1
|
Bush SJ, Nikola R, Han S, Suzuki S, Yoshida S, Simons BD, Goriely A. Adult Human, but Not Rodent, Spermatogonial Stem Cells Retain States with a Foetal-like Signature. Cells 2024; 13:742. [PMID: 38727278 PMCID: PMC11083513 DOI: 10.3390/cells13090742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Spermatogenesis involves a complex process of cellular differentiation maintained by spermatogonial stem cells (SSCs). Being critical to male reproduction, it is generally assumed that spermatogenesis starts and ends in equivalent transcriptional states in related species. Based on single-cell gene expression profiling, it has been proposed that undifferentiated human spermatogonia can be subclassified into four heterogenous subtypes, termed states 0, 0A, 0B, and 1. To increase the resolution of the undifferentiated compartment and trace the origin of the spermatogenic trajectory, we re-analysed the single-cell (sc) RNA-sequencing libraries of 34 post-pubescent human testes to generate an integrated atlas of germ cell differentiation. We then used this atlas to perform comparative analyses of the putative SSC transcriptome both across human development (using 28 foetal and pre-pubertal scRNA-seq libraries) and across species (including data from sheep, pig, buffalo, rhesus and cynomolgus macaque, rat, and mouse). Alongside its detailed characterisation, we show that the transcriptional heterogeneity of the undifferentiated spermatogonial cell compartment varies not only between species but across development. Our findings associate 'state 0B' with a suppressive transcriptomic programme that, in adult humans, acts to functionally oppose proliferation and maintain cells in a ready-to-react state. Consistent with this conclusion, we show that human foetal germ cells-which are mitotically arrested-can be characterised solely as state 0B. While germ cells with a state 0B signature are also present in foetal mice (and are likely conserved at this stage throughout mammals), they are not maintained into adulthood. We conjecture that in rodents, the foetal-like state 0B differentiates at birth into the renewing SSC population, whereas in humans it is maintained as a reserve population, supporting testicular homeostasis over a longer reproductive lifespan while reducing mutagenic load. Together, these results suggest that SSCs adopt differing evolutionary strategies across species to ensure fertility and genome integrity over vastly differing life histories and reproductive timeframes.
Collapse
Affiliation(s)
- Stephen J. Bush
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Rafail Nikola
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Seungmin Han
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Shinnosuke Suzuki
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Benjamin D. Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Wellcome—MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Science, University of Cambridge, Cambridge CB3 0WA, UK
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- NIHR Biomedical Research Centre, Oxford OX3 7JX, UK
| |
Collapse
|
2
|
Queralt-Rosinach N, Stupp GS, Li TS, Mayers M, Hoatlin ME, Might M, Good BM, Su AI. Structured reviews for data and knowledge-driven research. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5818923. [PMID: 32283553 PMCID: PMC7153956 DOI: 10.1093/database/baaa015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/25/2022]
Abstract
Hypothesis generation is a critical step in research and a cornerstone in the rare disease field. Research is most efficient when those hypotheses are based on the entirety of knowledge known to date. Systematic review articles are commonly used in biomedicine to summarize existing knowledge and contextualize experimental data. But the information contained within review articles is typically only expressed as free-text, which is difficult to use computationally. Researchers struggle to navigate, collect and remix prior knowledge as it is scattered in several silos without seamless integration and access. This lack of a structured information framework hinders research by both experimental and computational scientists. To better organize knowledge and data, we built a structured review article that is specifically focused on NGLY1 Deficiency, an ultra-rare genetic disease first reported in 2012. We represented this structured review as a knowledge graph and then stored this knowledge graph in a Neo4j database to simplify dissemination, querying and visualization of the network. Relative to free-text, this structured review better promotes the principles of findability, accessibility, interoperability and reusability (FAIR). In collaboration with domain experts in NGLY1 Deficiency, we demonstrate how this resource can improve the efficiency and comprehensiveness of hypothesis generation. We also developed a read–write interface that allows domain experts to contribute FAIR structured knowledge to this community resource. In contrast to traditional free-text review articles, this structured review exists as a living knowledge graph that is curated by humans and accessible to computational analyses. Finally, we have generalized this workflow into modular and repurposable components that can be applied to other domain areas. This NGLY1 Deficiency-focused network is publicly available at http://ngly1graph.org/. Availability and implementation Database URL: http://ngly1graph.org/. Network data files are at: https://github.com/SuLab/ngly1-graph and source code at: https://github.com/SuLab/bioknowledge-reviewer. Contact asu@scripps.edu
Collapse
Affiliation(s)
- Núria Queralt-Rosinach
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 N Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Gregory S Stupp
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 N Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Tong Shu Li
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 N Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Michael Mayers
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 N Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Maureen E Hoatlin
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Parkway, Portland, OR 97239, USA
| | - Matthew Might
- Department of Medicine, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, 510 20th St S, Birmingham, AL 35210, USA
| | - Benjamin M Good
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 N Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Andrew I Su
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 N Torrey Pines Rd. La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Mok EHK, Leung CON, Lee TKW. MAP9/ERCC3 signaling cascade: A new insight on understanding the chromosomal instability in hepatocellular carcinoma. EBioMedicine 2020; 54:102709. [PMID: 32268270 PMCID: PMC7136610 DOI: 10.1016/j.ebiom.2020.102709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Etienne Ho Kit Mok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University
| | - Carmen Oi Ning Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
4
|
Zhang J, Huang JZ, Zhang YQ, Zhang X, Zhao LY, Li CG, Zhou YF, Wei H, Yu J. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine 2020; 53:102701. [PMID: 32151798 PMCID: PMC7063135 DOI: 10.1016/j.ebiom.2020.102701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background Chromosomal instability plays an important part in cancer, but its genetic basis in liver tumorigenesis remains largely unclear. We aimed to characterize the mechanistic significance and clinical implication of mitotic regulator microtubule-associated protein 9 (MAP9) in hepatocellular carcinoma (HCC). Methods The biological functions of MAP9 were determined by in vitro tumorigenicity assays. Systematic MAP9 knockout mouse (MAP9∆/∆) and hepatocyte-specific MAP9 knockout mouse (MAP9∆/∆hep) were generated to confirm the role of MAP9 in HCC. The clinical impact of MAP9 was assessed in primary HCC tissue samples. Findings We found that MAP9 was frequently silenced in HCC tissue samples. The transcriptional silence of MAP9 in liver cancer cell lines and tissue samples was mediated by its promoter hypermethylation. MAP9 promoter hypermethylation or downregulation was associated with poor survival and recurrence in patients with HCC. Mechanistically, ectopic expression of MAP9 in LO2 and HepG2 cell lines impaired cell proliferation, colony formation, migration and invasion, and induced cell apoptosis and cycle arrest, whereas knockdown of MAP9 in Miha cell line showed the opposite effects. We found that MAP9∆/∆ mice spontaneously developed a liver hyperplastic nodule and MAP9∆/∆hep accelerated diethylnitrosamine-induced HCC formation. The tumour suppressive effect of MAP9 in HCC was mediated by downregulating excision repair cross-complementation group 3 (ERCC3), a nucleotide excision repair gene. Restoration of ERCC3 expression possessed an oncogenic potency and abrogated the tumour suppressive effects of MAP9. Interpretation MAP9 is a novel tumour suppressor in HCC by inhibiting ERCC3 expression, and serves as a prognostic factor in HCC patients.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun-Zhe Huang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yan-Quan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Liu-Yang Zhao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Chuan-Gen Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yun-Fei Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Hong Wei
- Center of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
HCV nonstructural protein 4 is associated with aggressiveness features of breast cancer. Breast Cancer 2017; 25:297-302. [PMID: 29285674 DOI: 10.1007/s12282-017-0829-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/25/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) has the lymphotropic feature that is supposed to be the reason of related extrahepatic manifestation. HCV viral oncoproteins may participate in the regulation of some gene expression that has been implicated in tumorigenesis. Our aim is to evaluate the HCV-NS4 circulating levels in breast cancer (BC) and to investigate its relation with BC tumor aggressiveness. METHODS This study was performed among 158 Egyptian women (120 with BC and 38 with benign breast diseases). ELISA was used for detection of anti-HCV antibodies, HCV-NS4, fibronectin, and CA 15-3. RESULTS No association between HCV detection in this group of BC patients (27.5% in BC vs. 23.7% in breast benign diseases, P = 0.687). Among HCV-infected patients, the mean HCV-NS4 serum level in BC was significantly higher than benign group (61.7 μg/mL vs. 33.9 μg/mL, P = 0.0005). Fibronectin levels were higher (P = 0.014) in patients infected with HCV than noninfected BC patients. Elevated HCV-NS4 levels were associated with tumor severity features like large size, late stages, high grades, and infiltrated lymph nodes. The elevated levels of HCV-NS4 (> 40 μg/mL) yielded an estimated odds ratio (95% confidence intervals) of 2.5 (0.98-6.36), 1.2 (0.44-3.33), 1.9 (0.53-7.00), and 2.5 (0.87-7.33) for developing large size, late stages, high grades, and infiltrated lymph nodes, respectively. Interestingly, HCV-NS4 levels significantly correlated with other BC tumor marker like CA15-3 (r = 0.535; P = 0.0009) and fibronectin (r = 0.432; P < 0.0001). CONCLUSIONS HCV-NS4 appears to be associated with BC progression features. Oncologists treating such BC patients should consider HCV screening to enable the early identification and to prevent progression of the disease.
