1
|
Karalis V, Wood D, Teaney NA, Sahin M. The role of TSC1 and TSC2 proteins in neuronal axons. Mol Psychiatry 2024; 29:1165-1178. [PMID: 38212374 DOI: 10.1038/s41380-023-02402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Tuberous Sclerosis Complex 1 and 2 proteins, TSC1 and TSC2 respectively, participate in a multiprotein complex with a crucial role for the proper development and function of the nervous system. This complex primarily acts as an inhibitor of the mechanistic target of rapamycin (mTOR) kinase, and mutations in either TSC1 or TSC2 cause a neurodevelopmental disorder called Tuberous Sclerosis Complex (TSC). Neurological manifestations of TSC include brain lesions, epilepsy, autism, and intellectual disability. On the cellular level, the TSC/mTOR signaling axis regulates multiple anabolic and catabolic processes, but it is not clear how these processes contribute to specific neurologic phenotypes. Hence, several studies have aimed to elucidate the role of this signaling pathway in neurons. Of particular interest are axons, as axonal defects are associated with severe neurocognitive impairments. Here, we review findings regarding the role of the TSC1/2 protein complex in axons. Specifically, we will discuss how TSC1/2 canonical and non-canonical functions contribute to the formation and integrity of axonal structure and function.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Delaney Wood
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nicole A Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme JC, Gory-Fauré S, Delphin C, Bosc C, Arnal I, Andrieux A. Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Front Mol Neurosci 2021; 14:665693. [PMID: 34025352 PMCID: PMC8131560 DOI: 10.3389/fnmol.2021.665693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs—including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);—were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6’s effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.
Collapse
|
3
|
Oishi Y, Hashimoto K, Abe A, Kuroda M, Fujii A, Miyamoto Y. Vitronectin regulates the axon specification of mouse cerebellar granule cell precursors via αvβ5 integrin in the differentiation stage. Neurosci Lett 2021; 746:135648. [PMID: 33444672 DOI: 10.1016/j.neulet.2021.135648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Vitronectin, an extracellular matrix protein, controls the differentiation of cerebellar granule cell precursors (CGCPs) via αvβ5 integrin, particularly in the initial stage of differentiation to granule cells. In this study, we determined whether vitronectin regulates axon specification in this initial differentiation stage of CGCPs. First, we analyzed whether vitronectin deficiency, β5 integrin knockdown (KD), and β5 integrin overexpression affect axon specification of primary cultured CGCPs. Vitronectin deficiency and β5 integrin KD inhibited axon formation, while vitronectin administrated- and β5 integrin overexpressed-neurons formed multiple axons. Moreover, KD of β5 integrin suppressed vitronectin-induced multiple axon formation. These findings indicate that vitronectin contributes to regulating axon specification via αvβ5 integrin in CGCPs. Next, we determined the signaling pathway involved in regulating vitronectin-induced axon specification. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited vitronectin-induced multiple axon specification, and lithium chloride, an inhibitor of glyocogen synthase kinase 3 beta (GSK3β), attenuated the inhibitory effect of vitronectin-KO and β5 integrin KD on the specification of CGCPs. In addition, vitronectin induced the phosphorylation of protein kinase B (Akt) and GSK3β in neuroblastoma Neuro2a cells. Taken together, our results indicate that vitronectin plays an important factor in axon formation process in CGCPs via a β5 integrin/PI3K/GSK3β pathway.
Collapse
Affiliation(s)
- Yuko Oishi
- Graduate School of Humanities and Sciences, Otsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Kei Hashimoto
- Graduate School of Humanities and Sciences, Otsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Ayaka Abe
- Graduate School of Humanities and Sciences, Otsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Maho Kuroda
- Graduate School of Humanities and Sciences, Otsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Ai Fujii
- Graduate School of Humanities and Sciences, Otsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Otsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Manipulation of Axonal Outgrowth via Exogenous Low Forces. Int J Mol Sci 2020; 21:ijms21218009. [PMID: 33126477 PMCID: PMC7663625 DOI: 10.3390/ijms21218009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Neurons are mechanosensitive cells. The role of mechanical force in the process of neurite initiation, elongation and sprouting; nerve fasciculation; and neuron maturation continues to attract considerable interest among scientists. Force is an endogenous signal that stimulates all these processes in vivo. The axon is able to sense force, generate force and, ultimately, transduce the force in a signal for growth. This opens up fascinating scenarios. How are forces generated and sensed in vivo? Which molecular mechanisms are responsible for this mechanotransduction signal? Can we exploit exogenously applied forces to mimic and control this process? How can these extremely low forces be generated in vivo in a non-invasive manner? Can these methodologies for force generation be used in regenerative therapies? This review addresses these questions, providing a general overview of current knowledge on the applications of exogenous forces to manipulate axonal outgrowth, with a special focus on forces whose magnitude is similar to those generated in vivo. We also review the principal methodologies for applying these forces, providing new inspiration and insights into the potential of this approach for future regenerative therapies.
Collapse
|
5
|
Boulan B, Beghin A, Ravanello C, Deloulme JC, Gory-Fauré S, Andrieux A, Brocard J, Denarier E. AutoNeuriteJ: An ImageJ plugin for measurement and classification of neuritic extensions. PLoS One 2020; 15:e0234529. [PMID: 32673338 PMCID: PMC7365462 DOI: 10.1371/journal.pone.0234529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Morphometry characterization is an important procedure in describing neuronal cultures and identifying phenotypic differences. This task usually requires labor-intensive measurements and the classification of numerous neurites from large numbers of neurons in culture. To automate these measurements, we wrote AutoNeuriteJ, an imageJ/Fiji plugin that measures and classifies neurites from a very large number of neurons. We showed that AutoNeuriteJ is able to detect variations of neuritic growth induced by several compounds known to affect the neuronal growth. In these experiments measurement of more than 5000 mouse neurons per conditions was obtained within a few hours. Moreover, by analyzing mouse neurons deficient for the microtubule associated protein 6 (MAP6) and wild type neurons we illustrate that AutoNeuriteJ is capable to detect subtle phenotypic difference in axonal length. Overall the use of AutoNeuriteJ will provide rapid, unbiased and accurate measurement of neuron morphologies.
Collapse
Affiliation(s)
- Benoit Boulan
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Anne Beghin
- MechanoBiology Institute (MBI) at NUS Singapore MBI, T-Lab, Singapore
| | - Charlotte Ravanello
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | | | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Jacques Brocard
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
- * E-mail:
| |
Collapse
|
6
|
Mechanisms of axon polarization in pyramidal neurons. Mol Cell Neurosci 2020; 107:103522. [PMID: 32653476 DOI: 10.1016/j.mcn.2020.103522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Neurons are highly polarized cells that have specialized regions for synaptic input, the dendrites, and synaptic output, the axons. This polarity is critical for appropriate neural circuit formation and function. One of the central gaps in our knowledge is understanding how developing neurons initiate axon polarity. Given the critical nature of this polarity on neural circuit formation and function, neurons have evolved multiple mechanisms comprised of extracellular and intracellular cues that allow them to initiate and form axons. These mechanisms engage a variety of signaling cascades that provide positive and negative cues to ensure axon polarization. This review highlights our current knowledge of the molecular underpinnings of axon polarization in pyramidal neurons and their relevance to the development of the brain.
Collapse
|
7
|
Wu Z, Wang G, Wang H, Xiao L, Wei Y, Yang C. Fluoxetine exposure for more than 2 days decreases the neuronal plasticity mediated by CRMP2 in differentiated PC12 cells. Brain Res Bull 2020; 158:99-107. [PMID: 32070769 DOI: 10.1016/j.brainresbull.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent studies indicate that antidepressants treatment restores neuronal plasticity. In contrast, some researchers claim that serotonergic antidepressants, including fluoxetine (FLU), may exacerbate neuronal plasticity, which is contradictory and rarely studied. Since almost those studies exposed cells with drugs for 1-2 days as treatment models of antidepressants, it is possible that FLU exposure for longer periods would have opposite effects on neuronal plasticity. RESULTS In the present study, we examined the effects of FLU exposure (up to 3 days) on the neuronal plasticity in differentiated PC12 cells. The cell viability shown a slight decrease at day 2 (93.5 ± 3.5 %), followed by a highly significant decrease at day 3(71.4 ± 4.4 %). As previously reported, neuronal plasticity was significantly upregulated by FLU exposure at day 1. However, the neurite length, activity-regulated cytoskeleton-associated protein (Arc) and c-Fos mRNA were inhibited with FLU exposure at day 3. Similarly, the expression of tubulin, which play important roles in the neuronal plasticity, was the same result. Furthermore, we found α-tubulin interacted with collapsing response mediator protein 2(CRMP2), which is related to neuronal plasticity, and the regulation of CRMP2 activity influenced the neurite length, Arc, c-Fos and tubulin expression. CONCLUSIONS The results demonstrated that neuronal plasticity was increased by FLU exposure at day 1, but exposure with FLU for more than 2 days had opposite effect on it. The reduction in neuronal plasticity with FLU exposure for more than 2 days might be involved in some aspects of the therapeutic effect of antidepressant on depression.
