1
|
Stam CH, van der Veen FM, Franken IHA. Evidence for post-decisional conflict monitoring in delay discounting. Biol Psychol 2024; 192:108849. [PMID: 39053840 DOI: 10.1016/j.biopsycho.2024.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Choice impulsivity can be measured by offering a sequence of various binary choices between smaller, immediately available rewards and larger, later available rewards. An individual's delay discount (DD) rate reflects the aggregate decision-making tendency. Given the broad spectrum of disorders associated with a high DD rate, this may be an important transdiagnostic factor. This study aimed to establish whether post-decisional neurophysiological processes reflecting the presence of error monitoring are involved in delay discounting. A large sample (N = 97) was investigated, including 46 females and 51 males. The electroencephalogram (EEG) was recorded during the classic monetary choice questionnaire (MCQ-27). Error-related event-related potentials (ERPs) and event-related oscillations (EROs) following responses were analyzed. A modest relationship between error positivity (Pe) and DD rate was seen centro-parietal, with higher amplitude for low DD individuals after choosing immediate rewards. A robust association was found between DD rate and theta oscillation power increases. This was most prominent in low DD individuals after making an immediate reward choice. Theta power was positively associated with decision (reaction) time, suggesting an association between pre- and post-decisional conflict. No evidence was found for an error-related negativity (ERN) and delta oscillations. This study provides clear evidence for conflict monitoring as a post-decision process in delay discounting. Findings suggest that diminished theta band power bursts and lower Pe amplitude, observed after choosing an immediate reward, reflect the neurophysiological consequence and possibly the cause of steep delay discounting. High DD was characterized by prefrontal hypoactivation and appears to result from affective decision-making.
Collapse
Affiliation(s)
- C Henrico Stam
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Burgemeerster Oudlaan 55, 3062 PA Rotterdam, the Netherlands.
| | - Frederik M van der Veen
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Li H, Wang X, Hamalainen T, Meng Z. Effects of different speed-accuracy instructions on perception in psychology experiments: evidence from event-related potential and oscillation. Front Neurosci 2024; 18:1354051. [PMID: 38881749 PMCID: PMC11177619 DOI: 10.3389/fnins.2024.1354051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction In cognitive behavioral experiments, we often asked participants to make judgments within a deadline. However, the most common instruction of "do the task quickly and accurately" does not highlight the importance of the balance between being fast and accurate. Methods Our research aimed to explore how instructions about speed or accuracy affect perceptual process, focus on event-related potentials (ERPs) and event-related oscillations (EROs) of two brain responses for visual stimuli, known as P1 and N1. Additionally, we compared the conventional analysis approach with principal component analysis (PCA) based methods to analyze P1 and N1 ERP amplitude and ERO power. Results The results showed that individuals instructed to respond quickly had lower P1 amplitude and alpha ERO than those who prioritized accuracy, using the PCA-based approach. However, these two groups had no differences between groups in the N1 theta band using both methods. The traditional time-frequency analysis method could not detect any ERP or ERO distinctions between groups due to limitations in detecting specific components in time or frequency domains. That means PCA is effective in separating these components. Discussion Our findings indicate that the instructions given regarding speed and accuracy impact perceptual process of subjects during cognitive behavioral experiments. We suggest that future researchers should choose their instructions carefully, considering the purpose of study.
Collapse
Affiliation(s)
- Haijian Li
- School of Sport and Health Sciences, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Xiaoshuang Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Timo Hamalainen
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Zhaoli Meng
- School of Sport and Health Sciences, Dalian University of Technology, Dalian, China
| |
Collapse
|
3
|
Wienke AS, Mathes B. Socioeconomic Inequalities Affect Brain Responses of Infants Growing Up in Germany. Brain Sci 2024; 14:560. [PMID: 38928558 PMCID: PMC11201481 DOI: 10.3390/brainsci14060560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Developmental changes in functional neural networks are sensitive to environmental influences. This EEG study investigated how infant brain responses relate to the social context that their families live in. Event-related potentials of 255 healthy, awake infants between six and fourteen months were measured during a passive auditory oddball paradigm. Infants were presented with 200 standard tones and 48 randomly distributed deviants. All infants are part of a longitudinal study focusing on families with socioeconomic and/or cultural challenges (Bremen Initiative to Foster Early Childhood Development; BRISE; Germany). As part of their familial socioeconomic status (SES), parental level of education and infant's migration background were assessed with questionnaires. For 30.6% of the infants both parents had a low level of education (≤10 years of schooling) and for 43.1% of the infants at least one parent was born abroad. The N2-P3a complex is associated with unintentional directing of attention to deviant stimuli and was analysed in frontocentral brain regions. Age was utilised as a control variable. Our results show that tone deviations in infants trigger an immature N2-P3a complex. Contrary to studies with older children or adults, the N2 amplitude was more positive for deviants than for standards. This may be related to an immature superposition of the N2 with the P3a. For infants whose parents had no high-school degree and were born abroad, this tendency was increased, indicating that facing multiple challenges as a young family impacts on the infant's early neural development. As such, attending to unexpected stimulus changes may be important for early learning processes. Variations of the infant N2-P3a complex may, thus, relate to early changes in attentional capacity and learning experiences due to familial challenges. This points towards the importance of early prevention programs.
Collapse
Affiliation(s)
| | - Birgit Mathes
- Bremer Initiative to Foster Early Childhood Development (BRISE), Faculty for Human and Health Sciences, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
4
|
Brilliant, Yaar-Soffer Y, Herrmann CS, Henkin Y, Kral A. Theta and alpha oscillatory signatures of auditory sensory and cognitive loads during complex listening. Neuroimage 2024; 289:120546. [PMID: 38387743 DOI: 10.1016/j.neuroimage.2024.120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
The neuronal signatures of sensory and cognitive load provide access to brain activities related to complex listening situations. Sensory and cognitive loads are typically reflected in measures like response time (RT) and event-related potentials (ERPs) components. It's, however, strenuous to distinguish the underlying brain processes solely from these measures. In this study, along with RT- and ERP-analysis, we performed time-frequency analysis and source localization of oscillatory activity in participants performing two different auditory tasks with varying degrees of complexity and related them to sensory and cognitive load. We studied neuronal oscillatory activity in both periods before the behavioral response (pre-response) and after it (post-response). Robust oscillatory activities were found in both periods and were differentially affected by sensory and cognitive load. Oscillatory activity under sensory load was characterized by decrease in pre-response (early) theta activity and increased alpha activity. Oscillatory activity under cognitive load was characterized by increased theta activity, mainly in post-response (late) time. Furthermore, source localization revealed specific brain regions responsible for processing these loads, such as temporal and frontal lobe, cingulate cortex and precuneus. The results provide evidence that in complex listening situations, the brain processes sensory and cognitive loads differently. These neural processes have specific oscillatory signatures and are long lasting, extending beyond the behavioral response.
Collapse
Affiliation(s)
- Brilliant
- Department of Experimental Otology, Hannover Medical School, 30625 Hannover, Germany.
