1
|
Arafa SH, Elbanna K, Osman GEH, Abulreesh HH. Candida diagnostic techniques: a review. JOURNAL OF UMM AL-QURA UNIVERSITY FOR APPLIED SCIENCES 2023; 9:360-377. [DOI: 10.1007/s43994-023-00049-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/27/2023] [Indexed: 01/03/2025]
Abstract
AbstractFungal infections (mycoses) represent a major health issue in humans. They have emerged as a global concern for medical professionals by causing high morbidity and mortality. Fungal infections approximately impact one billion individuals per annum and account for 1.6 million deaths. The diagnosis of Candida infections is a challenging task. Laboratory-based Candida species identification techniques (molecular, commercial, and conventional) have been reviewed and summarized. This review aims to discuss the mycoses history, taxonomy, pathogenicity, and virulence characteristics.
Collapse
|
2
|
From the Urinary Catheter to the Prevalence of Three Classes of Integrons, β-Lactamase Genes, and Differences in Antimicrobial Susceptibility of Proteus mirabilis and Clonal Relatedness with Rep-PCR. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9952769. [PMID: 34212042 PMCID: PMC8211507 DOI: 10.1155/2021/9952769] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/28/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
Introduction Proteus mirabilis is a biofilm-forming agent that quickly settles on the urinary catheters and causing catheter-associated urinary tract infections. Thus, the spread of multidrug-resistant P. mirabilis isolates, with the ability to form a biofilm that carries integron, extended-spectrum β-lactamases (ESBLs), and plasmid-mediated colistin resistance genes (mcr), represents a severe threat to managing nosocomial infectious diseases. This study is aimed at surveying the prevalence of ESBL, integrase, and mcr genes of P. mirabilis, isolated from the catheter, to assess the differences in their antimicrobial susceptibility and clonal dissemination. Method Microtiter plate assay was adopted to measure biofilm formation. The antimicrobial susceptibility was assessed by the disk diffusion method. Antimicrobial resistance genes (intI1, intI2, intI3, blaTEM, blaCTX-M, blaSHV, mcr1, and mcr2) were detected by PCR. All of the isolates were characterized by repetitive sequence-based PCR. Result From 385 collected catheters in patients admitted to the intensive care unit (ICU), 40 P. mirabilis were isolated. All of the isolates could form a biofilm. Proteus spp. had intrinsic resistance to tetracycline (95%) and nitrofurantoin (92.5%), which explains the high resistance prevalence. The most widely resistant antibiotic was trimethoprim-sulfamethoxazole (75%). Thirty-three (82.5%) isolates were classified as multidrug resistance (MDR). The prevalence of intI1 and intI2 genes was 60% and 25%, respectively. In 6 (15%) isolates, both genes were detected. The most frequent ESBL gene detected in all of the isolates was blaTEM. Also, no detection for mcr1 and mcr2 antibiotic resistance genes was reported. Rep-PCR identified 39(GTG)5 types (G1–G39) of 40 isolates that 38 isolates had unique patterns. Conclusion In this study, 82.5% of isolates were MDR with high antibiotic resistance to trimethoprim-sulfamethoxazole. The intI1 and blaTEM were the most prevalent genes in the integrase and ESBL gene family. High diversity was seen in the isolates with Rep-PCR. The increasing rate of MDR isolates with a high prevalence of resistance genes could be alarming and demonstrate the need for hygienic procedures to prevent the increased antibiotic resistance rate in the future.
Collapse
|
3
|
Fallah N, Rad M, Ghazvini K, Ghaemi M, Jamshidi A. Molecular typing and prevalence of extended-spectrum β-lactamase genes in diarrhoeagenic Escherichia coli strains isolated from foods and humans in Mashhad, Iran. J Appl Microbiol 2021; 131:2033-2048. [PMID: 33719123 DOI: 10.1111/jam.15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
AIMS Present study was aimed to determine ESBL-encoding genes distribution in Diarrhoeagenic Escherichia coli (DEC) isolated from animal-source food products and human clinical samples in Mashhad, Iran. The strains were also further studied to analyse genotypic diversity and find genetic relationships between them. METHODS AND RESULTS The number of 85 DEC strains including 52 and 33 strains isolated from 300 food and 520 human stool samples, respectively. Randomly amplified polymorphic DNA (RAPD), and repetitive extragenic palindromic-PCR (rep-PCR) typing methods were used to track their genetic relationships. The ESBL-encoding genes prevalence was approximately 70% in both groups of isolates. The blaTEM , blaCTX-M and blaSHV were prevalent in 67·1, 20 and 10·6% of isolates, respectively. The ESBL-positives showed significantly higher resistance rates to gentamicin, co-trimoxazole, tetracycline, aztreonam and chloramphenicol (P < 0·05). Fingerprinting patterns-based dendrograms divided DEC strains into separate clusters irrespective of their sources and pathotypes. In typing field, rep-PCR provided more discriminatory power (Simpson's index of diversity (SID) = 0·925) than RAPD (SID = 0·812). CONCLUSION Molecular similarity between certain animal-sourced food products and clinical sample strains supported food-borne transmission routes for genotypic elements such as ESBL-encoding genes. SIGNIFICANCE AND IMPACT OF THE STUDY Findings emphasize the importance of resistance issues, the need to improve treatment guidelines and routine surveillance of hygienic measures during food processing.
