1
|
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289:6463-6483. [PMID: 35073461 PMCID: PMC9308828 DOI: 10.1111/febs.16372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated by multiple proteins and signalling pathways. Cytokines constitute a major class of regulators of skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury secrete cytokines, which play critical roles in the myofibre repair and regeneration process. In the past 10-15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much attention in the field has been focused on the endocrine effects of muscle-secreted cytokines (myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several major classes make up this group, and together they regulate all steps of the myogenic process. How such a large array of cytokines coordinate their signalling to form a regulatory network is a fascinating, pressing question. Functional studies that can distinguish the source of the cytokines in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
2
|
Cell Types Used for Cultured Meat Production and the Importance of Myokines. Foods 2021; 10:foods10102318. [PMID: 34681367 PMCID: PMC8534705 DOI: 10.3390/foods10102318] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
The world’s population continues to increase, meaning we require more consistent protein supply to meet demand. Despite the availability of plant-based protein alternatives, animal meat remains a popular, high-quality protein source. Research studies have focused on cultured meat (meat grown in vitro) as a safe and more efficient alternative to traditional meat. Cultured meat is produced by in vitro myogenesis, which involves the processing of muscle satellite and mature muscle cells. Meat culture efficiency is largely determined by the culture conditions, such as the cell type and cell culture medium used and the biomolecular composition. Protein production can be enhanced by providing the optimum biochemical and physical conditions for skeletal muscle cell growth, while myoblasts play important roles in skeletal muscle formation and growth. This review describes the cell types used to produce cultured meat and the biological effects of various myokines and cytokines, such as interleukin-6, leukemia inhibitory factor, interleukin-4, interleukin-15, and interleukin-1β, on skeletal muscle and myogenesis and their potential roles in cultured meat production.
Collapse
|
3
|
Leuchtmann AB, Adak V, Dilbaz S, Handschin C. The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Front Physiol 2021; 12:709807. [PMID: 34456749 PMCID: PMC8387622 DOI: 10.3389/fphys.2021.709807] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.
Collapse
|
4
|
Ginevičienė V, Jakaitienė A, Pranckevičienė E, Milašius K, Utkus A. Variants in the Myostatin Gene and Physical Performance Phenotype of Elite Athletes. Genes (Basel) 2021; 12:genes12050757. [PMID: 34067816 PMCID: PMC8157000 DOI: 10.3390/genes12050757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The MSTN gene is a negative regulator of muscle growth that is attracting attention as a candidate gene for physical performance traits. We hypothesised that variants of MSTN might be associated with the status of elite athlete. We therefore sought to study the potential role of MSTN in the physical performance of athletes by analysing the whole coding sequence of the MSTN gene in a cohort of Lithuanian elite athletes (n = 103) and non-athletes (n = 127). Consequently, two genetic variants were identified: the deletion of one of three adenines in the first intron (c.373+90delA, rs11333758) and a non-synonymous variant in the second exon (c.458A>G, p.Lys(K)153Arg(R), rs1805086). Among all samples, the MSTN rs1805086 Lys(K) allele was the most common form in both groups. Homozygous genotype for the less common Arg(R) allele was identified in only one elite canoe rower, and we could find no direct association between rs1805086 and successful results in elite athletes. Surprisingly, the intronic variant (rs11333758) was abundant among all samples. The main finding was that endurance-oriented athletes had 2.1 greater odds of being MSTN deletion genotype than non-athletes (13.6% vs. 0.8%). The present study confirms the association of the polymorphism rs11333758 with endurance performance status in Lithuanian elite athletes.
Collapse
Affiliation(s)
- Valentina Ginevičienė
- Department of Human and Medical Genetics, Institute of Biomedical Science, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania; (A.J.); (E.P.); (A.U.)
- Correspondence: ; Tel.: +370-650-71727
| | - Audronė Jakaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Science, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania; (A.J.); (E.P.); (A.U.)
| | - Erinija Pranckevičienė
- Department of Human and Medical Genetics, Institute of Biomedical Science, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania; (A.J.); (E.P.); (A.U.)
| | - Kazys Milašius
- Academy of Education, Vytautas Magnus University, LT-44244 Kaunas, Lithuania;
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Science, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania; (A.J.); (E.P.); (A.U.)
| |
Collapse
|
5
|
Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther 2021; 221:107754. [PMID: 33259884 PMCID: PMC8084904 DOI: 10.1016/j.pharmthera.2020.107754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Leukemia inhibitory factor (LIF) is a multi-functional cytokine of the interleukin-6 (IL-6) superfamily. Initially identified as a factor that inhibits the proliferation of murine myeloid leukemia cells, LIF displays a wide variety of important functions in a cell-, tissue- and context-dependent manner in many physiological and pathological processes, including regulating cell proliferation, pluripotent stem cell self-renewal, tissue/organ development and regeneration, neurogenesis and neural regeneration, maternal reproduction, inflammation, infection, immune response, and metabolism. Emerging evidence has shown that LIF plays an important but complex role in human cancers; while LIF displays a tumor suppressive function in some types of cancers, including leukemia, LIF is overexpressed and exerts an oncogenic function in many more types of cancers. Further, targeting LIF has been actively investigated as a novel strategy for cancer therapy. This review summarizes the recent advances in the studies on LIF in human cancers and its potential application in cancer therapy. A better understanding of the role of LIF in different types of cancers and its underlying mechanisms will help to develop more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
6
|
West DWD, Doering TM, Thompson JLM, Budiono BP, Lessard SJ, Koch LG, Britton SL, Steck R, Byrne NM, Brown MA, Peake JM, Ashton KJ, Coffey VG. Low responders to endurance training exhibit impaired hypertrophy and divergent biological process responses in rat skeletal muscle. Exp Physiol 2021; 106:714-725. [PMID: 33486778 DOI: 10.1113/ep089301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? The extent to which genetics determines adaptation to endurance versus resistance exercise is unclear. Previously, a divergent selective breeding rat model showed that genetic factors play a major role in the response to aerobic training. Here, we asked: do genetic factors that underpin poor adaptation to endurance training affect adaptation to functional overload? What is the main finding and its importance? Our data show that heritable factors in low responders to endurance training generated differential gene expression that was associated with impaired skeletal muscle hypertrophy. A maladaptive genotype to endurance exercise appears to dysregulate biological processes responsible for mediating exercise adaptation, irrespective of the mode of contraction stimulus. ABSTRACT Divergent skeletal muscle phenotypes result from chronic resistance-type versus endurance-type contraction, reflecting the principle of training specificity. Our aim was to determine whether there is a common set of genetic factors that influence skeletal muscle adaptation to divergent contractile stimuli. Female rats were obtained from a genetically heterogeneous rat population and were selectively bred from high responders to endurance training (HRT) or low responders to endurance training (LRT; n = 6/group; generation 19). Both groups underwent 14 days of synergist ablation to induce functional overload of the plantaris muscle before comparison to non-overloaded controls of the same phenotype. RNA sequencing was performed to identify Gene Ontology biological processes with differential (LRT vs. HRT) gene set enrichment. We found that running distance, determined in advance of synergist ablation, increased in response to aerobic training in HRT but not LRT (65 ± 26 vs. -6 ± 18%, mean ± SD, P < 0.0001). The hypertrophy response to functional overload was attenuated in LRT versus HRT (20.1 ± 5.6 vs. 41.6 ± 16.1%, P = 0.015). Between-group differences were observed in the magnitude of response of 96 upregulated and 101 downregulated pathways. A further 27 pathways showed contrasting upregulation or downregulation in LRT versus HRT in response to functional overload. In conclusion, low responders to aerobic endurance training were also low responders for compensatory hypertrophy, and attenuated hypertrophy was associated with differential gene set regulation. Our findings suggest that genetic factors that underpin aerobic training maladaptation might also dysregulate the transcriptional regulation of biological processes that contribute to adaptation to mechanical overload.