| | - Y Yaar-Soffer
- Department of Communication Disorder, Tel Aviv University, 5262657 Tel Aviv, Israel; Hearing, Speech and Language Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel
| | - C S Herrmann
- Experimental Psychology Division, University of Oldenburg, 26111 Oldenburg, Germany
| | - Y Henkin
- Department of Communication Disorder, Tel Aviv University, 5262657 Tel Aviv, Israel; Hearing, Speech and Language Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel
| | - A Kral
- Department of Experimental Otology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
5
|
Fide E, Yerlikaya D, Güntekin B, Babiloni C, Yener GG. Coherence in event-related EEG oscillations in patients with Alzheimer's disease dementia and amnestic mild cognitive impairment. Cogn Neurodyn 2023; 17:1621-1635. [PMID: 37974589 PMCID: PMC10640558 DOI: 10.1007/s11571-022-09920-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Working memory performances are based on brain functional connectivity, so that connectivity may be deranged in individuals with mild cognitive impairment (MCI) and patients with dementia due to Alzheimer's disease (ADD). Here we tested the hypothesis of abnormal functional connectivity as revealed by the imaginary part of coherency (ICoh) at electrode pairs from event-related electroencephalographic oscillations in ADD and MCI patients. Methods The study included 43 individuals with MCI, 43 with ADD, and 68 demographically matched healthy controls (HC). Delta, theta, alpha, beta, and gamma bands event-related ICoh was measured during an oddball paradigm. Inter-hemispheric, midline, and intra-hemispheric ICoh values were compared in ADD, MCI, and HC groups. Results The main results of the present study can be summarized as follows: (1) A significant increase of midline frontal and temporal theta coherence in the MCI group as compared to the HC group; (2) A significant decrease of theta, delta, and alpha intra-hemispheric coherence in the ADD group as compared to the HC and MCI groups; (3) A significant decrease of theta midline coherence in the ADD group as compared to the HC and MCI groups; (4) Normal inter-hemispheric coherence in the ADD and MCI groups. Conclusions Compared with the MCI and HC, the ADD group showed disrupted event-related intra-hemispheric and midline low-frequency band coherence as an estimate of brain functional dysconnectivity underlying disabilities in daily living. Brain functional connectivity during attention and short memory demands is relatively resilient in elderly subjects even with MCI (with preserved abilities in daily activities), and it shows reduced efficiency at multiple operating oscillatory frequencies only at an early stage of ADD. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09920-0.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele of Cassino, Cassino, Italy
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
6
|
REDUCED POWER AND PHASE-LOCKING VALUES WERE ACCOMPANIED BY THALAMUS, PUTAMEN AND HIPPOCAMPUS ATROPHY IN PARKINSON'S DISEASE WITH MILD COGNITIVE IMPAIRMENT: AN EVENT-RELATED OSCILLATION STUDY. Neurobiol Aging 2022; 121:88-106. [DOI: 10.1016/j.neurobiolaging.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
|
7
|
Aktürk T, de Graaf TA, Güntekin B, Hanoğlu L, Sack AT. Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS. Sci Rep 2022; 12:14199. [PMID: 35987918 PMCID: PMC9392784 DOI: 10.1038/s41598-022-18665-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
The coupling of gamma oscillation (~ 40+ Hz) amplitude to the phase of ongoing theta (~ 6 Hz) oscillations has been proposed to be directly relevant for memory performance. Current theories suggest that memory capacity scales with number of gamma cycles that can be fitted into the preferred phase of a theta cycle. Following this logic, transcranial alternating current stimulation (tACS) may be used to adjust theta cycles (increasing/decreasing theta frequency) to decrease or increase memory performance during stimulation. Here, we used individualized EEG-informed theta tACS to (1) experimentally “slow down” individual theta frequency (ITF), (2) evaluate cognitive after effects on a battery of memory and learning tasks, and (3) link the cognitive performance changes to tACS-induced effects on theta-band oscillations as measured by post EEG. We found frequency- and task-specific tACS after effects demonstrating a specific enhancement in memory capacity. This tACS-induced cognitive enhancement was specific to the visual memory task performed immediately after tACS offset, and specific to the ITF-1 Hz (slowing) stimulation condition and thus following a protocol specifically designed to slow down theta frequency to enhance memory capacity. Follow-up correlation analyses in this group linked the enhanced memory performance to increased left frontal-parietal theta-band connectivity. Interestingly, resting-state theta power immediately after tACS offset revealed a theta power increase not for the ITF-1 Hz group, but only for the ITF group where the tACS frequency was ‘optimal’ for entrainment. These results suggest that while individually calibrated tACS at peak frequency maximally modulates resting-state oscillatory power, tACS stimulation slightly below this optimal peak theta frequency is better suited to enhance memory capacity performance. Importantly, our results further suggest that such cognitive enhancement effects can last beyond the period of stimulation and are linked to increased network connectivity, opening the door towards more clinical and applied relevance of using tACS in cognitive rehabilitation and/or neurocognitive enhancement.
Collapse
|
8
|
JA R, Lovelace JW, Kokash J, Hussain A, KA R. Nicotine reduces age-related changes in cortical neural oscillations without affecting auditory brainstem responses. Neurobiol Aging 2022; 120:10-26. [DOI: 10.1016/j.neurobiolaging.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
|
9
|
Treatment effects on event-related EEG potentials and oscillations in Alzheimer's disease. Int J Psychophysiol 2022; 177:179-201. [PMID: 35588964 DOI: 10.1016/j.ijpsycho.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.
Collapse
|
10
|
Kipiński L, Maciejowski A, Małyszczak K, Pilecki W. High-frequency changes in single-trial visual evoked potentials for unattended stimuli in chronic schizophrenia. J Neurosci Methods 2022; 377:109626. [DOI: 10.1016/j.jneumeth.2022.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
11
|
Lundin NB, Burroughs LP, Kieffaber PD, Morales JJ, O'Donnell BF, Hetrick WP. Temporal and Spectral Properties of the Auditory Mismatch Negativity and P3a Responses in Schizophrenia. Clin EEG Neurosci 2022:15500594221089367. [PMID: 35341344 DOI: 10.1177/15500594221089367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mismatch negativity (MMN) event-related potential (ERP) indexes relatively automatic detection of changes in sensory stimuli and is typically attenuated in individuals with schizophrenia. However, contributions of different frequencies of electroencephalographic (EEG) activity to the MMN and the later P3a attentional orienting response in schizophrenia are poorly understood and were the focus of the present study. Participants with a schizophrenia-spectrum disorder (n = 85) and non-psychiatric control participants (n = 74) completed a passive auditory oddball task containing 10% 50 ms "deviant" tones and 90% 100 ms "standard" tones. EEG data were analyzed using spatial principal component analysis (PCA) applied to wavelet-based time-frequency analysis and MMN and P3a ERPs. The schizophrenia group compared to the control group had smaller MMN amplitudes and lower deviant-minus-standard theta but not alpha event-related spectral perturbation (ERSP) after accounting for participant age and sex. Larger MMN and P3a amplitudes but not latencies were correlated with greater theta and alpha time-frequency activity. Multiple linear regression analyses revealed that control participants showed robust relationships between larger MMN amplitudes and greater deviant-minus-standard theta inter-trial coherence (ITC) and between larger P3a amplitudes and greater deviant-minus-standard theta ERSP, whereas these dynamic neural processes were less tightly coupled in participants with a schizophrenia-spectrum disorder. Study results help clarify frequency-based contributions of time-domain (ie, ERP) responses and indicate a potential disturbance in the neural dynamics of detecting change in sensory stimuli in schizophrenia. Overall, findings add to the growing body of evidence that psychotic illness is associated with widespread neural dysfunction in the theta frequency band.
Collapse
Affiliation(s)
- Nancy B Lundin
- Department of Psychological & Brain Sciences, 1772Indiana University, Bloomington, IN, USA.,Program in Neuroscience, 1772Indiana University, Bloomington, IN, USA.,Department of Psychiatry and Behavioral Health, 2647The Ohio State University, Columbus, OH, USA
| | - Leah P Burroughs
- Department of Psychological & Brain Sciences, 1772Indiana University, Bloomington, IN, USA.,12250Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul D Kieffaber
- Department of Psychological Sciences, 8604College of William and Mary, Williamsburg, VA, USA
| | - Jaime J Morales
- Department of Psychological & Brain Sciences, 1772Indiana University, Bloomington, IN, USA.,Program in Neuroscience, 1772Indiana University, Bloomington, IN, USA
| | - Brian F O'Donnell
- Department of Psychological & Brain Sciences, 1772Indiana University, Bloomington, IN, USA.,Program in Neuroscience, 1772Indiana University, Bloomington, IN, USA.,12250Indiana University School of Medicine, Indianapolis, IN, USA
| | - William P Hetrick
- Department of Psychological & Brain Sciences, 1772Indiana University, Bloomington, IN, USA.,Program in Neuroscience, 1772Indiana University, Bloomington, IN, USA.,12250Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Kipiński L, Kordecki W. Time-series analysis of trial-to-trial variability of MEG power spectrum during rest state, unattended listening, and frequency-modulated tones classification. J Neurosci Methods 2021; 363:109318. [PMID: 34400211 DOI: 10.1016/j.jneumeth.2021.109318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The nonstationarity of EEG/MEG signals is important for understanding the functioning of the human brain. From our previous research we know that short, 250-500-ms MEG signals are variance-nonstationary. The covariance of a stochastic process is mathematically associated with its spectral density, therefore we investigate how the spectrum of such nonstationary signals varies in time. NEW METHOD We analyse data from 148-channel MEG, which represent rest state, unattended listening, and frequency-modulated tones classification. We transform short-time MEG signals to the frequency domain and for the dominant frequencies of 8-12 Hz we prepare the time series representing their trial-to-trial variability. Then, we test them for level- and trend-stationarity, unit root, heteroscedasticity, and gaussianity, and propose ARMA-modelling for their description. RESULTS The analysed time series have weak-stationarity properties independently of the functional state of the brain and channel localization. Only a small percentage of them, mostly related to the cognitive task, reveal nonstationarity. The obtained mathematical models show that the spectral density of the analysed signals depends on only two to three previous trials. COMPARISON WITH EXISTING METHODS The presented method has limitations related to FFT resolution and univariate models, but it is computationally simple and allows obtaining a low-complex stochastic model of the EEG/MEG spectrum variability. CONCLUSIONS Although physiological short-time MEG signals are in principle nonstationary in time, their power spectrum at the dominant (alpha) frequencies varies as a weakly stationary process. The proposed methodology has possible applications in prediction of EEG/MEG spectral properties in theoretical and clinical neuroscience.