Collapse
Affiliation(s)
- N Fallah
- Department of Food Hygiene, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Rad
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - K Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Ghaemi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - A Jamshidi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Microbial source tracking using metagenomics and other new technologies. J Microbiol 2021; 59:259-269. [DOI: 10.1007/s12275-021-0668-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
|
5
|
Prevalence, Genetic Heterogeneity, and Antibiotic Resistance Profile of Listeria spp. and Listeria monocytogenes at Farm Level: A Highlight of ERIC- and BOX-PCR to Reveal Genetic Diversity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3067494. [PMID: 30065935 PMCID: PMC6051282 DOI: 10.1155/2018/3067494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 06/03/2018] [Indexed: 11/17/2022]
Abstract
This study aimed to identify Listeria spp. and L. monocytogenes, characterize the isolates, and determine the antibiotic resistance profiles of the isolates Listeria spp. and L. monocytogenes in fresh produce, fertilizer, and environmental samples from vegetable farms (organic and conventional farms). A total of 386 samples (vegetables, soil, water, and fertilizer with manure) were examined. The identification of bacterial isolates was performed using PCR and characterized using ERIC-PCR and BOX-PCR. The discriminating power of the typing method was analyzed using Simpson's Index of Diversity. Thirty-four (n=34) Listeria isolates were subjected to antimicrobial susceptibility test using the disc-diffusion technique. The PCR analysis revealed that Listeria spp. were present in 7.51% (29/386) of all the samples (vegetable, soil, fertilizer, and water). None of the samples examined were positive for the presence of L. monocytogenes. Percentages of 100% (15/15) and 73.30% (11/15) of the Listeria spp. isolated from vegetables, fertilizer, and soil from organic farm B had indistinguishable DNA fingerprints by using ERIC-PCR and BOX-PCR, respectively. Listeria spp. isolated from 86 samples of vegetable, fertilizer, and environment of organic farm A and conventional farm C had distinct DNA fingerprints. Simpson's Index of Diversity, D, of ERIC-PCR and BOX-PCR is 0.604 and 0.888, respectively. Antibiotic susceptibility test revealed that most of the Listeria spp. in this study were found to be resistant to ampicillin, rifampin, penicillin G, tetracycline, clindamycin, cephalothin, and ceftriaxone. The isolates had MAR index ranging between 0.31 and 0.85. In conclusion, hygienic measures at farm level are crucial to the reduction of Listeria transmission along the food chain.
Collapse
|
6
|
Forbes JD, Knox NC, Ronholm J, Pagotto F, Reimer A. Metagenomics: The Next Culture-Independent Game Changer. Front Microbiol 2017; 8:1069. [PMID: 28725217 PMCID: PMC5495826 DOI: 10.3389/fmicb.2017.01069] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/29/2017] [Indexed: 02/01/2023] Open
Abstract
A trend towards the abandonment of obtaining pure culture isolates in frontline laboratories is at a crossroads with the ability of public health agencies to perform their basic mandate of foodborne disease surveillance and response. The implementation of culture-independent diagnostic tests (CIDTs) including nucleic acid and antigen-based assays for acute gastroenteritis is leaving public health agencies without laboratory evidence to link clinical cases to each other and to food or environmental substances. This limits the efficacy of public health epidemiology and surveillance as well as outbreak detection and investigation. Foodborne outbreaks have the potential to remain undetected or have insufficient evidence to support source attribution and may inadvertently increase the incidence of foodborne diseases. Next-generation sequencing of pure culture isolates in clinical microbiology laboratories has the potential to revolutionize the fields of food safety and public health. Metagenomics and other 'omics' disciplines could provide the solution to a cultureless future in clinical microbiology, food safety and public health. Data mining of information obtained from metagenomics assays can be particularly useful for the identification of clinical causative agents or foodborne contamination, detection of AMR and/or virulence factors, in addition to providing high-resolution subtyping data. Thus, metagenomics assays may provide a universal test for clinical diagnostics, foodborne pathogen detection, subtyping and investigation. This information has the potential to reform the field of enteric disease diagnostics and surveillance and also infectious diseases as a whole. The aim of this review will be to present the current state of CIDTs in diagnostic and public health laboratories as they relate to foodborne illness and food safety. Moreover, we will also discuss the diagnostic and subtyping utility and concomitant bias limitations of metagenomics and comparable detection techniques in clinical microbiology, food and public health laboratories. Early advances in the discipline of metagenomics, however, have indicated noteworthy challenges. Through forthcoming improvements in sequencing technology and analytical pipelines among others, we anticipate that within the next decade, detection and characterization of pathogens via metagenomics-based workflows will be implemented in routine usage in diagnostic and public health laboratories.
Collapse
Affiliation(s)
- Jessica D. Forbes
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
| | - Natalie C. Knox
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, MontrealQC, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, MontrealQC, Canada
| | - Franco Pagotto
- Bureau of Microbial Hazards, Food Directorate, Health Canada, OttawaON, Canada
- Listeriosis Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, OttawaON, Canada
| | - Aleisha Reimer
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| |
Collapse
|
7
|
Current methodologies on genotyping for nosocomial pathogen methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog 2017; 107:17-28. [PMID: 28284852 DOI: 10.1016/j.micpath.2017.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 11/23/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogen in hospitals and the community. As the rapid spread and wide distribution of antimicrobial resistance (such as MRSA), treatment for infectious diseases caused by microorganisms has become a vital threat. Thus, early identification and genotyping are essential for further therapeutic treatment and the control of rapid expansion of MRSA. In combination with applications and data feedbacks, this review focused on the currently available molecular-based assays on their utility and performance for rapid typing of MRSA, especially on effective molecular-based methods. Besides, a common mobile element SCCmec and prevalence of HA-MRSA, LA-MRSA and CA-MRSA were introduced in this review in order to provide a more complete profile of MRSA.
Collapse
|
8
|
Viau RA, Kiedrowski LM, Kreiswirth BN, Adams M, Perez F, Marchaim D, Guerrero DM, Kaye KS, Logan LK, Villegas MV, Bonomo RA. A Comparison of Molecular Typing Methods Applied to Enterobacter cloacae complex: hsp60 Sequencing, Rep-PCR, and MLST. Pathog Immun 2017; 2:23-33. [PMID: 28428984 PMCID: PMC5394936 DOI: 10.20411/pai.v2i1.99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Molecular typing using repetitive sequenced-based PCR (rep-PCR) and hsp60 sequencing were applied to a collection of diverse Enterobacter cloacae complex isolates. To determine the most practical method for reference laboratories, we analyzed 71 E. cloacae complex isolates from sporadic and outbreak occurrences originating from 4 geographic areas. While rep-PCR was more discriminating, hsp60 sequencing provided a broader and a more objective geographical tracking method similar to multilocus sequence typing (MLST). In addition, we suggest that MLST may have higher discriminative power compared to hsp60 sequencing, although rep-PCR remains the most discriminative method for local outbreak investigations. In addition, rep-PCR can be an effective and inexpensive method for local outbreak investigation.