Collapse
|
6
|
Hepatitis C Virus Indirectly Disrupts DNA Damage-Induced p53 Responses by Activating Protein Kinase R. mBio 2017; 8:mBio.00121-17. [PMID: 28442604 PMCID: PMC5405228 DOI: 10.1128/mbio.00121-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many DNA tumor viruses promote cellular transformation by inactivating the critically important tumor suppressor protein p53. In contrast, it is not known whether p53 function is disrupted by hepatitis C virus (HCV), a unique, oncogenic RNA virus that is the leading infectious cause of liver cancer in many regions of the world. Here we show that HCV-permissive, liver-derived HepG2 cells engineered to constitutively express microRNA-122 (HepG2/miR-122 cells) have normal p53-mediated responses to DNA damage and that HCV replication in these cells potently suppresses p53 responses to etoposide, an inducer of DNA damage, or nutlin-3, an inhibitor of p53 degradation pathways. Upregulation of p53-dependent targets is consequently repressed within HCV-infected cells, with potential consequences for cell survival. Despite this, p53 function is not disrupted by overexpression of the complete HCV polyprotein, suggesting that altered p53 function may result from the host response to viral RNA replication intermediates. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated ablation of double-stranded RNA (dsRNA)-activated protein kinase R (PKR) restored p53 responses while boosting HCV replication, showing that p53 inhibition results directly from viral activation of PKR. The hepatocellular abundance of phosphorylated PKR is elevated in HCV-infected chimpanzees, suggesting that PKR activation and consequent p53 inhibition accompany HCV infection in vivo. These findings reveal a feature of the host response to HCV infection that may contribute to hepatocellular carcinogenesis. Chronic infection with hepatitis C virus (HCV) is the leading cause of liver cancer in most developed nations. However, the mechanisms whereby HCV infection promotes carcinogenesis remain unclear. Here, we demonstrate that HCV infection inhibits the activation of p53 following DNA damage. Contrary to previous reports, HCV protein expression is insufficient to inhibit p53. Rather, p53 inhibition is mediated by cellular protein kinase R (PKR), which is activated by HCV RNA replication and subsequently suppresses global protein synthesis. These results redefine our understanding of how HCV infection influences p53 function. We speculate that persistent disruption of p53-mediated DNA damage responses may contribute to hepatocellular carcinogenesis in chronically infected individuals.
Collapse
|
7
|
Chen M, Gan X, Yoshino KI, Kitakawa M, Shoji I, Deng L, Hotta H. Hepatitis C virus NS5A protein interacts with lysine methyltransferase SET and MYND domain-containing 3 and induces activator protein 1 activation. Microbiol Immunol 2017; 60:407-17. [PMID: 27080060 DOI: 10.1111/1348-0421.12383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/10/2016] [Indexed: 12/27/2022]
Abstract
Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is a multifunctional protein that is involved in the HCV life cycle and pathogenesis. In this study, a host protein(s) interacting with NS5A by tandem affinity purification were searched for with the aim of elucidating the role of NS5A. An NS5A-interacting protein, SET and MYND domain-containing 3 (SMYD3), a lysine methyltransferase reportedly involved in the development of cancer, was identified. The interaction between NS5A and SMYD3 was confirmed in ectopically expressing, HCV RNA replicon-harboring and HCV-infected cells. The other HCV proteins did not bind to SMYD3. SMYD3 bound to NS5A of HCV genotypes 1b and 2a. Deletion mutational analysis revealed that domains II and III of NS5A (amino acids [aa] 250 to 447) and the MYND and N-SET domains of SMYD3 (aa 1 to 87) are involved in the full extent of NS5A-SMYD3 interaction. NS5A co-localized with SMYD3 exclusively in the cytoplasm, thereby inhibiting nuclear localization of SMYD3. Moreover, NS5A formed a complex with SMYD3 and heat shock protein 90 (HSP90), which is a positive regulator of SMYD3. The intensity of binding between SMYD3 and HSP90 was enhanced by NS5A. Luciferase reporter assay demonstrated that NS5A significantly induces activator protein 1 (AP-1) activity, this being potentiated by co-expression of SMYD3 with NS5A. Taken together, the present results suggest that NS5A interacts with SMYD3 and induces AP-1 activation, possibly by facilitating binding between HSP90 and SMYD3. This may be a novel mechanism of AP-1 activation in HCV-infected cells.
Collapse
Affiliation(s)
- Ming Chen
- Division of Microbiology.,Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Xiang Gan
- Division of Microbiology.,Institute of Biochemistry and Molecular Biology, Hubei University, Wuhan, China
| | | | | | - Ikuo Shoji
- Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Lin Deng
- Division of Microbiology.,Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Hak Hotta
- Division of Microbiology.,Department of Oral Vaccine and Drug Development, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
8
|
Wijetunga NA, Pascual M, Tozour J, Delahaye F, Alani M, Adeyeye M, Wolkoff AW, Verma A, Greally JM. A pre-neoplastic epigenetic field defect in HCV-infected liver at transcription factor binding sites and polycomb targets. Oncogene 2017; 36:2030-2044. [PMID: 27721404 PMCID: PMC5383522 DOI: 10.1038/onc.2016.340] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
The predisposition of patients with Hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) involves components of viral infection, inflammation and time. The development of multifocal, genetically distinct tumours is suggestive of a field defect affecting the entire liver. The molecular susceptibility mediating such a field defect is not understood. One potential mediator of long-term cellular reprogramming is heritable (epigenetic) regulation of transcription, exemplified by DNA methylation. We studied epigenetic and transcriptional changes in HCV-infected livers in comparison with control, uninfected livers and HCC, allowing us to identify pre-neoplastic epigenetic and transcriptional events. We find the HCV-infected liver to have a pattern of acquisition of DNA methylation targeted to candidate enhancers active in liver cells, enriched for the binding sites of the FOXA1, FOXA2 and HNF4A transcription factors. These enhancers can be subdivided into those proximal to genes implicated in liver cancer or to genes involved in stem cell development, the latter distinguished by increased CG dinucleotide density and polycomb-mediated repression, manifested by the additional acquisition of histone H3 lysine 27 trimethylation (H3K27me3). Transcriptional studies on our samples showed that the increased DNA methylation at enhancers was associated with decreased local gene expression, results validated in independent samples from The Cancer Genome Atlas. Pharmacological depletion of H3K27me3 using the EZH2 inhibitor GSK343 in HepG2 cells suppressed cell growth and also revealed that local acquired DNA methylation was not dependent upon the presence of polycomb-mediated repression. The results support a model of HCV infection influencing the binding of transcription factors to cognate sites in the genome, with consequent local acquisition of DNA methylation, and the added repressive influence of polycomb at a subset of CG-dense cis-regulatory sequences. These epigenetic events occur before neoplastic transformation, resulting in what may be a pharmacologically reversible epigenetic field defect in HCV-infected liver.
Collapse
Affiliation(s)
- N A Wijetunga
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - M Pascual
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
- Centro de Investigación Médica Aplicada (CIMA), IDISNA, Oncohematology Department, Pamplona, Spain
| | - J Tozour
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - F Delahaye
- Department of Obstetrics, Gynecology and Women's Health, Bronx, NY, USA
| | - M Alani
- Department of Medicine (Division of Gastroenterology and Liver Diseases), Bronx, NY, USA
- Marion Bessin Liver Research Center, Bronx, NY, USA
| | - M Adeyeye
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - A W Wolkoff
- Department of Medicine (Division of Gastroenterology and Liver Diseases), Bronx, NY, USA
- Marion Bessin Liver Research Center, Bronx, NY, USA
| | - A Verma
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - J M Greally
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
- Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx NY 10461, USA. E-mail:
| |
Collapse
|
9
|
Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response. Viruses 2016; 8:v8050150. [PMID: 27223299 PMCID: PMC4885105 DOI: 10.3390/v8050150] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection frequently leads to chronic liver disease, liver cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms by which HCV infection leads to chronic liver disease and HCC are not well understood. The infection cycle of HCV is initiated by the attachment and entry of virus particles into a hepatocyte. Replication of the HCV genome inside hepatocytes leads to accumulation of large amounts of viral proteins and RNA replication intermediates in the endoplasmic reticulum (ER), resulting in production of thousands of new virus particles. HCV-infected hepatocytes mount a substantial stress response. How the infected hepatocyte integrates the viral-induced stress response with chronic infection is unknown. The unfolded protein response (UPR), an ER-associated cellular transcriptional response, is activated in HCV infected hepatocytes. Over the past several years, research performed by a number of laboratories, including ours, has shown that HCV induced UPR robustly activates autophagy to sustain viral replication in the infected hepatocyte. Induction of the cellular autophagy response is required to improve survival of infected cells by inhibition of cellular apoptosis. The autophagy response also inhibits the cellular innate antiviral program that usually inhibits HCV replication. In this review, we discuss the physiological implications of the HCV-induced chronic ER-stress response in the liver disease progression.
Collapse
|
10
|
Han Y, Niu J, Wang D, Li Y. Hepatitis C Virus Protein Interaction Network Analysis Based on Hepatocellular Carcinoma. PLoS One 2016; 11:e0153882. [PMID: 27115606 PMCID: PMC4846009 DOI: 10.1371/journal.pone.0153882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/05/2016] [Indexed: 01/12/2023] Open
Abstract
Epidemiological studies have validated the association between hepatitis C virus (HCV) infection and hepatocellular carcinoma (HCC). An increasing number of studies show that protein-protein interactions (PPIs) between HCV proteins and host proteins play a vital role in infection and mediate HCC progression. In this work, we collected all published interaction between HCV and human proteins, which include 455 unique human proteins participating in 524 HCV-human interactions. Then, we construct the HCV-human and HCV-HCC protein interaction networks, which display the biological knowledge regarding the mechanism of HCV pathogenesis, particularly with respect to pathogenesis of HCC. Through in-depth analysis of the HCV-HCC interaction network, we found that interactors are enriched in the JAK/STAT, p53, MAPK, TNF, Wnt, and cell cycle pathways. Using a random walk with restart algorithm, we predicted the importance of each protein in the HCV-HCC network and found that AKT1 may play a key role in the HCC progression. Moreover, we found that NS5A promotes HCC cells proliferation and metastasis by activating AKT/GSK3β/β-catenin pathway. This work provides a basis for a detailed map tracking new cellular interactions of HCV and identifying potential targets for HCV-related hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Yuewen Han
- Xi’an Center for Disease Control and Prevention, Xi’an, China
| | - Jun Niu
- The General Hospital of Shenyang Military, Shenyang, China
| | - Dong Wang
- Air Force Aviation Medicine Identification and Training Center, Dalian, China
| | - Yuanyuan Li
- Xi’an Center for Disease Control and Prevention, Xi’an, China
- Air Force Aviation Medicine Identification and Training Center, Dalian, China
- * E-mail:
| |
Collapse
|
11
|
Modulation of DNA damage and repair pathways by human tumour viruses. Viruses 2015; 7:2542-91. [PMID: 26008701 PMCID: PMC4452920 DOI: 10.3390/v7052542] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
With between 10% and 15% of human cancers attributable to viral infection, there is great interest, from both a scientific and clinical viewpoint, as to how these pathogens modulate host cell functions. Seven human tumour viruses have been identified as being involved in the development of specific malignancies. It has long been known that the introduction of chromosomal aberrations is a common feature of viral infections. Intensive research over the past two decades has subsequently revealed that viruses specifically interact with cellular mechanisms responsible for the recognition and repair of DNA lesions, collectively known as the DNA damage response (DDR). These interactions can involve activation and deactivation of individual DDR pathways as well as the recruitment of specific proteins to sites of viral replication. Since the DDR has evolved to protect the genome from the accumulation of deleterious mutations, deregulation is inevitably associated with an increased risk of tumour formation. This review summarises the current literature regarding the complex relationship between known human tumour viruses and the DDR and aims to shed light on how these interactions can contribute to genomic instability and ultimately the development of human cancers.