Collapse
Affiliation(s)
- Daniel W D West
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA.,Toronto Rehabilitation Institute, Toronto, Ontario, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Thomas M Doering
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia.,School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Jamie-Lee M Thompson
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia
| | - Boris P Budiono
- School of Community Health, Charles Sturt University, Port Macquarie, New South Wales, Australia
| | - Sarah J Lessard
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Roland Steck
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nuala M Byrne
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Matthew A Brown
- Guy's & St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, London, UK
| | - Jonathan M Peake
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia
| | - Vernon G Coffey
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia
| |
Collapse
|
7
|
Cai Q, Wu G, Zhu M, Ge H, Xue C, Zhang Q, Cheng B, Xu S, Wu P. FGF6 enhances muscle regeneration after nerve injury by relying on ERK1/2 mechanism. Life Sci 2020; 248:117465. [PMID: 32105707 DOI: 10.1016/j.lfs.2020.117465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Severe peripheral nerve injury leads to skeletal muscle atrophy and impaired limb function that is not sufficiently improved by existing treatments. Fibroblast growth factor 6 (FGF6) is involved in tissue regeneration and is dysregulated in denervated rat muscles. However, the way that FGF6 affects skeletal muscle repair after peripheral nerve injury has not been fully elucidated. METHODS In this study, we investigated the role of FGF6 in the regeneration of denervated muscles using myoblast cells and an in vivo model of peripheral nerve injury. RESULTS FGF6 promoted the viability and migration of C2C12 and primary myoblasts in a dose-dependent manner through FGFR1-mediated upregulation of cyclin D1. Low concentrations of FGF6 promoted myoblast differentiation through FGFR4-mediated activation of ERK1/2, which upregulated expression of MyHC, MyoD, and myogenin. FGFR-1, FGFR4, MyoD, and myogenin were not upregulated when FGF6 expression was inhibited in myoblasts by shRNA-mediated knockdown. Injection of FGF6 into denervated rat muscles enhanced the MyHC-IIb muscle fiber phenotype and prevented muscular atrophy. CONCLUSION These findings indicate that FGF6 reduces skeletal muscle atrophy by relying on the ERK1/2 mechanism and enhances the conversion of slow muscle to fast muscle fibers, thereby promoting functional recovery of regenerated skeletal muscle after innervation.
Collapse
Affiliation(s)
- Qiuchen Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Genbin Wu
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Min Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Heng''an Ge
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Chao Xue
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Qing''gang Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Sudan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
8
|
Sala-Jarque J, Mesquida-Veny F, Badiola-Mateos M, Samitier J, Hervera A, del Río JA. Neuromuscular Activity Induces Paracrine Signaling and Triggers Axonal Regrowth after Injury in Microfluidic Lab-On-Chip Devices. Cells 2020; 9:cells9020302. [PMID: 32012727 PMCID: PMC7072511 DOI: 10.3390/cells9020302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
Peripheral nerve injuries, including motor neuron axonal injury, often lead to functional impairments. Current therapies are mostly limited to surgical intervention after lesion, yet these interventions have limited success in restoring functionality. Current activity-based therapies after axonal injuries are based on trial-error approaches in which the details of the underlying cellular and molecular processes are largely unknown. Here we show the effects of the modulation of both neuronal and muscular activity with optogenetic approaches to assess the regenerative capacity of cultured motor neuron (MN) after lesion in a compartmentalized microfluidic-assisted axotomy device. With increased neuronal activity, we observed an increase in the ratio of regrowing axons after injury in our peripheral-injury model. Moreover, increasing muscular activity induces the liberation of leukemia inhibitory factor and glial cell line-derived neurotrophic factor in a paracrine fashion that in turn triggers axonal regrowth of lesioned MN in our 3D hydrogel cultures. The relevance of our findings as well as the novel approaches used in this study could be useful not only after axotomy events but also in diseases affecting MN survival.
Collapse
Affiliation(s)
- Julia Sala-Jarque
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Francina Mesquida-Veny
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Maider Badiola-Mateos
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (A.H.); (J.A.d.R.)
| | - José Antonio del Río
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (A.H.); (J.A.d.R.)
| |
Collapse
|
9
|
Isaacs J, Feger MA, Mallu S, Yager D, Shall M, Patel G, Protzuk O, Graham L. Viral vector delivery of follistatin enhances recovery of reinnervated muscle. Muscle Nerve 2019; 60:474-483. [PMID: 31365129 DOI: 10.1002/mus.26653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/17/2019] [Accepted: 07/28/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Poor recovery following nerve repair is due to progressive temporal loss of muscle function. Follistatin (FS), a glycoprotein with anabolic properties, may enhance muscle recovery following reinnervation. METHODS Seventy-two male Sprague-Dawley rats underwent temporary (3 or 6 month) denervation or sham denervation. After reinnervation, rats were administered adeno-associated viral vectors expressing FS deoxyribonucleic acid (isoform FS-317) injected into the target muscle or sham treatment. Final assessment included muscle function testing, muscle histomorphology, nerve histomorphology, and FS protein quantification. RESULTS FS improved muscle mass and type IIB muscle fiber size, and increased G-ratios and mean axon diameter in the 6-month temporary denervation group (P < .05). Elevated FS protein levels were detected in treated muscle (P < .05). FS increased satellite cell counts following temporary denervation and repair (P < .05). DISCUSSION FS treatment had anabolic, neurotrophic, and satellite cell stimulatory effects when administered following prolonged (6-month) temporary denervation and repair.
Collapse
Affiliation(s)
- Jonathan Isaacs
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Mark A Feger
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Satya Mallu
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Dorne Yager
- Divison of Plastic Surgery, Department of General Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Mary Shall
- Department of Physical Therapy, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Gaurangkumar Patel
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Omar Protzuk
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Lindsay Graham
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| |
Collapse
|
10
|
Zheng J, Wang S, Yang H, Chen Z, Huang S, Zhao T, Pan X, Fernig DG, Jiang C, Li X, Tian H. Large-Scale Expression, Purification of Bioactive Recombinant Human FGF6 in E. coli and the Mechanisms of Its Myocardial Protection. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-017-9592-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Terena SML, Fernandes KPS, Bussadori SK, Deana AM, Mesquita-Ferrari RA. Systematic review of the synergist muscle ablation model for compensatory hypertrophy. Rev Assoc Med Bras (1992) 2017; 63:164-172. [DOI: 10.1590/1806-9282.63.02.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/26/2016] [Indexed: 11/21/2022] Open
Abstract
Summary Objective: The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Method: Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. Results: The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. Conclusion: This model differs from other overload models (exercise and training) regarding the characteristics involved in the hypertrophy process (acute) and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.
Collapse
|
12
|
Estrogen Effects on Skeletal Muscle Insulin-Like Growth Factor–1 and Myostatin in Ovariectomized Rats. Exp Biol Med (Maywood) 2016; 232:1314-25. [DOI: 10.3181/0704-rm-92] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous work showed that estrogen replacement attenuates muscle growth in immature rats. The present study examined muscle insulin-like growth factor–1 (IGF-1) and myostatin expression to determine whether these growth regulators might be involved in mediating estrogen’s effects on muscle growth. IGF-1 and myostatin message and protein expression in selected skeletal muscles from 7-week-old sham-ovariectomized (SHAM) and ovariectomized rats that received continuous estrogen (OVX/E2) or solvent vehicle (OVX/CO) from an implant for 1 week or 5 weeks was measured. In the 1-week study, ovariectomy increased IGF-1 mRNA expression in fast extensor digitorum longus and gastrocnemius muscles; the increase was reversed by estrogen replacement. A similar trend was observed in the slow soleus muscle, although the change was not statistically significant. In contrast to mRNA, muscle IGF-1 protein expression was not different between SHAM and OVX/ CO animals in the 1-week study. One week of estrogen replacement significantly decreased IGF-1 protein level in all muscles examined. Myostatin mRNA expression was not different among the 1-week treatment groups. One week of estrogen replacement significantly increased myostatin protein in the slow soleus muscle but not the fast extensor digitorum longus and gastrocnemius muscles. There was no treatment effect on IGF-1 and myostatin expression in the 5-week study; this finding suggested a transient estrogen effect or upregulation of a compensatory mechanism to counteract the estrogen effect observed at the earlier time point. This investigation is the first to explore ovariectomy and estrogen effects on skeletal muscle IGF-1 and myostatin expression. Results suggest that reduced levels of muscle IGF-1 protein may mediate estrogen’s effect on growth in immature, ovariectomized rats. Increased levels of muscle myostatin protein may also have a role in mediating estrogen’s effects on growth in slow but not fast skeletal muscle.
Collapse
|
13
|
Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:61-95. [DOI: 10.1007/978-3-319-27511-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Bijangi-Vishehsaraei K, Blum K, Zhang H, Safa AR, Halum SL. Microarray Analysis Gene Expression Profiles in Laryngeal Muscle After Recurrent Laryngeal Nerve Injury. Ann Otol Rhinol Laryngol 2015; 125:247-56. [PMID: 26530091 DOI: 10.1177/0003489415608866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. METHODS F344 male rats underwent RLN injury (n = 12) or sham surgery (n = 12). One week after RLN injury, larynges were harvested following euthanasia. The mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. RESULTS Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles and only 14 genes with similar expression patterns. CONCLUSIONS The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries.