Collapse
Affiliation(s)
- Roberto A Viau
- Medical and Research Services Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | | | - Barry N Kreiswirth
- Public Health Research Institute Tuberculosis Center, Rutgers University, Newark, NJ
| | | | - Federico Perez
- Medical and Research Services Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - Dror Marchaim
- Department of Medicine, Infection Control and Prevention Unit of Infectious Diseases, Assaf Harofeh Medical Center
| | | | - Keith S Kaye
- Wayne State University and Detroit Medical Center, Detroit, MI
| | - Latania K Logan
- Medical and Research Services Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH.,Rush University Medical Center, Chicago, IL
| | | | - Robert A Bonomo
- Medical and Research Services Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH.,Departments of Medicine, Microbiology and Cellular Biology, and Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
9
|
Whole-Genome Multilocus Sequence Typing of Extended-Spectrum-Beta-Lactamase-Producing Enterobacteriaceae. J Clin Microbiol 2016; 54:2919-2927. [PMID: 27629900 DOI: 10.1128/jcm.01648-16] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/08/2016] [Indexed: 12/26/2022] Open
Abstract
Molecular typing has become indispensable in the detection of nosocomial transmission of bacterial pathogens and the identification of sources and routes of transmission in outbreak settings, but current methods are labor-intensive, are difficult to standardize, or have limited resolution. Whole-genome multilocus sequence typing (wgMLST) has emerged as a whole-genome sequencing (WGS)-based gene-by-gene typing method that may overcome these limitations and has been applied successfully for several species in outbreak settings. In this study, genus-, genetic-complex-, and species-specific wgMLST schemes were developed for Citrobacter spp., the Enterobacter cloacae complex, Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae and used to type a national collection of 1,798 extended-spectrum-beta-lactamase-producing Enterobacteriaceae (ESBL-E) isolates obtained from patients in Dutch hospitals. Genus-, genetic-complex-, and species-specific thresholds for genetic distance that accurately distinguish between epidemiologically related and unrelated isolates were defined for Citrobacter spp., the E. cloacae complex, E. coli, and K. pneumoniae wgMLST was shown to have higher discriminatory power and typeability than in silico MLST. In conclusion, the wgMLST schemes developed in this study facilitate high-resolution WGS-based typing of the most prevalent ESBL-producing species in clinical practice and may contribute to further elucidation of the complex epidemiology of antimicrobial-resistant Enterobacteriaceae wgMLST opens up possibilities for the creation of a Web-accessible database for the global surveillance of ESBL-producing bacterial clones.
Collapse
|
10
|
Fratamico PM, DebRoy C, Liu Y, Needleman DS, Baranzoni GM, Feng P. Advances in Molecular Serotyping and Subtyping of Escherichia coli. Front Microbiol 2016; 7:644. [PMID: 27199968 PMCID: PMC4853403 DOI: 10.3389/fmicb.2016.00644] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 01/25/2023] Open
Abstract
Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtyping and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsed-field gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. A variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.
Collapse
Affiliation(s)
- Pina M. Fratamico
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - Chitrita DebRoy
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University ParkPA, USA
| | - Yanhong Liu
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - David S. Needleman
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - Gian Marco Baranzoni
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - Peter Feng
- Division of Microbiology, U.S. Food and Drug Administration, College ParkMD, USA
| |
Collapse
|
11
|
Mohan B, Hallur V, Singh G, Sandhu HK, Appannanavar SB, Taneja N. Occurrence of blaNDM-₁ & absence of blaKPC genes encoding carbapenem resistance in uropathogens from a tertiary care centre from north India. Indian J Med Res 2016; 142:336-43. [PMID: 26458351 PMCID: PMC4669870 DOI: 10.4103/0971-5916.166601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background & objectives: Carbapenem resistance mediated by carbapenemases is increasingly being reported worldwide. This study was conducted to know the occurrence of important carbapenem resistance encoding genes in Gram-negative bacilli (GNB) causing complicated urinary tract infection (CUTI), and to look at the genetic diversity of these isolates. Methods: The study was carried out on 166 consecutive carbapenem resistant uropathogens (CRU) isolated from cases with CUTI during 2008 and 2012. Carbapenemase production was characterized phenotypically and polymerase chain reaction was used to detect blaVIM, blaIMP, blaKPC, and blaNDM-1. BOX- PCR was done on 80 randomly selected isolates for molecular typing. Results: The blaVIM gene was present in 34 (43.6%), blaIMP in five (6.4%) and none of the isolates from 2008 had blaNDM-1 or blaKPC genes. Among the isolates from 2012, blaNDM-1 gene was present in 47 (53.4%), blaVIM in 19 (24.4%), blaIMP in one (1.1%) and none had blaKPC. There were nine isolates during the two years which had multiple genes encoding carbapenemases; while 66 did not have any of the genes tested. Of the 80 isolates subjected to BOX-PCR, 58 could be used for analysis and showed, presence of multiple clusters of carbapenem resistant isolates and absence of a single dominant clone. Interpretation & conclusions: The blaNDM-1 gene was absent in our isolates obtained during 2008 but was present amongst Enterobacteriaceae isolated in 2012. The blaKPC gene was also not found. Nine isolates obtained during the two years had multiple genes encoding carbapenemases confirming the previous reports of emergence of GNB containing genes encoding multiple carbapenemases. Typing using BOX-PCR indicated that this emergence was not because of clonal expansion of a single strain, and multiple strains were circulating at a single point of time.
Collapse
Affiliation(s)
| | | | | | | | | | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
12
|
Advantages and limitations of potential methods for the analysis of bacteria in milk: a review. Journal of Food Science and Technology 2015; 53:42-9. [PMID: 26787931 DOI: 10.1007/s13197-015-1993-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 12/27/2022]
Abstract
Contamination concerns in the dairy industry are motivated by outbreaks of disease in humans and the inability of thermal processes to eliminate bacteria completely in processed products. HACCP principles are an important tool used in the food industry to identify and control potential food safety hazards in order to meet customer demands and regulatory requirements. Milk testing is of importance to the milk industry regarding quality assurance and monitoring of processed products by researchers, manufacturers and regulatory agencies. Due to the availability of numerous methods used for analysing the microbial quality of milk in literature and differences in priorities of stakeholders, it is sometimes confusing to choose an appropriate method for a particular analysis. The objective of this paper is to review the advantages and disadvantages of selected techniques that can be used in the analysis of bacteria in milk. SSC, HRMA, REP, and RAPD are the top four techniques which are quick and cost-effective and possess adequate discriminatory power for the detection and profiling of bacteria. The following conclusions were arrived at during this review: HRMA, REP and RFLP are the techniques with the most reproducible results, and the techniques with the most discriminatory power are AFLP, PFGE and Raman Spectroscopy.