Collapse
Affiliation(s)
- Lech Kipiński
- Department of Pathophysiology, Wrocław Medical University, 50-367 Wrocław, Poland.
| | - Wojciech Kordecki
- The Witelon State University of Applied Sciences in Legnica, 59-220 Legnica, Poland.
| |
Collapse
|
13
|
Álvarez EA, Parada FJ. Association of Pain During the Evaluation of Delirium in Intensive Care Unit Patients. Front Med (Lausanne) 2021; 8:722001. [PMID: 34504855 PMCID: PMC8421645 DOI: 10.3389/fmed.2021.722001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Evelyn A Álvarez
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile.,Escuela de Psicología y Terapia Ocupacional, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Francisco J Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
14
|
Yu J, Wang Y, Yu J, Zeng J. Racial Ingroup Bias and Efficiency Consideration Influence Distributive Decisions: A Dynamic Analysis of Time Domain and Time Frequency. Front Neurosci 2021; 15:630811. [PMID: 34040502 PMCID: PMC8141561 DOI: 10.3389/fnins.2021.630811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Although previous studies have demonstrated that identity had effect on justice norms and behavioral decisions, the neural mechanism of that effect remains unclear. In this study, the subjects made their distributive decisions on the trade-off between equity and efficiency among Chinese and foreign children and their scalp potentials were recorded. Behavioral results showed that efficiency consideration played an important part in the distribution task. Meanwhile, participants gave preferential treatment to same-race children. Relative to the distribution within ingroup children, the distribution involving outgroup children induced higher N170 amplitude. The distribution involving outgroup children also elicited weakened P300 amplitude and enhanced delta response than the distribution within ingroup children when subjects are facing the conflict between equality and efficiency. In other words, ingroup bias affected the neural process of the trade-off between equality and efficiency. The combination of time-domain and time-frequency analyses provided spatiotemporal and spectral results for a better understanding of racial ingroup favoritism on distributive justice.
Collapse
Affiliation(s)
- Jiaxin Yu
- School of Applied Finance & Behavioral Science, Dongbei University of Finance and Economics, Dalian, China
| | - Yan Wang
- School of Applied Finance & Behavioral Science, Dongbei University of Finance and Economics, Dalian, China
| | - Jianling Yu
- School of Applied Finance & Behavioral Science, Dongbei University of Finance and Economics, Dalian, China
| | - Jianmin Zeng
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Objective Extraction of Evoked Event-Related Oscillation from Time-Frequency Representation of Event-Related Potentials. Neural Plast 2021; 2020:8841354. [PMID: 33505455 PMCID: PMC7811495 DOI: 10.1155/2020/8841354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023] Open
Abstract
Evoked event-related oscillations (EROs) have been widely used to explore the mechanisms of brain activities for both normal people and neuropsychiatric disease patients. In most previous studies, the calculation of the regions of evoked EROs of interest is commonly based on a predefined time window and a frequency range given by the experimenter, which tends to be subjective. Additionally, evoked EROs sometimes cannot be fully extracted using the conventional time-frequency analysis (TFA) because they may be overlapped with each other or with artifacts in time, frequency, and space domains. To further investigate the related neuronal processes, a novel approach was proposed including three steps: (1) extract the temporal and spatial components of interest simultaneously by temporal principal component analysis (PCA) and Promax rotation and project them to the electrode fields for correcting their variance and polarity indeterminacies, (2) calculate the time-frequency representations (TFRs) of the back-projected components, and (3) compute the regions of evoked EROs of interest on TFRs objectively using the edge detection algorithm. We performed this novel approach, conventional TFA, and TFA-PCA to analyse both the synthetic datasets with different levels of SNR and an actual ERP dataset in a two-factor paradigm of waiting time (short/long) and feedback (loss/gain) separately. Synthetic datasets results indicated that N2-theta and P3-delta oscillations can be stably detected from different SNR-simulated datasets using the proposed approach, but, by comparison, only one oscillation was obtained via the last two approaches. Furthermore, regarding the actual dataset, the statistical results for the proposed approach revealed that P3-delta was sensitive to the waiting time but not for that of the other approaches. This study manifested that the proposed approach could objectively extract evoked EROs of interest, which allows a better understanding of the modulations of the oscillatory responses.
Collapse
|
16
|
Nahiyan KMT, Arefin ASMS, Rabbani M, Valdes AL. Origin and Dynamics of Biomedical Signals. INTELLIGENT SYSTEMS REFERENCE LIBRARY 2021:1-22. [DOI: 10.1007/978-3-030-54932-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Campanella S, Arikan K, Babiloni C, Balconi M, Bertollo M, Betti V, Bianchi L, Brunovsky M, Buttinelli C, Comani S, Di Lorenzo G, Dumalin D, Escera C, Fallgatter A, Fisher D, Giordano GM, Guntekin B, Imperatori C, Ishii R, Kajosch H, Kiang M, López-Caneda E, Missonnier P, Mucci A, Olbrich S, Otte G, Perrottelli A, Pizzuti A, Pinal D, Salisbury D, Tang Y, Tisei P, Wang J, Winkler I, Yuan J, Pogarell O. Special Report on the Impact of the COVID-19 Pandemic on Clinical EEG and Research and Consensus Recommendations for the Safe Use of EEG. Clin EEG Neurosci 2021; 52:3-28. [PMID: 32975150 PMCID: PMC8121213 DOI: 10.1177/1550059420954054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The global COVID-19 pandemic has affected the economy, daily life, and mental/physical health. The latter includes the use of electroencephalography (EEG) in clinical practice and research. We report a survey of the impact of COVID-19 on the use of clinical EEG in practice and research in several countries, and the recommendations of an international panel of experts for the safe application of EEG during and after this pandemic. METHODS Fifteen clinicians from 8 different countries and 25 researchers from 13 different countries reported the impact of COVID-19 on their EEG activities, the procedures implemented in response to the COVID-19 pandemic, and precautions planned or already implemented during the reopening of EEG activities. RESULTS Of the 15 clinical centers responding, 11 reported a total stoppage of all EEG activities, while 4 reduced the number of tests per day. In research settings, all 25 laboratories reported a complete stoppage of activity, with 7 laboratories reopening to some extent since initial closure. In both settings, recommended precautions for restarting or continuing EEG recording included strict hygienic rules, social distance, and assessment for infection symptoms among staff and patients/participants. CONCLUSIONS The COVID-19 pandemic interfered with the use of EEG recordings in clinical practice and even more in clinical research. We suggest updated best practices to allow safe EEG recordings in both research and clinical settings. The continued use of EEG is important in those with psychiatric diseases, particularly in times of social alarm such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Salvatore Campanella
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Belgium
| | - Kemal Arikan
- Kemal Arıkan Psychiatry Clinic, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Italy.,San Raffaele Cassino, Cassino (FR), Italy
| | - Michela Balconi
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Maurizio Bertollo
- BIND-Behavioral Imaging and Neural Dynamics Center, Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Fondazione Santa Lucia, Rome, Italy
| | - Luigi Bianchi
- Dipartimento di Ingegneria Civile e Ingegneria Informatica (DICII), University of Rome Tor Vergata, Rome, Italy
| | - Martin Brunovsky
- National Institute of Mental Health, Klecany Czech Republic.,Third Medical Faculty, Charles University, Prague, Czech Republic
| | - Carla Buttinelli
- Department of Neurosciences, Public Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Silvia Comani
- BIND-Behavioral Imaging and Neural Dynamics Center, Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Chair of Psychiatry, Department of Systems Medicine, School of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniel Dumalin
- AZ Sint-Jan Brugge-Oostende AV, Campus Henri Serruys, Lab of Neurophysiology, Department Neurology-Psychiatry, Ostend, Belgium
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Andreas Fallgatter