Collapse
Affiliation(s)
| | - Kevin Blum
- Purdue University Weldon School of Biomedical Engineering, West Lafayette, Indiana, USA
| | - Hongji Zhang
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana, USA
| | - Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana, USA
| | - Stacey L Halum
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
15
|
Abstract
Leukemia inhibitory factor (LIF) is the most pleiotropic member of the interleukin-6 family of cytokines. It utilises a receptor that consists of the LIF receptor β and gp130 and this receptor complex is also used by ciliary neurotrophic growth factor (CNTF), oncostatin M, cardiotrophin1 (CT1) and cardiotrophin-like cytokine (CLC). Despite common signal transduction mechanisms (JAK/STAT, MAPK and PI3K) LIF can have paradoxically opposite effects in different cell types including stimulating or inhibiting each of cell proliferation, differentiation and survival. While LIF can act on a wide range of cell types, LIF knockout mice have revealed that many of these actions are not apparent during ordinary development and that they may be the result of induced LIF expression during tissue damage or injury. Nevertheless LIF does appear to have non-redundant actions in maternal receptivity to blastocyst implantation, placental formation and in the development of the nervous system. LIF has also found practical use in the maintenance of self-renewal and totipotency of embryonic stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia
| |
Collapse
|
16
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
17
|
Abstract
Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists of several hundred secreted peptides. This finding provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs such as adipose tissue, liver, pancreas, bones, and brain. In addition, several myokines exert their effects within the muscle itself. Many proteins produced by skeletal muscle are dependent upon contraction. Therefore, it is likely that myokines may contribute in the mediation of the health benefits of exercise.
Collapse
Affiliation(s)
- Bente K Pedersen
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Kim CH, Kim KH, Yoo YM. Melatonin-induced autophagy is associated with degradation of MyoD protein in C2C12 myoblast cells. J Pineal Res 2012; 53:289-97. [PMID: 22582971 DOI: 10.1111/j.1600-079x.2012.00998.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MyoD is a muscle-specific transcriptional factor that acts as a master switch for skeletal muscle differentiation. This protein regulates myoblast proliferation and myogenic differentiation and is also a short-lived regulatory protein that is degraded by the ubiquitin system. However, the lysosomal pathway of MyoD protein degradation remains unknown. In this study, we sought to determine whether melatonin (1, 2mm)-induced autophagy causes the degradation of MyoD protein in C2C12 myoblast cells. Melatonin induced a significant increase in expression of the microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin-1 proteins in a dose-dependent manner. Melatonin treatment also significantly increased p-ERK, Ras, and p-Akt expressions in a dose-dependent manner. However, Bax expression was high compared with the absence of melatonin treatment, and Bcl-2 expression was high in the 0.1-0.5mm melatonin treatments and low in the 1 and 2mm melatonin treatments. Under the same conditions, cytosolic MyoD protein was significantly decreased in a dose-dependent manner and completely eliminated by 36hr. This decrease in MyoD protein involved ubiquitin-mediated proteasomal activity with proteasome inhibitor MG132 or autophagy-dependent lysosomal degradation with lysosomal inhibitor bafilomycin A1 (Baf-A1). In the same condition, phosphorylation of the mammalian target of rapamycin, p-mTOR, and p-S6K expression with Baf-A1 or Baf-A1-plus melatonin treatment were significantly decreased compared with the levels after treatment with melatonin only. Together, these results suggest that melatonin (1, 2mm)-induced autophagy results in partial lysosomal degradation of MyoD protein in C2C12 myoblast cells.
Collapse
Affiliation(s)
- Chi Hyun Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon-do, Korea
| | | | | |
Collapse
|
19
|
Sakuma K, Yamaguchi A. Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle 2012; 3:77-94. [PMID: 22476916 PMCID: PMC3374017 DOI: 10.1007/s13539-011-0052-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/08/2011] [Indexed: 12/25/2022] Open
Abstract
Recent advances in our understanding of the biology of muscle, and how anabolic and catabolic stimuli interact to control muscle mass and function, have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle occurs as a consequence of several chronic diseases (cachexia) as well as normal aging (sarcopenia). Although many negative regulators [Atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.] have been proposed to enhance protein degradation during both sarcopenia and cachexia, the adaptation of mediators markedly differs among these conditions. Sarcopenic and cachectic muscles have been demonstrated to be abundant in myostatin- and apoptosis-linked molecules. The ubiquitin-proteasome system (UPS) is activated during many different types of cachexia (cancer cachexia, cardiac heart failure, chronic obstructive pulmonary disease), but not many mediators of the UPS change during sarcopenia. NF-κB signaling is activated in cachectic, but not in sarcopenic, muscle. Some studies have indicated a change of autophagic signaling during both sarcopenia and cachexia, but the adaptation remains to be elucidated. This review provides an overview of the adaptive changes in negative regulators of muscle mass in both sarcopenia and cachexia.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan,
| | | |
Collapse
|
20
|
Machida M, Takeda K, Yokono H, Ikemune S, Taniguchi Y, Kiyosawa H, Takemasa T. Reduction of ribosome biogenesis with activation of the mTOR pathway in denervated atrophic muscle. J Cell Physiol 2012; 227:1569-76. [PMID: 21678406 DOI: 10.1002/jcp.22871] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mammalian target of rapamycin (mTOR) pathway positively regulates the cell growth through ribosome biogenesis in many cell type. In general, myostatin is understood to repress skeletal muscle hypertrophy through inhibition of mTOR pathway and myogenesis. However, these relationships have not been clarified in skeletal muscle undergoing atrophy. Here, we observed a significant decrease of skeletal muscle mass at 2 weeks after denervation. Unexpectedly, however, mTOR pathway and the expression of genes related to myogenesis were markedly increased, and that of myostatin was decreased. However, de novo ribosomal RNA synthesis and the levels of ribosomal RNAs were dramatically decreased in denervated muscle. These results indicate that ribosome biogenesis is strongly controlled by factors other than the mTOR pathway in denervated atrophic muscle. Finally, we assessed rRNA transcription factors expression and observed that TAFIa was the only factor decreased. TAFIa might be a one of the limiting factor for rRNA synthesis in denervated muscle.
Collapse
Affiliation(s)
- Masanao Machida
- Physical Education, Health and Sport Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Srikuea R, Esser KA, Pholpramool C. Leukaemia inhibitory factor is expressed in rat gastrocnemius muscle after contusion and increases proliferation of rat L6 myoblasts via c-Myc signalling. Clin Exp Pharmacol Physiol 2012; 38:501-9. [PMID: 21585421 DOI: 10.1111/j.1440-1681.2011.05537.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. Leukaemia inhibitory factor (LIF) has been shown to have an important role during muscle regeneration. The regenerative capacity of muscles after contusion injury in LIF-knockout mice is impaired compared with that of wild-type mice. 2. To clarify whether LIF modulates muscle regeneration by regulating myogenic precursor cell activity, we studied LIF expression and myogenic precursor cell activity in gastrocnemius muscles from Wistar rats at various times after contusion injury using immunohistochemistry and the direct effect of LIF on a rat myoblast cell line (L6). 3. After contusion injury, transient upregulation of the mRNA expression of LIF, LIF receptors and signal transducer and activator of transcription (STAT) 3, downstream of LIF and involved in enhanced cell proliferation, was observed. A marked increase in LIF protein in the cytosol of damaged myofibres was strongly correlated with a significant increase in the number of myogenic precursor cells (MyoD-positive cells) by 12 h after contusion. In addition, coexpression of LIF and MyoD protein in control and injured muscles after contusion injury from 3 h to 7 days was evident. 4. Treatment of L6 cells with LIF (1 ng/mL) in serum-free medium enhanced proliferation (bromodeoxyuridine incorporation) by 24 h. This was accompanied by increased expression of c-Myc protein within 12 h and was abolished by short interference RNA against c-Myc mRNA. 5. Together, the results of the present study suggest that LIF acts via paracrine and autocrine actions to regulate myogenic precursor cell activity during muscle regeneration after contusion injury and that the proliferative effect of LIF on L6 cells occurs via c-Myc signalling.