Collapse
Affiliation(s)
- Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Yanyan Wei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Can Yang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| |
Collapse
|
8
|
Locally Activating TrkB Receptor Generates Actin Waves and Specifies Axonal Fate. Cell Chem Biol 2019; 26:1652-1663.e4. [PMID: 31678045 DOI: 10.1016/j.chembiol.2019.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/26/2019] [Accepted: 10/10/2019] [Indexed: 01/15/2023]
Abstract
Actin waves are filamentous actin (F-actin)-rich structures that initiate in the somato-neuritic area and move toward neurite ends. The upstream cues that initiate actin waves are poorly understood. Here, using an optogenetic approach (Opto-cytTrkB), we found that local activation of the TrkB receptor around the neurite end initiates actin waves and triggers neurite elongation. During actin wave generation, locally activated TrkB signaling in the distal neurite was functionally connected with preferentially localized Rac1 and its signaling pathways in the proximal region. Moreover, TrkB activity changed the location of ankyrinG--the master organizer of the axonal initial segment-and initiated the stimulated neurite to acquire axonal characteristics. Taken together, these findings suggest that local Opto-cytTrkB activation switches the fate from minor to major axonal neurite during neuronal polarization by generating actin waves.
Collapse
|
9
|
Guo YC, Wang YX, Ge YP, Yu LJ, Guo J. Analysis of subcellular structural tension in axonal growth of neurons. Rev Neurosci 2018; 29:125-137. [DOI: 10.1515/revneuro-2017-0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/05/2017] [Indexed: 01/08/2023]
Abstract
AbstractThe growth and regeneration of axons are the core processes of nervous system development and functional recovery. They are also related to certain physiological and pathological conditions. For decades, it has been the consensus that a new axon is formed by adding new material at the growth cone. However, using the existing technology, we have studied the structural tension of the nerve cell, which led us to hypothesize that some subcellular structural tensions contribute synergistically to axonal growth and regeneration. In this review, we classified the subcellular structural tension, osmotic pressure, microfilament and microtubule-dependent tension involved controllably in promoting axonal growth. A squeezing model was built to analyze the mechanical mechanism underlying axonal elongation, which may provide a new view of axonal growth and inspire further research.
Collapse
|
10
|
Naudet N, Moutal A, Vu HN, Chounlamountri N, Watrin C, Cavagna S, Malleval C, Benetollo C, Bardel C, Dronne MA, Honnorat J, Meissirel C, Besançon R. Transcriptional regulation of CRMP5 controls neurite outgrowth through Sox5. Cell Mol Life Sci 2018; 75:67-79. [PMID: 28864883 PMCID: PMC11105725 DOI: 10.1007/s00018-017-2634-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/10/2017] [Accepted: 08/07/2017] [Indexed: 12/01/2022]
Abstract
Transcriptional regulation of proteins involved in neuronal polarity is a key process that underlies the ability of neurons to transfer information in the central nervous system. The Collapsin Response Mediator Protein (CRMP) family is best known for its role in neurite outgrowth regulation conducting to neuronal polarity and axonal guidance, including CRMP5 that drives dendrite differentiation. Although CRMP5 is able to control dendritic development, the regulation of its expression remains poorly understood. Here we identify a Sox5 consensus binding sequence in the putative promoter sequence upstream of the CRMP5 gene. By luciferase assays we show that Sox5 increases CRMP5 promoter activity, but not if the putative Sox5 binding site is mutated. We demonstrate that Sox5 can physically bind to the CRMP5 promoter DNA in gel mobility shift and chromatin immunoprecipitation assays. Using a combination of real-time RT-PCR and quantitative immunocytochemistry, we provide further evidence for a Sox5-dependent upregulation of CRMP5 transcription and protein expression in N1E115 cells: a commonly used cell line model for neuronal differentiation. Furthermore, we report that increasing Sox5 levels in this neuronal cell line inhibits neurite outgrowth. This inhibition requires CRMP5 because CRMP5 knockdown prevents the Sox5-dependent effect. We confirm the physiological relevance of the Sox5-CRMP5 pathway in the regulation of neurite outgrowth using mouse primary hippocampal neurons. These findings identify Sox5 as a critical modulator of neurite outgrowth through the selective activation of CRMP5 expression.
Collapse
Affiliation(s)
- Nicolas Naudet
- Institut NeuroMyoGène, UMR, CNRS 5310, INSERM U1217, 69000, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Aubin Moutal
- Institut NeuroMyoGène, UMR, CNRS 5310, INSERM U1217, 69000, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Hong Nhung Vu
- Institut NeuroMyoGène, UMR, CNRS 5310, INSERM U1217, 69000, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Naura Chounlamountri
- Institut NeuroMyoGène, UMR, CNRS 5310, INSERM U1217, 69000, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Chantal Watrin
- Institut NeuroMyoGène, UMR, CNRS 5310, INSERM U1217, 69000, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Sylvie Cavagna
- Centre de Recherche en Neurosciences de Lyon, UMR, CNRS 5292, INSERM U1028, CNRS, UMR5292, 69000, Lyon, France
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, 69100, Villeurbanne, France
| | - Céline Malleval
- Institut NeuroMyoGène, UMR, CNRS 5310, INSERM U1217, 69000, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Claire Benetollo
- Centre de Recherche en Neurosciences de Lyon, UMR, CNRS 5292, INSERM U1028, CNRS, UMR5292, 69000, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Claire Bardel
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, 69100, Villeurbanne, France
- Service de Biostatistique, Hospices Civils de Lyon, 69003, Lyon, France
| | - Marie-Aimée Dronne
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, 69100, Villeurbanne, France
| | - Jérôme Honnorat
- Institut NeuroMyoGène, UMR, CNRS 5310, INSERM U1217, 69000, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
- Service de Neuro-Oncologie, Hospices Civils de Lyon, 69003, Lyon, France
| | - Claire Meissirel
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Roger Besançon
- Institut NeuroMyoGène, UMR, CNRS 5310, INSERM U1217, 69000, Lyon, France.
- Université de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France.
- Faculté de Médecine RTH Laënnec, Institut NeuroMyoGène, Synatac Team, UMR, CNRS 5310, INSERM U1217, 69008, Lyon, France.
| |
Collapse
|
11
|
Mattotti M, Alvarez Z, Delgado L, Mateos-Timoneda MA, Aparicio C, Planell JA, Alcántara S, Engel E. Differential neuronal and glial behavior on flat and micro patterned chitosan films. Colloids Surf B Biointerfaces 2017; 158:569-577. [DOI: 10.1016/j.colsurfb.2017.07.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/04/2017] [Accepted: 07/17/2017] [Indexed: 11/15/2022]
|
12
|
Structural basis for CRMP2-induced axonal microtubule formation. Sci Rep 2017; 7:10681. [PMID: 28878401 PMCID: PMC5587665 DOI: 10.1038/s41598-017-11031-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Microtubule associated protein Collapsin response mediator protein 2 (CRMP2) regulates neuronal polarity in developing neurons through interactions with tubulins or microtubules. However, how CRMP2 promotes axonal formation by affecting microtubule behavior remains unknown. This study aimed to obtain the structural basis for CRMP2–tubulin/microtubule interaction in the course of axonogenesis. The X-ray structural studies indicated that the main interface to the soluble tubulin-dimer is the last helix H19 of CRMP2 that is distinct from the known C-terminal tail-mediated interaction with assembled microtubules. In vitro structural and functional studies also suggested that the H19-mediated interaction promoted the rapid formation of GTP-state microtubules directly, which is an important feature of the axon. Consistently, the H19 mutants disturbed axon elongation in chick neurons, and failed to authorize the structural features for axonal microtubules in Caenorhabditis elegans. Thus, CRMP2 induces effective axonal microtubule formation through H19-mediated interactions with a soluble tubulin-dimer allowing axonogenesis to proceed.
Collapse
|
13
|
Kim KM, Kim SY, Palmore GTR. Axon Outgrowth of Rat Embryonic Hippocampal Neurons in the Presence of an Electric Field. ACS Chem Neurosci 2016; 7:1325-1330. [PMID: 27529437 DOI: 10.1021/acschemneuro.6b00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Application of an electric field (EF) has long been used to induce axon outgrowth following nerve injuries. The response of mammalian neurons (e.g., axon length, axon guidance) from the central nervous system (CNS) to an EF, however, remains unclear, whereas those from amphibian or avian neuron models have been well characterized. Thus, to determine an optimal EF for axon outgrowth of mammalian CNS neurons, we applied a wide range of EF to rat hippocampal neurons. Our results showed that EF with either a high magnitude (100 mV/mm or higher) or long exposure time (10 h or longer) with low magnitude (10-30 mV/mm) caused a neurite collapse and cell death. We also investigated whether neuronal response to an EF is altered depending on the growth stage of neuron cultures by applying 30 mV/mm to cells from 1 to 11 days in vitro (DIV). Neurons showed the turnover of axon outgrowth pattern when electrically stimulated between 4-5 DIV at which point neurons have both axonal and dendritic formation. The findings of this study suggest that the developmental stage of neurons is an important factor to consider when using EF as a potential method for axon regeneration in mammalian CNS neurons.