Collapse
|
12
|
Abstract
Abundant evidence supports the belief of a causal relationship between cirrhosis and hepatocellular carcinoma, but one that differs between high- and low-incidence regions of the tumor. In high-incidence regions, the cirrhosis is of the macronodular variety, is typically asymptomatic, and is caused predominantly by chronic hepatitis B virus infection, whereas in low-incidence regions, the cirrhosis, although usually macronodular, may be micronodular, is commonly symptomatic and of long-standing, and is caused by chronic hepatitis C virus infection, alcohol abuse over many years, the metabolic syndrome, or hereditary hemochromatosis. In a minority of patients, hepatocellular carcinoma develops in the absence of cirrhosis, supporting a direct hepatocarcinogenic effect of some of the causal agents. Cirrhosis is the major risk factor for tumor formation in patients with chronic hepatitis C virus infection. This virus does not integrate into cellular DNA, and malignant transformation results from increased liver cell turnover induced by recurring injury and regeneration of cells in the context of persisting inflammation, oxidative DNA damage, fibrosis, cirrhosis, and changes induced by the virus at a DNA level that have yet to be fully defined. Hepatitis B virus causes malignant transformation by both direct and indirect routes. The direct route results, in part, from integration of the viral DNA into host cellular DNA; transcriptional activation of host growth regulatory genes by hepatitis B virus-encoded proteins; and effects on apoptosis, cell signaling, and DNA repair. The direct route may share some similarities with that of hepatitis C virus infection. The metabolic syndrome may cause malignant transformation by production of oxidative stress and the induction of a variety of mutations, including some in the p53 gene.
Collapse
Affiliation(s)
- Michael C Kew
- Department of Medicine, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa,
| |
Collapse
|
13
|
Qashqari H, Al-Mars A, Chaudhary A, Abuzenadah A, Damanhouri G, Alqahtani M, Mahmoud M, El Sayed Zaki M, Fatima K, Qadri I. Understanding the molecular mechanism(s) of hepatitis C virus (HCV) induced interferon resistance. INFECTION GENETICS AND EVOLUTION 2013; 19:113-9. [PMID: 23831932 DOI: 10.1016/j.meegid.2013.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is one of the foremost causes of chronic liver disease affecting over 300 million globally. HCV contains a positive-stranded RNA of ~9600 nt and is surrounded by the 5' and 3'untranslated regions (UTR). The only successful treatment regimen includes interferon (IFN) and ribavirin. Like many other viruses, HCV has also evolved various mechanisms to circumvent the IFN response by blocking (1) downstream signaling actions via STAT1, STAT2, IRF9 and JAK-STAT pathways and (2) repertoire of IFN Stimulatory Genes (ISGs). Several studies have identified complex host demographic and genetic factors as well as viral genetic heterogeneity associated with outcomes of IFN therapy. The genetic predispositions of over 2000 ISGS may render the patients to become resistant, thus identification of such parameters within a subset of population are necessary for management corollary. The ability of various HCV genotypes to diminish IFN antiviral responses plays critical role in the establishment of chronic infection at the acute stage of infection, thus highlighting importance of the resistance in HCV treated groups. The recently defined role of viral protein such as C, E2, NS3/NS4 and NS5A proteins in inducing the IFN resistance are discussed in this article. How the viral and host genetic composition and epistatic connectivity among polymorphic genomic sites synchronizes the evolutionary IFN resistance trend remains under investigation. However, these signals may have the potential to be employed for accurate prediction of therapeutic outcomes. In this review article, we accentuate the significance of host and viral components in IFN resistance with the aim to determine the successful outcome in patients.
Collapse
Affiliation(s)
- Hanadi Qashqari
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang Q, Wang Y, Li Y, Gao X, Liu S, Cheng J. NS5ATP9 contributes to inhibition of cell proliferation by hepatitis C virus (HCV) nonstructural protein 5A (NS5A) via MEK/extracellular signal regulated kinase (ERK) pathway. Int J Mol Sci 2013; 14:10539-51. [PMID: 23698777 PMCID: PMC3676852 DOI: 10.3390/ijms140510539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 01/04/2023] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a remarkable protein as it clearly plays multiple roles in mediating viral replication, host-cell interactions and viral pathogenesis. However, on the impact of cell growth, there have been different study results. NS5ATP9, also known as KIAA0101, p15PAF, L5, and OEACT-1, was first identified as a proliferating cell nuclear antigen-binding protein. Earlier studies have shown that NS5ATP9 might play an important role in HCV infection. The aim of this study is to investigate the function of NS5ATP9 on hepatocellular carcinoma (HCC) cell lines proliferation under HCV NS5A expression. The results showed that overexpression of NS5ATP9 inhibited the proliferation of Bel7402 cells, whereas knockdown of NS5ATP9 by interfering RNA promoted the growth of HepG2 cells. Under HCV NS5A expression, RNA interference (RNAi) targeting of NS5ATP9 could reverse the inhibition of HepG2 cell proliferation, suggesting that NS5ATP9 might be an anti-proliferation gene that plays an important role in the suppression of cell growth mediated by HCV NS5A via MEK/ERK signaling pathway. These findings might provide new insights into HCV NS5A and NS5ATP9.
Collapse
Affiliation(s)
- Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; E-Mails: (Q.W.); (Y.W.); (X.G.); (S.L.)
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Yongsheng Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; E-Mails: (Q.W.); (Y.W.); (X.G.); (S.L.)
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing 100050, China
| | - Yue Li
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, China; E-Mail:
| | - Xuesong Gao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; E-Mails: (Q.W.); (Y.W.); (X.G.); (S.L.)
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; E-Mails: (Q.W.); (Y.W.); (X.G.); (S.L.)
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; E-Mails: (Q.W.); (Y.W.); (X.G.); (S.L.)
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-8432-2006; Fax: +86-10-8432-2059
| |
Collapse
|
15
|
|
16
|
Selimovic D, El-Khattouti A, Ghozlan H, Haikel Y, Abdelkader O, Hassan M. Hepatitis C virus-related hepatocellular carcinoma: An insight into molecular mechanisms and therapeutic strategies. World J Hepatol 2012; 4:342-55. [PMID: 23355912 PMCID: PMC3554798 DOI: 10.4254/wjh.v4.i12.342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/17/2012] [Accepted: 11/24/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects more than 170 million people worldwide, and thereby becomes a series global health challenge. Chronic infection with HCV is considered one of the major causes of end-stage liver disease including cirrhosis and hepatocellular carcinoma. Although the multiple functions of the HCV proteins and their impacts on the modulation of the intracellular signaling transduction processes, the drive of carcinogenesis during the infection with HCV, is thought to result from the interactions of viral proteins with host cell proteins. Thus, the induction of mutator phenotype, in liver, by the expression of HCV proteins provides a key mechanism for the development of HCV-associated hepatocellular carcinoma (HCC). HCC is considered one of the most common malignancies worldwide with increasing incidence during the past decades. In many countries, the trend of HCC is attributed to several liver diseases including HCV infection. However, the development of HCC is very complicated and results mainly from the imbalance between tumor suppressor genes and oncogenes, as well as from the alteration of cellular factors leading to a genomic instability. Besides the poor prognosis of HCC patients, this type of tumor is quite resistance to the available therapies. Thus, understanding the molecular mechanisms, which are implicated in the development of HCC during the course of HCV infection, may help to design a general therapeutic protocol for the treatment and/or the prevention of this malignancy. This review summarizes the current knowledge of the molecular mechanisms, which are involved in the development of HCV-associated HCC and the possible therapeutic strategies.
Collapse
Affiliation(s)
- Denis Selimovic
- Denis Selimovic, Youssef Haikel, Mohamed Hassan, Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
17
|
Lim YS, Shin KS, Oh SH, Kang SM, Won SJ, Hwang SB. Nonstructural 5A protein of hepatitis C virus regulates heat shock protein 72 for its own propagation. J Viral Hepat 2012; 19:353-63. [PMID: 22497815 DOI: 10.1111/j.1365-2893.2011.01556.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We identified heat shock protein 72 (Hsp72) as a host factor that was differentially expressed in cells expressing nonstructural 5A (NS5A) protein. To investigate how NS5A modulates Hsp72 in hepatitis C virus (HCV) life cycle, we examined the role of Hsp72 in HCV replication and virus production. NS5A specifically interacted with Hsp72. Both Hsp72 and nuclear factor of activated T cells 5 (NFAT5) levels were increased in cells expressing NS5A protein. Treatments of N-acetylcysteine and glutathione markedly reduced protein levels of both NFAT5 and Hsp72. Knockdown of NFAT5 resulted in decrease in Hsp72 level in cells expressing NS5A. Importantly, silencing of Hsp72 expression resulted in decrease in both RNA replication and virus production in HCV-infected cells. These data indicate that NS5A modulates Hsp72 via NFAT5 and reactive oxygen species activation for HCV propagation.