Collapse
Affiliation(s)
- Ratchakrit Srikuea
- Faculty of Science, Department of Physiology, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
22
|
Price ER, Bauchinger U, Zajac DM, Cerasale DJ, McFarlan JT, Gerson AR, McWilliams SR, Guglielmo CG. Migration- and exercise-induced changes to flight muscle size in migratory birds and association with IGF1 and myostatin mRNA expression. J Exp Biol 2011; 214:2823-31. [DOI: 10.1242/jeb.057620] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SUMMARY
Seasonal adjustments to muscle size in migratory birds may result from preparatory physiological changes or responses to changed workloads. The mechanisms controlling these changes in size are poorly understood. We investigated some potential mediators of flight muscle size (myostatin and insulin-like growth factor, IGF1) in pectoralis muscles of wild wintering or migrating white-throated sparrows (Zonotrichia albicollis), captive white-throated sparrows that were photoperiod manipulated to be in a `wintering' or `migratory' (Zugunruhe) state, and captive European starlings (Sturnus vulgaris) that were either exercised for 2 weeks in a wind tunnel or untrained. Flight muscle size increased in photo-stimulated `migrants' and in exercised starlings. Acute exercise but not long-term training caused increased expression of IGF1, but neither caused a change in expression of myostatin or its metalloprotease activator TLL1. Photo-stimulated `migrant' sparrows demonstrated increased expression of both myostatin and IGF1, but wild sparrows exhibited no significant seasonal changes in expression of either myostatin or IGF1. Additionally, in both study species we describe several splice variants of myostatin that are shared with distantly related bird species. We demonstrate that their expression patterns are not different from those of the typical myostatin, suggesting that they have no functional importance and may be mistakes of the splicing machinery. We conclude that IGF1 is likely to be an important mediator of muscle phenotypic flexibility during acute exercise and during endogenous, seasonal preparation for migration. The role of myostatin is less clear, but its paradoxical increase in photo-stimulated `migrants' may indicate a role in seasonal adjustments of protein turnover.
Collapse
Affiliation(s)
- Edwin R. Price
- Advanced Facility for Avian Research, Department of Biology, University of Western Ontario, London, ON, Canada, N6A 5B7
| | - Ulf Bauchinger
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Daria M. Zajac
- Advanced Facility for Avian Research, Department of Biology, University of Western Ontario, London, ON, Canada, N6A 5B7
| | - David J. Cerasale
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jay T. McFarlan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Alexander R. Gerson
- Advanced Facility for Avian Research, Department of Biology, University of Western Ontario, London, ON, Canada, N6A 5B7
| | - Scott R. McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Christopher G. Guglielmo
- Advanced Facility for Avian Research, Department of Biology, University of Western Ontario, London, ON, Canada, N6A 5B7
| |
Collapse
|
23
|
Aversa Z, Alamdari N, Hasselgren PO. Molecules modulating gene transcription during muscle wasting in cancer, sepsis, and other critical illness. Crit Rev Clin Lab Sci 2011; 48:71-86. [DOI: 10.3109/10408363.2011.591365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Broholm C, Laye MJ, Brandt C, Vadalasetty R, Pilegaard H, Pedersen BK, Scheele C. LIF is a contraction-induced myokine stimulating human myocyte proliferation. J Appl Physiol (1985) 2011; 111:251-9. [DOI: 10.1152/japplphysiol.01399.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cytokine leukemia inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of myoblasts. We hypothesized that LIF is a contraction-induced myokine functioning in an autocrine fashion to activate gene regulation of human muscle satellite cell proliferation. Skeletal muscle LIF expression, regulation, and action were examined in two models: 1) young men performing a bout of heavy resistance exercise of the quadriceps muscle and 2) cultured primary human satellite cells. Resistance exercise induced a ninefold increase in LIF mRNA content in skeletal muscle, but LIF was not detectable in plasma of the subjects. However, electrically stimulated cultured human myotubes produced and secreted LIF, suggesting that LIF is a myokine with local effects. The well established exercise-induced signaling molecules PI3K, Akt, and mTor contributed to the regulation of LIF in cultured human myotubes as chemical inhibition of PI3K and mTor and siRNA knockdown of Akt1 were independently sufficient to downregulate LIF. Human myoblast proliferation was increased by recombinant exogenous LIF and decreased by siRNA knockdown of the endogenous LIF receptor. Finally, the transcription factors JunB and c-Myc, which promote myoblast proliferation, were induced by LIF in cultured human myotubes. Indeed, both JunB and c-Myc were also increased in skeletal muscle following resistance exercise. Our data suggest that LIF is a contraction-induced myokine, potentially acting in an autocrine or paracrine fashion to promote satellite cell proliferation.
Collapse
Affiliation(s)
- Christa Broholm
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| | - Matthew J. Laye
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| | - Claus Brandt
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| | - Radhika Vadalasetty
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| | - Henriette Pilegaard
- The Centre of Inflammation and Metabolism at the Department of Biology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| |
Collapse
|
25
|
Hara M, Yuasa S, Shimoji K, Onizuka T, Hayashiji N, Ohno Y, Arai T, Hattori F, Kaneda R, Kimura K, Makino S, Sano M, Fukuda K. G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. ACTA ACUST UNITED AC 2011; 208:715-27. [PMID: 21422169 PMCID: PMC3135344 DOI: 10.1084/jem.20101059] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Granulocyte colony-stimulating factor and its receptor are needed for skeletal muscle development and injury-induced regeneration in mice. After skeletal muscle injury, neutrophils, monocytes, and macrophages infiltrate the damaged area; this is followed by rapid proliferation of myoblasts derived from muscle stem cells (also called satellite cells). Although it is known that inflammation triggers skeletal muscle regeneration, the underlying molecular mechanisms remain incompletely understood. In this study, we show that granulocyte colony-stimulating factor (G-CSF) receptor (G-CSFR) is expressed in developing somites. G-CSFR and G-CSF were expressed in myoblasts of mouse embryos during the midgestational stage but not in mature myocytes. Furthermore, G-CSFR was specifically but transiently expressed in regenerating myocytes present in injured adult mouse skeletal muscle. Neutralization of endogenous G-CSF with a blocking antibody impaired the regeneration process, whereas exogenous G-CSF supported muscle regeneration by promoting the proliferation of regenerating myoblasts. Furthermore, muscle regeneration was markedly impaired in G-CSFR–knockout mice. These findings indicate that G-CSF is crucial for skeletal myocyte development and regeneration and demonstrate the importance of inflammation-mediated induction of muscle regeneration.
Collapse
Affiliation(s)
- Mie Hara
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jespersen JG, Nedergaard A, Andersen LL, Schjerling P, Andersen JL. Myostatin expression during human muscle hypertrophy and subsequent atrophy: increased myostatin with detraining. Scand J Med Sci Sports 2011; 21:215-23. [DOI: 10.1111/j.1600-0838.2009.01044.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Smith IJ, Aversa Z, Alamdari N, Petkova V, Hasselgren PO. Sepsis downregulates myostatin mRNA levels without altering myostatin protein levels in skeletal muscle. J Cell Biochem 2011; 111:1059-73. [PMID: 20677217 DOI: 10.1002/jcb.22796] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myostatin is a negative regulator of muscle mass and has been reported to be upregulated in several conditions characterized by muscle atrophy. The influence of sepsis on myostatin expression and activity is poorly understood. Here, we tested the hypothesis that sepsis upregulates the expression and downstream signaling of myostatin in skeletal muscle. Because sepsis-induced muscle wasting is at least in part regulated by glucocorticoids, we also determined the influence of glucocorticoids on myostatin expression. Sepsis was induced in rats by cecal ligation and puncture and control rats were sham-operated. In other experiments, rats were injected intraperitoneally with dexamethasone (10 mg/kg) or corresponding volume of vehicle. Surprisingly, myostatin mRNA levels were reduced and myostatin protein levels were unchanged in muscles from septic rats. Muscle levels of activin A, follistatin, and total and phosphorylated Smad2 (p-Smad2) were not influenced by sepsis, suggesting that myostatin downstream signaling was not altered during sepsis. Interestingly, total and p-Smad3 levels were increased in septic muscle, possibly reflecting altered signaling through pathways other than myostatin. Similar to sepsis, treatment of rats with dexamethasone reduced myostatin mRNA levels and did not alter myostatin protein levels. Fasting, an additional condition characterized by muscle wasting, reduced myostatin mRNA and activin A protein levels, increased myostatin protein, and did not influence follistatin and p-Smad2 levels. Of note, total and p-Smad3 levels were reduced in muscle during fasting. The results suggest that sepsis and glucocorticoids do not upregulate the expression and activity of myostatin in skeletal muscle. The role of myostatin may vary between different conditions characterized by muscle wasting. Downstream signaling through Smad2 and 3 is probably regulated not only by myostatin but by other mechanisms as well.