Collapse
Affiliation(s)
- Kwang-Min Kim
- School of Engineering, ‡Center for Biomedical
Engineering, and §Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sung Yeol Kim
- School of Engineering, ‡Center for Biomedical
Engineering, and §Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - G. Tayhas R. Palmore
- School of Engineering, ‡Center for Biomedical
Engineering, and §Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
14
|
Marchisella F, Coffey ET, Hollos P. Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton (Hoboken) 2016; 73:596-611. [DOI: 10.1002/cm.21300] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/03/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Francesca Marchisella
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Eleanor T. Coffey
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Patrik Hollos
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| |
Collapse
|
15
|
PACAP38 differentially effects genes and CRMP2 protein expression in ischemic core and penumbra regions of permanent middle cerebral artery occlusion model mice brain. Int J Mol Sci 2014; 15:17014-34. [PMID: 25257527 PMCID: PMC4200817 DOI: 10.3390/ijms150917014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 11/17/2022] Open
Abstract
Pituitary adenylate-cyclase activating polypeptide (PACAP) has neuroprotective and axonal guidance functions, but the mechanisms behind such actions remain unclear. Previously we examined effects of PACAP (PACAP38, 1 pmol) injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO) along with control saline (0.9% NaCl) injection. Transcriptomic and proteomic approaches using ischemic (ipsilateral) brain hemisphere revealed differentially regulated genes and proteins by PACAP38 at 6 and 24 h post-treatment. However, as the ischemic hemisphere consisted of infarct core, penumbra, and non-ischemic regions, specificity of expression and localization of these identified molecular factors remained incomplete. This led us to devise a new experimental strategy wherein, ischemic core and penumbra were carefully sampled and compared to the corresponding contralateral (healthy) core and penumbra regions at 6 and 24 h post PACAP38 or saline injections. Both reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to examine targeted gene expressions and the collapsin response mediator protein 2 (CRMP2) protein profiles, respectively. Clear differences in expression of genes and CRMP2 protein abundance and degradation product/short isoform was observed between ischemic core and penumbra and also compared to the contralateral healthy tissues after PACAP38 or saline treatment. Results indicate the importance of region-specific analyses to further identify, localize and functionally analyse target molecular factors for clarifying the neuroprotective function of PACAP38.
Collapse
|
16
|
Tsuchida M, Nakamachi T, Sugiyama K, Tsuchikawa D, Watanabe J, Hori M, Yoshikawa A, Imai N, Kagami N, Matkovits A, Atsumi T, Shioda S. PACAP Stimulates Functional Recovery after Spinal Cord Injury through Axonal Regeneration. J Mol Neurosci 2014; 54:380-7. [DOI: 10.1007/s12031-014-0338-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/20/2014] [Indexed: 12/19/2022]
|
17
|
Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling. Nat Commun 2014; 5:4057. [PMID: 24894073 DOI: 10.1038/ncomms5057] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are a family of cell-surface receptors that have a key role in regulating critical cellular processes. Here, to understand and precisely control RTK signalling, we report the development of a genetically encoded, photoactivatable Trk (tropomyosin-related kinase) family of RTKs using a light-responsive module based on Arabidopsis thaliana cryptochrome 2. Blue-light stimulation (488 nm) of mammalian cells harbouring these receptors robustly upregulates canonical Trk signalling. A single light stimulus triggers transient signalling activation, which is reversibly tuned by repetitive delivery of blue-light pulses. In addition, the light-provoked process is induced in a spatially restricted and cell-specific manner. A prolonged patterned illumination causes sustained activation of extracellular signal-regulated kinase and promotes neurite outgrowth in a neuronal cell line, and induces filopodia formation in rat hippocampal neurons. These light-controllable receptors are expected to create experimental opportunities to spatiotemporally manipulate many biological processes both in vitro and in vivo.
Collapse
|
18
|
Zhu Z, Rezhdo O, Perrone M, Bao Z, Munir A, Wang J, Zhou HS, Shao J. Magnetite nanoparticles doped photoresist derived carbon as a suitable substratum for nerve cell culture. Colloids Surf B Biointerfaces 2013; 102:428-34. [DOI: 10.1016/j.colsurfb.2012.07.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/14/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
19
|
Kim KM, Vicenty J, Palmore GTR. The potential of apolipoprotein E4 to act as a substrate for primary cultures of hippocampal neurons. Biomaterials 2013; 34:2694-700. [PMID: 23352042 DOI: 10.1016/j.biomaterials.2013.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/03/2013] [Indexed: 11/16/2022]
Abstract
The E4 isoform of apolipoprotein (apoE4) is known to be a major risk factor for Alzheimer's Disease (AD). Previous in vitro studies have shown apoE4 to have a negative effect on neuronal outgrowth when incubated with lipids. The effect of apoE4 itself on the development of neurons from the central nervous system (CNS), however, has not been well characterized. Consequently, apoE4 alone has not been pursued as a substrate for neuronal cultures. In this study, the effect of surface-bound apoE4 on developmental features of rat hippocampal neurons was examined. We show that apoE4 substrates elicit significantly enhanced values in all developmental features at day 2 of culture when compared to laminin (LN) substrates, which is the current substrate-of-choice for neuronal cultures. Interestingly, the adhesion of hippocampal neurons was found to be significantly lower on LN substrates than on glass substrates, but the axon lengths on both substrates were similar. In addition, this study demonstrates that the adhesion- and growth-enhancing effects of apoE4 substrates are not mediated by heparan sulfate proteoglycans (HSPGs), proteins that have been indicated to function as receptors or co-receptors for apoE4. In the absence of lipids, apoE4 appears to use an unknown pathway for up-regulating neuronal adhesion and neurite outgrowth. Our results indicate that apoE4 is better than LN as a substrate for primary cultures of CNS neurons and should be considered in the design of tissue engineered CNS.
Collapse
Affiliation(s)
- Kwang-Min Kim
- School of Engineering, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
20
|
Vidaki M, Tivodar S, Doulgeraki K, Tybulewicz V, Kessaris N, Pachnis V, Karagogeos D. Rac1-dependent cell cycle exit of MGE precursors and GABAergic interneuron migration to the cortex. Cereb Cortex 2012; 22:680-92. [PMID: 21690261 PMCID: PMC3589917 DOI: 10.1093/cercor/bhr145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cortical γ-aminobutyric acid (GABA)ergic interneurons are characterized by extraordinary neurochemical and functional diversity. Although recent studies have uncovered some of the molecular components underlying interneuron development, including the cellular and molecular mechanisms guiding their migration to the cortex, the intracellular components involved are still unknown. Rac1, a member of the Rac subfamily of Rho-GTPases, has been implicated in various cellular processes such as cell cycle dynamics, axonogenesis, and migration. In this study, we have addressed the specific role of Rac1 in interneuron progenitors originating in the medial ganglionic eminence, via Cre/loxP technology. We show that ablation of Rac1 from Nkx2.1-positive progenitors, results in a migratory impairment. As a consequence, only half of GABAergic interneurons are found in the postnatal cortex. The rest remain aggregated in the ventral telencephalon and show morphological defects in their growing processes in vitro. Ablation of Rac1 from postmitotic progenitors does not result in similar defects, thus underlying a novel cell autonomous and stage-specific requirement for Rac1 activity, within proliferating progenitors of cortical interneurons. Rac1 is necessary for their transition from G1 to S phase, at least in part by regulating cyclin D levels and retinoblastoma protein phosphorylation.
Collapse
Affiliation(s)
- Marina Vidaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece 71003
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas (IMBB, FORTH), Heraklion, Greece 71110
| | - Simona Tivodar
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece 71003
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas (IMBB, FORTH), Heraklion, Greece 71110
| | - Katerina Doulgeraki
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece 71003
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas (IMBB, FORTH), Heraklion, Greece 71110
| | - Victor Tybulewicz
- Division of Immune Cell Biology, Medical Research Council, National Institute for Medical Research, NW7-1AA London, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research
- Department of Cell & Developmental Biology, University College London, WC1E-6BT London, UK
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, Medical Research Council, National Institute for Medical Research, NW7-1AA London, UK
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece 71003
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas (IMBB, FORTH), Heraklion, Greece 71110
| |
Collapse
|
21
|
Nada SE, Shah ZA. Preconditioning with Ginkgo biloba (EGb 761®) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis 2012; 46:180-9. [PMID: 22297164 DOI: 10.1016/j.nbd.2012.01.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/05/2012] [Accepted: 01/14/2012] [Indexed: 11/18/2022] Open
Abstract
Ginkgo biloba/EGb 761® (EGb 761) is a popular and standardized natural extract used worldwide for the treatment of many ailments. Although EGb 761 is purported to have a plethora of benefits, here, we were interested to study the neuroprotective properties of EGb 761 and its components and determine whether nuclear factor E2 (Nrf2)/heme oxygenase 1 (HO1) induction of the collapsin response mediator protein 2 (CRMP2) pathway contributes to neuroprotection. Mice were pretreated with EGb 761 or one of its constituents (bilobalide, ginkgolide A, ginkgolide B, and terpene free material [TFM]) for 7days and then subjected to transient middle cerebral artery occlusion (tMCAO) and 48 h of reperfusion. All components except TFM significantly reduced infarct volumes and neurologic deficits. Next, we examined the antioxidant and neuritogenic properties of EGb 761 in primary neurons. Compared with vehicle-treated cells, pretreatment with EGb 761 significantly enhanced the survival of neurons exposed to tertiary butylhydroperoxide (t-BuOOH), hydrogen peroxide (H2O2), and N-methyl-D-aspartate (NMDA). Bilobalide and ginkgolide A also protected cells against NMDA-induced excitotoxicity. Immunofluorescence and Western blot analysis showed that EGb 761 pretreatment significantly increased the protein expression levels of Nrf2, HO1, GAPDH, β-actin, CRMP2, and histone H3 during t-BuOOH-induced oxidative stress. These findings suggest that EGb 761 not only has antioxidant activity but also neuritogenic potential. Demonstrating such effects for possible drug discovery may prove beneficial in stroke and ischemic brain injury.