Collapse
Affiliation(s)
- Y S Lim
- National Research Laboratory of Hepatitis C Virus, Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | | | | | | | | | | |
Collapse
|
18
|
Ivanov AV, Smirnova OA, Ivanova ON, Masalova OV, Kochetkov SN, Isaguliants MG. Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independent mechanisms in HUH7 cells. PLoS One 2011; 6:e24957. [PMID: 21931870 PMCID: PMC3172309 DOI: 10.1371/journal.pone.0024957] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/25/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a highly pathogenic human virus associated with liver fibrosis, steatosis, and cancer. In infected cells HCV induces oxidative stress. Here, we show that HCV proteins core, E1, E2, NS4B, and NS5A activate antioxidant defense Nrf2/ARE pathway via several independent mechanisms. This was demonstrated by the analysis of transient co-expression in Huh7 cells of HCV proteins and luciferase reporters. Expression, controlled by the promoters of stress-response genes or their minimal Nrf2-responsive elements, was studied using luminescence assay, RT-qPCR and/or Western-blot analysis. All five proteins induced Nrf2 activation by protein kinase C in response to accumulation of reactive oxygen species (ROS). In addition, expression of core, E1, E2, NS4B, and NS5A proteins resulted in the activation of Nrf2 in a ROS-independent manner. The effect of core and NS5A was mediated through casein kinase 2 and phosphoinositide-3 kinase, whereas those of NS4B, E1, and E2, were not mediated by either PKC, CK2, PI3K, p38, or ERK. Altogether, on the earliest stage of expression HCV proteins induced a strong up-regulation of the antioxidant defense system. These events may underlie the harmful effects of HCV-induced oxidative stress during acute stage of hepatitis C.
Collapse
Affiliation(s)
- Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
19
|
McGivern DR, Lemon SM. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 2011; 30:1969-83. [PMID: 21258404 DOI: 10.1038/onc.2010.594] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of hepatocellular carcinoma (HCC) in persons who are persistently infected with hepatitis C virus (HCV) is a growing problem worldwide. Current antiviral therapies are not effective in many patients with chronic hepatitis C, and a greater understanding of the factors leading to progression of HCC will be necessary to design novel approaches to prevention of HCV-associated HCC. The lack of a small animal model of chronic HCV infection has hampered understanding of these factors. As HCV is an RNA virus with little potential for integration of its genetic material into the host genome, the mechanisms underlying HCV promotion of cancer are likely to differ from other models of viral carcinogenesis. In patients persistently infected with HCV, chronic inflammation resulting from immune responses against infected hepatocytes is associated with progressive fibrosis and cirrhosis. Cirrhosis is an important risk factor for HCC independent of HCV infection, and a majority of HCV-associated HCC arises in the setting of cirrhosis. However, a significant minority arises in the absence of cirrhosis, indicating that cirrhosis is not a prerequisite for cancer. Other lines of evidence suggest that direct, virus-specific mechanisms may be involved. Transgenic mice expressing HCV proteins develop cancer in the absence of inflammation or immune recognition of the transgene. In vitro studies have revealed multiple interactions of HCV-encoded proteins with cell cycle regulators and tumor suppressor proteins, raising the possibility that HCV can disrupt control of cellular proliferation, or impair the cell's response to DNA damage. A combination of virus-specific, host genetic, environmental and immune-related factors are likely to determine the progression to HCC in patients who are chronically infected with HCV. Here, we summarize current knowledge of the virus-specific mechanisms that may contribute to HCV-associated HCC.
Collapse
Affiliation(s)
- D R McGivern
- Lineberger Comprehensive Cancer Center, Center for Translational Research, Inflammatory Diseases Institute, and the Division of Infectious Diseases, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | | |
Collapse
|
20
|
Banerjee A, Ray RB, Ray R. Oncogenic potential of hepatitis C virus proteins. Viruses 2010; 2:2108-2133. [PMID: 21994721 PMCID: PMC3185750 DOI: 10.3390/v2092108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER) stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today.
Collapse
Affiliation(s)
- Arup Banerjee
- Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA; E-Mail:
| | - Ratna B. Ray
- Department of Pathology, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 2nd Floor, St. Louis, MO 63104, USA; E-Mail:
| | - Ranjit Ray
- Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA; E-Mail:
- Molecular Microbiology & Immunology, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 1-314- 977-9034; Fax: 1-314-771-3816
| |
Collapse
|
21
|
Tsai WL, Chung RT. Viral hepatocarcinogenesis. Oncogene 2010; 29:2309-24. [PMID: 20228847 PMCID: PMC3148694 DOI: 10.1038/onc.2010.36] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/29/2009] [Accepted: 01/06/2010] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Despite recent advances in the diagnosis and treatment of HCC, its prognosis remains dismal. Infection with hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major risk factors for HCC. Although both are hepatotropic viral infections, there are important differences between the oncogenic mechanisms of these two viruses. In addition to the oncogenic potential of its viral proteins, HBV, as a DNA virus, can integrate into host DNA and directly transform hepatocytes. In contrast, HCV, an RNA virus, is unable to integrate into the host genome, and viral protein expression has a more critical function in hepatocarcinogenesis. Both HBV and HCV proteins have been implicated in disrupting cellular signal transduction pathways that lead to unchecked cell growth. Most HCC develops in the cirrhotic liver, but the linkage between cirrhosis and HCC is likely multifactorial. In this review, we summarize current knowledge regarding the pathogenetic mechanisms of viral HCC.
Collapse
Affiliation(s)
- W-L Tsai
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - RT Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Idrees M, Rafique S, Rehman IU, Akbar H, Yousaf MZ, Butt S, Awan Z, Manzoor S, Akram M, Aftab M, Khubaib B, Riazuddin S. Hepatitis C virus genotype 3a infection and hepatocellular carcinoma: Pakistan experience. World J Gastroenterol 2009; 15:5080-5. [PMID: 19860002 PMCID: PMC2768888 DOI: 10.3748/wjg.15.5080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the association between chronic hepatitis C virus (HCV) infection and hepatocellular carcinoma (HCC) in Pakistan, and the genotype distribution among these HCC patients.
METHODS: One hundred and sixty-one subjects with HCC were included in this study. Liver biopsy was performed on 145 of the patients; sixteen were excluded because they failed to fulfill the inclusion criteria. Qualitative polymerase chain reaction (PCR) was performed for hepatitis B virus and HCV. Samples positive for HCV RNA were genotyped using genotype-specific PCR and confirmed by HCV 5’ noncoding region sequencing analysis.
RESULTS: Chronic HCV infection was identified a major risk factor (63.44% of tested HCC patients) for the development of HCC. The time from HCV infection to appearance of cancer was 10-50 years. In the HCC patient population, broader distributions of genotypes were present with genotype 3a as the predominant genotype. Using the type-specific genotyping method, we found HCV genotype 3a in 40.96%, 3b in 15.66%, 1a in 9.63%, and 1b in 2.40% of HCC tissue samples. About 28% of cases were found with mixed genotypes. Two cases were unable to be genotyped because of low viral load. Sixty-six percent of treated patients with cirrhosis had an end of treatment response, but unfortunately they relapsed quickly when the treatment was discontinued, and HCC developed during a median 3.8 years.
CONCLUSION: There was a strong association between chronic HCV infection and HCC in Pakistan, and between HCV genotype 3a and HCC.
Collapse
|
23
|
Kriegs M, Bürckstümmer T, Himmelsbach K, Bruns M, Frelin L, Ahlén G, Sällberg M, Hildt E. The hepatitis C virus non-structural NS5A protein impairs both the innate and adaptive hepatic immune response in vivo. J Biol Chem 2009; 284:28343-28351. [PMID: 19674968 DOI: 10.1074/jbc.m109.038877] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of hepatitis C virus (HCV) protein non-structural (NS) 5A in HCV-associated pathogenesis is still enigmatic. To investigate the in vivo role of NS5A for viral persistence and virus-associated pathogenesis a transgenic (Tg) mouse model was established. Mice with liver-targeted NS5A transgene expression were generated using the albumin promoter. Alterations in the hepatic immune response were determined by Western blot, infection by lymphocytic choriomeningitis virus (LCMV), and using transient NS3/4A Tg mice generated by hydrodynamic injection. Cytotoxic T lymphocyte (CTL) activity was investigated by the Cr-release assay. The stable NS5A Tg mice did not reveal signs of spontaneous liver disease. The intrahepatic immunity was disrupted in the NS5A Tg mice as determined by clearance of LCMV infection or transiently NS3/4A Tg hepatocytes in vivo. This impaired immunity was explained by a reduced induction of interferon beta, 2',5'-OAS, and PKR after LCMV infection and an impairment of the CTL-mediated elimination of NS3-expressing hepatocytes. In conclusion, these data indicate that in the present transgenic mouse model, NS5A does not cause spontaneous liver disease. However, we discovered that NS5A could impair both the innate and the adaptive immune response to promote chronic HCV infection.