- Department of Psychiatry, University of Tübingen, Germany; LEAD Graduate School and Training Center, Tübingen, Germany.,German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Derek Fisher
- Department of Psychology, Mount Saint Vincent University, and Department of Psychiatry, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | | | - Bahar Guntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Ryouhei Ishii
- Department of Psychiatry Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hendrik Kajosch
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Belgium
| | - Michael Kiang
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eduardo López-Caneda
- Psychological Neuroscience Laboratory, Center for Research in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Pascal Missonnier
- Mental Health Network Fribourg (RFSM), Sector of Psychiatry and Psychotherapy for Adults, Marsens, Switzerland
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastian Olbrich
- Psychotherapy and Psychosomatics, Department for Psychiatry, University Hospital Zurich, Zurich, Switzerland
| | | | - Andrea Perrottelli
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Pizzuti
- Department of Psychology, Sapienza University of Rome, Fondazione Santa Lucia, Rome, Italy
| | - Diego Pinal
- Psychological Neuroscience Laboratory, Center for Research in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Dean Salisbury
- Clinical Neurophysiology Research Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Paolo Tisei
- Department of Neurosciences, Public Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Istvan Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Jiajin Yuan
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
18
|
Resting-state electroencephalographic delta rhythms may reflect global cortical arousal in healthy old seniors and patients with Alzheimer's disease dementia. Int J Psychophysiol 2020; 158:259-270. [DOI: 10.1016/j.ijpsycho.2020.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
|
19
|
EEG Resting Asymmetries and Frequency Oscillations in Approach/Avoidance Personality Traits: A Systematic Review. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Brain cortical activity in resting electroencephalogram (EEG) recordings can be considered as measures of latent individual disposition to approach/avoidance behavior. This systematic review aims to provide an updated overview of the relationship between resting EEG cortical activity and approach/avoidance motivation personality traits. Methods: The review process was conducted according to the PRISMA-Statement, using PsycArticles, MEDLINE, Scopus, Science Citation Index, and Research Gate database. Restrictions were made by selecting EEG studies conducted in resting idling conditions, which included approach/avoidance personality traits or parallel measures, and an index of EEG brain activity. In the review 50 studies were selected, wherein 7120 healthy adult individuals participated. Results: The study of the relationship between resting EEG cortical activity and approach/avoidance personality traits provides controversial and unclear results. Therefore, the validity of resting asymmetry or frequency oscillations as a potential marker for approach/avoidance personality traits is not supported. Conclusions: There are important contextual and interactional factors not taken into account by researchers that could mediate or moderate this relationship or prove it scarcely replicable. Further, it would be necessary to conduct more sessions of EEG recordings in different seasons of the year to test the validity and the reliability of the neurobiological measures.
Collapse
|
20
|
Wang K, Cai G, Huang S, Li Y, Li R, Wu W. Performance of healthy persons under pain in different cognitive load tasks: An event-related potential study on experimental pain individuals. Brain Behav 2020; 10:e01713. [PMID: 32558280 PMCID: PMC7428486 DOI: 10.1002/brb3.1713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE This study aims to determine how brain activities underlying task with different cognitive load would be modulated by the painful state using electroencephalography. METHODS The pain state was established by spraying capsaicin on subjects' left inner forearm. A total of 20 experimental pain subjects and 20 matched nonpain controls underwent cognitive tasks with electroencephalogram recording. We collected and analyzed behavioral and event-related potential (ERP) data. RESULTS High cognitive tasks exhibited significantly longer response times and lower accuracies than low-load tasks. The experimental pain group displayed a significantly lower accuracy than the control group. In addition, the experimental pain group showed no significance between high and low cognitive tasks in early ERP components (amplitude of N1, P2, N2, and early part of late positive potential), whereas the control group exhibited significance between different load tasks. Furthermore, we observed a delay peak energy for delta and theta oscillation in Fz 500-800 ms after the onset for pain persons and high cognitive load tasks. CONCLUSIONS Inadequate early attention modulation, along with delayed peak energy for brain oscillation (delta and theta), could be accountable for a worse performance in cognitive tasks in the experimental pain group. Thus, cognitive load is a highly considerable factor. Overall, this study offers more insights into how healthy population works with cognitive tasks under pain neurologically.
Collapse
Affiliation(s)
- Kangling Wang
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guiyuan Cai
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shimin Huang
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuqi Li
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Rongdong Li
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wen Wu
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
21
|
Fingelkurts AA, Fingelkurts AA, Neves CFH. Neuro-assessment of leadership training. COACHING: AN INTERNATIONAL JOURNAL OF THEORY, RESEARCH AND PRACTICE 2020. [DOI: 10.1080/17521882.2019.1619796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | - Carlos F. H. Neves
- BM-Science – Brain and Mind Technologies Research Centre, Espoo, Finland
| |
Collapse
|
22
|
A Concealed Information Test System Based on Functional Brain Connectivity and Signal Entropy of Audio–Visual ERP. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2020.2991359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
The Role of Physical Fitness in Cognitive-Related Biomarkers in Persons at Genetic Risk of Familial Alzheimer's Disease. J Clin Med 2019; 8:jcm8101639. [PMID: 31591322 PMCID: PMC6832576 DOI: 10.3390/jcm8101639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: Nondemented people with a family history of Alzheimer’s disease (ADFH) and the ApoE-4 allele have been demonstrated to show a trend for a higher probability of cognitive decline and aberrant levels of cognitive-related biomarkers. However, the potential interactive effects on physical fitness have not been investigated. Purpose: The primary purpose of this study was to determine whether ADFH individuals with the ApoE-4 genotype show deviant brain event-related neural oscillatory performance and cognitively-related molecular indices. A secondary purpose was to examine the interactive effects on physical fitness. Methods: Blood samples were provided from 110 individuals with ADFH to assess molecular biomarkers and the ApoE genotype for the purpose of dividing them into an ApoE-4 group (n = 16) and a non-ApoE-4 group (n = 16) in order for them to complete a visuospatial working memory task while simultaneously recording electroencephalographic signals. They also performed a senior functional physical fitness (SFPF) test. Results: While performing the cognitive task, the ApoE-4 relative to non-ApoE-4 group showed worse accuracy rates (ARs) and brain neural oscillatory performance. There were no significant between-group differences with regard to any molecular biomarkers (e.g., IL-1β, IL-6, IL-8, BDNF, Aβ1-40, Aβ1-42). VO2max was significantly correlated with the neuropsychological performance (i.e., ARs and RTs) in the 2-item and 4-item conditions in the ApoE-4 group and across the two groups. However, the electroencephalogram (EEG) oscillations during visuospatial working memory processing in the two conditions were not correlated with any SFPF scores or cardiorespiratory tests in the two groups. Conclusions: ADFH individuals with the ApoE-4 genotype only showed deviant neuropsychological (e.g., ARs) and neural oscillatory performance when performing the cognitive task with a higher visuospatial working memory load. Cardiorespiratory fitness potentially played an important role in neuropsychological impairment in this group.