Collapse
Affiliation(s)
- Shadia E Nada
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | | |
Collapse
|
22
|
Morelli S, Piscioneri A, Salerno S, Tasselli F, Di Vito A, Giusi G, Canonaco M, Drioli E, De Bartolo L. PAN hollow fiber membranes elicit functional hippocampal neuronal network. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:149-156. [PMID: 22076529 DOI: 10.1007/s10856-011-4484-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/01/2011] [Indexed: 05/31/2023]
Abstract
This study focuses on the development of an advanced in vitro biohybrid culture model system based on the use of hollow fibre membranes (HFMs) and hippocampal neurons in order to promote the formation of a high density neuronal network. Polyacrylonitrile (PAN) and modified polyetheretherketone (PEEK-WC) membranes were prepared in hollow fibre configuration. The morphological and metabolic behaviour of hippocampal neurons cultured on PAN HF membranes were compared with those cultured on PEEK-WC HF. The differences of cell behaviour between HFMs were evidenced by the morphometric analysis in terms of axon length and also by the investigation of metabolic activity in terms of neurotrophin secretion. These findings suggested that PAN HFMs induced the in vitro reconstruction of very highly functional and complex neuronal networks. Thus, these biomaterials could potentially be used for the in vitro realization of a functional hippocampal tissue analogue for the study of neurobiological functions and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, Rende, CS, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leach MK, Naim YI, Feng ZQ, Gertz CC, Corey JM. Stages of neuronal morphological development in vitro--an automated assay. J Neurosci Methods 2011; 199:192-8. [PMID: 21571005 DOI: 10.1016/j.jneumeth.2011.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 04/12/2011] [Accepted: 04/25/2011] [Indexed: 01/12/2023]
Abstract
Following plating in vitro, neurons pass through a series of morphological stages as they adhere and mature. These morphological stage transitions can be monitored as a function of time to evaluate the relative health and development of neuronal cultures under different conditions. While morphological development is usually quite obvious to the experienced eye, it can often be difficult to quantify in a meaningful way. Morphology quantification typically relies on manual image measurement and can therefore be tedious, time consuming and prone to human error. Here we report the successful development of an automated process using the commercially available image analysis program MetaMorph(®) to analyze the morphology and quantify the growth of embryonic spinal motor neurons in vitro. Our process relied on the Neurite Outgrowth and Cell Scoring modules included in MetaMorph(®) and on analyzing the exported data with an algorithm written in MATLAB(®). We first adopted a series of stages of motor neuron development in vitro. Neurons were classified into these stages directly from the available output of MetaMorph(®) using the algorithm written in MATLAB(®). We validated the results of the automated analysis against a manual analysis of the same images and found no statistically significant difference between the two methods. When properly configured, automated image analysis with MetaMorph(®) is a rapid and reliable alternative to manual measurement and has the potential to accelerate the research process.
Collapse
Affiliation(s)
- Michelle K Leach
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109, United States
| | | | | | | | | |
Collapse
|
24
|
Li WJ, Pan SQ, Zeng YS, Su BG, Li SM, Ding Y, Li Y, Ruan JW. Identification of acupuncture-specific proteins in the process of electro-acupuncture after spinal cord injury. Neurosci Res 2010; 67:307-16. [DOI: 10.1016/j.neures.2010.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/10/2010] [Accepted: 04/22/2010] [Indexed: 11/27/2022]
|
25
|
Chu CC, Wang JJ, Chen KT, Shieh JP, Wang LK, Shui HA, Ho ST. Neurotrophic effects of tianeptine on hippocampal neurons: a proteomic approach. J Proteome Res 2010; 9:936-44. [PMID: 20000655 DOI: 10.1021/pr900799b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tianeptine, an atypical tricyclic antidepressant with unique characteristics, can improve memory and prevent stress-induced hippocampal damage. It has neuroplastic and neurotrophic effects on hippocampal neurons and can prevent dendritic atrophy of the hippocampus in certain pathological conditions. To obtain a better understanding of the underlying mechanisms, we performed a proteomic analysis on tianeptine-treated hippocampal neurons. Primary hippocampal neurons were prepared from fetal Sprague-Dawley rats, eliminating glia cells by addition of cytosine beta-D-arabinofuranoside at day 2 in vitro (DIV2). The neurons were treated with tianeptine (10 microg/mL) or vehicle at DIV3, then harvested at DIV4 or DIV9 for immunocytochemical analysis of, respectively, neurite outgrowth or synapse formation. A proteomics analysis was performed on DIV4 neurons and the data were confirmed by Western blot analysis. Using specific markers, we demonstrated that tianeptine can augment neurite growth and promote synaptic contacts in cultured hippocampal neurons. The proteomics analysis identified 11 differentially expressed proteins, with roles in neurite growth, metabolism of neurotrophic substances, synaptogenesis, and synaptic activity homeostasis. The data shed light on the mechanisms underlying the neurotrophic effect of tianeptine observed in both animal studies and the clinic.
Collapse
Affiliation(s)
- Chin-Chen Chu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
26
|
Giusi G, Facciolo RM, Rende M, Alò R, Di Vito A, Salerno S, Morelli S, De Bartolo L, Drioli E, Canonaco M. Distinct alpha subunits of the GABAA receptor are responsible for early hippocampal silent neuron-related activities. Hippocampus 2010; 19:1103-14. [PMID: 19338020 DOI: 10.1002/hipo.20584] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The modulatory actions of GABA(A) receptor subunits are crucial for morphological and transcriptional neuronal activities. In this study, growth of hamster hippocampal neurons on biohybrid membrane substrates allowed us to show for the first time that the two major GABA(A) alpha receptor subunits (alpha(2,5)) are capable of early neuronal shaping plus expression differences of some of the main neuronal cytoskeletal factors (GAP-43, the neurotrophin--BDNF) and of Gluergic subtypes. In a first case the inverse alpha(5) agonist (RY-080) seemed to account for the reduction of dendritic length at DIV7, very likely via lower BDNF levels. Conversely, the effects of the preferentially specific agonist for hippocampal alpha(2) subunit (flunitrazepam) were, instead, directed at the formation of growth cones at DIV3 in the presence of greatly (P < 0.01) diminished GAP-43 levels as displayed by strongly reduced axonal sprouting. It is interesting to note that concomitantly to these morphological variations, the transcription of some Gluergic receptor subtypes resulted to be altered. In particular, flunitrazepam was responsible for a distinctly rising expression of axonal NR1 mRNA levels from DIV3 (P < 0.01) until DIV7 (P < 0.001), whereas RY-080 evoked a very great (P < 0.001) downregulation of dendritic GluR2 at only DIV7. Together, our results demonstrate that GABA(A) alpha(2,5) receptor-containing subunits by regulating the precise synchronization of cytoskeletal factors are considered key modulating neuronal elements of hippocampal morphological growth features. Moreover, the notable NR1 and GluR2 transcription differences promoted by these GABA(A) alpha subunits tend to favorably corroborate the early role of alpha(2) + alpha(5) on hippocampal neuronal networks in hibernating rodents through the recruitment and activation of silent neurons, and this may provide useful insights regarding molecular neurodegenerative events.