Collapse
Affiliation(s)
- Malte Kriegs
- Department of Internal Medicine II, University of Freiburg, D-79106 Freiburg, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, D-20251 Hamburg, Germany; Robert-Koch-Institute, D-13353 Berlin, Germany; Division of Clinical Microbiology F68, Karolinska University Hospital Huddinge, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | | | - Kyoshi Himmelsbach
- Department of Internal Medicine II, University of Freiburg, D-79106 Freiburg, Germany; Institute of Infection Medicine, University of Kiel, D-24105 Kiel, Germany
| | - Michael Bruns
- Heinrich-Pette-Institute for Experimental Virology and Immunology, D-20251 Hamburg, Germany
| | - Lars Frelin
- Division of Clinical Microbiology F68, Karolinska University Hospital Huddinge, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | - Gustaf Ahlén
- Division of Clinical Microbiology F68, Karolinska University Hospital Huddinge, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | - Matti Sällberg
- Division of Clinical Microbiology F68, Karolinska University Hospital Huddinge, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | - Eberhard Hildt
- Department of Internal Medicine II, University of Freiburg, D-79106 Freiburg, Germany; Institute of Infection Medicine, University of Kiel, D-24105 Kiel, Germany.
| |
Collapse
|
24
|
McGivern DR, Lemon SM. Tumor suppressors, chromosomal instability, and hepatitis C virus-associated liver cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:399-415. [PMID: 18928409 DOI: 10.1146/annurev.pathol.4.110807.092202] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) is the only known RNA virus with an exclusively cytoplasmic life cycle that is associated with cancer. The mechanisms by which it causes cancer are unclear, but chronic immune-mediated inflammation and associated oxidative chromosomal DNA damage probably play a role. Compelling data suggest that the path to hepatocellular carcinoma in chronic hepatitis C shares some important features with the mechanisms of transformation employed by DNA tumor viruses. Interactions of viral proteins with key regulators of the cell cycle, the retinoblastoma-susceptibility protein, p53, and possibly DDX5 and DDX3 lead to enhanced cellular proliferation and may also compromise multiple cell-cycle checkpoints that maintain genomic integrity, thus setting the stage for carcinogenesis. Dysfunctional DNA damage and mitotic spindle checkpoints resulting from these interactions may promote chromosomal instability and leave the hepatocyte unable to control DNA damage caused by oxidative stress mediated by HCV proteins, alcohol, and immune-mediated inflammation.
Collapse
Affiliation(s)
- David R McGivern
- The Center for Hepatitis Research, Institute for Human Infections and Immunity, Sealy Center for Cancer Cell Biology, Galveston, TX 77555, USA
| | | |
Collapse
|
25
|
Sauter D, Himmelsbach K, Kriegs M, Carvajal Yepes M, Hildt E. Localization determines function: N-terminally truncated NS5A fragments accumulate in the nucleus and impair HCV replication. J Hepatol 2009; 50:861-71. [PMID: 19307038 DOI: 10.1016/j.jhep.2008.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/22/2008] [Accepted: 11/08/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS The Hepatitis C Virus (HCV) nonstructural protein 5A (NS5A) is an essential part of the ER-localized HCV-replicon complex. Although NS5A harbours a conserved NLS in its C-terminal domain, NS5A is associated with the cytoplasmic face of the ER by an amphipathic helix close to its N-terminus. METHODS Intracellular distribution of NS5A in HCV replicating cells was analyzed by confocal microscopy and subcellular fractionation. The effect on HCV replication was analyzed using the JFH-1-based infection/replication system. RESULTS During viral life cycle N-terminally truncated NS5A fragments are caspase-dependent formed that lack the ER-attachment signal and are localized within the nucleus. These N-terminally truncated fragments inhibit HCV replication. If their formation is blocked by inhibition of caspases HCV replication is increased. The C-terminal domain of NS5A binds to c-Raf and thereby localizes it to the replicon complex. This interaction is essential for HCV replication. The N-terminally truncated NS5A fragments are still able to bind c-Raf. However, due to their nuclear localization they withdraw c-Raf from the replicon complex into the nucleus resulting in an impaired HCV replication. CONCLUSIONS Formation of N-terminally truncated NS5A fragments could represent a mechanism to regulate HCV replication by withdrawal of essential factors from the replicon complex.
Collapse
Affiliation(s)
- Daniel Sauter
- Department of Internal Medicine II, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | | | | | | | | |
Collapse
|
26
|
Raychaudhuri S, Fontanes V, Barat B, Dasgupta A. Activation of ribosomal RNA transcription by hepatitis C virus involves upstream binding factor phosphorylation via induction of cyclin D1. Cancer Res 2009; 69:2057-64. [PMID: 19223538 DOI: 10.1158/0008-5472.can-08-3468] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hepatitis C virus (HCV) causes chronic infection in humans leading to liver cirrhosis and hepatocellular carcinoma. rRNA transcription, catalyzed by RNA polymerase I (Pol I), plays a critical role in ribosome biogenesis, and changes in Pol I transcription rate are associated with profound alterations in the growth rate of the cell. Because rRNA synthesis is intimately linked to cell growth and frequently up-regulated in many cancers, we hypothesized that HCV might have the ability to activate rRNA synthesis in infected cells. We show here that rRNA promoter-mediated transcription is significantly (10- to 12-fold) activated in human liver-derived cells following infection with type 2 JFH-1 HCV or transfection with the subgenomic type 1 HCV replicon. Further analysis revealed that HCV nonstructural protein 5A (NS5A) was responsible for activation of rRNA transcription. Both the NH(2)-terminal amphipathic helix and the polyproline motifs of NS5A seem to be essential for rRNA transcription activation. The NS5A-dependent activation of rRNA transcription seems to be due to hyperphosphorylation and consequent activation of upstream binding factor (UBF), a Pol I DNA binding transcription factor. We further show that hyperphosphorylation of UBF occurs as a result of up-regulation of both cyclin D1 and cyclin-dependent kinase 4 by the HCV NS5A polypeptide. These results suggest that the endoplasmic reticulum-associated NS5A is able to transduce signals into the nucleoplasm via UBF hyperphosphorylation leading to rRNA transcription activation. These results could, at least in part, explain a mechanism by which HCV contributes to transformation of liver cells.
Collapse
Affiliation(s)
- Santanu Raychaudhuri
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen school of Medicine at University of California at Los Angeles, 250C Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
27
|
HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog 2009; 5:e1000291. [PMID: 19242562 PMCID: PMC2647842 DOI: 10.1371/journal.ppat.1000291] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen and a major cause of liver disease worldwide. Gene expression profiling was used to characterize the transcriptional response to HCV H77c infection. Evidence is presented for activation of innate antiviral signaling pathways as well as induction of lipid metabolism genes, which may contribute to oxidative stress. We also found that infection of chimeric SCID/Alb-uPA mice by HCV led to signs of hepatocyte damage and apoptosis, which in patients plays a role in activation of stellate cells, recruitment of macrophages, and the subsequent development of fibrosis. Infection of chimeric mice with HCV H77c also led an inflammatory response characterized by infiltration of monocytes and macrophages. There was increased apoptosis in HCV-infected human hepatocytes in H77c-infected mice but not in mice inoculated with a replication incompetent H77c mutant. Moreover, TUNEL reactivity was restricted to HCV-infected hepatocytes, but an increase in FAS expression was not. To gain insight into the factors contributing specific apoptosis of HCV infected cells, immunohistological and confocal microscopy using antibodies for key apoptotic mediators was done. We found that the ER chaperone BiP/GRP78 was increased in HCV-infected cells as was activated BAX, but the activator of ER stress-mediated apoptosis CHOP was not. We found that overall levels of NF-kappaB and BCL-xL were increased by infection; however, within an infected liver, comparison of infected cells to uninfected cells indicated both NF-kappaB and BCL-xL were decreased in HCV-infected cells. We conclude that HCV contributes to hepatocyte damage and apoptosis by inducing stress and pro-apoptotic BAX while preventing the induction of anti-apoptotic NF-kappaB and BCL-xL, thus sensitizing hepatocytes to apoptosis.
Collapse
|
28
|
Inubushi S, Nagano-Fujii M, Kitayama K, Tanaka M, An C, Yokozaki H, Yamamura H, Nuriya H, Kohara M, Sada K, Hotta H. Hepatitis C virus NS5A protein interacts with and negatively regulates the non-receptor protein tyrosine kinase Syk. J Gen Virol 2008; 89:1231-1242. [PMID: 18420802 DOI: 10.1099/vir.0.83510-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepatitis C virus (HCV) is the major causative agent of hepatocellular carcinoma. However, the precise mechanism underlying the carcinogenesis is yet to be elucidated. It has recently been reported that Syk, a non-receptor protein tyrosine kinase, functions as a potent tumour suppressor in human breast carcinoma. This study first examined the possible effect of HCV infection on expression of Syk in vivo. Immunohistochemical analysis revealed that endogenous Syk, which otherwise was expressed diffusely in the cytoplasm of normal hepatocytes, was localized near the cell membrane with a patchy pattern in HCV-infected hepatocytes. The possible interaction between HCV proteins and Syk in human hepatoma-derived Huh-7 cells was then examined. Immunoprecipitation analysis revealed that NS5A interacted strongly with Syk. Deletion-mutation analysis revealed that an N-terminal portion of NS5A (aa 1-175) was involved in the physical interaction with Syk. An in vitro kinase assay demonstrated that NS5A inhibited the enzymic activity of Syk and that, in addition to the N-terminal 175 residues, a central portion of NS5A (aa 237-302) was required for inhibition of Syk. Moreover, Syk-mediated phosphorylation of phospholipase C-gamma1 was downregulated by NS5A. An interaction of NS5A with Syk was also detected in Huh-7.5 cells harbouring an HCV RNA replicon or infected with HCV. In conclusion, these results demonstrated that NS5A interacts with Syk resulting in negative regulation of its kinase activity. The results indicate that NS5A may be involved in the carcinogenesis of hepatocytes through the suppression of Syk kinase activities.