Collapse
Affiliation(s)
- Ira J Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
28
|
Ciemerych MA, Archacka K, Grabowska I, Przewoźniak M. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 2011; 53:473-527. [PMID: 21630157 DOI: 10.1007/978-3-642-19065-0_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cytology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|
29
|
Brzoska E, Ciemerych MA, Przewozniak M, Zimowska M. Regulation of Muscle Stem Cells Activation. STEM CELL REGULATORS 2011; 87:239-76. [DOI: 10.1016/b978-0-12-386015-6.00031-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Fakhfakh R, Michaud A, Tremblay JP. Blocking the myostatin signal with a dominant negative receptor improves the success of human myoblast transplantation in dystrophic mice. Mol Ther 2011; 19:204-10. [PMID: 20700111 PMCID: PMC3017433 DOI: 10.1038/mt.2010.171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 07/13/2010] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a recessive disease caused by a dystrophin gene mutation. Myoblast transplantation permits to introduce the dystrophin gene in dystrophic muscle fibers. However, the success of this approach is reduced by the short duration of the regeneration following the transplantation, which reduces the number of hybrid fibers. Myostatin (MSTN) is a negative regulator of skeletal muscle development and responsible for limiting regeneration. It binds with high affinity to the activin type IIB receptor (ActRIIB). Our aim was to verify whether the success of the myoblast transplantation is enhanced by blocking the MSTN signal with expression of a dominant negative mutant of ActRIIB (dnActRIIB). In vitro, blocking MSTN activity with a lentivirus carrying dnActRIIB increased proliferation and fusion of human myoblasts because MSTN regulates the expression of several myogenic regulatory factors. In vivo, myoblasts infected with the dnActRIIB lentivirus were transplanted in immunodeficient dystrophic mice. Dystrophin immunostaining of tibialis anterior (TA) cross-sections of these mice 1 month post-transplantation revealed more human dystrophin-positive myofibers following the transplantation of dnActRIIB myoblasts than of control myoblasts. Thus, blocking the MSTN signal with dnActRIIB improved the success of myoblast transplantation by increasing the myoblast proliferation and fusion and changed the expression of myogenic regulatory factors.
Collapse
Affiliation(s)
- Raouia Fakhfakh
- Unité de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Sainte-Foy, Québec, Canada
| | | | | |
Collapse
|
31
|
Influence of physical exercise on neuroimmunological functioning and health: aging and stress. Neurotox Res 2010; 20:69-83. [PMID: 20953749 DOI: 10.1007/s12640-010-9224-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/16/2010] [Accepted: 09/21/2010] [Indexed: 12/20/2022]
Abstract
Chronic and acute stress, with associated pathophysiology, are implicated in a variety of disease states, with neuroimmunological dysregulation and inflammation as major hazards to health and functional sufficiency. Psychosocial stress and negative affect are linked to elevations in several inflammatory biomarkers. Immunosenescence, the deterioration of immune competence observed in the aged aspect of the life span, linked to a dramatic rise in morbidity and susceptibility to diseases with fatal outcomes, alters neuroimmunological function and is particularly marked in the neurodegenerative disorders, e.g., Parkinson's disease and diabetes. Physical exercise diminishes inflammation and elevates agents and factors involved in immunomodulatory function. Both the alleviatory effects of life-long physical activity upon multiple cancer forms and the palliative effects of physical activity for individuals afflicted by cancer offer advantages in health intervention. Chronic conditions of stress and affective dysregulation are associated with neuroimmunological insufficiency and inflammation, contributing to health risk and mortality. Physical exercise regimes have induced manifest anti-inflammatory benefits, mediated possibly by brain-derived neurotrophic factor. The epidemic proportions of metabolic disorders, obesity, and diabetes demand attention; several variants of exercise regimes have been found repeatedly to induce both prevention and improvement under both laboratory and clinical conditions. Physical exercise offers a unique non-pharmacologic intervention incorporating multiple activity regimes, e.g., endurance versus resistance exercise that may be adapted to conform to the particular demands of diagnosis, intervention and prognosis inherent to the staging of autoimmune disorders and related conditions.
Collapse
|
32
|
Kim JA, Roy RR, Kim SJ, Zhong H, Haddad F, Baldwin KM, Edgerton VR. Electromechanical modulation of catabolic and anabolic pathways in chronically inactive, but neurally intact, muscles. Muscle Nerve 2010; 42:410-21. [PMID: 20658566 DOI: 10.1002/mus.21720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The extent and mechanisms by which neural input regulates skeletal muscle mass remain largely unknown. Adult spinal cord isolated (SI) rats were implanted unilaterally with a microstimulator, whereas the contralateral limb served as SI control (SI-C). A 100-HZ, 1-s stimulus was delivered every 30 s for 5 min, followed by a 5-min rest. This was repeated six times consecutively (SI-Stim1) or with a 9-h interval after the third bout (SI-Stim2) for 30 days (1 min of daily activity). SI-Stim1 and SI-Stim2 paradigms attenuated plantaris atrophy by 20% and 38%, respectively, whereas only SI-Stim2 blunted soleus atrophy (24%) relative to SI-C. Muscle mass changes occurred independent of the IGF-1/PI3K/Akt pathway. No relationships between SI or electromechanical stimulation and expression of several atrophy markers were observed. These data suggest that regulatory mechanisms for maintaining muscle mass previously shown in acute states of atrophy differ substantially from those observed in chronic states.
Collapse
Affiliation(s)
- Jung A Kim
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Allen DL, Greybeck BJ, Greyback BJ, Hanson AM, Cleary AS, Lindsay SF. Skeletal muscle expression of bone morphogenetic protein-1 and tolloid-like-1 extracellular proteases in different fiber types and in response to unloading, food deprivation and differentiation. J Physiol Sci 2010; 60:343-52. [PMID: 20658214 PMCID: PMC10717363 DOI: 10.1007/s12576-010-0104-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/05/2010] [Indexed: 12/14/2022]
Abstract
Members of the bone morphogenetic protein-1/mammalian tolloid (BMP-1/mTLD) family of proteases cleave diverse extracellular proteins, including the growth inhibitor myostatin. The purpose of this work was to examine the expression of BMP-1/mTLD, tolloid-like-1 and -2 (TLL1 and TLL2) in hindlimb muscles of the mouse in vivo and in C(2)C(12) muscle cells in vitro. Quantitative real-time polymerase chain reaction revealed that neither BMP-1/mTLD nor TLL1 mRNA levels differed between the predominantly fast-twitch tibialis anterior (TA) and gastrocnemius (GAST) muscles and the more slow-twitch soleus (SOL) muscle; TLL2 mRNA levels were not detectable in any of the muscles examined. Interestingly, however, immunohistochemical analysis revealed that BMP-1 protein was expressed in type I and IIa but not in IIb fibers. TLL1 mRNA levels significantly increased in the TA but not the SOL with 3 days of hindlimb suspension and significantly decreased in both TA and SOL in response to 2 days of food deprivation. In contrast, BMP-1/mTLD mRNA levels were unaffected in either muscle by either condition. In addition, BMP-1/mTLD and TLL1 mRNA levels significantly decreased during C(2)C(12) myoblast differentiation in vitro, and activity of a 1,200-bp mouse TLL1 promoter construct was significantly decreased in C(2)C(12) myotubes by differentiation, by mutation of an nuclear factor kappa-beta (NF-kappaB) site, or deletion of a sma/mothers against decapentaplegic (SMAD) site. Together, these data demonstrate that TLL1 mRNA levels are altered by loading, energy status, and differentiation, and thus its expression may be regulated so as to modulate activity of myostatin or other extracellular substrates during these adaptive states.
Collapse
Affiliation(s)
- David L Allen
- Department of Integrative Physiology, University of Colorado, Campus Box 354, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
34
|
The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol 2010; 2010:721219. [PMID: 20379369 PMCID: PMC2850156 DOI: 10.1155/2010/721219] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/09/2010] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.
Collapse
|
35
|
Sakuma K, Watanabe K, Hotta N, Koike T, Ishida K, Katayama K, Akima H. The adaptive responses in several mediators linked with hypertrophy and atrophy of skeletal muscle after lower limb unloading in humans. Acta Physiol (Oxf) 2009; 197:151-9. [PMID: 19432591 DOI: 10.1111/j.1748-1716.2009.01995.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM To determine the adaptive changes in several molecules regulating muscle hypertrophy and atrophy after unloading, we examined whether unilateral lower limb suspension changes the mRNA and protein levels of SRF-linked (RhoA, RhoGDI, STARS and SRF), myostatin-linked (myostatin, Smad2, Smad3 and FLRG) and Foxo-linked (P-Akt, Foxo1, Foxo3a and Atrogin-1) mediators. METHODS A single lower limb of each of eight healthy men was suspended for 20 days. Biopsy specimens were obtained from the vastus lateralis muscle pre- and post-suspension. RESULTS The volume of the vastus lateralis muscle was significantly decreased after unloading. The amount of RhoA, RhoGDI or SRF protein in the muscle was not significantly changed post-suspension. An RT-PCR semiquantitative analysis showed increased levels of myostatin mRNA but not Smad2, Smad3 or FLRG mRNA. Unloading did not elicit significant changes in the amount of p-Smad3 or myostatin protein in the muscle. The amount of p-Akt protein was markedly reduced in the unloaded muscle. Lower limb SUSPENSION DID NOT INFLUENCE THE EXPRESSION PATTERN OF FOXO1, FOXO3A OR ATROGIN-1. CONCLUSION Unloading inducing a mild degree of muscle atrophy may decrease p-Akt and increase myostatin but not SRF-linked mediators.