Collapse
|
13
|
Singh G, Biswal M, Hallur V, Rao KLN, Ray P, Gautam V, Appannanavar SB, Taneja N. Utility of whole-cell repetitive extragenic palindromic sequence-based PCR (REP-PCR) for the rapid detection of nosocomial outbreaks of multidrug resistant organisms: experience at a tertiary care center in North India. Indian J Med Microbiol 2015; 33:221-4. [PMID: 25865971 DOI: 10.4103/0255-0857.154857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND There is a huge need to develop molecular typing methods which are simple to perform, rapid and cost effective to confirm clonality of nosocomial isolates in outbreak situations. OBJECTIVES The aim of the study was to investigate a hospital outbreak of multi-drug resistant (MDR) Klebsiellapneumoniae septicemia in a paediatric surgery intensive care unit (PSICU) using a repetitive extragenic palindromic polymerase chain reaction (REP-PCR). MATERIALS AND METHODS MDR Klebsiella pneumoniae isolates from an outbreak of nosocomial sepsis were typed byREP-PCR using consensus primers. Isolates from different intensive care units (ICUs) but with similar antibiogram were also genotyped for comparison. RESULTS AND CONCLUSION A cluster of twelve MDR K Pneumoniae septicemia cases was identified at the PSICU by genotyping using REP-PCR. Surveillance cultures failed to pick up any source of infection. REP-PCR was found to be a rapid and simple tool for investigation outbreaks in hospitals. Due to early detection we could initiate infection control practices with focus on hand washing and prevent the further transmission of the organism.
Collapse
Affiliation(s)
| | - M Biswal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | |
Collapse
|
14
|
Clustering of clinical and environmental Escherichia coli O104 isolates using the DiversiLab™ repetitive sequence-based PCR system. Curr Microbiol 2014; 70:436-40. [PMID: 25447271 DOI: 10.1007/s00284-014-0728-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/05/2014] [Indexed: 10/24/2022]
Abstract
The DiversiLab™ rep-PCR system was used to amplify DNA regions of 28 well-characterized Escherichia coli O104 strains to generate a digital DNA fingerprint profile for strain differentiation. E. coli O104 strains from human stools and other sources were examined. The results indicate that this system can cluster similar O104 strains rapidly.
Collapse
|
15
|
Fusco V, Quero GM. Culture-Dependent and Culture-Independent Nucleic-Acid-Based Methods Used in the Microbial Safety Assessment of Milk and Dairy Products. Compr Rev Food Sci Food Saf 2014; 13:493-537. [DOI: 10.1111/1541-4337.12074] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/08/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Vincenzina Fusco
- Nal. Research Council of Italy; Inst. of Sciences of Food Production (CNR-ISPA); Bari Italy
| | - Grazia Marina Quero
- Nal. Research Council of Italy; Inst. of Sciences of Food Production (CNR-ISPA); Bari Italy
| |
Collapse
|
16
|
Charnock C, Nordlie AL, Hjeltnes B. Toxin production and antibiotic resistances in Escherichia coli isolated from bathing areas along the coastline of the Oslo fjord. Curr Microbiol 2014; 69:317-28. [PMID: 24801333 DOI: 10.1007/s00284-014-0587-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/01/2014] [Indexed: 01/24/2023]
Abstract
The presence of enterovirulent and/or antibiotic resistant strains of Escherichia coli in recreational bathing waters would represent a clear health issue. In total, 144 E. coli isolated from 26 beaches along the inner Oslo fjord were examined for virulence determinants and resistance to clinically important antibiotics. No isolates possessed the genetic determinants associated with enterotoxigenic strains and none showed the prototypic sorbitol negative, O157:H7 phenotype. A small number (∼1 %) produced alpha-hemolysin. Occurrences and patterns of antibiotic resistances were similar to those of E. coli isolated previously from environmental samples. In total, 6 % of the strains showed one or more clinically relevant resistances and 1.4 % were multi-drug resistant. Microarray analyses suggested that the resistance determinants were generally associated with mobile genetic elements. Resistant strains were not clonally related, and were, furthermore not concentrated at one or a few beach sites. This suggests that these strains are entering the waters at a low rate but in a widespread manner. The study demonstrates that resistant E. coli are present in coastal bathing waters where they can come into contact with bathers, and that the resistance determinants are potentially transferable. Some of the resistances registered in the study are to important antibiotics used in human medicine such as fluoroquinolones. The spread of antibiotic resistant genes, from the clinical setting to the environment, has clear implications with respect to the current management of bacterial infections and the long term value of antimicrobial therapy. The present study is the first of its kind in Norway.
Collapse
Affiliation(s)
- Colin Charnock
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, St. Olavs Plass, Oslo, Norway,
| | | | | |
Collapse
|
17
|
Tokunaga A, Kawano M, Okura M, Iyoda S, Watanabe H, Osawa R. Identification of EnterohemorrhagicEscherichia coliO157-Specific DNA Sequence Obtained from Amplified Fragment Length Polymorphism Analysis. Microbiol Immunol 2013; 51:883-8. [PMID: 17895605 DOI: 10.1111/j.1348-0421.2007.tb03970.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An approximately 1.1 kbp fragment that was commonly observed only in the enterohemorrhagic Escherichia coli (EHEC) O157 strains in an analysis of amplified fragment length polymorphism was found to be a partial gene sequence encoding the locus of toxB and a useful molecular marker for the identification of EHEC O157.