Collapse
Affiliation(s)
- Sachiko Inubushi
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motoko Nagano-Fujii
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kikumi Kitayama
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motofumi Tanaka
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Chunying An
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroshi Yokozaki
- Division of Surgical Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hirohei Yamamura
- Hyogo Laboratory, Hyogo Prefectural Institute of Public Health and Environmental Sciences, Kobe 652-0032, Japan
| | - Hideko Nuriya
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Kiyonao Sada
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
29
|
Abstract
Hepatocellular carcinoma (HCC) is a worldwide health issue that has started receiving attention but is still poorly understood. However, the hepatitis B virus (HBV) and the hepatitis C virus (HCV) are known to be two major causative agents of HCC. They differ in their modes of infection, their treatment options, their genomes and their carcinogenic abilities. However, both share a link with HCC through alterations of the host genome. In order to continue in our search for the mechanisms behind viral hepatocarcinogenesis, the individual entities (HBV, HCV, HCC and host), their natural history, treatment options and genomic properties must be further understood. Additionally, an understanding of the genomics, the link between the entities, is crucial for the success of the ongoing search for therapeutic options for HCC. Similar to most types of cancer, hepatocarcinogenesis is a multistep process involving different genetic alterations that ultimately lead to malignant transformation of the hepatocyte. As technology advances and research continues, the genetic changes and influences among these entities will prove essential to improved diagnostic and therapeutic options. It remains a challenge to provide a clear picture of the connection between virus and cancer. We review (i) the epidemiological link between HBV/HCV infection to HCC; (ii) prevention and control of chronic hepatitis B or C in reducing HCC risk; and (iii) genetic characters of viruses and hosts and the mechanisms associated with HCC susceptibilities, with the intention of providing a direction for future research and treatment.
Collapse
Affiliation(s)
- Alexander Tan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
30
|
Abstract
In recent years, the effects of hepatitis C virus (HCV) proteins on hepatocarcinogenesis have undergone intense investigations. The potentially oncogenic proteins include at least three HCV proteins: core (C) protein, NS3, and NS5A. Several authors indicated relationships between subcellular localization, concentration, a specific molecular form of the proteins (full length, truncated, phosphorylated), the presence of specific domains (the nuclear localization signal homologous to e.g. Bcl-2) and their effects on the mechanisms linked to oncogenesis. The involvement of all the proteins has been described as being in control of the cell cycle, through interactions with key proteins of the process (p53, p21, cyclins, proliferating cell nuclear antigen), transcription factors, proto-oncogenes, growth factors/cytokines and their receptors, and proteins linked to the apoptotic process. Untilnow, the involvement of the core protein of HCV in liver carcinogenesis is the most recognized. One of the most common proteins affected by HCV proteins is the p53 tumor-suppressor protein. The p21/WAF1 gene is a major target of p53, and the effect of HCV proteins on the gene is frequently considered in parallel. The results of studies on the effects of HCV proteins on the apoptotic process are controversial. This work summarizes the information collected thus far in the field of HCV molecular virology and principal intracellular signaling pathways in which HCV oncogenic proteins are involved.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, Medical University, Poznań, Poland
| | | |
Collapse
|
31
|
Human butyrate-induced transcript 1 interacts with hepatitis C virus NS5A and regulates viral replication. J Virol 2007; 82:2631-41. [PMID: 18160438 DOI: 10.1128/jvi.02153-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is required for the replication of the viral genome and is involved in several host signaling pathways. To gain further insight into the functional role of NS5A in HCV replication, we screened human cDNA libraries by a yeast two-hybrid system using NS5A as the bait and identified human butyrate-induced transcript 1 (hB-ind1) as a novel NS5A-binding protein. Endogenously and exogenously expressed hB-ind1 was coimmunoprecipitated with NS5A of various genotypes through the coiled-coil domain of hB-ind1. The small interfering RNA (siRNA)-mediated knockdown of hB-ind1 in human hepatoma cell lines suppressed the replication of HCV RNA replicons and the production of infectious particles of HCV genotype 2a strain JFH1. Furthermore, these reductions were canceled by the expression of an siRNA-resistant hB-ind1 mutant. Among the NS5A-binding host proteins involved in HCV replication, hB-ind1 exhibited binding with FKBP8, and hB-ind1 interacted with Hsp90 through the FxxW motif in its N-terminal p23 homology domain. The impairment of the replication of HCV RNA replicons and of the production of infectious particles of JFH1 virus in the hB-ind1 knockdown cell lines was not reversed by the expression of an siRNA-resistant hB-ind1 mutant in which the FxxW motif was replaced by AxxA. These results suggest that hB-ind1 plays a crucial role in HCV RNA replication and the propagation of JFH1 virus through interaction with viral and host proteins.
Collapse
|
32
|
Bode JG, Brenndörfer ED, Häussinger D. Subversion of innate host antiviral strategies by the hepatitis C virus. Arch Biochem Biophys 2007; 462:254-65. [PMID: 17467654 DOI: 10.1016/j.abb.2007.03.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/21/2007] [Indexed: 01/14/2023]
Abstract
Since its discovery in 1989, Hepatitis C Virus (HCV) has been recognized as a major cause of chronic hepatitis, end-stage cirrhosis and hepatocellular carcinoma affecting world wide more than 210 million people. The fact that 80% of newly infected patients fail to control infection, the slow development of overt disease and immune-response as well as the unsatisfying results of current IFN/ribavirin combination therapy suggests that the hepatitis C virus developed powerful strategies to evade and to antagonize the immune response of the host and to resist the antiviral actions of interferons. During the last 10 years several viral strategies have been uncovered for control and evasion from cellular antiviral host response initiated by the pathogen-associated molecular pattern recognizing receptors RIG1 and TLR3 and mediated by the release of type I interferon and subsequent induction of interferon stimulated genes. This review highlights recent results providing an idea of how the hepatitis C virus interferes with the different steps of initial antiviral host-response and establishes persistent infection.
Collapse
Affiliation(s)
- Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | |
Collapse
|
33
|
Huang Y, Staschke K, De Francesco R, Tan SL. Phosphorylation of hepatitis C virus NS5A nonstructural protein: a new paradigm for phosphorylation-dependent viral RNA replication? Virology 2007; 364:1-9. [PMID: 17400273 DOI: 10.1016/j.virol.2007.01.042] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 12/05/2006] [Accepted: 01/24/2007] [Indexed: 12/14/2022]
Abstract
The hepatitis C virus (HCV) nonstructural 5A (NS5A) phosphoprotein has been intensely studied due to its ability to subvert the host interferon-induced antiviral response. However, more recent studies suggest that it may also play an important regulatory role in HCV RNA replication as well as modulate host intracellular signaling pathways. Phosphorylation of NS5A appears to be a highly regulated process and several cellular protein kinases responsible for NS5A phosphorylation have been identified in vitro. Studies utilizing the HCV replicon cell culture system have suggested a provocative role for the differential phosphorylation of NS5A in the regulation of viral RNA replication through its association with the viral replication complex, including several host cell factors. Importantly, recent in vivo data linking loss of NS5A hyperphosphorylation to non-productive HCV replication in the chimpanzee model have provided high validation for targeting the cellular kinases involved, particularly the kinases responsible for NS5A phosphorylation, for antiviral therapeutic intervention. Understanding the process of NS5A phosphorylation and the definite identification of the culprit cellular protein kinase(s) will shed light on the mechanisms of HCV RNA replication and/or pathogenesis.
Collapse
Affiliation(s)
- Ying Huang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Stankovic-Djordjevic D, Djordjevic N, Tasic G, Dinic M, Karanikolic A, Pesic M. Hepatitis C virus genotypes and the development of hepatocellular carcinoma. J Dig Dis 2007; 8:42-7. [PMID: 17261134 DOI: 10.1111/j.1443-9573.2007.00282.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the prevalence of hepatitis C virus (HCV) infection in patients with hepatocellular carcinoma (HCC) in our geographic area, and to determine if there is a correlation between HCV genotypes and the development of HCC. METHODS Thirty-six patients with HCV-related HCC and 35 controls with HCV-associated cirrhosis without HCC were studied. The diagnosis of HCV infection was performed by the enzyme-linked immunosorbent assay test for the detection of anti-HCV antibodies and by reverse transcription-polymerase chain reaction for the detection of HCV-RNA. HCV genotyping was performed by line probe assay-Inno-LIPA HCV II. The diagnosis of underlying disease in the patients with HCC was performed on the basis of clinical, biochemical or histological evidence. RESULTS Genotype 1b was found in 28 (77.77%) patients with HCC, and in 16 (45.71%) controls. There was significant difference in the prevalence of genotype 1b between the patients with HCC and those with cirrhosis without HCC (P<0.05). Having analyzed the diagnosis of underlying diseases, underlying cirrhosis in 29 (80.55%) and chronic active hepatitis in 7 (19.44%) patients with HCC was found. CONCLUSION Results of the present study suggest that there is a correlation between HCV genotype 1b and the development of HCC. Our findings also add support to the hypothesis that cirrhosis is a major step in liver carcinogenesis associated with HCV, which suggests an indirect role of HCV in the pathogenesis of HCC.
Collapse
|
35
|
Deng L, Nagano-Fujii M, Tanaka M, Nomura-Takigawa Y, Ikeda M, Kato N, Sada K, Hotta H. NS3 protein of Hepatitis C virus associates with the tumour suppressor p53 and inhibits its function in an NS3 sequence-dependent manner. J Gen Virol 2006; 87:1703-1713. [PMID: 16690937 DOI: 10.1099/vir.0.81735-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The N-terminal 198 residues of NS3 (NS3-N) of Hepatitis C virus (HCV) subtype 1b obtained from 29 patients, as well as full-length NS3 (NS3-Full), were analysed for their subcellular localization, interaction with the tumour suppressor p53 and serine protease activity in the presence and absence of the viral cofactor NS4A. Based on the subcellular-localization patterns in the absence of NS4A, NS3-N sequences were classified into three groups, with each group exhibiting either dot-like, diffuse or a mixed type of localization. Chimeric NS3-Full sequences, each consisting of an individual NS3-N and a shared C-terminal sequence, showed the same localization patterns as those of the respective NS3-N. Site-directed mutagenesis experiments revealed that a single or a few amino acid substitutions at a particular position(s) of NS3-N altered the localization pattern. Interestingly, NS3 of the dot-like type, either NS3-N or NS3-Full, interacted with p53 more strongly than that of the diffuse type, in both the presence and the absence of NS4A. Moreover, NS3-N of the dot-like type suppressed trans-activating activity of p53 more strongly than that of the diffuse type. Serine protease activity did not differ significantly between the two types of NS3. In HCV RNA replicon-harbouring cells, physical interaction between NS3 and p53 was observed consistently and p53-mediated transcriptional activation was suppressed significantly compared with HCV RNA-negative control cells. Our results collectively suggest the possibility that NS3 plays an important role in the hepatocarcinogenesis of HCV by interacting differentially with p53 in an NS3 sequence-dependent manner.