Collapse
Affiliation(s)
- K Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, Toyohashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kostek MA, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Price TB, Seip RL, Thompson PD, Devaney JM, Gordish-Dressman H, Hoffman EP, Pescatello LS. Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Med Sci Sports Exerc 2009; 41:1063-71. [PMID: 19346981 DOI: 10.1249/mss.0b013e3181930337] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We examined associations among myostatin (MSTN) 2379 A > G and 163 G > A and follistatin (FST) -5003 A > T and -833 G > T single nucleotide polymorphisms (SNP) on the muscle size and the strength response to resistance training (RT). METHODS Subjects (n = 645, age = 24.1 +/- 0.2 yr, body mass index [BMI] = 24.2 +/- 0.2 kg x m(-2)) self-disclosed themselves as Caucasian (78.9%), African American (3.6%), Asian (8.4%), Hispanic (5.0%), or Other (4.2%). They were genotyped for MSTN 2379 A > G (n = 645), MSTN 163 G > A (n = 639), FST -5003 A > T (n = 580), and FST -833 G > T (n = 603). We assessed dynamic (one repetition maximum [1RM]) and isometric (maximum voluntary contraction [MVC]) muscle strength and size (cross-sectional area [CSA]) of the elbow flexors before and after 12 wk of unilateral upper-arm RT. Repeated-measures ANCOVA tested associations among genetic variants and muscle phenotypes with age and BMI as covariates. RESULTS Baseline MVC was greater among African Americans who were carriers of the MSTN G(2379) allele (AG/GG, n = 15) than the A2379A homozygotes (n = 8; 64.2 +/- 6.8 vs 49.8 +/- 8.7 kg). African Americans who were carriers of the FST T(-5003) allele (n = 12) had greater baseline 1RM (11.9 +/- 0.7 vs 8.8 +/- 0.5 kg) and CSA (24.4 +/- 1.3 vs 19.1 +/- 1.2 cm(2)) than African Americans with the A-5003A genotype (n = 14; P < 0.05). No MSTN or FST genotype and muscle phenotype associations were found among the other ethnic groups (P >or= 0.05). CONCLUSION MSTN 2379 A > G and FST -5003 A > T were associated with baseline muscle strength and size among African Americans only. These ethnic-specific associations are hypothesis generating and should be confirmed in a larger sample of African Americans.
Collapse
Affiliation(s)
- Matthew A Kostek
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269-2101, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Spangenburg EE. Changes in muscle mass with mechanical load: possible cellular mechanismsThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic Machines, and has undergone the Journal’s usual peer review process. Appl Physiol Nutr Metab 2009; 34:328-35. [DOI: 10.1139/h09-010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms that regulate skeletal muscle mass has remained a focus of numerous researchers for many years. Recent investigations have begun to elucidate cellular signaling mechanisms that regulate skeletal muscle hypertrophy, with significant effort being focused on the Akt/mammalian target of rapamycin (mTOR) signaling pathway. The Akt/mTOR pathway plays a major role in regulating the initiation of protein synthesis after the onset of mechanical loading of skeletal muscle. Although a number of downstream substrates for Akt/mTOR have been elucidated, very little is known about the upstream mechanisms that mechanical load employs to activate the Akt/mTOR signaling pathway. Thus, the purpose of this review is to discuss potential mechanisms that may contribute to the activation of the Akt/mTOR signaling mechanism in mechanically loaded skeletal muscle.
Collapse
Affiliation(s)
- Espen E. Spangenburg
- University of Maryland, School of Public Health, Department of Kinesiology, College Park, MD 20742, USA (e-mail: )
| |
Collapse
|
38
|
Differential skeletal muscle gene expression after upper or lower motor neuron transection. Pflugers Arch 2009; 458:525-35. [DOI: 10.1007/s00424-009-0643-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 12/29/2008] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
|
39
|
Tanaka Y, Yamaguchi A, Fujikawa T, Sakuma K, Morita I, Ishii K. Expression of mRNA for specific fibroblast growth factors associates with that of the myogenic markers MyoD and proliferating cell nuclear antigen in regenerating and overloaded rat plantaris muscle. Acta Physiol (Oxf) 2008; 194:149-59. [PMID: 18429950 DOI: 10.1111/j.1748-1716.2008.01866.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To examine the relations between specific fibroblast growth factors (FGFs) and satellite cell activation during muscle regeneration and hypertrophy in vivo, we measured mRNA expression of FGFs and myogenic markers in rat plantaris muscle after bupivacaine administration and synergist ablation. METHODS mRNA levels for MyoD, myogenin, proliferating cell nuclear antigen (PCNA), p21, M-cadherin, Pax7, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8 and hepatocyte growth factor (HGF) were measured continually for up to 72 h after bupivacaine administration and synergist ablation. FGF-5, FGF-7 and HGF proteins were immunostained at 72 h after bupivacaine administration. RESULTS MyoD and PCNA mRNAs started increasing 24 h after bupivacaine administration. Myogenin, p21, M-cadherin and Pax7 mRNAs started to increase after 48 and 72 h. After synergist ablation, MyoD, PCNA, M-cadherin and Pax7 mRNAs had increased at 24 and 48 h, and myogenin and p21 mRNAs at 12 and 24 h. FGF-1, FGF-7 and HGF mRNAs after the treatments started to increase at the same time as MyoD and PCNA mRNAs. FGF-5 was expressed at the same time as MyoD and PCNA mRNAs after bupivacaine administration but did not after the ablation. FGF-2, FGF-3, FGF-4, FGF-6 and FGF-8 mRNAs were not associated with the expression of the myogenic markers. FGF-7 and HGF proteins were expressed in immature muscle fibre nuclei and the extracellular matrix, but FGF-5 protein was preferentially expressed in extracellular matrix. CONCLUSION These results indicate that FGF-1, FGF-7 and HGF are associated with specific myogenic marker expression during muscle regeneration and hypertrophy.
Collapse
Affiliation(s)
- Y Tanaka
- Laboratory of Human Performance and Fitness, Graduate School of Education, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Kim SJ, Roy RR, Kim JA, Zhong H, Haddad F, Baldwin KM, Edgerton VR. Gene expression during inactivity-induced muscle atrophy: effects of brief bouts of a forceful contraction countermeasure. J Appl Physiol (1985) 2008; 105:1246-54. [PMID: 18653749 DOI: 10.1152/japplphysiol.90668.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anabolic and catabolic markers of muscle protein metabolism were examined in inactivity-induced atrophying muscles with and without daily short-duration, high-resistance isometric contractions. Inactivity was achieved via spinal cord isolation (SI), which results in near inactivity of the hindlimb musculature without compromising the motoneuron-muscle connectivity. Adult rats were assigned to a control (Con) or SI group in which one limb was stimulated (SI-Stim, 5 consecutive days of brief bouts of high-load isometric contractions) while the other served as a SI control (SI). Both the medial gastrocnemius (MG) and soleus weights (relative to body weight) were approximately 71% of Con in the SI, but maintained at Con in the SI-Stim group. Activity of the IGF-1/phosphatidylinositol 3-kinase (PI3K)/Akt pathway of protein synthesis was similar among all groups in the MG. Expression of atrogin-1 and muscle RING finger-1 (MuRF-1), markers of protein degradation, were higher in the MG and soleus of the SI than Con and maintained at Con in the SI-Stim. Compared with Con, the anti-growth factor myostatin was unaffected in the MG and soleus in the SI but was lower in the MG of the SI-Stim. These results demonstrate that upregulation of specific protein catabolic pathways plays a critical role in SI-induced atrophy, while this response was blunted by 4 min of daily high-resistance electromechanical stimulation and was able to preserve most of the muscle mass. Although the protein anabolic pathway (IGF-1/PI3K/Akt) appears to play a minor role in regulating mass in the SI model, increased translational capacity may have contributed to mass preservation in response to isometric contractions.