Collapse
|
24
|
Wavelet-Based Semblance Methods to Enhance the Single-Trial Detection of Event-Related Potentials for a BCI Spelling System. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2019; 2019:8432953. [PMID: 31534448 PMCID: PMC6732649 DOI: 10.1155/2019/8432953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/08/2019] [Accepted: 05/18/2019] [Indexed: 11/19/2022]
Abstract
Based on similarity measures in the wavelet domain under a multichannel EEG setting, two new methods are developed for single-trial event-related potential (ERP) detection. The first method, named “multichannel EEG thresholding by similarity” (METS), simultaneously denoises all of the information recorded by the channels. The second approach, named “semblance-based ERP window selection” (SEWS), presents two versions to automatically localize the ERP in time for each subject to reduce the time window to be analysed by removing useless features. We empirically show that when these methods are used independently, they are suitable for ERP denoising and feature extraction. Meanwhile, the combination of both methods obtains better results compared to using them independently. The denoising algorithm was compared with classic thresholding methods based on wavelets and was found to obtain better results, which shows its suitability for ERP processing. The combination of the two algorithms for denoising the signals and selecting the time window has been compared to xDAWN, which is an efficient algorithm to enhance ERPs. We conclude that our wavelet-based semblance method performs better than xDAWN for single-trial detection in the presence of artifacts or noise.
Collapse
|
25
|
Erdogdu E, Kurt E, Duru AD, Uslu A, Başar-Eroğlu C, Demiralp T. Measurement of cognitive dynamics during video watching through event-related potentials (ERPs) and oscillations (EROs). Cogn Neurodyn 2019; 13:503-512. [PMID: 31741687 DOI: 10.1007/s11571-019-09544-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 11/24/2022] Open
Abstract
Event-related potentials (ERPs) and oscillations (EROs) are reliable measures of cognition, but they require time-locked electroencephalographic (EEG) data to repetitive triggers that are not available in continuous sensory input streams. However, such real-life-like stimulation by videos or virtual-reality environments may serve as powerful means of creating specific cognitive or affective states and help to investigate dysfunctions in psychiatric and neurological disorders more efficiently. This study aims to develop a method to generate ERPs and EROs during watching videos. Repeated luminance changes were introduced on short video segments, while EEGs of 10 subjects were recorded. The ERP/EROs time-locked to these distortions were analyzed in time and time-frequency domains and tested for their cognitive significance through a long term memory test that included frames from the watched videos. For each subject, ERPs and EROs corresponding to video segments of recalled images with 25% shortest and 25% longest reaction times were compared. ERPs produced by transient luminance changes displayed statistically significant fluctuations both in time and time-frequency domains. Statistical analyses showed that a positivity around 450 ms, a negativity around 500 ms and delta and theta EROs correlated with memory performance. Few studies mixed video streams with simultaneous ERP/ERO experiments with discrete task-relevant or passively presented auditory or somatosensory stimuli, while the present study, by obtaining ERPs and EROs to task-irrelevant events in the same sensory modality as that of the continuous sensory input, produces minimal interference with the main focus of attention on the video stream.
Collapse
Affiliation(s)
- Emel Erdogdu
- 1Institute of Psychology and Cognition Research, University of Bremen, 28359 Bremen, Germany.,2Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, 34093 Çapa, Istanbul, Turkey
| | - Elif Kurt
- 2Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, 34093 Çapa, Istanbul, Turkey.,3Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul University, 34093 Çapa, Istanbul, Turkey
| | - Adil Deniz Duru
- 4Department of Physical Education and Sports Teaching, Faculty of Sport Sciences, Marmara University, 34815 Beykoz, Istanbul, Turkey
| | - Atilla Uslu
- 5Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Çapa, Istanbul, Turkey
| | - Canan Başar-Eroğlu
- 1Institute of Psychology and Cognition Research, University of Bremen, 28359 Bremen, Germany.,6Department of Psychology, Faculty of Arts and Sciences, Izmir University of Economics, 35330 Balçova, Izmir, Turkey
| | - Tamer Demiralp
- 2Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, 34093 Çapa, Istanbul, Turkey.,5Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Çapa, Istanbul, Turkey
| |
Collapse
|
26
|
Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males. Neuropsychologia 2019; 129:200-211. [PMID: 30995455 DOI: 10.1016/j.neuropsychologia.2019.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/24/2022]
Abstract
In recent years, a large proportion of traffic accidents are caused by driver fatigue. The brain has been conceived as a complex network, whose function can be assessed with EEG. Hence, in this research, fourteen subjects participated in the real driving experiments, and a comprehensive EEG-based expert system was designed for detecting driver fatigue. Collected EEG signals were first decomposed into delta-range, theta-range, alpha-range and beta-range by wavelet packet transform (WPT). Unlike other approaches, a multi-channel network construction method based on Phase Lag Index (PLI) was then proposed in this paper. Finally, the functional connectivity between alert state (at the beginning of the drive) and fatigue state (at the end of the drive) in multiple frequency bands were analyzed. The results indicate that functional connectivity of the brain area was significantly different between alert and fatigue states, especially in alpha-range and beta-range. Particularly, the frontal-to-parietal functional connectivity was weakened. Meanwhile, lower clustering coefficient (C) values and higher characteristic path length (L) values were observed in fatigue state in comparison with alert state. Based on this, two new EEG feature selection approaches, C and L in the corresponding sub-frequency range were applied to feature recognition and classification system. Using a support vector machine (SVM) machine learning algorithm, these features were combined to distinguish between alert and fatigue states, achieving an accuracy of 94.4%, precision of 94.3%, sensitivity of 94.6% and false alarm rate of 5.7%. The results suggest that brain network analysis approaches combined with SVM are helpful to alert drivers while being sleepy or even fatigue.
Collapse
|
27
|
Chang W, Wang H, Hua C, Wang Q, Yuan Y. Comparison of different functional connectives based on EEG during concealed information test. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
McMackin R, Bede P, Pender N, Hardiman O, Nasseroleslami B. Neurophysiological markers of network dysfunction in neurodegenerative diseases. Neuroimage Clin 2019; 22:101706. [PMID: 30738372 PMCID: PMC6370863 DOI: 10.1016/j.nicl.2019.101706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
There is strong clinical, imaging and pathological evidence that neurodegeneration is associated with altered brain connectivity. While functional imaging (fMRI) can detect resting and activated states of metabolic activity, its use is limited by poor temporal resolution, cost and confounding vascular parameters. By contrast, electrophysiological (e.g. EEG/MEG) recordings provide direct measures of neural activity with excellent temporal resolution, and source localization methodologies can address problems of spatial resolution, permitting measurement of functional activity of brain networks with a spatial resolution similar to that of fMRI. This opens an exciting therapeutic approach focussed on pharmacological and physiological modulation of brain network activity. This review describes current neurophysiological approaches towards evaluating cortical network dysfunction in common neurodegenerative disorders. It explores how modern neurophysiologic tools can provide markers for diagnosis, prognosis, subcategorization and clinical trial outcome measures, and how modulation of brain networks can contribute to new therapeutic approaches.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland.
| | - Peter Bede
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland; Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland.
| | - Niall Pender
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland; Beaumont Hospital Dublin, Department of Psychology, Beaumont Road, Beaumont, Dublin 9, Ireland.
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland; Beaumont Hospital Dublin, Department of Neurology, Beaumont Road, Beaumont, Dublin 9, Ireland.
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland.
| |
Collapse
|
29
|
Liu P. Time-frequency analysis of event-related potentials associated with the origin of the motor interference effect from dangerous objects. Brain Res 2018; 1682:44-53. [PMID: 29317288 DOI: 10.1016/j.brainres.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Previous research has suggested that the motor interference effect of dangerous objects may originate from danger evaluations rather than direct response inhibition, as evidenced by a larger parietal P3 amplitude (which represents danger evaluations) under dangerous conditions than under safe conditions and an insignificant difference between dangerous and safe conditions in the frontal P3 component (which represents response inhibition). However, an alternative explanation exists for the null effect of the frontal P3 component. Specifically, this null effect may be attributed to cancellation between the theta and delta band oscillations, and only theta band oscillations represent response inhibition. To clarify this issue, the current study decomposed event-related potential data into different frequency bands using short-time Fourier transform. The results identified an insignificant difference of theta oscillations between dangerous and safe conditions in the mid-frontal area during a 200-500-ms time window. Instead, decreased alpha oscillations were identified in the dangerous compared with the safe condition in Go trials in the right parietal area during a 100-660-ms time window. Regression analyses further indicated that the alpha oscillations significantly contributed to the parietal P3 amplitude in the right parietal area. In summary, the results indicated that when an emergent dangerous object is encountered during the execution of prepared motor actions, an individual may tend to chiefly evaluate the potential dangerousness rather than directly suppress the prepared motor actions toward the dangerous object.