Collapse
Affiliation(s)
- Akihiko Tokunaga
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Holden N, Wright F, MacKenzie K, Marshall J, Mitchell S, Mahajan A, Wheatley R, Daniell T. Prevalence and diversity of Escherichia coli
isolated from a barley trial supplemented with bulky organic soil amendments: green compost and bovine slurry. Lett Appl Microbiol 2013; 58:205-12. [DOI: 10.1111/lam.12180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 11/29/2022]
Affiliation(s)
- N.J. Holden
- The James Hutton Institute; Invergowrie Dundee UK
| | - F. Wright
- Biomathematics & Statistics Scotland; BioSS Office; Invergowrie Dundee UK
| | - K. MacKenzie
- Biomathematics & Statistics Scotland; BioSS Office; Invergowrie Dundee UK
| | - J. Marshall
- The James Hutton Institute; Invergowrie Dundee UK
| | - S. Mitchell
- The James Hutton Institute; Invergowrie Dundee UK
| | - A. Mahajan
- The Roslin Institute; R(D)SVS; University of Edinburgh; Easter Bush Midlothian UK
| | - R. Wheatley
- The James Hutton Institute; Invergowrie Dundee UK
| | - T.J. Daniell
- The James Hutton Institute; Invergowrie Dundee UK
| |
Collapse
|
19
|
Webster LF, Graves DA, Eargle DA, Chestnut DE, Gooch JA, Fulton MH. Assessment of animal impacts on bacterial water quality in a South Carolina, USA tidal creek system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:7749-7756. [PMID: 23435851 DOI: 10.1007/s10661-013-3132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/05/2013] [Indexed: 06/01/2023]
Abstract
Fecal pollution may adversely impact water quality in coastal ecosystems. The goal of this study was to determine whether cattle were a source of fecal pollution in a South Carolina watershed. Surface water samples were collected in June 2002 and February through March 2003 in closed shellfish harvesting waters of Toogoodoo Creek in Charleston County, SC. Fecal coliform concentrations in 70 % of the water samples taken for this study exceeded shellfish harvesting water standards. Ribotyping was performed in order to identify animal sources contributing to elevated fecal coliform levels. Escherichia coli isolates (n = 253) from surface water samples were ribotyped and compared to a ribotype library developed from known sources of fecal material. Ribotypes from water samples that matched library ribotypes with 90 % maximum similarity or better were assigned to that source. Less than half of the unknown isolates (38 %) matched with library isolates. About half (53 %) of the matched ribotypes were assigned to cattle isolates and 43 % to raccoon. Ribotyping almost exclusively identified animal sources. While these results indicate that runoff from cattle farms was a likely source of fecal pollution in the watershed, wildlife also contributed. Given the small size of the library, ribotyping was moderately useful for determining the impact of adjacent cattle farms on Toogoodoo Creek. Increasing the number and diversity of the wildlife sources from the area would likely increase the usefulness of the method.
Collapse
Affiliation(s)
- L F Webster
- National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, NOAA, 219 Fort Johnson Road, Charleston, SC 29412-9110, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Ateba CN, Mbewe M. Determination of the genetic similarities of fingerprints from Escherichia coli O157:H7 isolated from different sources in the North West Province, South Africa using ISR, BOXAIR and REP-PCR analysis. Microbiol Res 2013; 168:438-46. [DOI: 10.1016/j.micres.2013.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 11/27/2022]
|
21
|
Castro N, Toranzo AE, Bastardo A, Barja JL, Magariños B. Intraspecific genetic variability of Edwardsiella tarda strains from cultured turbot. DISEASES OF AQUATIC ORGANISMS 2011; 95:253-258. [PMID: 21932538 DOI: 10.3354/dao02363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Edwardsiella tarda is an enterobacterial fish pathogen that causes mortality in various fish species worldwide. In this study, we analyzed the intraspecific variability in a collection of E. tarda strains isolated from turbot. To do this we employed 4 polymerase chain reaction (PCR)-based methods: (1) random amplified polymorphic DNA (RAPD), (2) enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR), (3) repetitive extragenic palindromic-PCR (REP-PCR) and (4) BOX-PCR. E. tarda isolates from different hosts were also included for comparison. E. tarda strains from turbot showed high molecular homogeneity when RAPD (primers P3 and P6), ERIC-PCR and BOX-PCR were employed. However, with regard to the REP-PCR and RAPD (primers P4 and P5) techniques, different genetic groups could be established within these isolates using either technique. The 2 RAPD types presented an 85% similarity, while those obtained with REP-PCR showed 74% similarity. Based on the results obtained, although a high genetic homogeneity was found in turbot isolates, the RAPD test (with primers P4 and P5) and REP-PCR were capable of discrimination within these strains, and they are therefore considered the most appropriate typing methods for studies of edwardsiellosis in turbot.
Collapse
Affiliation(s)
- N Castro
- Departamento de Microbiología y Parasitología, Facultad de Biología-CIBUS-Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Spain.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Verotoxin-producing Escherichia coli (VTEC) is annually incriminated in more than 100,000 cases of enteric foodborne human disease and in losses amounting to $US 2.5 billion every year. A number of genotyping methods have been developed to track VTEC infections and determine diversity and evolutionary relationships among these microorganisms. These methods have facilitated monitoring and surveillance of foodborne VTEC outbreaks and early identification of outbreaks or clusters of outbreaks. Pulsed-field gel electrophoresis (PFGE) has been used extensively to track and differentiate VTEC because of its high discriminatory power, reproducibility and ease of standardization. Multiple-locus variable-number tandem-repeats analysis (MLVA) and microarrays are the latest genotyping methods that have been applied to discriminate VTEC. MLVA, a simpler and less expensive method, is proving to have a discriminatory power comparable to that of PFGE. Microarrays are successfully being applied to differentiate VTEC and make inferences on genome diversification. Novel methods that are being evaluated for subtyping VTEC include the detection of single nucleotide polymorphisms and optical mapping. This review discusses the principles, applications, advantages and disadvantages of genotyping methods that have been used to differentiate VTEC strains. These methods have been mainly used to differentiate strains of O157:H7 VTEC and to a lesser extent non-O157 VTEC.
Collapse
Affiliation(s)
- M Karama
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
23
|
Phylogenetic analysis and Shiga toxin production profiling of Shiga toxin-producing/enterohemorrhagic Escherichia coli clinical isolates. Microb Pathog 2010; 49:246-51. [DOI: 10.1016/j.micpath.2010.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/31/2010] [Accepted: 06/07/2010] [Indexed: 01/01/2023]
|
24
|
Lau S, Cheesborough J, Kaufmann M, Woodford N, Dodgson A, Dodgson K, Bolton E, Fox A, Upton M. Rapid identification of uropathogenic Escherichia coli of the O25:H4-ST131 clonal lineage using the Diversi-Lab repetitive sequence-based PCR system. Clin Microbiol Infect 2010; 16:232-7. [DOI: 10.1111/j.1469-0691.2009.02733.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Gianotti A, Iucci L, Guerzoni ME, Lanciotti R. Effect of acidic conditions on fatty acid composition and membrane fluidity ofEscherichia coli strains isolated from Crescenza cheese. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175152] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Ishii S, Sadowsky MJ. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. Environ Microbiol 2009; 11:733-40. [PMID: 19207574 DOI: 10.1111/j.1462-2920.2008.01856.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A large number of repetitive DNA sequences are found in multiple sites in the genomes of numerous bacteria, archaea and eukarya. While the functions of many of these repetitive sequence elements are unknown, they have proven to be useful as the basis of several powerful tools for use in molecular diagnostics, medical microbiology, epidemiological analyses and environmental microbiology. The repetitive sequence-based PCR or rep-PCR DNA fingerprint technique uses primers targeting several of these repetitive elements and PCR to generate unique DNA profiles or 'fingerprints' of individual microbial strains. Although this technique has been extensively used to examine diversity among variety of prokaryotic microorganisms, rep-PCR DNA fingerprinting can also be applied to microbial ecology and microbial evolution studies since it has the power to distinguish microbes at the strain or isolate level. Recent advancement in rep-PCR methodology has resulted in increased accuracy, reproducibility and throughput. In this minireview, we summarize recent improvements in rep-PCR DNA fingerprinting methodology, and discuss its applications to address fundamentally important questions in microbial ecology and evolution.