Collapse
Affiliation(s)
- Giuseppina Giusi
- Ecology Department, Comparative Neuroanatomy Laboratory, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee JY, Bashur CA, Gomez N, Goldstein AS, Schmidt CE. Enhanced polarization of embryonic hippocampal neurons on micron scale electrospun fibers. J Biomed Mater Res A 2010; 92:1398-406. [PMID: 19353562 DOI: 10.1002/jbm.a.32471] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrospun fibers have been fabricated for wide use as artificial tissue engineering scaffolds. In particular, fibers smaller than a cell body have been extensively employed to mimic natural extracellular matrix (ECM) and to explore specific responses by various cell types. We investigated the effects of various poly(lactic acid-co-glycolic acid) (PLGA) fiber features on embryonic hippocampal neurons in the early developmental stages in terms of initial axon formation (i.e., polarization) and axon orientation. We produced PLGA fibers that have average diameters ranging from 0.44 microm to 2.2 microm and different degrees of fiber alignment (16-58 degrees in angular standard deviation). After 22 h in culture, embryonic hippocampal neurons grown on PLGA fibers exhibited more axon formation with a 30-50% increase over those on spin-coated smooth PLGA films. This improvement was independent of fiber diameter and alignment; however, slightly more polarization was observed on the smaller fibers and the more aligned fibers. In addition, average axon length of the polarized embryonic hippocampal neurons was not significantly different among the PLGA fibers when compared with cells grown on spin-coated PLGA films. These findings suggest that fibers of subcellular diameters stimulate initial axon establishment and guide the direction of axonal extension; however, these fibers do not appear to affect the overall axon length. This information will be valuable in understanding the roles of subcellular features on neuron development and for the design of biomaterials for neural tissue interfacing.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | |
Collapse
|
28
|
Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009; 30:4325-35. [PMID: 19501901 PMCID: PMC2713816 DOI: 10.1016/j.biomaterials.2009.04.042] [Citation(s) in RCA: 439] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 04/28/2009] [Indexed: 12/28/2022]
Abstract
Electrospinning is a promising approach to create nanofiber structures that are capable of supporting adhesion and guiding extension of neurons for nerve regeneration. Concurrently, electrical stimulation of neurons in the absence of topographical features also has been shown to guide axonal extension. Therefore, the goal of this study was to form electrically conductive nanofiber structures and to examine the combined effect of nanofiber structures and electrical stimulation. Conductive meshes were produced by growing polypyrrole (PPy) on random and aligned electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers, as confirmed by scanning electron micrographs and X-ray photon spectroscopy. PPy-PLGA electrospun meshes supported the growth and differentiation of rat pheochromocytoma 12 (PC12) cells and hippocampal neurons comparable to non-coated PLGA control meshes, suggesting that PPy-PLGA may be suitable as conductive nanofibers for neuronal tissue scaffolds. Electrical stimulation studies showed that PC12 cells, stimulated with a potential of 10 mV/cm on PPy-PLGA scaffolds, exhibited 40-50% longer neurites and 40-90% more neurite formation compared to unstimulated cells on the same scaffolds. In addition, stimulation of the cells on aligned PPy-PLGA fibers resulted in longer neurites and more neurite-bearing cells than stimulation on random PPy-PLGA fibers, suggesting a combined effect of electrical stimulation and topographical guidance and the potential use of these scaffolds for neural tissue applications.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX
| | - Chris A. Bashur
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Aaron S. Goldstein
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christine E. Schmidt
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Texas Materials Institute, The University of Texas at Austin, Austin, TX
- Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, TX
| |
Collapse
|
29
|
Abstract
During neuron development, the biosynthetic needs of the axon initially outweigh those of dendrites. However, although a localized role for the early secretory pathway in dendrite development has been observed, such a role in axon growth remains undefined. We therefore studied the localization of Sar1, a small GTPase that controls ER export, during early stages of neuronal development that are characterized by selective and robust axon growth. At these early stages, Sar1 was selectively targeted to the axon where it gradually concentrated within varicosities in which additional proteins that function in the early secretory pathway were detected. Sar1 targeting to the axon followed axon specification and was dependent on localized actin instability. Changes in Sar1 expression levels at these early development stages modulated axon growth. Specifically, reduced expression of Sar1, which was initially only detectable in the axon, correlated with reduced axon growth, where as overexpression of Sar1 supported the growth of longer axons. In support of the former finding, expression of dominant negative Sar1 inhibited axon growth. Thus, as observed in lower organisms, mammalian cells use temporal and spatial regulation of endoplasmic reticulum exit site (ERES) to address developmental biosynthetic demands. Furthermore, axons, such as dendrites, rely on ERES targeting and assembly for growth.
Collapse
Affiliation(s)
- Meir Aridor
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace St, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
30
|
Arimura N, Hattori A, Kimura T, Nakamuta S, Funahashi Y, Hirotsune S, Furuta K, Urano T, Toyoshima YY, Kaibuchi K. CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity. J Neurochem 2009; 111:380-90. [PMID: 19659462 DOI: 10.1111/j.1471-4159.2009.06317.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The active transport of proteins and organelles is critical for cellular organization and function in eukaryotic cells. A substantial portion of long-distance transport depends on the opposite polarity of the kinesin and dynein family molecular motors to move cargo along microtubules. It is increasingly clear that many cargo molecules are moved bi-directionally by both sets of motors; however, the regulatory mechanism that determines the directionality of transport remains unclear. We previously reported that collapsin response mediator protein-2 (CRMP-2) played key roles in axon elongation and neuronal polarization. CRMP-2 was also found to associate with the anterograde motor protein Kinesin-1 and was transported with other cargoes toward the axon terminal. In this study, we investigated the association of CRMP-2 with a retrograde motor protein, cytoplasmic dynein. Immunoprecipitation assays showed that CRMP-2 interacted with cytoplasmic dynein heavy chain. Dynein heavy chain directly bound to the N-terminus of CRMP-2, which is the distinct side of CRMP-2's kinesin light chain-binding region. Furthermore, over-expression of the dynein-binding fragments of CRMP-2 prevented dynein-driven microtubule transport in COS-7 cells. Given that CRMP-2 is a key regulator of axon elongation, this interference with cytoplasmic dynein function by CRMP-2 might have an important role in axon formation, and neuronal development.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Z, Majava V, Greffier A, Hayes RL, Kursula P, Wang KKW. Collapsin response mediator protein-2 is a calmodulin-binding protein. Cell Mol Life Sci 2009; 66:526-36. [PMID: 19151921 PMCID: PMC4428678 DOI: 10.1007/s00018-008-8362-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Collapsin response mediator protein-2 (CRMP-2) plays a crucial role in axonal guidance and neurite outgrowth during neural development and regeneration. We have studied the interaction between calmodulin (CaM) and CRMP-2 and how Ca(2+)/CaM binding modulates the biological functions of CRMP-2. We have shown that CRMP-2 binds to CaM directly in a Ca(2+)-dependent manner. The CaM binding site of CRMP-2 is proposed to reside in the last helix of the folded domain, and in line with this, a synthesized peptide representing this helix bound to CaM. In addition, CaM binding inhibits a homotetrameric assembly of CRMP-2 and attenuates calpainmediated CRMP-2 proteolysis. Furthermore, a CaM antagonist reduces the number and length of process induced by CRMP-2 overexpression in HEK293 cells. Take together, our data suggest that CRMP-2 is a novel CaM-binding protein and that CaM binding may play an important role in regulating CRMP-2 functions.
Collapse
Affiliation(s)
- Z. Zhang
- Center of Innovative Research, Banyan Biomarkers Inc, 12805 Research Drive, Alachua, FL 32615 USA
| | - V. Majava
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - A. Greffier
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - R. L. Hayes
- Center of Innovative Research, Banyan Biomarkers Inc, 12805 Research Drive, Alachua, FL 32615 USA
- Department of Anesthesiology, McKnight Brain Institute of the University of Florida, Gainesville, FL USA
| | - P. Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - K. K. W. Wang
- Center of Innovative Research, Banyan Biomarkers Inc, 12805 Research Drive, Alachua, FL 32615 USA
- Department of Psychiatry, McKnight Brain Institute of the University of Florida, Gainesville, FL USA
| |
Collapse
|
32
|
De Bartolo L, Rende M, Morelli S, Giusi G, Salerno S, Piscioneri A, Gordano A, Di Vito A, Canonaco M, Drioli E. Influence of membrane surface properties on the growth of neuronal cells isolated from hippocampus. J Memb Sci 2008. [DOI: 10.1016/j.memsci.2008.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Brown KM, Gillette TA, Ascoli GA. Quantifying neuronal size: summing up trees and splitting the branch difference. Semin Cell Dev Biol 2008; 19:485-93. [PMID: 18771743 DOI: 10.1016/j.semcdb.2008.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/07/2008] [Indexed: 12/22/2022]
Abstract
Neurons vary greatly in size, shape, and complexity depending on their underlying function. Overall size of neuronal trees affects connectivity, area of influence, and other biophysical properties. Relative distributions of neuronal extent, such as the difference between subtrees at branch points, are also critically related to function and activity. This review covers neuromorphological research that analyzes shape and size to elucidate their functional role for different neuron types. We also introduce a novel morphometric, "caulescence", capturing the extent to which trees exhibit a main path. Neuronal tree types differ vastly in caulescence, suggesting potential neurocomputational correlates of this property.