Collapse
Affiliation(s)
- Peng Liu
- School of Public Management, Northwest University, Xi'an, China.
| |
Collapse
|
30
|
López-Caneda E, Rodríguez Holguín S, Correas Á, Carbia C, González-Villar A, Maestú F, Cadaveira F. Binge drinking affects brain oscillations linked to motor inhibition and execution. J Psychopharmacol 2017; 31:873-882. [PMID: 28168896 DOI: 10.1177/0269881116689258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Neurofunctional studies have shown that binge drinking patterns of alcohol consumption during adolescence and youth are associated with anomalies in brain functioning. Recent evidence suggests that event-related oscillations may be an appropriate index of neurofunctional damage associated with alcoholism. However, there is no study to date that has evaluated the effects of binge drinking on oscillatory brain responses related to task performance. The purpose of the present study was to examine brain oscillations linked to motor inhibition and execution in young binge drinkers (BDs) compared with age-matched controls. METHODS Electroencephalographic activity was recorded from 64 electrodes while 72 university students (36 controls and 36 BDs) performed a visual Go/NoGo task. Event-related oscillations along with the Go-P3 and NoGo-P3 event-related potential components were analysed. RESULTS While no significant differences between groups were observed regarding event-related potentials, event-related oscillation analysis showed that BDs displayed a lower oscillatory response than controls in delta and theta frequency ranges during Go and NoGo conditions. CONCLUSIONS Findings are congruent with event-related oscillation studies showing reduced delta and/or theta oscillations in alcoholics during Go/NoGo tasks. Thus, BDs appear to show disruptions in neural oscillations linked to motor inhibition and execution similar to those observed in alcohol-dependent subjects. Finally, these results are the first to evidence that oscillatory brain activity may be a sensitive indicator of underlying brain anomalies in young BDs, which could complement standard event-related potential measures.
Collapse
Affiliation(s)
| | - Socorro Rodríguez Holguín
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| | - Ángeles Correas
- 3 Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology, Madrid, Spain
| | - Carina Carbia
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| | - Alberto González-Villar
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| | - Fernando Maestú
- 3 Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology, Madrid, Spain
| | - Fernando Cadaveira
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| |
Collapse
|
31
|
Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations. Dev Cogn Neurosci 2017; 26:9-19. [PMID: 28436834 PMCID: PMC6987829 DOI: 10.1016/j.dcn.2017.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
Active acoustic experience (AEx) in infancy impacts cortical oscillations. AEx infants show left Theta- and Gamma-band activity to complex tone pairs. Passive and naïve infants yield less distinct, more bilateral responses.
Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx), over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx) or maturation alone (Naïve Control, NC). Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD) elicited greater Theta-band (4–6 Hz) activity in Right Auditory Cortex (RAC), as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV) elicited larger responses in Left Auditory Cortex (LAC). PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33–37 Hz) activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping.
Collapse
|
32
|
Dong SY, Kim BK, Lee SY. EEG-Based Classification of Implicit Intention During Self-Relevant Sentence Reading. IEEE TRANSACTIONS ON CYBERNETICS 2016; 46:2535-2542. [PMID: 26441465 DOI: 10.1109/tcyb.2015.2479240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
From electroencephalography (EEG) data during self-relevant sentence reading, we were able to discriminate two implicit intentions: 1) "agreement" and 2) "disagreement" to the read sentence. To improve the classification accuracy, discriminant features were selected based on Fisher score among EEG frequency bands and electrodes. Especially, the time-frequency representation with Morlet wavelet transforms showed clear differences in gamma, beta, and alpha band powers at frontocentral area, and theta band power at centroparietal area. The best classification accuracy of 75.5% was obtained by a support vector machine classifier with the gamma band features at frontocentral area. This result may enable a new intelligent user-interface which understands users' implicit intention, i.e., unexpressed or hidden intention.
Collapse
|
33
|
Ehlers CL, Wills DN, Phillips E, Havstad J. Low voltage alpha EEG phenotype is associated with reduced amplitudes of alpha event-related oscillations, increased cortical phase synchrony, and a low level of response to alcohol. Int J Psychophysiol 2015; 98:65-75. [PMID: 26151497 PMCID: PMC4579005 DOI: 10.1016/j.ijpsycho.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/11/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
Low voltage EEG (LVEEG) is a heritable phenotype that differs depending on ancestral heritage, yet its impact on brain networks and cognition remain relatively unexplored. In this study we assessed energy and task related phase locking of event-related oscillation (EROs), behavioral responses, measures of IQ and personality, and expected responses to alcohol in a large sample of individuals with LVEEG compared to those with higher voltage variants. Participants (n=762) were recruited from a Native American community and completed a diagnostic interview, the Quick Test, the Subjective High Assessment Scale Expectation Version (SHAS-E) and the Maudsley Personality Inventory. Clinical and spectral analyzed EEGs were collected for determination of the presence of a LVEEG variant. EROs were generated using a facial expression recognition task. Participants with LVEEG (n=451) were significantly more likely to be older, married and have higher degrees of Native American heritage but did not differ in gender, income or education. Individuals with LVEEG were also found to have decreased energy in their alpha EROs, increased phase locking between stimulus trials, and increased phase-locking between cortical brain areas. No significant differences in the cognitive tests, personality variables or alcohol dependence or anxiety diagnoses were found, however, individuals with LVEEG did report a larger number of drinks ever consumed in a 24-h period and a less intense expected response to alcohol. These data suggest that alpha power in the resting EEG is highly associated with energy and cortical connectivity measures generated by event-related stimuli, as well as potentially increased risk for alcohol use.
Collapse
Affiliation(s)
- Cindy L Ehlers
- The Scripps Research Institute, 10550 North Torrey Pines Rd., SP30-1501, La Jolla, CA, United States.
| | - Derek N Wills
- The Scripps Research Institute, 10550 North Torrey Pines Rd., SP30-1501, La Jolla, CA, United States
| | - Evelyn Phillips
- The Scripps Research Institute, 10550 North Torrey Pines Rd., SP30-1501, La Jolla, CA, United States
| | - James Havstad
- The Scripps Research Institute, 10550 North Torrey Pines Rd., SP30-1501, La Jolla, CA, United States
| |
Collapse
|
34
|
Musacchia G, Ortiz-Mantilla S, Realpe-Bonilla T, Roesler CP, Benasich AA. Infant Auditory Processing and Event-related Brain Oscillations. J Vis Exp 2015:e52420. [PMID: 26167670 PMCID: PMC4544907 DOI: 10.3791/52420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rapid auditory processing and acoustic change detection abilities play a critical role in allowing human infants to efficiently process the fine spectral and temporal changes that are characteristic of human language. These abilities lay the foundation for effective language acquisition; allowing infants to hone in on the sounds of their native language. Invasive procedures in animals and scalp-recorded potentials from human adults suggest that simultaneous, rhythmic activity (oscillations) between and within brain regions are fundamental to sensory development; determining the resolution with which incoming stimuli are parsed. At this time, little is known about oscillatory dynamics in human infant development. However, animal neurophysiology and adult EEG data provide the basis for a strong hypothesis that rapid auditory processing in infants is mediated by oscillatory synchrony in discrete frequency bands. In order to investigate this, 128-channel, high-density EEG responses of 4-month old infants to frequency change in tone pairs, presented in two rate conditions (Rapid: 70 msec ISI and Control: 300 msec ISI) were examined. To determine the frequency band and magnitude of activity, auditory evoked response averages were first co-registered with age-appropriate brain templates. Next, the principal components of the response were identified and localized using a two-dipole model of brain activity. Single-trial analysis of oscillatory power showed a robust index of frequency change processing in bursts of Theta band (3 - 8 Hz) activity in both right and left auditory cortices, with left activation more prominent in the Rapid condition. These methods have produced data that are not only some of the first reported evoked oscillations analyses in infants, but are also, importantly, the product of a well-established method of recording and analyzing clean, meticulously collected, infant EEG and ERPs. In this article, we describe our method for infant EEG net application, recording, dynamic brain response analysis, and representative results.