Collapse
Affiliation(s)
- Lin Deng
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motoko Nagano-Fujii
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motofumi Tanaka
- Division of Gastroenterological Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yuki Nomura-Takigawa
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masanori Ikeda
- Department of Molecular Biology, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | - Nobuyuki Kato
- Department of Molecular Biology, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | - Kiyonao Sada
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
36
|
Abstract
Chronic infection with the hepatitis C virus (HCV) is a major risk factor for the development of hepatocellular carcinoma (HCC) worldwide. The pathogenesis of HCC in HCV infection has extensively been analysed. Hepatitis C virus-induced chronic inflammation and the effects of cytokines in the development of fibrosis and liver cell proliferation are considered as one of the major pathogenic mechanisms. Increasing experimental evidence suggests that HCV contributes to HCC by directly modulating pathways that promote the malignant transformation of hepatocytes. Hepatitis C virus is an RNA virus that does not integrate into the host genome but HCV proteins interact with many host-cell factors well beyond their roles in the viral life cycle and are involved in a wide range of activities, including cell signaling, transcription, cell proliferation, apoptosis, membrane rearrangements, vesicular trafficking and translational regulation. At least four of the HCV gene products, namely HCV core, NS3, NS4B and NS5A, have been shown to exhibit transformation potential in tissue culture and several potentially oncogenic pathways have been shown to be altered by the expression of HCV proteins. Both HCV core and NS5A induce the accumulation of wild-type beta-catenin and the Wnt-beta-catenin pathway emerges as a common target for HCV (and HBV) in human HCCs, also independently from axin/beta-catenin gene mutations. Induction of both endoplasmic reticulum stress and oxidative stress by HCV proteins might also contribute to HCV transformation. Most of the putative transforming functions of the HCV proteins have been defined in artificial cellular systems, which may not be applicable to HCV infection in vivo, and still need to be established in relevant infection and disease models.
Collapse
Affiliation(s)
- M Levrero
- Department of Internal Medicine, University of Rome La Sapienza, Rome, Italy.
| |
Collapse
|
37
|
Qadri I, Iwahashi M, Kullak-Ublick GA, Simon FR. Hepatocyte nuclear factor (HNF) 1 and HNF4 mediate hepatic multidrug resistance protein 2 up-regulation during hepatitis C virus gene expression. Mol Pharmacol 2006; 70:627-36. [PMID: 16670373 DOI: 10.1124/mol.106.023499] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatitis C virus (HCV) is known to induce hepatic oxidative stress that is implicated in the up-regulation of multidrug resistance proteins (MRPs). The relationship between increased prooxidant production, MRPs, and HCV has not been investigated. Here, we report that a homeodomain-containing transcription factor, hepatocyte nuclear factor (HNF) 1, plays a central role in liver gene regulation during HCV gene expression and/or subgenome replication. MRP2 protein and mRNA expression were increased and MRP2 promoter activity was increased 7-fold. Mutations within the putative HNF1 binding site of the human MRP2 promoter abrogated HCV-induced activation, implicating HNF1 in the induction of MRP2 by HCV. The mechanism by which HNF1-mediated activation occurs seems to be transcriptional, because the regulated expression of HNF4, which is known to control HNF1 expression, was also increased. Consistent with this finding, HNF1 mRNA was increased 10-fold. A promoter-luciferase construct of the human HNF1 gene was activated in an HNF4-dependent manner, and a mutant construct lacking the HNF4 binding site was not activated in HCV-positive cells. Consistent with this hypothesis, HNF4 protein and mRNA levels as well as HNF4 promoter activity and DNA binding activity were increased. The expression of HNF1 seems to play a critical role in the induction of hepatic MRP2 secondary to HCV subgenomic replication. The ability of HCV to induce HNF1 and HNF4 is attributed to 1) increased oxidative stress and 2) direct protein-protein interactions between HCV nonstructural component (NS) 5A and HNF1, leading to enhanced HNF1 DNA binding. In conclusion, we describe a novel mechanism by which HCV gene expression may induce adaptive responses involving MRP2 via HNF1 activation. This may constitute, in part, the cellular detoxification task force during HCV infection.
Collapse
Affiliation(s)
- Ishtiaq Qadri
- Department of Pediatrics, University of Colorado Health Sciences Center, Mail Stop 8106, 12801 East 17th Ave., L-18-7403, RC-1 South, P.O. Box 6511, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
38
|
Kalamvoki M, Georgopoulou U, Mavromara P. The NS5A protein of the hepatitis C virus genotype 1a is cleaved by caspases to produce C-terminal-truncated forms of the protein that reside mainly in the cytosol. J Biol Chem 2006; 281:13449-13462. [PMID: 16517592 DOI: 10.1074/jbc.m601124200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nonstructural 5A (NS5A) protein of the hepatitis C virus (HCV) is a multifunctional protein that is implicated in viral replication and pathogenesis. We report here that NS5A of HCV-1a is cleaved at multiple sites by caspase proteases in transfected cells. Two cleavage sites at positions Asp154 and 248DXXD251 were mapped. Cleavage at Asp154 has been previously recognized as one of the caspase cleavage sites for the NS5A protein of HCV genotype 1b (1, 2) and results in the production of a 17-kDa fragment. The sequence 248DXXD251 is a novel caspase recognition motif for NS5A and is responsible for the production of a 31-kDa fragment. Furthermore, we show that Arg217 is implicated in the production of the previously described 24-kDa product, whose accumulation is affected by both calpain and caspase inhibitors. We also showed that caspase-mediated cleavage occurs in the absence of exogenous proapoptotic stimuli and is not related to the accumulation of the protein in the endoplasmic reticulum. Interestingly, our data indicate that NS5A is targeted by at least two different caspases and suggest that caspase 6 is implicated in the production of the 17-kDa fragment. Most importantly, we report that, all the detectable NS5A fragments following caspase-mediated cleavage are C-terminal-truncated forms of NS5A and are mainly localized in the cytosol. Thus, in sharp contrast to the current view we found no evidence supporting a role for caspase-mediated cleavage in the transport of the NS5A protein to the nucleus, which could lead to transcriptional activation.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece.
| |
Collapse
|
39
|
Choi SH, Hwang SB. Modulation of the transforming growth factor-beta signal transduction pathway by hepatitis C virus nonstructural 5A protein. J Biol Chem 2006; 281:7468-78. [PMID: 16407286 DOI: 10.1074/jbc.m512438200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is implicated in the pathogenesis of liver disease. TGF-beta is involved both in liver regeneration and in the fibrotic and cirrhotic transformation with hepatitis viral infection. Hepatitis C virus (HCV) infection often leads to cirrhosis and hepatocellular carcinoma. HCV nonstructural 5A (NS5A) protein is a multifunctional protein that modulates cytokine-mediated signal transduction pathways. To elucidate the molecular mechanism of HCV pathogenesis, we examined the effect of NS5A protein on TGF-beta-stimulated signaling cascades. We show that NS5A protein inhibited the TGF-beta-mediated signaling pathway in hepatoma cell lines as determined by reporter gene assay. To further investigate the role of NS5A, we examined the protein/protein interaction between NS5A and TGF-beta signal transducers. Both in vitro and in vivo binding data showed that NS5A protein directly interacted with TGF-beta receptor I (TbetaR-I) in hepatoma cell lines. This interaction was mapped to amino acids 148-238 of NS5A. We also found that NS5A protein co-localized with TbetaR-I in the cytoplasm of Huh7 cells and inhibited TGF-beta-mediated nuclear translocation of Smad2. Furthermore, we demonstrate that NS5A protein abrogated the phosphorylation of Smad2 and the heterodimerization of Smad3 and Smad4. To further explore the relevance to viral infection, we examined the effect of the HCV subgenomic replicon on the TGF-beta signaling pathway. We show that the HCV subgenomic replicon also inhibited TGF-beta-induced signaling cascades. These results indicate that HCV NS5A modulates TGF-beta signaling through interaction with TbetaR-I and that NS5A may be an important risk factor in HCV-associated liver pathogenesis.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Ilsong Institute of Life Science, Hallym University, 1 Ockcheon-dong, Chuncheon 200-702, Korea
| | | |
Collapse
|
40
|
The Role of Phosphoinositide 3-Kinase-Akt Signaling in Virus Infection. APOPTOSIS, CELL SIGNALING, AND HUMAN DISEASES 2006. [PMCID: PMC7120950 DOI: 10.1007/978-1-59745-199-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
El-Kafrawy SA, Abdel-Hamid M, El-Daly M, Nada O, Ismail A, Ezzat S, Abdel-Latif S, Abdel-Hamid A, Shields PG, Loffredo C. P53 mutations in hepatocellular carcinoma patients in Egypt. Int J Hyg Environ Health 2005; 208:263-70. [PMID: 16078640 DOI: 10.1016/j.ijheh.2005.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The p53 gene plays a major role in hepatocellular carcinoma (HCC). Acquired mutations may provide clues to etiology, as some carcinogenic agents are associated with specific genetic changes in p53. Our aim was to analyze the spectrum of p53 mutations in tumor tissues from subjects with HCC in Egypt, where there is a rising incidence of HCC due to hepatitis C virus (HCV). We collected tumor tissues from 41 subjects with HCC diagnosed at the National Cancer Institute of Cairo University during 2000-2003. Sequence mutations were analyzed by the Affymetrix GeneChip technique. HCV RNA was detected in the sera of 37 subjects (90%). Only one patient had a current HBV infection. A total of 17 of the 41 subjects (41%) had p53 mutations. Thirteen of these were in exon 7, of which 10 were in codon 249, but only 8 of the 10 were the R249S mutation, previously reported to be associated with aflatoxin exposure. The other three exon 7 mutations were found in codons 232, 242 and 248. A total of three mutations were detected in exon 5 codons 133, 144 and 176. One mutation was detected in exon 8 codon 275. Unlike previous studies, this population is characterized by a high prevalence of chronic HCV infection. The presence of the R249S mutation in exon 7 may indicate that these subjects with HCC have been exposed to aflatoxin (AFB1), and further investigation is in progress to measure AFB1-albumin adducts in the sera of these subjects.
