmacol 2006; 6:1634-41. [PMID: 16979117 DOI: 10.1016/j.intimp.2006.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/25/2006] [Accepted: 04/25/2006] [Indexed: 11/26/2022]
Abstract
A mannose-rich polysaccharide biological response modifier (BRM), derived from Aloe vera L. var. chinensis (Haw.) Berg., was demonstrated to be a potent murine B- and T-cell stimulator in our previous study. We here report the stimulatory activity of PAC-I on murine peritoneal macrophage. The polysaccharide when injected into mice enhanced the migration of macrophages to the peritoneal cavity. Peritoneal macrophage when treated by PAC-I in vitro had increased expression of MHC-II and FcgammaR, and enhanced endocytosis, phagocytosis, nitric oxide production, TNF-alpha secretion and tumor cell cytotoxicity. The administration of PAC-I into allogeneic ICR mice stimulated systemic TNF-alpha production in a dose-dependent manner and prolonged the survival of tumor-bearing mice. PAC-I is thus a potent stimulator of murine macrophage and the in vitro observed tumoricidal properties of activated macrophage might account for the in vivo antitumor properties of PAC-I. Our research findings may have therapeutic implications in tumor immunotherapy.
Collapse
Affiliation(s)
- C Liu
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Bravo JA, Parra CS, Arancibia S, Andrés S, Morales P, Herrera-Marschitz M, Herrera L, Lara HE, Fiedler JL. Adrenalectomy promotes a permanent decrease of plasma corticoid levels and a transient increase of apoptosis and the expression of Transforming Growth Factor beta1 (TGF-beta1) in hippocampus: effect of a TGF-beta1 oligo-antisense. BMC Neurosci 2006; 7:40. [PMID: 16712723 PMCID: PMC1481618 DOI: 10.1186/1471-2202-7-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/19/2006] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Corticosterone reduction produced by adrenalectomy (ADX) induces apoptosis in dentate gyrus (DG) of the hippocampus, an effect related to an increase in the expression of the pro-apoptotic gene bax. However it has been reported that there is also an increase of the anti-apoptotic gene bcl-2, suggesting the promotion of a neuroprotective phenomenon, perhaps related to the expression of transforming growth factor beta1 (TGF-beta1). Thus, we have investigated whether TGF-beta1 levels are induced by ADX, and whether apoptosis is increased by blocking the expression of TGF-beta1 with an antisense oligonucleotide (ASO) administered intracerebrally in corticosterone depleted rats. RESULTS It was observed an increase of apoptosis in DG, 2 and 5 days after ADX, in agreement with a reduction of corticosterone levels. However, the effect of ADX on the number of apoptotic positive cells in DG was decreased 5 days after the lesion. In CA1-CA3 regions, the effect was only observed 2 days after ADX. TGF-beta1 mRNA levels were increased 2 days after ADX. The sustained intracerebro-ventricular administration of a TGF-beta1 ASO via an osmotic mini pump increased apoptosis levels in CA and DG regions 5 days after ADX as well as sham-operated control animals. No significant effect was observed following a scrambled-oligodeoxynucleotide treatment. CONCLUSION The changes in both the pattern and the magnitude of apoptotic-cell morphology observed 2 and 5 days after ADX suggest that, as a consequence of the reduction of corticosteroids, some trophic mechanisms restricting cell death to a particular time window are elicited. Sustained intracerebral administration of TGF-beta1 ASO increased the apoptosis promoted by ADX, suggesting that TGF-beta1 plays an anti-apoptotic role in vivo in hippocampus.