Collapse
Affiliation(s)
- Gabriella Musacchia
- Center for Molecular & Behavioral Neuroscience, Rutgers University, State University of New Jersey, Newark; Department of Audiology, University of the Pacific; Department of Otolaryngology, Head & Neck Surgery, Stanford University;
| | - Silvia Ortiz-Mantilla
- Center for Molecular & Behavioral Neuroscience, Rutgers University, State University of New Jersey, Newark
| | - Teresa Realpe-Bonilla
- Center for Molecular & Behavioral Neuroscience, Rutgers University, State University of New Jersey, Newark
| | - Cynthia P Roesler
- Center for Molecular & Behavioral Neuroscience, Rutgers University, State University of New Jersey, Newark
| | - April A Benasich
- Center for Molecular & Behavioral Neuroscience, Rutgers University, State University of New Jersey, Newark
| |
Collapse
|
35
|
Blume C, Lechinger J, del Giudice R, Wislowska M, Heib DPJ, Schabus M. EEG oscillations reflect the complexity of social interactions in a non-verbal social cognition task using animated triangles. Neuropsychologia 2015; 75:330-40. [PMID: 26111488 DOI: 10.1016/j.neuropsychologia.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/28/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
The ability to attribute independent mental states (e.g. opinions, perceptions, beliefs) to oneself and others is termed Theory of Mind (ToM). Previous studies investigating ToM usually employed verbal paradigms and functional neuroimaging methods. Here, we studied oscillatory responses in the electroencephalogram (EEG) in a non-verbal social cognition task. The aim of this study was twofold: First, we wanted to investigate differences in oscillatory responses to animations differing with regard to the complexity of social "interactions". Secondly, we intended to evaluate the basic cognitive processes underlying social cognition. To this end, we analyzed theta, alpha, beta and gamma task-related de-/synchronization (TRD/TRS) during presentation of six non-verbal videos differing in the complexity of (social) "interactions" between two geometric shapes. Videos were adopted from Castelli et al. (2000)and belonged to three conditions: Videos designed to evoke attributions of mental states (ToM), interaction descriptions (goal-directed, GD) and videos in which the shapes moved randomly (R). Analyses revealed that only theta activity consistently varied as a function of social "interaction" complexity. Results suggest that ToM/GD videos attract more attention and working-memory resources and may have activated related memory contents. Alpha and beta results were less consistent. While alpha effects suggest that observation of social "interactions" may benefit from inhibition of self-centered processing, oscillatory responses in the beta range could be related to action observation. In summary, the results provide insight into basic cognitive processes involved in social cognition and render the paradigm attractive for the investigation of social cognitive processes in non-verbal populations.
Collapse
Affiliation(s)
- Christine Blume
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| | - Julia Lechinger
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| | - Renata del Giudice
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| | - Malgorzata Wislowska
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria.
| | - Dominik P J Heib
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| | - Manuel Schabus
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| |
Collapse
|
36
|
Fingelkurts AA, Fingelkurts AA, Kallio-Tamminen T. EEG-guided meditation: A personalized approach. ACTA ACUST UNITED AC 2015; 109:180-190. [PMID: 25805441 DOI: 10.1016/j.jphysparis.2015.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/11/2015] [Indexed: 12/17/2022]
Abstract
The therapeutic potential of meditation for physical and mental well-being is well documented, however the possibility of adverse effects warrants further discussion of the suitability of any particular meditation practice for every given participant. This concern highlights the need for a personalized approach in the meditation practice adjusted for a concrete individual. This can be done by using an objective screening procedure that detects the weak and strong cognitive skills in brain function, thus helping design a tailored meditation training protocol. Quantitative electroencephalogram (qEEG) is a suitable tool that allows identification of individual neurophysiological types. Using qEEG screening can aid developing a meditation training program that maximizes results and minimizes risk of potential negative effects. This brief theoretical-conceptual review provides a discussion of the problem and presents some illustrative results on the usage of qEEG screening for the guidance of mediation personalization.
Collapse
|
37
|
Sanchez-Alavez M, Ehlers CL. Event-related oscillations (ERO) during an active discrimination task: Effects of lesions of the nucleus basalis magnocellularis. Int J Psychophysiol 2015; 103:53-61. [PMID: 25660307 DOI: 10.1016/j.ijpsycho.2015.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cholinergic system in the brain is involved in attentional processes that are engaged for the identification and selection of relevant information in the environment and the formation of new stimulus associations. In the present study we determined the effects of cholinergic lesions of nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs) generated in an auditory active discrimination task in rats. Rats were trained to press a lever to begin a series of 1kHz tones and to release the lever upon hearing a 2kHz tone. A time-frequency based representation was used to determine ERO energy and phase synchronization (phase lock index, PLI) across trials, recorded within frontal cortical structures. Lesions in NBM produced by an infusion of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) resulted in (1) a reduction of the number of correct behavioral responses in the active discrimination task, (2) an increase in ERO energy in the delta frequency bands, (3) an increase in theta, alpha and beta ERO energy in the N1, P3a and P3b regions of interest (ROI), and (4) an increase in PLI in the theta frequency band in the N1 ROIs. These studies suggest that the NBM cholinergic system is involved in maintaining the synchronization/phase resetting of oscillations in different frequencies in response to the presentation of the target stimuli in an active discrimination task.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Yener GG, Emek-Savaş DD, Lizio R, Çavuşoğlu B, Carducci F, Ada E, Güntekin B, Babiloni CC, Başar E. Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls. Int J Psychophysiol 2015; 103:110-7. [PMID: 25660300 DOI: 10.1016/j.ijpsycho.2015.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Amnesic mild cognitive impairment (MCI) represents a risk of developing Alzheimer's disease (AD), but not all MCI subjects progress to dementia of AD type. Magnetic resonance imaging (MRI) of cortical and hippocampal atrophy supports early diagnosis of AD in MCI subjects, while frontal event-related oscillations (EROs) at delta frequencies (<4Hz) are appealing markers for this purpose, as they are both cost-effective and largely available. The present study tested the hypothesis that these EROs reflect cortical frontal neurodegeneration in the continuum between normal and amnesic MCI subjects. EROs and volumetric MRI data were recorded in 28 amnesic MCI and in 28 healthy elderly controls (HCs). EROs were collected during a standard visual oddball paradigm including frequent (66.6%) and rare (33.3%; targets to be mentally counted) stimuli. Peak-to-peak amplitude of delta target EROs (<4Hz) was measured. Volume of frontal cortex was estimated from MRIs. Frontal volume was lower in MCI compared to the HC group. Furthermore, widespread delta target EROs were lower in amplitude in the former than in the latter group. Finally, there was a positive correlation between frontal volume and frontal delta target EROs in MCI and HC subjects as a whole group. These results suggest that frontal delta EROs reflect frontal neurodegeneration in the continuum between normal and amnesic MCI subjects.