Collapse
|
42
|
Hamamoto I, Nishimura Y, Okamoto T, Aizaki H, Liu M, Mori Y, Abe T, Suzuki T, Lai MMC, Miyamura T, Moriishi K, Matsuura Y. Human VAP-B is involved in hepatitis C virus replication through interaction with NS5A and NS5B. J Virol 2005; 79:13473-82. [PMID: 16227268 PMCID: PMC1262604 DOI: 10.1128/jvi.79.21.13473-13482.2005] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hepatitis C virus (HCV) nonstructural protein (NS) 5A is a phosphoprotein that associates with various cellular proteins and participates in the replication of the HCV genome. Human vesicle-associated membrane protein-associated protein (VAP) subtype A (VAP-A) is known to be a host factor essential for HCV replication by binding to both NS5A and NS5B. To obtain more information on the NS5A protein in HCV replication, we screened human brain and liver libraries by a yeast two-hybrid system using NS5A as bait and identified VAP-B as an NS5A-binding protein. Immunoprecipitation and mutation analyses revealed that VAP-B binds to both NS5A and NS5B in mammalian cells and forms homo- and heterodimers with VAP-A. VAP-A interacts with VAP-B through the transmembrane domain. NS5A interacts with the coiled-coil domain of VAP-B via 70 residues in the N-terminal and 341 to 344 amino acids in the C-terminal polyproline cluster region. NS5A was colocalized with VAP-B in the endoplasmic reticulum and Golgi apparatus. The specific antibody to VAP-B suppressed HCV RNA replication in a cell-free assay. Overexpression of VAP-B, but not of a mutant lacking its transmembrane domain, enhanced the expression of NS5A and NS5B and the replication of HCV RNA in Huh-7 cells harboring a subgenomic replicon. In the HCV replicon cells, the knockdown of endogenous VAP-B by small interfering RNA decreased expression of NS5B, but not of NS5A. These results suggest that VAP-B, in addition to VAP-A, plays an important role in the replication of the HCV genome.
Collapse
Affiliation(s)
- Itsuki Hamamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Masumi A, Aizaki H, Suzuki T, DuHadaway JB, Prendergast GC, Komuro K, Fukazawa H. Reduction of hepatitis C virus NS5A phosphorylation through its interaction with amphiphysin II. Biochem Biophys Res Commun 2005; 336:572-8. [PMID: 16139795 DOI: 10.1016/j.bbrc.2005.08.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/19/2005] [Indexed: 11/29/2022]
Abstract
Hepatitis C virus non-structural protein 5A (NS5A) is a pleiotropic protein with key roles in viral RNA replication, modulation of cellular-signaling pathways and interferon (IFN) responses. To search for possible host factors involved in mediating these functions of NS5A, we adopted an affinity purification approach coupled with mass spectrometry to examine protein-protein interactions, and found that human amphiphysin II (also referred to as Bin1) specifically interacts with NS5A in mammalian cells. Pull-down assays showed that the Src homology 3 (SH3) domain of amphiphysin II is required for NS5A interaction and that c-Src also interacts with NS5A in cells. IFN-alpha treatment reduced the interaction of NS5A with c-Src, but not amphiphysin II, suggesting that the latter is independent of the IFN-signaling pathway. NS5A is a phosphoprotein and its phosphorylation status is considered to have an effect on viral RNA replication. In vitro kinase assays demonstrated that its interaction with amphiphysin II inhibits phosphorylation of NS5A. These results suggest that amphiphysin II participates in the HCV life cycle by modulating the phosphorylation of NS5A.
Collapse
Affiliation(s)
- Atsuko Masumi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Pang R, Tse E, Poon RTP. Molecular pathways in hepatocellular carcinoma. Cancer Lett 2005; 240:157-69. [PMID: 16239065 DOI: 10.1016/j.canlet.2005.08.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 08/31/2005] [Indexed: 01/18/2023]
Abstract
Research over the past decade has unraveled important molecular pathways involved in hepatocellular carcinoma (HCC), and several chromosomal and genetic aberrations have been identified to be responsible for initiation of the carcinogenic process. HBx protein and HCV core protein appear to play a pivotal role in hepatocarcinogenesis related to hepatitis B virus and hepatitis C virus, respectively. These viral oncoproteins allow cells to bypass some of the multi-steps in hepatocarcinogenesis, accounting for the etiological role of the two viruses in HCC. Understanding of the molecular pathways of HCC facilitates the development of novel molecular strategies for chemoprevention and therapy of HCC.
Collapse
Affiliation(s)
- Roberta Pang
- Department of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
45
|
Siavoshian S, Abraham JD, Thumann C, Kieny MP, Schuster C. Hepatitis C virus core, NS3, NS5A, NS5B proteins induce apoptosis in mature dendritic cells. J Med Virol 2005; 75:402-11. [PMID: 15648076 DOI: 10.1002/jmv.20283] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although reasons for hepatitis C virus (HCV) persistence are still unknown, specific cellular immune responses appear to influence the pathogenesis and outcome of the infection. Apoptosis of cells infected by viruses may appear suicidal to the viruses that induce programmed cell death of its host. However, apoptosis has been suggested to be a response to virus infection as a mean of facilitating virus dissemination. Annexin V-propidium iodide staining and DNA fragmentation, were used to show that expression of the core, NS3, NS5A, or NS5B protein induces apoptosis in mature dendritic cells. In addition, immunoblotting was used to demonstrate that expression level of p21waf1/cip1 protein decreased in cells expressing one of these HCV proteins. No expression of p53 could be detected and expression of Akt was independent of HCV proteins expression. These results suggest that the effect of these HCV proteins on HCV associated pathogenesis may be linked (at least partially) to its ability to modulate apoptosis pathways in mature dendritic cells.
Collapse
|
46
|
Yeh CT, Chang MH, Shyu WC, Chang ML, Yang PY, Tsao ML, Lai HY. Characterization of a HCV NS5A protein derived from a patient with hepatoma. Biochem Biophys Res Commun 2005; 327:516-22. [DOI: 10.1016/j.bbrc.2004.11.165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Indexed: 11/28/2022]
|
47
|
Kalamvoki M, Mavromara P. Calcium-dependent calpain proteases are implicated in processing of the hepatitis C virus NS5A protein. J Virol 2004; 78:11865-78. [PMID: 15479828 PMCID: PMC523276 DOI: 10.1128/jvi.78.21.11865-11878.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonstructural 5A (NS5A) protein of the hepatitis C virus (HCV) is a multifunctional phosphoprotein that is implicated in viral replication and HCV-mediated pathogenesis. We report here that the NS5A protein from the HCV genotype 1a is processed into shorter distinct forms when expressed in mammalian cells (Vero, HepG2, HuH-7, and WRL68) infected with an NS5A-expressing HSV-1-based amplicon vector or when transiently transfected with NS5A-expressing plasmids in the absence of exogenous apoptotic stimuli. Inhibitor studies combined with cell-free cleavage assays suggest that calcium-dependent calpain proteases, in addition to caspase-like proteases, are involved in NS5A processing. Interestingly, His-tagging experiments indicated that all the detectable NS5A-cleaved products are N-terminal forms of the protein. Additionally, immunofluorescence studies showed that, despite proteolytic cleavage, the NS5A protein exhibits a cytoplasm-perinuclear localization similar to that of the full-length protein. Thus, our results are consistent with recent data that demonstrated that NS5A is capable of perturbing intracellular calcium homeostasis and suggest that NS5A is both an inducer and a substrate of the calcium-dependent calpain protease(s). This may imply that cleavage of NS5A by calpain(s) could play a role in the modulation of NS5A function.
Collapse
Affiliation(s)
- M Kalamvoki
- Hellenic Pasteur Institute, Laboratory of Molecular Virology, 127 Vas. Sofias Ave., Athens, Greece 115 21
| | | |
Collapse
|
48
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2749-2752. [DOI: 10.11569/wcjd.v12.i11.2749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
49
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2757-2761. [DOI: 10.11569/wcjd.v12.i11.2757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
50
|
Abstract
The non-structural 5A (NS5A) protein of hepatitis C virus (HCV) has been the subject of intensive research over the last decade. It is generally accepted that NS5A is a pleiotropic protein with key roles in both viral RNA replication and modulation of the physiology of the host cell. Our understanding of the role of NS5A in the virus life cycle has been hampered by the lack of a robust in vitro system for the study of HCV replication, although the recent development of the subgenomic replicon has at least allowed us to begin to dissect the involvement of NS5A in the process of viral RNA replication. Early studies into the effects of NS5A on cell physiology relied on expression of NS5A either alone or in the context of other non-structural proteins; the advent of the replicon system has allowed the extrapolation of these studies to a more physiologically relevant cellular context. Despite recent progress, this field is controversial, and there is much work to be accomplished before we fully understand the many functions of this protein. In this article, the current state of our knowledge of NS5A, discussing in detail its direct involvement in virus replication, together with its role in modulating the cellular environment to favour virus replication and persistence, are reviewed. The effects of NS5A on interferon signalling, and the regulation of cell growth and apoptosis are highlighted, demonstrating that this protein is indeed of critical importance for HCV and is worthy of further investigation.
Collapse
Affiliation(s)
- Andrew Macdonald
- School of Biochemistry & Microbiology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Biochemistry & Microbiology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|