Collapse
Affiliation(s)
- Kerry M Brown
- Center for Neural Informatics, Structure, & Plasticity, and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, Mail Stop 2A1 George Mason University, Fairfax, VA 22030, USA
| | | | | |
Collapse
|
34
|
Cole AR, Soutar MPM, Rembutsu M, van Aalten L, Hastie CJ, McLauchlan H, Peggie M, Balastik M, Lu KP, Sutherland C. Relative resistance of Cdk5-phosphorylated CRMP2 to dephosphorylation. J Biol Chem 2008; 283:18227-37. [PMID: 18460467 DOI: 10.1074/jbc.m801645200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collapsin response mediator protein 2 (CRMP2) binds to microtubules and regulates axon outgrowth in neurons. This action is regulated by sequential phosphorylation by the kinases cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 (GSK3) at sites that are hyperphosphorylated in Alzheimer disease. The increased phosphorylation in Alzheimer disease could be due to increases in Cdk5 and/or GSK3 activity or, alternatively, through decreased activity of a CRMP phosphatase. Here we establish that dephosphorylation of CRMP2 at the residues targeted by GSK3 (Ser-518/Thr-514/Thr-509) is carried out by a protein phosphatase 1 family member in vitro, in neuroblastoma cells, and primary cortical neurons. Inhibition of GSK3 activity using insulin-like growth factor-1 or the highly selective inhibitor CT99021 causes rapid dephosphorylation of CRMP2 at these sites. In contrast, pharmacological inhibition of Cdk5 using purvalanol results in only a gradual and incomplete dephosphorylation of CRMP2 at the site targeted by Cdk5 (Ser-522), suggesting a distinct phosphatase targets this residue. A direct comparison of dephosphorylation at the Cdk5 versus GSK3 sites in vitro shows that the Cdk5 site is comparatively resistant to phosphatase treatment. The presence of the peptidyl-prolyl isomerase enzyme, Pin1, does not affect dephosphorylation of Ser-522 in vitro, in cells, or in Pin1 transgenic mice. Instead, the relatively high resistance of this site to phosphatase treatment is at least in part due to the presence of basic residues located nearby. Similar sequences in Tau are also highly resistant to phosphatase treatment. We propose that relative resistance to phosphatases might be a common feature of Cdk5 substrates and could contribute to the hyperphosphorylation of CRMP2 and Tau observed in Alzheimer disease.
Collapse
Affiliation(s)
- Adam R Cole
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital, Dundee, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tsolakidou A, Trümbach D, Panhuysen M, Pütz B, Deussing J, Wurst W, Sillaber I, Holsboer F, Rein T. Acute stress regulation of neuroplasticity genes in mouse hippocampus CA3 area--possible novel signalling pathways. Mol Cell Neurosci 2008; 38:444-52. [PMID: 18524625 DOI: 10.1016/j.mcn.2008.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/13/2008] [Accepted: 04/11/2008] [Indexed: 11/30/2022] Open
Abstract
Stress exposure can lead to the precipitation of psychiatric disorders in susceptible individuals, but the molecular underpinnings are incompletely understood. We used forced swimming in mice to reveal stress-regulated genes in the CA3 area of the hippocampus. To determine changes in the transcriptional profile 4 h and 8 h after stress exposure microarrays were used in the two mouse strains C57BL/6J and DBA/2J, which are known for their differential stress response. We discovered a surprisingly distinct set of regulated genes for each strain and followed selected ones by in situ hybridisation. Our results support the concept of a phased transcriptional reaction to stress. Moreover, we suggest novel stress-elicited pathways, which comprise a number of genes involved in the regulation of neuronal plasticity. Furthermore, we focused in particular on dihydropyrimidinase like 2, to which we provide evidence for its regulation by NeuroD, an important factor for neuronal activity-dependent dendritic morphogenesis.
Collapse
Affiliation(s)
- A Tsolakidou
- Max-Planck Institute of Psychiatry, Kraepelinstr 2-10, 80804, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang P, Jeng CJ, Chien CL, Wang SM. Signaling mechanisms of daidzein-induced axonal outgrowth in hippocampal neurons. Biochem Biophys Res Commun 2008; 366:393-400. [DOI: 10.1016/j.bbrc.2007.11.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/22/2007] [Indexed: 11/24/2022]
|
37
|
Gomez N, Chen S, Schmidt CE. Polarization of hippocampal neurons with competitive surface stimuli: contact guidance cues are preferred over chemical ligands. J R Soc Interface 2007; 4:223-33. [PMID: 17251152 PMCID: PMC2359858 DOI: 10.1098/rsif.2006.0171] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neuronal behaviour is profoundly influenced by extracellular stimuli in many developmental and regeneration processes. Understanding neuron responses and integration of environmental signals could impact the design of successful therapies for neurodegenerative diseases and nerve injuries. Here, we have investigated the influence of localized extracellular cues on polarization (i.e. axon formation) of hippocampal neurons. Electron-beam lithography, microfabrication techniques and protein immobilization were used to create a unique system that provided simultaneous and independent chemical and physical cues to individual neurons. In particular, we analysed competitive responses between simultaneous stimulation with chemical ligands, including immobilized nerve growth factor and laminin, and contact guidance cues mediated by surface topography (i.e. microchannels). Contact guidance cues were preferred 70% of the time over chemical ligands by neurons extending axons, which suggests a stronger stimulation mechanism triggered by topography. This investigation contributes to the understanding of neuronal behaviour on artificial substrates, which is applicable to the creation of artificial environments for neural engineering applications.
Collapse
Affiliation(s)
- Natalia Gomez
- Department of Chemical Engineering, The University of Texas at AustinAustin, TX 78712-1062, USA
| | - Shaochen Chen
- Department of Mechanical Engineering, The University of Texas at AustinAustin, TX 78712-1062, USA
- Texas Materials Institute, The University of Texas at AustinAustin, TX 78712-1062, USA
- Center for Nano- and Molecular Science and Technology, The University of Texas at AustinAustin, TX 78712-1062, USA
| | - Christine E Schmidt
- Department of Chemical Engineering, The University of Texas at AustinAustin, TX 78712-1062, USA
- Department of Biomedical Engineering, The University of Texas at AustinAustin, TX 78712-1062, USA
- Texas Materials Institute, The University of Texas at AustinAustin, TX 78712-1062, USA
- Center for Nano- and Molecular Science and Technology, The University of Texas at AustinAustin, TX 78712-1062, USA
- Institute of Neuroscience, The University of Texas at AustinAustin, TX 78712-1062, USA
- Author for correspondence ()
| |
Collapse
|
38
|
TGFbeta ligands promote the initiation of retinal ganglion cell dendrites in vitro and in vivo. Mol Cell Neurosci 2007; 37:247-60. [PMID: 17997109 DOI: 10.1016/j.mcn.2007.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 11/21/2022] Open
Abstract
Each type of neuron develops a unique morphology critical to its function, but almost all start with the basic plan of one long axon and multiple short, branched dendrites. Though extrinsic signals are known to direct many steps in the development of neuronal structure, little is understood about the initiation of processes, particularly dendrites. We find that Xenopus retinal ganglion cells (RGCs) explanted early will extend axons and not dendrites in dissociated cultures. If RGCs develop longer in vivo prior to culturing, many now extend dendrite-like processes in vitro, suggesting that an extrinsic factor is required to stimulate dendrite initiation. Members of the transforming growth factor beta (TGFbeta) superfamily, bone morphogenetic protein 2 (BMP2), and growth and differentiation factor 11 (GDF11), can signal cultured RGCs to form dendrites. Furthermore, TGFbeta ligands have an endogenous role: blocking BMP/GDF signaling with a secreted antagonist or inhibitory receptors reduces the number of primary dendrites extended in vivo.
Collapse
|
39
|
Gomez N, Lee JY, Nickels JD, Schmidt CE. Micropatterned Polypyrrole: A Combination of Electrical and Topographical Characteristics for the Stimulation of Cells. ADVANCED FUNCTIONAL MATERIALS 2007; 17:1645-1653. [PMID: 19655035 PMCID: PMC2719898 DOI: 10.1002/adfm.200600669] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Electrically conducting polymers such as polypyrrole (PPy) are important biomaterials in neural engineering applications, including neural probes, nerve conduits, and scaffolds for tissue and nerve regeneration. Surface modification of these polymers can introduce other valuable characteristics for neural interfacing in addition to electrical conductivity, such as topographical features and chemical bioactivity. Here, the patterning of PPy to create topographical cues for cells is reported. In particular, 1 and 2 µm wide PPy microchannels are fabricated using electron-beam (e-beam) lithography and electropolymerization. A systematic analysis of parameters controlling PPy micropatterning is performed, and finds that microchannel depth, roughness, and morphology are highly dependent on the e-beam writing current, polymerization current, PPy/dopant concentrations, and the polymerization time. Embryonic hippocampal neurons cultured on patterned PPy polarize (i.e., defined an axon) faster on this modified material, with a twofold increase in the number of cells with axons compared to cells cultured on unmodified PPy. These topographical features also have an effect on axon orientation but do not have a significant effect on overall axon length. This is the first investigation that studies controlled PPy patterning with small dimensions (i.e., less than 5 µm) for biological applications, which demonstrates the relevance of expanding microelectronic materials and techniques to the biomedical field.