Collapse
Affiliation(s)
- Görsev G Yener
- Department of Neurology, Dokuz Eylül University Medical School, Izmir 35340, Turkey; Brain Dynamics Multidisciplinary Research Center, Dokuz Eylül University, Izmir 35340, Turkey; Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul 34156, Turkey; Department of Neurosciences, Dokuz Eylül University, Izmir 35340, Turkey.
| | - Derya Durusu Emek-Savaş
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul 34156, Turkey; Department of Neurosciences, Dokuz Eylül University, Izmir 35340, Turkey; Department of Psychology, Dokuz Eylül University, Izmir 35160, Turkey
| | | | - Berrin Çavuşoğlu
- Department of Neurosciences, Dokuz Eylül University, Izmir 35340, Turkey
| | - Filippo Carducci
- Laboratory of Neuroimaging, Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | - Emel Ada
- Department of Radiology, Dokuz Eylül University Medical School, Izmir 35340, Turkey
| | - Bahar Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul 34156, Turkey
| | - Claudio C Babiloni
- IRCCS San Raffaele Pisana, Roma, Italy; Laboratory of High resolution EEG, Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul 34156, Turkey
| |
Collapse
|
39
|
Ergen M, Saban S, Kirmizi-Alsan E, Uslu A, Keskin-Ergen Y, Demiralp T. Time–frequency analysis of the event-related potentials associated with the Stroop test. Int J Psychophysiol 2014; 94:463-72. [DOI: 10.1016/j.ijpsycho.2014.08.177] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/10/2014] [Accepted: 08/09/2014] [Indexed: 11/25/2022]
|
40
|
Cong F, Lin QH, Astikainen P, Ristaniemi T. How to validate similarity in linear transform models of event-related potentials between experimental conditions? J Neurosci Methods 2014; 236:76-85. [DOI: 10.1016/j.jneumeth.2014.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/26/2022]
|
41
|
Ehlers CL, Wills DN, Desikan A, Phillips E, Havstad J. Decreases in energy and increases in phase locking of event-related oscillations to auditory stimuli occur during adolescence in human and rodent brain. Dev Neurosci 2014; 36:175-95. [PMID: 24819672 DOI: 10.1159/000358484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
Synchrony of phase (phase locking) of event-related oscillations (EROs) within and between different brain areas has been suggested to reflect communication exchange between neural networks and as such may be a sensitive and translational measure of changes in brain remodeling that occur during adolescence. This study sought to investigate developmental changes in EROs using a similar auditory event-related potential (ERP) paradigm in both rats and humans. Energy and phase variability of EROs collected from 38 young adult men (aged 18-25 years), 33 periadolescent boys (aged 10-14 years), 15 male periadolescent rats [at postnatal day (PD) 36] and 19 male adult rats (at PD103) were investigated. Three channels of ERP data (frontal cortex, central cortex and parietal cortex) were collected from the humans using an 'oddball plus noise' paradigm that was presented under passive (no behavioral response required) conditions in the periadolescents and under active conditions (where each subject was instructed to depress a counter each time he detected an infrequent target tone) in adults and adolescents. ERPs were recorded in rats using only the passive paradigm. In order to compare the tasks used in rats to those used in humans, we first studied whether three ERO measures [energy, phase locking index (PLI) within an electrode site and phase difference locking index (PDLI) between different electrode sites] differentiated the 'active' from 'passive' ERP tasks. Secondly, we explored our main question of whether the three ERO measures differentiated adults from periadolescents in a similar manner in both humans and rats. No significant changes were found in measures of ERO energy between the active and passive tasks in the periadolescent human participants. There was a smaller but significant increase in PLI but not PDLI as a function of active task requirements. Developmental differences were found in energy, PLI and PDLI values between the periadolescents and adults in both the rats and the human participants. Neuronal synchrony as indexed by PLI and PDLI was significantly higher to the infrequent (target) tone compared to the frequent (nontarget) tone in all brain sites in all of the regions of interest time-frequency intervals. Significantly higher ERO energy and significantly lower synchrony was seen in the periadolescent humans and rats compared to their adult counterparts. Taken together these findings are consistent with the hypothesis that adolescent remodeling of the brain includes decreases in energy and increases in synchrony over a wide frequency range both within and between neuronal networks and that these effects are conserved over evolution.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, Calif., USA
| | | | | | | | | |
Collapse
|
42
|
Sanchez-Alavez M, Robledo P, Wills DN, Havstad J, Ehlers CL. Cholinergic modulation of event-related oscillations (ERO). Brain Res 2014; 1559:11-25. [PMID: 24594019 DOI: 10.1016/j.brainres.2014.02.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 12/24/2022]
Abstract
The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time-frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx-Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC-Amyg and Fctx-DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA
| | - Patricia Robledo
- Laboratory of Neuropharmacology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Derek N Wills
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA
| | - James Havstad
- Laboratory of Neuropharmacology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Lateralized power spectra of the EEG as an index of visuospatial attention. Adv Cogn Psychol 2013; 9:184-201. [PMID: 24605177 PMCID: PMC3902831 DOI: 10.2478/v10053-008-0144-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
The electroencephalogram (EEG) was measured in an endogenous orienting paradigm
where symbolic cues indicated the likely side of to-be-discriminated targets.
Combined results of event-related lateralizations (ERLs) and a newly derived
measure from wavelet analyses that we applied on the raw EEG and individual
event-related potentials (ERPs), the lateralized power spectra (LPS) and the
LPS-ERP, respectively, confirmed the common view that endogenous orienting
operates by anterior processes, probably originating from the frontal eye
fields, modulating processing in parietal and occipital areas. The LPS data
indicated that modulation takes place by increased inhibition of the irrelevant
visual field and/or disinhibition of the relevant to-be-attended visual field.
Combined use of ERLs, the LPS, and the LPS-ERP indicated that most of the
involved processes can be characterized as externally evoked, either or not with
clear individual differences as some evoked effects were only visible in the
LPS-ERERP, whereas few processes seemed to have an internally induced nature.
Use of the LPS and the LPS-ERP may be advantageous as it enables to determine
the involvement of internally generated lateralized processes that are not
strictly bound to an event like stimulus onset.
Collapse
|
44
|
Time–Frequency Analysis of Event-Related Potentials: A Brief Tutorial. Brain Topogr 2013; 27:438-50. [DOI: 10.1007/s10548-013-0327-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
45
|
Beste C, Saft C. Action selection in a possible model of striatal medium spiny neuron dysfunction: behavioral and EEG data in a patient with benign hereditary chorea. Brain Struct Funct 2013; 220:221-8. [DOI: 10.1007/s00429-013-0649-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 10/04/2013] [Indexed: 02/02/2023]
|
46
|
Stock AK, Blaszkewicz M, Beste C. Effects of binge drinking on action cascading processes: an EEG study. Arch Toxicol 2013; 88:475-88. [DOI: 10.1007/s00204-013-1109-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022]
|
47
|
Connectivity and local activity within the fronto-posterior brain network in schizophrenia. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-7020-5307-8.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. The value of spontaneous EEG oscillations in distinguishing patients in vegetative and minimally conscious states. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:81-99. [PMID: 24053033 DOI: 10.1016/b978-0-7020-5307-8.00005-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The value of spontaneous electroencephalography (EEG) oscillations in distinguishing patients in vegetative state (VS) and minimally conscious states (MCS) was studied. METHODS We quantified dynamic repertoire of EEG oscillations in resting condition with closed eyes in patients in VS and MCS. The exact composition of EEG oscillations was assessed by the probability-classification analysis of short-term EEG spectral patterns. RESULTS The probability of delta, theta, and slow-alpha oscillations occurrence was smaller for patients in MCS than for VS. Additionally, only patients in MCS demonstrated fast-alpha oscillation occurrence. Depending on the type and composition of EEG oscillations, the probability of their occurrence was either etiology dependent or independent. The probability of EEG oscillations occurrence differentiated brain injuries with different etiologies. CONCLUSIONS Spontaneous EEG oscillations have a potential value in distinguishing patients in VS and MCS. SIGNIFICANCE This work may have implications for clinical care, rehabilitative programs, and medical-legal decisions in patients with impaired consciousness states following coma due to acute brain injuries. HIGHLIGHTS The probability of delta, theta, and slow-alpha oscillations occurrence was smaller and the probability of fast-alpha oscillations occurrence was higher for patients in MCS than for patients in VS. The probability of EEG oscillations occurrence differentiated brain injuries with different etiologies. Spontaneous EEG has a potential value in distinguishing patients in VS and MCS.
Collapse
|
49
|
Ebrahimzadeh E, Alavi SM, Bijar A, Pakkhesal A. A novel approach for detection of deception using Smoothed Pseudo Wigner-Ville Distribution (SPWVD). ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.61002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Beste C, Ness V, Lukas C, Hoffmann R, Stüwe S, Falkenstein M, Saft C. Mechanisms mediating parallel action monitoring in fronto-striatal circuits. Neuroimage 2012; 62:137-46. [DOI: 10.1016/j.neuroimage.2012.05.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/09/2012] [Accepted: 05/08/2012] [Indexed: 01/18/2023] Open
|