Collapse
Affiliation(s)
- Javier A Bravo
- Department of Biochemistry and Molecular Biology. Laboratory of Neurobiochemistry. Faculty of Chemical and Pharmaceutical Sciences. Universidad de Chile, Chile
| | - Claudio S Parra
- Department of Biochemistry and Molecular Biology. Laboratory of Neurobiochemistry. Faculty of Chemical and Pharmaceutical Sciences. Universidad de Chile, Chile
| | - Sandor Arancibia
- Laboratory of Molecular Mechanisms of Neurodegenerative Diseases, Université de Montpellier, Montpellier, France
| | - Sergio Andrés
- Department of Biochemistry and Molecular Biology. Laboratory of Neurobiochemistry. Faculty of Chemical and Pharmaceutical Sciences. Universidad de Chile, Chile
| | - Paola Morales
- Programmes of Molecular & Clinical Pharmacology ICBM, Faculty of Medicine, Universidad de Chile, Chile
| | - Mario Herrera-Marschitz
- Programmes of Molecular & Clinical Pharmacology ICBM, Faculty of Medicine, Universidad de Chile, Chile
| | - Luisa Herrera
- Human Genetics, ICBM, Faculty of Medicine, Universidad de Chile, Chile
| | - Hernán E Lara
- Department of Biochemistry and Molecular Biology. Laboratory of Neurobiochemistry. Faculty of Chemical and Pharmaceutical Sciences. Universidad de Chile, Chile
| | - Jenny L Fiedler
- Department of Biochemistry and Molecular Biology. Laboratory of Neurobiochemistry. Faculty of Chemical and Pharmaceutical Sciences. Universidad de Chile, Chile
| |
Collapse
|
48
|
Cunningham-Rundles C, Radigan L, Knight AK, Zhang L, Bauer L, Nakazawa A. TLR9 activation is defective in common variable immune deficiency. THE JOURNAL OF IMMUNOLOGY 2006; 176:1978-87. [PMID: 16424230 DOI: 10.4049/jimmunol.176.3.1978] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Common variable immune deficiency (CVID) is a primary immune deficiency characterized by low levels of serum immune globulins, lack of Ab, and reduced numbers of CD27+ memory B cells. Although T, B, and dendritic cell defects have been described, for the great majority, genetic causes have not been identified. In these experiments, we investigated B cell and plasmacytoid dendritic cell activation induced via TLR9, an intracellular recognition receptor that detects DNA-containing CpG motifs from viruses and bacteria. CpG-DNA activates normal B cells by the constitutively expressed TLR9, resulting in cytokine secretion, IgG class switch, immune globulin production, and potentially, the preservation of long-lived memory B cells. We found that CpG-DNA did not up-regulate expression of CD86 on CVID B cells, even when costimulated by the BCR, or induce production of IL-6 or IL-10 as it does for normal B cells. TLR9, found intracytoplasmically and on the surface of oligodeoxynucleotide-activated normal B cells, was deficient in CVID B cells, as was TLR9 mRNA. TLR9 B cell defects were not related to proportions of CD27+ memory B cells. CpG-activated CVID plasmacytoid dendritic cells did not produce IFN-alpha in normal amounts, even though these cells contained abundant intracytoplasmic TLR9. No mutations or polymorphisms of TLR9 were found. These data show that there are broad TLR9 activation defects in CVID which would prevent CpG-DNA-initiated innate immune responses; these defects may lead to impaired responses of plasmacytoid dendritic cells and loss of B cell function.
Collapse
|
49
|
Sioud M. Innate sensing of self and non-self RNAs by Toll-like receptors. Trends Mol Med 2006; 12:167-76. [PMID: 16530484 DOI: 10.1016/j.molmed.2006.02.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/06/2006] [Accepted: 02/22/2006] [Indexed: 01/21/2023]
Abstract
Toll-like receptors (TLRs) have an important role in innate immunity in mammals by recognizing conserved microbial components that are known as pathogen-associated molecular patterns (PAMPs). Although the majority of these receptors sense pathogen components on the cell surface, a subset of them (TLR3, TLR7, TLR8 and TLR9) senses viral and bacterial nucleic acids in endosomal compartments. Of considerable interest is the recent finding that TLR7 and TLR8 can also recognize small interfering RNA (siRNA), which is the main effector in RNA interference. This immune activation by siRNAs can be abrogated by the 2'-ribose modification of uridines. Here, we discuss the recent developments that have expanded the understanding of self-non-self discrimination of RNAs by the innate immune system, and consider future directions for therapeutic applications of these findings.
Collapse
Affiliation(s)
- Mouldy Sioud
- The Norwegian Radium Hospital, Department of Immunology, Molecular Medicine Group, Montebello N-0310 Oslo, Norway.
| |
Collapse
|
50
|
Abstract
The remarkable discovery of the Toll-like receptors (TLRs) over the past 5 years has opened up an entirely new era in the understanding of the molecular events that initiate the inflammatory response. These type 1 transmembrane receptors are expressed on a large number of immune cells as well as epithelial cells and play an essential role in the activation of the innate immune response to microbial pathogens. They impact on adaptive immune reactions and contribute to the initiation and maintenance of the inflammatory response to a multitude of potential microbial pathogens through recognition of pathogen-associated molecular patterns. TLRs also interact with a variety of endogenous human ligands and influence the activity of a wide range of tissues and cell processes. Among the common and important processes in which TLRs play a role are asthma, acute respiratory distress syndrome, cardiac ischaemia, coronary artery disease, ventricular remodelling, vascular collapse, inflammatory bowel disease, acute tubular necrosis, psoriasis, rheumatoid arthritis, pre-term birth, fertility, cancer angiogenesis and transplant rejection. From this strikingly diverse list, many important opportunities for disease modification through TLR manipulation can be imagined. Their role as potential targets for therapeutic intervention is just beginning to be appreciated, and the current status of these treatment strategies is reviewed in this article.
Collapse
Affiliation(s)
- Patricia Cristofaro
- Infectious Disease Division, Brown Medical School, Providence, Rhode Island, USA.
| | | |
Collapse
|