Collapse
Affiliation(s)
- Natalia Gomez
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712-1062 (USA)
| | - Jae Y. Lee
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712-1062 (USA)
| | - Jon D. Nickels
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-1062 (USA)
| | - Christine E. Schmidt
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712-1062 (USA)
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-1062 (USA)
- Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712-1062 (USA)
- Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, TX 78712-1062 (USA)
| |
Collapse
|
40
|
Sachdev P, Menon S, Kastner DB, Chuang JZ, Yeh TY, Conde C, Caceres A, Sung CH, Sakmar TP. G protein beta gamma subunit interaction with the dynein light-chain component Tctex-1 regulates neurite outgrowth. EMBO J 2007; 26:2621-32. [PMID: 17491591 PMCID: PMC1888676 DOI: 10.1038/sj.emboj.7601716] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 04/12/2007] [Indexed: 11/08/2022] Open
Abstract
Tctex-1, a light-chain component of the cytoplasmic dynein motor complex, can function independently of dynein to regulate multiple steps in neuronal development. However, how dynein-associated and dynein-free pools of Tctex-1 are maintained in the cell is not known. Tctex-1 was recently identified as a Gbetagamma-binding protein and shown to be identical to the receptor-independent activator of G protein signaling AGS2. We propose a novel role for the interaction of Gbetagamma with Tctex-1 in neurite outgrowth. Ectopic expression of either Tctex-1 or Gbetagamma promotes neurite outgrowth whereas interfering with their function inhibits neuritogenesis. Using embryonic mouse brain extracts, we demonstrate an endogenous Gbetagamma-Tctex-1 complex and show that Gbetagamma co-segregates with dynein-free fractions of Tctex-1. Furthermore, Gbeta competes with the dynein intermediate chain for binding to Tctex-1, regulating assembly of Tctex-1 into the dynein motor complex. We propose that Tctex-1 is a novel effector of Gbetagamma, and that Gbetagamma-Tctex-1 complex plays a key role in the dynein-independent function of Tctex-1 in regulating neurite outgrowth in primary hippocampal neurons, most likely by modulating actin and microtubule dynamics.
Collapse
Affiliation(s)
- Pallavi Sachdev
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Santosh Menon
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, NY, USA
| | - David B Kastner
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA
| | - Ting-Yu Yeh
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, USA
| | - Thomas P Sakmar
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, 1230 York Avenue, Box 187, New York City, NY 10021, USA. Tel.: +1 212 327 8288; Fax: +1 212 327 7904; E-mail:
| |
Collapse
|
41
|
Uboha NV, Flajolet M, Nairn AC, Picciotto MR. A calcium- and calmodulin-dependent kinase Ialpha/microtubule affinity regulating kinase 2 signaling cascade mediates calcium-dependent neurite outgrowth. J Neurosci 2007; 27:4413-23. [PMID: 17442826 PMCID: PMC6672303 DOI: 10.1523/jneurosci.0725-07.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Calcium is a critical regulator of neuronal differentiation and neurite outgrowth during development, as well as synaptic plasticity in adulthood. Calcium- and calmodulin-dependent kinase I (CaMKI) can regulate neurite outgrowth; however, the signal transduction cascades that lead to its physiological effects have not yet been elucidated. CaMKIalpha was therefore used as bait in a yeast two-hybrid assay and microtubule affinity regulating kinase 2 (MARK2)/Par-1b was identified as an interacting partner of CaMKI in three independent screens. The interaction between CaMKI and MARK2 was confirmed in vitro and in vivo by coimmunoprecipitation. CaMKI binds MARK2 within its kinase domain, but only if it is activated by calcium and calmodulin. Expression of CaMKI and MARK2 in Neuro-2A (N2a) cells and in primary hippocampal neurons promotes neurite outgrowth, an effect dependent on the catalytic activities of these enzymes. In addition, decreasing MARK2 activity blocks the ability of the calcium ionophore ionomycin to promote neurite outgrowth. Finally, CaMKI phosphorylates MARK2 on novel sites within its kinase domain. Mutation of these phosphorylation sites decreases both MARK2 kinase activity and its ability to promote neurite outgrowth. Interaction of MARK2 with CaMKI results in a novel, calcium-dependent pathway that plays an important role in neuronal differentiation.
Collapse
Affiliation(s)
- Nataliya V. Uboha
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, and
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, and
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, and
| |
Collapse
|
42
|
Arimura N, Kaibuchi K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 2007; 8:194-205. [PMID: 17311006 DOI: 10.1038/nrn2056] [Citation(s) in RCA: 494] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
After they are born and differentiate, neurons break their previous symmetry, dramatically change their shape, and establish two structurally and functionally distinct compartments - axons and dendrites - within one cell. How do neurons develop their morphologically and molecularly distinct compartments? Recent studies have implicated several signalling pathways evoked by extracellular signals as having essential roles in a number of aspects of neuronal polarization.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65, Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | | |
Collapse
|
43
|
Cnops L, Hu TT, Eysel UT, Arckens L. Effect of binocular retinal lesions on CRMP2 and CRMP4 but not Dyn I and Syt I expression in adult cat area 17. Eur J Neurosci 2007; 25:1395-401. [PMID: 17425566 DOI: 10.1111/j.1460-9568.2007.05395.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Removal of retinal input from a restricted region of adult cat visual cortex leads to a substantial reorganization of the retinotopy within the sensory-deprived cortical lesion projection zone (LPZ). Still little is known about the molecular mechanisms underlying this cortical map reorganization. We chose two members of the collapsin response mediator protein (CRMP) family, CRMP2 and CRMP4, because of their involvement in neurite growth, and compared gene and protein expression levels between normal control and reorganizing visual cortex upon induction of central retinal lesions. Parallel analysis of Dynamin I (Dyn I) and Synaptotagmin I (Syt I), two molecules implicated in the exocytosis-endocytosis cycle, was performed because changes in neurotransmitter release have been implicated in cortical plasticity. Western blotting and real-time polymerase chain reaction revealed a clear time-dependent effect of retinal lesioning on CRMP2 and CRMP4 expression, with maximal impact 2 weeks post-lesion. Altered CRMP levels were not a direct consequence of decreased visual activity in the LPZ as complete surgical removal of retinal input to one hemisphere had no effect on CRMP2 or CRMP4 expression. Thus, CRMP expression is correlated to cortical reorganization following partial deafferentation of adult visual cortex. In contrast, Dyn I and Syt I were not influenced and thereby do not promote exocytosis-endocytosis cycle modifications in adult cat cortical plasticity.
Collapse
Affiliation(s)
- Lieselotte Cnops
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
44
|
Gomez N, Lu Y, Chen S, Schmidt CE. Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture. Biomaterials 2007; 28:271-84. [PMID: 16919328 DOI: 10.1016/j.biomaterials.2006.07.043] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 07/25/2006] [Indexed: 12/30/2022]
Abstract
Cell interfacing with biomaterial surfaces dictates important aspects of cell behavior. In particular, axon extension in neurons is effectively influenced by surface properties, both for the initial formation of an axon as well as for the maintenance of axon growth. Here, we investigated how neurons behaved on poly(dimethyl siloxane) (PDMS) surfaces decorated with biochemical and physical cues presented individually or in combination. In particular, nerve growth factor (NGF) was covalently tethered to PDMS to create a bioactive surface, and microtopography was introduced to the material in the form of microchannels. Embryonic hippocampal neurons were used to investigate the impact of these surface cues on polarization (i.e., axon initiation or axogenesis) and overall axon length. We found that topography had a more pronounced effect on polarization (68% increase over controls) compared to immobilized NGF (0.1 ng/mm(2)) (27% increase). However, the effect of NGF was negligible when both types of stimuli were simultaneously presented on the biomaterial surface. In addition to axon formation, chemical and physical cues are also involved in axon growth following the initiation process. Interestingly, for the same studies described above, the effects of microchannels and NGF were opposite from the effects on polarization; the most evident effect was for the immobilized growth factor (10% increase in axon length with respect to controls) whereas there was no effect in general for the microtopography. More importantly, when the two surface stimuli were presented in combination, a synergistic increase in axon length was detected (25% increase with respect to controls), which could be a result of faster polarization triggered by topography plus enhanced growth from NGF. Additionally, axon orientation was also analyzed and we found the well-known tendency of perpendicular or parallel axonal alignment to be dependent on the width and depth of the channels. This investigation thoroughly compared and distinguished the individual and combined impact of material surface properties (chemical and physical) on axogenesis from the effects on axon length. Overall, topography dominated polarization mechanisms, whereas NGF, and particularly a synergy of immobilized NGF plus topography, dominated axon length. These results could be potentially applied for the design of biomaterials in applications were axon growth is critical.