Collapse
Affiliation(s)
- Satoshi Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
27
|
Rapid determination of Escherichia coli O157:H7 lineage types and molecular subtypes by using comparative genomic fingerprinting. Appl Environ Microbiol 2008; 74:6606-15. [PMID: 18791027 DOI: 10.1128/aem.00985-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, variably absent or present (VAP) regions discovered through comparative genomics experiments were targeted for the development of a rapid, PCR-based method to subtype and fingerprint Escherichia coli O157:H7. Forty-four VAP loci were analyzed for discriminatory power among 79 E. coli O157:H7 strains of 13 phage types (PT). Twenty-three loci were found to maximize resolution among strains, generating 54 separate fingerprints, each of which contained strains of unique PT. Strains from the three previously identified major E. coli O157:H7 lineages, LSPA6-LI, LSPA6-LI/II, and LSPA6-LII, formed distinct branches on a dendrogram obtained by hierarchical clustering of comparative genomic fingerprinting (CGF) data. By contrast, pulsed-field gel electrophoresis (PFGE) typing generated 52 XbaI digestion profiles that were not unique to PT and did not cluster according to O157:H7 lineage. Our analysis identified a subpopulation comprised of 25 strains from a closed herd of cattle, all of which were of PT87 and formed a cluster distinct from all other E. coli O157:H7 strains examined. CGF found five related but unique fingerprints among the highly clonal herd strains, with two dominant subtypes characterized by a shift from the presence of locus fprn33 to its absence. CGF had equal resolution to PFGE typing but with greater specificity, generating fingerprints that were unique among phenotypically related E. coli O157:H7 lineages and PT. As a comparative genomics typing method that is amenable for use in high-throughput platforms, CGF may be a valuable tool in outbreak investigations and strain characterization.
Collapse
|
28
|
Cesaris L, Gillespie B, Srinivasan V, Almeida R, Zecconi A, Oliver S. Discriminating Between Strains ofEscherichia coliUsing Pulsed-Field Gel Electrophoresis and BOX-PCR. Foodborne Pathog Dis 2007; 4:473-80. [DOI: 10.1089/fpd.2007.0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- L. Cesaris
- Dipartimento Patologia Animale, University of Milan, Milan, Italy
| | - B.E. Gillespie
- Department of Animal Science & Food Safety Center of Excellence, University of Tennessee, Knoxville, Tennessee
| | - V. Srinivasan
- Department of Animal Science & Food Safety Center of Excellence, University of Tennessee, Knoxville, Tennessee
| | - R.A. Almeida
- Department of Animal Science & Food Safety Center of Excellence, University of Tennessee, Knoxville, Tennessee
| | - A. Zecconi
- Dipartimento Patologia Animale, University of Milan, Milan, Italy
| | - S.P. Oliver
- Department of Animal Science & Food Safety Center of Excellence, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
29
|
Sirisriro T, Sethabutr O, Mason C, Talukder KA, Venkatesan MM. An AFLP-based database of Shigella flexneri and Shigella sonnei isolates and its use for the identification of untypable Shigella strains. J Microbiol Methods 2006; 67:487-95. [PMID: 16837089 DOI: 10.1016/j.mimet.2006.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/08/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Amplified fragment length polymorphism (AFLP) can be used to assess the genetic diversity of closely related microbial genomes. In this study, the first of its kind for identification of Shigella, the high discriminatory power of AFLP has been used to determine the genetic relatedness of 230 isolates of Shigella flexneri and Shigella sonnei strains. An AFLP database was generated to demonstrate its utility in the discrimination of closely related strains. Based on AFLP, S. flexneri strains could be grouped into separate clusters according to their serotypes. Within each serotype, strains demonstrated 80-100% similarity indicating that identical strains and closely related strains could be distinguished by this technique. S. flexneri 6 formed a distinct cluster with 55% similarity to the rest of the S. flexneri strains showing significant divergence from the rest of the S. flexneri strains. Significantly, S. sonnei isolates formed a distinct group and showed approximately the same level of genetic linkage to S. flexneri as Escherichia coli strains. Untypable isolates that showed conflicting agglutination reactions with conventional typing sera were identifiable by AFLP. Thus AFLP can be used for genetic fingerprinting of Shigella strains and aid in the identification of variant untypable isolates.
Collapse
Affiliation(s)
- Thanatcha Sirisriro
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
30
|
Gebreyes WA, Altier C, Thakur S. Molecular epidemiology and diversity of Salmonella serovar Typhimurium in pigs using phenotypic and genotypic approaches. Epidemiol Infect 2006; 134:187-98. [PMID: 16409667 PMCID: PMC2870365 DOI: 10.1017/s0950268805004723] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2005] [Indexed: 11/07/2022] Open
Abstract
For epidemiological investigations of the most common and non-host-adapted Salmonella serotypes, such as Typhimurium, highly discriminatory approaches are essential. In the present study, we evaluated three genotyping methods; amplified fragment length polymorphism (AFLP), pulsed-field gel electrophoresis (PFGE) and repetitive palindromic extragenic-PCR (Rep-PCR) using 40 isolates. AFLP showed the highest discriminatory index (0.939), resolution and throughput. To determine clonality of Salmonella Typhimurium isolates and epidemiological relatedness in different commercial pig production units, we employed AFLP in combination with antimicrobial resistance pattern and phage typing. Salmonella serovar Typhimurium isolates (n=196) obtained from a longitudinal study of 18 pig farms over a 3-year period were studied. Using this approach, 16 distinct clonal types were identified. We found two common multidrug- resistant patterns including AmCmStSuTe and AmKmStSuTe. Two commonly multidrug- resistant phage types that are of known public health importance, DT104 and DT193, were also common. AFLP differentiated distinct clones within DT104, a phage type previously reported to be clonal. Fourteen of the clonal types were unique to one of the two production systems, showing diversity between independent commercial pig production systems located in the same geographical area. Clonal types obtained from nursery farms and corresponding finishing units were, however, similar.