Collapse
Affiliation(s)
- Soo J Kim
- Brain Research Institute, University of California-Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Costelli P, Muscaritoli M, Bonetto A, Penna F, Reffo P, Bossola M, Bonelli G, Doglietto GB, Baccino FM, Rossi Fanelli F. Muscle myostatin signalling is enhanced in experimental cancer cachexia. Eur J Clin Invest 2008; 38:531-8. [PMID: 18578694 DOI: 10.1111/j.1365-2362.2008.01970.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS Myostatin belongs to the transforming growth factor-beta superfamily and negatively regulates skeletal muscle mass. Its deletion induces muscle overgrowth, while, on the contrary, its overexpression or systemic administration cause muscle atrophy. The present study was aimed at investigating whether muscle depletion as occurring in an experimental model of cancer cachexia, the rat bearing the Yoshida AH-130 hepatoma, is associated with modulations of myostatin signalling and whether the cytokine tumour necrosis factor-alpha may be relevant in this regard. MATERIALS AND METHODS Protein levels of myostatin, follistatin (myostatin endogenous inhibitor) and the activin receptor type IIB have been evaluated in the gastrocnemius of tumour-bearing rats by Western blotting. Circulating myostatin and follistatin in tumour hosts were evaluated by immunoprecipitation, while the DNA-binding activity of the SMAD transcription factors was determined by electrophoretic-mobility shift assay. RESULTS In day 4 tumour hosts muscle myostatin levels were comparable to controls, yet follistatin was reduced, and SMAD DNA-binding activity was enhanced. At day 7, both myostatin and follistatin increased in tumour bearers, while SMAD DNA-binding activity was unchanged. To investigate whether tumour necrosis factor-alpha contributed to induce such changes, rats were administered pentoxifylline, an inhibitor of tumour necrosis factor-alpha synthesis that partially corrects muscle depletion in tumour-bearing rats. The drug reduced both myostatin expression and SMAD DNA-binding activity in day 4 tumour hosts and up-regulated follistatin at day 7. CONCLUSIONS These observations suggest that myostatin pathway should be regarded as a potential therapeutic target in cancer cachexia.
Collapse
Affiliation(s)
- P Costelli
- Department of Experimental Medicine and Oncology Università di Torino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Broholm C, Mortensen OH, Nielsen S, Akerstrom T, Zankari A, Dahl B, Pedersen BK. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. J Physiol 2008; 586:2195-201. [PMID: 18292129 DOI: 10.1113/jphysiol.2007.149781] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The leukaemia inhibitory factor (LIF) belongs to the interleukin (IL)-6 cytokine superfamily and is constitutively expressed in skeletal muscle. We tested the hypothesis that LIF expression in human skeletal muscle is regulated by exercise. Fifteen healthy young male volunteers performed either 3 h of cycle ergometer exercise at approximately 60% of VO2,max(n = 8) or rested (n = 7). Muscle biopsies were obtained from the vastus lateralis prior to exercise, immediately after exercise, and at 1.5, 3, 6 and 24 h post exercise. Control subjects had biopsy samples taken at the same time points as during the exercise trial. Skeletal muscle LIF mRNA increased immediately after the exercise and declined gradually during recovery. However, LIF protein was unchanged at the investigated time points. Moreover, we tested the hypothesis that LIF mRNA and protein expressions are modulated by calcium (Ca(2+)) in primary human skeletal myocytes. Treatment of myocytes with the Ca(2+) ionophore, ionomycin, for 6 h resulted in an increase in both LIF mRNA and LIF protein levels. This finding suggests that Ca(2+) may be involved in the regulation of LIF in endurance-exercised skeletal muscle. In conclusion, primary human skeletal myocytes have the capability to produce LIF in response to ionomycin stimulation and LIF mRNA levels increase in skeletal muscle following concentric exercise. The finding that the increase in LIF mRNA levels is not followed by a similar increase in skeletal muscle LIF protein suggests that other exercise stimuli or repetitive stimuli are necessary in order to induce a detectable accumulation of LIF protein.
Collapse
Affiliation(s)
- Christa Broholm
- Centre of Inflammation and Metabolism, Rigshospitalet - Section 7641, Tagensvej 20, DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
43
|
Anderson SB, Goldberg AL, Whitman M. Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. J Biol Chem 2008; 283:7027-35. [PMID: 18175804 DOI: 10.1074/jbc.m706678200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myostatin, a transforming growth factor-beta superfamily ligand, negatively regulates skeletal muscle growth. Generation of the mature signaling peptide requires cleavage of pro-myostatin by a proprotein convertase, which is thought to occur constitutively in the Golgi apparatus. In serum, mature myostatin is found in an inactive, non-covalent complex with its prodomain. We find that in skeletal muscle, unlike serum, myostatin is present extracellularly as uncleaved pro-myostatin. In cultured cells, co-expression of pro-myostatin and latent transforming growth factor-beta-binding protein-3 (LTBP-3) sequesters pro-myostatin in the extracellular matrix, and secreted pro-myostatin can be cleaved extracellularly by the proprotein convertase furin. Co-expression of LTBP-3 with myostatin reduces phosphorylation of Smad2, and ectopic expression of LTBP-3 in mature mouse skeletal muscle increases fiber area, consistent with reduction of myostatin activity. We propose that extracellular pro-myostatin constitutes the major pool of latent myostatin in muscle. Post-secretion activation of this pool by furin family proprotein convertases may therefore represent a major control point for activation of myostatin in skeletal muscle.
Collapse
Affiliation(s)
- Sarah B Anderson
- Department of Developmental Biology, Harvard School of Dental Medicine, Massachusetts 02115, USA
| | | | | |
Collapse
|
44
|
Shao C, Liu M, Wu X, Ding F. Time-dependent expression of myostatin RNA transcript and protein in gastrocnemius muscle of mice after sciatic nerve resection. Microsurgery 2007; 27:487-93. [PMID: 17596894 DOI: 10.1002/micr.20392] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Myostatin, a member of the transforming growth factor-beta (TGF-beta) superfamily, has been identified as a negative regulator of skeletal muscle mass. To provide more data on the role of myostatin in denervation-induced muscle atrophy, we examined the time-dependent changes in myostatin mRNA and protein as well as Smad2 and phospho-Smad2 protein levels in the denervated gastrocnemius muscle of mice after sciatic neurectomy, using quantitative real-time RT-PCR and Western blotting, respectively. We conducted morphometric analyses to measure the wet weight ratio of the denervated muscle (the operated side/contralateral nonoperated side) and the cross-sectional area of muscle fibers, and observed the morphology of denervated muscle. The experimental results showed that in the early stage of denervation, the levels of myostatin mRNA and protein in the denervated gastrocnemius muscle increased instantly, reaching a peak at day 3 and day 7 after sciatic neurectomy, respectively, when compared with the normal values. In addition, the phospho-Smad2 protein was observed to have a similar expression profile to that of the myostatin mRNA. The present study perhaps opens a new window into myostatin modulation in muscle atrophy due to denervation.
Collapse
Affiliation(s)
- Chenxin Shao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, JS 226001 People's Republic of China
| | | | | | | |
Collapse
|
45
|
Grumbles RM, Casella GTB, Rudinsky MJ, Wood PM, Sesodia S, Bent M, Thomas CK. Long-term delivery of FGF-6 changes the fiber type and fatigability of muscle reinnervated from embryonic neurons transplanted into adult rat peripheral nerve. J Neurosci Res 2007; 85:1933-42. [PMID: 17492788 DOI: 10.1002/jnr.21323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Motoneuron death leads to muscle denervation and atrophy. Transplantation of embryonic neurons into peripheral nerves results in reinnervation and provides a strategy to rescue muscles from atrophy independent of neuron replacement in a damaged or diseased spinal cord. But the count of regenerating axons always exceeds the number of motor units in this model, so target-derived trophic factor levels may limit reinnervation. Our aim was to examine whether long-term infusion of fibroblast growth factor-6 (FGF-6) into denervated medial gastrocnemius muscles improved the function of muscles reinnervated from neurons transplanted into nerve of adult Fischer rats. Factor delivery (10 microg, 4 weeks) began after sciatic nerve transection. After a week of nerve degeneration, 1 million embryonic day 14-15 ventral spinal cord cells were transplanted into the distal tibial stump as a neuron source. Ten weeks later, neurons that expressed motoneuron markers survived in the nerves. More myelinated axons were in nerves to saline-treated muscles than in FGF-6-treated muscles. However, each group showed comparable reductions in muscle fiber atrophy because of reinnervation. Mean reinnervated fiber area was 43%-51% of non-denervated fibers. Denervated fiber area averaged 11%. FGF-6-treated muscles were more fatigable than other reinnervated muscles but had stronger motor units and fewer type I fibers than did saline-treated muscles. FGF-6 thus influenced function by changing the type of fiber reinnervated by transplanted neurons. Deficits in FGF-6 may also contribute to the increase in type I fibers in muscles reinnervated from peripheral axons, suggesting that the effects of FGF-6 on fiber type are independent of the neuron source used for reinnervation.