Collapse
Affiliation(s)
- Natalia Gomez
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712-1062, USA
| | | | | | | |
Collapse
|
45
|
Fröhlich T, Helmstetter D, Zobawa M, Crecelius AC, Arzberger T, Kretzschmar HA, Arnold GJ. Analysis of the HUPO Brain Proteome reference samples using 2-D DIGE and 2-D LC-MS/MS. Proteomics 2006; 6:4950-66. [PMID: 16927427 DOI: 10.1002/pmic.200600079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Within the Human Proteome Organization (HUPO) Brain Proteome Project, a pilot study was launched with reference samples shipped to nine international laboratories (see Hamacher et al., this Special Issue) to evaluate different proteome approaches in neuroscience and to build up a first version of a brain protein database. One part of the study addresses quantitative proteome alterations between three developmental stages (embryonic day 16; postnatal day 7; 8 weeks) of mouse brains. Five brains per stage were differentially analyzed by 2-D DIGE using internal standardization and overlapping pH gradients (pH 4-7 and 6-9). In total, 214 protein spots showing stage-dependent intensity alterations (> two-fold) were detected, 56 of which were identified. Several of them, e.g. members of the dihydropyrimidinase family, are known to be associated with brain development. To feed the HUPO BPP brain protein database, a robust 2-D LC-MS/MS method was applied to murine postnatal day 7 and human post-mortem brain samples. Using MASCOT and the IPI database, 350 human and 481 mouse proteins could be identified by at least two different peptides. The data are accessible through the PRIDE database (http://www.ebi.ac.uk/pride/).
Collapse
Affiliation(s)
- Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilian University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
A mature neuron is typically polarized both structurally and functionally, with a single long axon and several dendrites. Neuronal polarity is essential for unidirectional signal flow from somata or dendrites to axons. The initial event in establishing a polarized neuron is the specification of a single axon. Early in neuronal development, one immature neurite becomes differentiated from other neurites to form an axon. Although studies in the past two decades have yielded a catalog of structural, molecular, and functional differences between axons and dendrites, we are only now beginning to understand the molecular mechanisms involved in the establishment of neuronal polarity. In the last few years, neuronal polarity-regulating molecules have been revealed. There are two major signaling cascades in neuronal polarization. Several groups, including ours, reported that the phosphatidylinositol 3-kinase (PI3-kinase)/Akt/glycogen synthase kinase-3beta (GSK-3beta)/collapsin response mediator protein-2 pathway is important for axon specification and elongation. Recent studies have revealed that the positive feedback loop composed of Rho family small GTPases and the Par3/Par6/atypical protein kinase C complex plays a role in the initial events of neuronal polarization downstream of PI3-kinase. Here, we discuss the roles of signaling molecules for axon specification.
Collapse
Affiliation(s)
- Takeshi Yoshimura
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Aichi 464-8602, Japan, and
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Aichi 466-8550, Japan
| | - Nariko Arimura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Aichi 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Aichi 466-8550, Japan
| |
Collapse
|
47
|
Zolessi FR, Poggi L, Wilkinson CJ, Chien CB, Harris WA. Polarization and orientation of retinal ganglion cells in vivo. Neural Dev 2006; 1:2. [PMID: 17147778 PMCID: PMC1636330 DOI: 10.1186/1749-8104-1-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 10/13/2006] [Indexed: 11/10/2022] Open
Abstract
In the absence of external cues, neurons in vitro polarize by using intrinsic mechanisms. For example, cultured hippocampal neurons extend arbitrarily oriented neurites and then one of these, usually the one nearest the centrosome, begins to grow more quickly than the others. This neurite becomes the axon as it accumulates molecular components of the apical junctional complex. All the other neurites become dendrites. It is unclear, however, whether neurons in vivo, which differentiate within a polarized epithelium, break symmetry by using similar intrinsic mechanisms. To investigate this, we use four-dimensional microscopy of developing retinal ganglion cells (RGCs) in live zebrafish embryos. We find that the situation is indeed very different in vivo, where axons emerge directly from uniformly polarized cells in the absence of other neurites. In vivo, moreover, components of the apical complex do not localize to the emerging axon, nor does the centrosome predict the site of axon emergence. Mosaic analysis in four dimensions, using mutants in which neuroepithelial polarity is disrupted, indicates that extrinsic factors such as access to the basal lamina are critical for normal axon emergence from RGCs in vivo.
Collapse
Affiliation(s)
- Flavio R Zolessi
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lucia Poggi
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christopher J Wilkinson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
48
|
Ito H, Iwamoto I, Mizutani K, Morishita R, Deguchi T, Nozawa Y, Asano T, Nagata KI. Possible interaction of a Rho effector, Rhotekin, with a PDZ-protein, PIST, at synapses of hippocampal neurons. Neurosci Res 2006; 56:165-71. [PMID: 16934893 DOI: 10.1016/j.neures.2006.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 06/07/2006] [Accepted: 06/28/2006] [Indexed: 11/15/2022]
Abstract
Rhotekin, an effector of Rho, is highly expressed in the brain but its function is almost unknown. In an attempt to define the properties of Rhotekin in neuronal cells, we focused on its interaction with polarity-related molecules. In the present study, we raised the possibility that Rhotekin interacts with a PDZ-protein, PIST (PDZ domain protein interacting specifically with TC10) in vitro, and found that these proteins form complex in the rat brain tissues. We then demonstrated that Rhotekin and PIST are expressed in developmental stage-specific manners in the rat brain. In immunofluorescence analyses, Rhotekin and PIST were suggested to co-localize at synapses in rat primary cultured hippocampal neurons. On the other hand, PIST was found to form immunocomplex with another PDZ-binding protein, beta-catenin, in HEK293 cells and in the rat brain, and co-localized with this protein at dendritic filopods. The interaction of PIST with beta-catenin was inhibited by the presence of Rhotekin. These results suggest a possible yet unidentified role of Rhotekin, in harmony with PIST and beta-catenin, in neuronal cells.
Collapse
Affiliation(s)
- Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-Cho, Kasugai, Aichi 480-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sudo K, Ito H, Iwamoto I, Morishita R, Asano T, Nagata KI. Identification of a cell polarity-related protein, Lin-7B, as a binding partner for a Rho effector, Rhotekin, and their possible interaction in neurons. Neurosci Res 2006; 56:347-55. [PMID: 16979770 DOI: 10.1016/j.neures.2006.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/26/2006] [Accepted: 08/08/2006] [Indexed: 11/24/2022]
Abstract
Rhotekin, an effector of Rho, is highly expressed in the brain but its function(s) in neurons is almost unknown. In an attempt to define the properties of Rhotekin in neuronal cells, we focused on its interaction with polarity-related molecules. In the present study, we identified a PDZ protein, Lin-7B, as a binding partner for Rhotekin by yeast two-hybrid screening of human brain cDNA library. We then found that Rhotekin interacts with Lin-7B in in vitro pull-down assays, and forms an immunocomplex in COS7 cells and the rat brain. The C-terminal three amino acids of Rhotekin were essential for the interaction with Lin-7B. Their binding affinity became increased in the presence of active RhoA in the COS7 cell expression system. In addition, immunohistochemical analyses demonstrated that Lin-7 as well as Rhotekin is enriched in neurons. These results suggest that Lin-7 plays some role in neuronal functions in concert with Rho/Rhotekin signals.
Collapse
Affiliation(s)
- Kaori Sudo
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Skynner HA, Amos DP, Murray F, Salim K, Knowles MR, Munoz-Sanjuan I, Camargo LM, Bonnert TP, Guest PC. Proteomic analysis identifies alterations in cellular morphology and cell death pathways in mouse brain after chronic corticosterone treatment. Brain Res 2006; 1102:12-26. [PMID: 16797492 DOI: 10.1016/j.brainres.2006.04.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 03/29/2006] [Accepted: 04/16/2006] [Indexed: 01/21/2023]
Abstract
Some patients with Major Depression and other neurological afflictions display hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. HPA hyperactivity may be due to impaired feedback inhibition and manifested as increased levels of circulating cortisol. Subcutaneous implants of corticosterone pellets were used to mimic this situation in mice to gain insight into any effects on brain function by comparative proteomic analysis using two-dimensional Differential In-Gel Electrophoresis. A total of 150 different protein spots were altered by corticosterone treatment in the hypothalamus, hippocampus and cerebral cortex. Of these, 117 spots were identified by matrix-assisted laser desorption/ionization-time of flight mass fingerprinting equating to 51 different proteins. Association of these corticosterone-modulated proteins with biological functions using the Ingenuity Pathways Analysis tool showed that cell morphology was significantly altered in the hippocampus and cerebral cortex, whereas the hypothalamus showed significant changes in cell death. Ingenuity Pathways Analysis of the canonical signaling pathways showed that glycolysis and gluconeogenesis were altered in the hypothalamus and the hippocampus and all three brain regions showed changes in phenylalanine, glutamate and nitrogen metabolism. Further elucidation of these pathways could lead to identification of biomarkers for the development of pharmacological therapies targeted at neuropsychiatric disorders.
Collapse
Affiliation(s)
- Heather A Skynner
- Department of Molecular and Cellular Neuroscience, Merck Sharp and Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex, UK
| | | | | | | | | | | | | | | | | |
Collapse
|