Collapse
Affiliation(s)
- W A Gebreyes
- Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, NC 27606, USA.
| | | | | |
Collapse
|
31
|
Joerger RD, Ross T. Genotypic diversity of Escherichia coli isolated from cecal content and mucosa of one- to six-week-old broilers. Poult Sci 2005; 84:1902-7. [PMID: 16479948 DOI: 10.1093/ps/84.12.1902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a component of the microbiota of the avian digestive tract and is also part of some of the defined cultures used for competitive exclusion of Salmonella. Of particular interest are E. coli that are able to associate with the cecal wall because they might be part of a barrier that block pathogens from attaching and possibly from gaining entrance to intestinal tissues. In this study, repetitive element (rep)-PCR using the BOXA1R primer was used to differentiate between E. coli isolates obtained from cecal content and mucus of 1- to 6-wk-old broiler chickens. Computer-assisted analysis of the fingerprint patterns obtained from the isolates indicated the presence of 2 major groups of patterns. Collectively these 2 groups consisted of 28 clusters of patterns that differed from each other by 30% or more (dissimilarity index of > or = 0.3) and were therefore designated as operational taxonomic units. The patterns obtained from isolates from birds aged 1 to 5 wk were distributed almost equally between the 2 major groups, but approximately 90% of the patterns from isolates obtained from 6-wk-old birds belonged to only 1 of the 2 groups. The diversity of the fingerprints indicates that cecal mucus is inhabited by several types of E. coli in individual birds and in the birds housed together. Evidence for the preferential localization of specific E. coli within the cecal mucosa was not found, and therefore a range of E. coli must be able to associate tightly with the cecal mucosa.
Collapse
Affiliation(s)
- R D Joerger
- Department of Animal and Food Sciences, University of Delaware, Townsend Hall, Newark, Delaware 19716-1303, USA.
| | | |
Collapse
|
32
|
Northey G, Gal M, Rahmati A, Brazier JS. Subtyping of Clostridium difficile PCR ribotype 001 by REP-PCR and PFGE. J Med Microbiol 2005; 54:543-547. [PMID: 15888462 DOI: 10.1099/jmm.0.45989-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The REP-PCR (repetitive sequence-based PCR using repetitive extragenic palindromic primers) typing method and a modified PFGE method were applied to isolates of Clostridium difficile PCR ribotype 001 with the aim of comparing their performance as methods of subtyping this organism. Of 200 isolates from 60 hospitals tested by REP-PCR, eight subtypes were identified and labelled as REP-PCR subtypes 001-008. The predominant subtype, REP-PCR subtype 003, accounted for 47% of the total. Fifty-two of the 200 isolates were analysed by a modified PFGE method and seven subtypes were identified, labelled as PF-A-PF-G. There was excellent correlation between REP-PCR subtypes and PFGE subtypes with both methods displaying broadly similar discriminatory powers. However, REP-PCR subtyping proved to be a much easier, cheaper and more rapid method suitable for application for routine subtyping of C. difficile ribotype 001. Application of REP-PCR subtyping to UK isolates of C. difficile PCR ribotype 001 from 60 different centres revealed a wide distribution of REP-PCR subtype 003 throughout England and Wales, with a regional clustering of REP-PCR subtype 001 around Northwest England and North Wales. Analysis of isolates from a single hospital over a 4-year period revealed a change in predominant subtype over time.
Collapse
Affiliation(s)
- Gemma Northey
- Anaerobe Reference Laboratory, NPHS Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Micaela Gal
- Anaerobe Reference Laboratory, NPHS Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Ahmed Rahmati
- Anaerobe Reference Laboratory, NPHS Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Jon S Brazier
- Anaerobe Reference Laboratory, NPHS Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| |
Collapse
|
33
|
Maldonado Y, Fiser JC, Nakatsu CH, Bhunia AK. Cytotoxicity potential and genotypic characterization of Escherichia coli isolates from environmental and food sources. Appl Environ Microbiol 2005; 71:1890-8. [PMID: 15812017 PMCID: PMC1082550 DOI: 10.1128/aem.71.4.1890-1898.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 11/11/2004] [Indexed: 01/05/2023] Open
Abstract
The presence of Escherichia coli isolates in the environment is a potential source of contamination of food and water supplies. Moreover, these isolates may harbor virulence genes that can be a source of new forms of pathogenic strains. Here, using multiplex PCR, we examined the presence of virulence gene markers (stx1, stx2, eaeA, hlyA) in 1,698 environmental isolates of E. coli and 81 isolates from food and clinical sources. The PCR analysis showed that approximately 5% (79 of 1,698) of the total environmental isolates and 96% (79 of 81) of the food and clinical isolates were positive for at least one of the genes. Of the food and clinical isolates, 84% (68 of 81 isolates) were positive for all four genes. Of the subset of environmental isolates chosen for further analysis, 16% (13 of 79 isolates) were positive for stx2 and 84% (66 of 79 isolates) were positive for eaeA; 16 of the latter strains were also positive for hlyA. The pathogenic potentials of 174 isolates (81 isolates from food and clinical sources and 93 isolates from environmental sources) were tested by using a cytotoxicity assay based on lactate dehydrogenase release from Vero cells. In general, 97% (79 of 81) of the food and clinical isolates and 41% (39 of 93) of the environmental isolates exhibited positive cytotoxicity. High cytotoxicity values correlated to the presence of stx genes. The majority of hly-positive but stx-negative environmental isolates also exhibited a certain degree of cytotoxicity. Isolates were also tested for sorbitol utilization and were genotyped by ribotyping and by repetitive extragenic palindromic PCR (REP-PCR) as potential means of quickly identifying virulent strains from the environment, but none of these methods could be used to distinguish cytotoxic environmental isolates. Only 31% of the isolates were negative for sorbitol fermentation, and none of the isolates had common ribotypes or REP-PCR fingerprints. This study suggests that overall higher cytotoxicity values correlated with the production of stx genes, and the majority of hly-positive but stx-negative environmental isolates also exhibited a certain degree of cytotoxicity. This study demonstrated that there is widespread distribution of potentially virulent E. coli strains in the environment that may be a cause of concern for human health.