Collapse
Affiliation(s)
- Robert M Grumbles
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136-2104, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Chen YM, Wei CY, Chien CH, Chang HW, Huang SI, Yang HL, Chen TY. Myostatin gene organization and nodavirus-influenced expression in orange-spotted grouper (Epinephelus coioides). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:215-27. [PMID: 20483295 DOI: 10.1016/j.cbd.2007.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/21/2007] [Accepted: 04/23/2007] [Indexed: 11/24/2022]
Abstract
The relationship(s) between nodavirus infection and myostatin expression in the skeletal muscle tissue of grouper is unclear. To investigate, the grouper (Epinephelus coioides) myostatin gene was cloned and cDNA was utilized to examine the expression of the gene in skeletal muscle and serum of healthy (uninfected) grouper and fish naturally infected with nodavirus. The myostatin gene comprises three exons and two introns and is transcribed as a 2778-bp mRNA length that encodes a 376-aa precursor protein. All exon-intron boundaries conformed to the consensus sequences. Alignment of the upstream sequences indicated that the grouper myostatin promoter has been highly conserved during evolution. Sequence analyses of 1936 bp of the upstream region revealed ten E-box motifs. The protein was consistent with the predicted molecular weight (approximately 42 kDa) of the unprocessed monomeric precursor protein and the processed myostatin form of the protein secreted into the plasma. Transient transfection studies revealed that the activity of the myostatin promoter decreased in a subset of viral titers. Grouper naturally infected with nodavirus displayed downregulation of the myostatin protein.
Collapse
Affiliation(s)
- Y-M Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
Liu M, Zhang D, Shao C, Liu J, Ding F, Gu X. Expression pattern of myostatin in gastrocnemius muscle of rats after sciatic nerve crush injury. Muscle Nerve 2007; 35:649-56. [PMID: 17326119 DOI: 10.1002/mus.20749] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myostatin is a strong inhibitor of skeletal muscle growth. The purpose of this study was to investigate myostatin expression profiles during denervation-induced muscle atrophy in order to understand the relationship between myostatin expression and muscle atrophy. We constructed a sciatic nerve crush model, undertook morphometric analyses of rat gastrocnemius muscle to evaluate the degree of muscle atrophy, and utilized a real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis to measure myostatin mRNA and protein expression levels, respectively, in the gastrocnemius at different time-points after nerve injury. Muscle atrophy changed in a parabola-like manner from day 1 to day 28 after nerve injury, with a maximum value at day 14. During this time, myostatin expression changed in the reverse manner, with myostatin mRNA or protein expression gradually increasing from days 1-14, and then gradually declining to day 28, when the normal level was reached. Statistical analyses further provided evidence for a significant negative linear correlation between myostatin expression and muscle atrophy within a 28-day period after nerve injury. Our study thus describes the expression pattern of myostatin in response to a specific type of muscle atrophy and raises the possibility of developing myostatin as a therapeutic target for future clinical applications.
Collapse
Affiliation(s)
- Mei Liu
- Jiangsu Key Laboratory of Neurogeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Shibata M, Matsumoto K, Aikawa K, Muramoto T, Fujimura S, Kadowaki M. Gene expression of myostatin during development and regeneration of skeletal muscle in Japanese Black Cattle1. J Anim Sci 2006; 84:2983-9. [PMID: 17032792 DOI: 10.2527/jas.2006-118] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myostatin is a specific negative regulator of skeletal muscle growth and is regarded as one of the most important factors for myogenesis. The aim of the current study was to analyze the developmental change in the gene expression of myostatin and an adipogenic transcription factor (peroxisome proliferator-activated receptor lambda2) in the semitendinosus muscle of Japanese Black Cattle throughout the whole life cycle. An additional aim was to compare the temporal expression patterns of myostatin and relevant myogenic regulatory factors (MRF) mRNA during muscle regeneration after frostbite injury at 16 mo of age. The developmental pattern of myostatin gene expression exhibited 2 peaks: the greatest expression occurred in utero (P <0.05) and the second greatest occurred at 16 mo of age (P <0.05). The greatest level of peroxisome proliferator-activated receptor lambda2 expression was observed at 16 mo of age (P <0.05), which paralleled myostatin expression. During frostbite-induced muscle regeneration, gene expression for myostatin and 4 MRF; i.e., Myf5, MyoD, myogenin and MRF4, showed contrasting responses. Myostatin mRNA dramatically declined by 68.1 and 82.6% at 3 and 5 d after injury (P <0.05), respectively, which paralleled its protein expression, and was restored at 10 d. In contrast, the expressions of all 4 MRF mRNA were low initially but increased by 5 d after injury (P <0.05) and then remained constant or decreased slightly. These results suggest that myostatin may play a role in muscle marbling in the fattening period by decreasing myogenesis and increasing adipogenesis, and that the interaction between myostatin and MRF genes may take place at an early stage of skeletal muscle regeneration.
Collapse
Affiliation(s)
- M Shibata
- National Agricultural Research Center for Western Region, Ohda-shi, Shimane-ken, 694-0013, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Kim YS, Bobbili NK, Paek KS, Jin HJ. Production of a monoclonal anti-myostatin antibody and the effects of in ovo administration of the antibody on posthatch broiler growth and muscle mass. Poult Sci 2006; 85:1062-71. [PMID: 16776476 DOI: 10.1093/ps/85.6.1062] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myostatin, a member of the transforming growth factor-beta (TGF-beta) superfamily, is a potent negative regulator of skeletal muscle growth. The objective of this study was to produce a monoclonal anti-myostatin antibody and to examine the effects of in ovo administration of the antibody on posthatch broiler growth and muscle mass. The mature form of myostatin was expressed in Escherichia coli and used as an immunogen in producing a monoclonal antibody against myostatin. One hybridoma clone (mAb-c134) that showed the strongest affinity to the immunogen in Western blot analysis was used in producing a large quantity of monoclonal anti-myostatin antibody. In Western blot analysis, this antibody showed a strong binding affinity to commercially available mature myostatin and demonstrated a certain level of cross-reactivity with recombinant human BMP2 but not with recombinant human TGF-beta3 or porcine TGF-beta1. Competitive ELISA demonstrated binding of the antibody to the native form of mature myostatin in solution. To examine the effects of in ovo administration of the mAb-c134 antibody, eggs were injected once with 40 microg of mAb-c134 in 50 mL of PBS either into the albumen or yolk on d 3 of incubation. Controls received no injection. After hatching, chicks were raised for 35 d. Broilers from eggs that had the antibody injected into the yolk had significantly heavier body (4.2%) and muscle (5.5%) mass than the controls in both male and female birds. In contrast, no significant effects on body and muscle mass were observed when the mAb-c134 antibody was injected into the albumen. The results of this study suggest that immunoneutralization of myostatin during embryonic development is a potential means to improve growth potential of broilers.
Collapse
Affiliation(s)
- Y S Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu 96822, USA.
| | | | | | | |
Collapse
|
50
|
Mukhopadhyay P, Greene RM, Pisano MM. Expression profiling of transforming growth factor beta superfamily genes in developing orofacial tissue. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2006; 76:528-43. [PMID: 16933306 PMCID: PMC2975040 DOI: 10.1002/bdra.20276] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Numerous signaling molecules have been shown to participate in the dynamic process of orofacial development. Among these signal mediators, members of the transforming growth factor beta (TGFbeta) superfamily have been shown to play critical roles. Developing orofacial tissue expresses TGFbeta and bone morphogenetic protein (BMP) mRNAs, their protein isoforms and TGFbeta- and BMP-specific receptors. All these molecules display unique temporospatial patterns of expression in embryonic orofacial tissue, suggesting functional roles in orofacial development. For example, the TGFbetas and BMPs regulate maxillary mesenchymal cell proliferation and extracellular matrix synthesis. This is particularly noteworthy in that perturbation of either process results in orofacial clefting. Although the cellular and phenotypic effects of the TGFbeta superfamily of growth factors on embryonic orofacial tissue have been extensively studied, the specific genes that function as effectors of these cytokines in orofacial development have not been well defined. METHODS In the present study, oligonucleotide-based microarray technology was utilized to provide a comprehensive analysis of the expression of the panoply of genes related to the TGFbeta superfamily, as well as those encoding diverse groups of proteins functionally associated with this superfamily, during orofacial ontogenesis. RESULTS Of the 7000 genes whose expression was detected in the developing orofacial region, 249 have been identified that encode proteins related to the TGFbeta superfamily. Expression of some (27) of these genes was temporally regulated. In addition, several candidate genes, whose precise role in orofacial development is still unknown, were also identified. Examples of genes constituting this cluster include: TGFbeta1-induced antiapoptotic factor-1 and -2, TGFbeta-induced factor 2, TGFbeta1 induced transcript-1 and -4, TGFbeta-inducible early growth response 1, follistatin-like 1, follistatin-like 3, transmembrane protein with EGF-like and two follistatin-like domains (Tmeff)-1 and -2, nodal modulator 1, various isoforms of signal transducers and activators of transcription (Stat), notch, and growth and differentiation factors. CONCLUSIONS Elucidation of the precise physiological roles of these proteins in orofacial ontogenesis should provide unique insights into the intricacies of the TGFbeta superfamily signal transduction pathways utilized during orofacial development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, Louisville, Kentucky 40292, USA.
| | | | | |
Collapse
|