Collapse
Affiliation(s)
- Yadilka Maldonado
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, 745 Agricultural Mall Dr., West Lafayette, IN 47907-2009, USA
| | | | | | | |
Collapse
|
34
|
Yang Z, Kovar J, Kim J, Nietfeldt J, Smith DR, Moxley RA, Olson ME, Fey PD, Benson AK. Identification of common subpopulations of non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl Environ Microbiol 2005; 70:6846-54. [PMID: 15528552 PMCID: PMC525184 DOI: 10.1128/aem.70.11.6846-6854.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 strains are regarded as a clone complex, and populations from different geographical locations are believed to share a recent common ancestor. Despite their relatedness, high-resolution genotyping methods can detect significant genome variation among different populations. Phylogenetic analysis of high-resolution genotyping data from these strains has shown that subpopulations from geographically unlinked continents can be divided into two primary phylogenetic lineages, termed lineage I and lineage II, and limited studies of the distribution of these lineages suggest there could be differences in their propensity to cause disease in humans or to be transmitted to humans. Because the genotyping methods necessary to discriminate the two lineages are tedious and subjective, these methods are not particularly suited for studying the large sets of strains that are required to systematically evaluate the ecology and transmission characteristics of these lineages. To overcome this limitation, we have developed a lineage-specific polymorphism assay (LSPA) that can readily distinguish between the lineage I and lineage II subpopulations. In the studies reported here, we describe the development of a six-marker test (LSPA-6) and its validation in a side-by-side comparison with octamer-based genome scanning. Analysis of over 1,400 O157:H7 strains with the LSPA-6 demonstrated that five genotypes comprise over 91% of the strains, suggesting that these subpopulations may be widespread.
Collapse
Affiliation(s)
- Zhijie Yang
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68583-0919, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Advani A, Donnelly D, Hallander H. Reference system for characterization of Bordetella pertussis pulsed-field gel electrophoresis profiles. J Clin Microbiol 2004; 42:2890-7. [PMID: 15243034 PMCID: PMC446263 DOI: 10.1128/jcm.42.7.2890-2897.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pulsed-field gel electrophoresis (PFGE) has been used as an epidemiological tool for surveillance studies of Bordetella pertussis since the early 1990s. To date there is no standardized procedure for comparison of results, and therefore it has been difficult to directly compare PFGE results between laboratories. We propose a profile-based reference system for PFGE characterization of B. pertussis strain variation and to establish traceability of B. pertussis PFGE results. We initially suggest 35 Swedish reference strains as reference material for PFGE traceability. This reference material is deposited at the Culture Collection of the University of Gothenburg, Gothenburg, Sweden. Altogether, 1,810 Swedish clinical isolates from between 1970 and 2003 were studied, together with the Swedish Pw vaccine strain, six reference strains, and two U.S. isolates. Our system provides evidence that profiles obtained by using only one enzyme, i.e., XbaI, give enough data to analyze the epidemiological relationship between them. Characterization with one enzyme is far less labor intensive, yielding results in half the time than when a two-enzyme procedure is used. Also, we can see that there is a correlation between PFGE profile and pertactin type. One common PFGE profile, BpSR11 (n = 455), showed 100% prn2 and 100% Fim3 when analyzed for pertactin type and serotype. On the other hand, strains with the same profile may express various serotypes when isolated over longer periods of time. Subculturing of the same isolate eight times or lyophilization caused no change in PFGE profile.
Collapse
|
36
|
Kishimoto M, Hioki Y, Okano T, Konuma H, Takamizawa K, Kashio H, Kasuga F. Ribotyping and a study of transmission of Staphylococcus aureus collected from food preparation facilities. J Food Prot 2004; 67:1116-22. [PMID: 15222536 DOI: 10.4315/0362-028x-67.6.1116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food poisoning from Staphylococcus aureus is sometimes caused by improper handling of food items in food preparation facilities. Prevention of contamination by employees is particularly important in facilities where a significant amount of food preparation is performed by hand. Some experiments have been performed to describe bacterial cross-contamination in the food preparation process, but there have been few studies of cross-contamination in actual food preparation facilities. Aiming to shed light on the transmission of S. aureus in food preparation facilities, this study collected samples of 66 strains of this bacterium from the fingers of food preparation staff, foodstuffs, prepared foods, cooking utensils, and cooking equipment and typed them with the ribotyping method. S. aureus from the same ribogroup was detected on the hands of a study participant, a faucet, knife, frying pan, and a salad, indicating that bacteria found on the hands of the study participant was transmitted to cooking utensils and prepared foods. Transmission (from a faucet to a frying pan handle) of bacteria by another person, a third party, was also detected.
Collapse
Affiliation(s)
- Michiru Kishimoto
- Nagoya College of Nutrition, 1-9-6 Shinsakae, Naka-ku, Nagoya, 460-0007, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Gaynor EC, Cawthraw S, Manning G, MacKichan JK, Falkow S, Newell DG. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol 2004; 186:503-17. [PMID: 14702320 PMCID: PMC305761 DOI: 10.1128/jb.186.2.503-517.2004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genome sequence of the enteric bacterial pathogen Campylobacter jejuni NCTC 11168 (11168-GS) was published in 2000, providing a valuable resource for the identification of C. jejuni-specific colonization and virulence factors. Surprisingly, the 11168-GS clone was subsequently found to colonize 1-day-old chicks following oral challenge very poorly compared to other strains. In contrast, we have found that the original clinical isolate from which 11168-GS was derived, 11168-O, is an excellent colonizer of chicks. Other marked phenotypic differences were also identified: 11168-O invaded and translocated through tissue culture cells far more efficiently and rapidly than 11168-GS, was significantly more motile, and displayed a different morphology. Serotyping, multiple high-resolution molecular genotyping procedures, and subtractive hybridization did not yield observable genetic differences between the variants, suggesting that they are clonal. However, microarray transcriptional profiling of these strains under microaerobic and severely oxygen-limited conditions revealed dramatic expression differences for several gene families. Many of the differences were in respiration and metabolism genes and operons, suggesting that adaptation to different oxygen tensions may influence colonization potential. This correlates biologically with our observation that anaerobically priming 11168-GS or aerobically passaging 11168-O caused an increase or decrease, respectively, in colonization compared to the parent strain. Expression differences were also observed for several flagellar genes and other less well-characterized genes that may participate in motility. Targeted sequencing of the sigma factors revealed specific DNA differences undetected by the other genomic methods [corrected].
Collapse
Affiliation(s)
- Erin C Gaynor
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.
| | | | | | | | | | | |
Collapse
|