1
|
Armstrong NS, Frank CA. The calcineurin regulator Sarah enables distinct forms of homeostatic plasticity at the Drosophila neuromuscular junction. Front Synaptic Neurosci 2023; 14:1033743. [PMID: 36685082 PMCID: PMC9846150 DOI: 10.3389/fnsyn.2022.1033743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: The ability of synapses to maintain physiological levels of evoked neurotransmission is essential for neuronal stability. A variety of perturbations can disrupt neurotransmission, but synapses often compensate for disruptions and work to stabilize activity levels, using forms of homeostatic synaptic plasticity. Presynaptic homeostatic potentiation (PHP) is one such mechanism. PHP is expressed at the Drosophila melanogaster larval neuromuscular junction (NMJ) synapse, as well as other NMJs. In PHP, presynaptic neurotransmitter release increases to offset the effects of impairing muscle transmitter receptors. Prior Drosophila work has studied PHP using different ways to perturb muscle receptor function-either acutely (using pharmacology) or chronically (using genetics). Some of our prior data suggested that cytoplasmic calcium signaling was important for expression of PHP after genetic impairment of glutamate receptors. Here we followed up on that observation. Methods: We used a combination of transgenic Drosophila RNA interference and overexpression lines, along with NMJ electrophysiology, synapse imaging, and pharmacology to test if regulators of the calcium/calmodulin-dependent protein phosphatase calcineurin are necessary for the normal expression of PHP. Results: We found that either pre- or postsynaptic dysregulation of a Drosophila gene regulating calcineurin, sarah (sra), blocks PHP. Tissue-specific manipulations showed that either increases or decreases in sra expression are detrimental to PHP. Additionally, pharmacologically and genetically induced forms of expression of PHP are functionally separable depending entirely upon which sra genetic manipulation is used. Surprisingly, dual-tissue pre- and postsynaptic sra knockdown or overexpression can ameliorate PHP blocks revealed in single-tissue experiments. Pharmacological and genetic inhibition of calcineurin corroborated this latter finding. Discussion: Our results suggest tight calcineurin regulation is needed across multiple tissue types to stabilize peripheral synaptic outputs.
Collapse
Affiliation(s)
- Noah S. Armstrong
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States,*Correspondence: C. Andrew Frank
| |
Collapse
|
2
|
Yu H, He L, Li ZQ, Li N, Ou-Yang YY, Huang GH. Altering of host larval (Spodoptera exigua) calcineurin activity in response to ascovirus infection. PEST MANAGEMENT SCIENCE 2020; 76:1048-1059. [PMID: 31515935 DOI: 10.1002/ps.5615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Calcineurin (CaN) is involved in numerous cellular processes and Ca2+ -dependent signal transduction pathways. According to our previous transcriptome studies, thousands of host larval (Spodoptera exigua) transcripts were downregulated after the infection of Heliothis virescent ascovirus 3h (HvAV-3h), while the Spodoptera exigua calcineurin genes (SeCaNs) were significantly upregulated. To understand the regulation of SeCaNs in S. exigua larvae during the infection of HvAV-3h, the functions of CaN subunit A (SeCaN-SubA) and CaN binding protein (SeCaN-BP) were analysed. RESULTS The in vitro assays indicated that the bacterial expressed SeCaN-SubA is an acid phosphatase, but no phosphatase activity was detected with the purified SeCaN-BP. The transcription level of SeCaN-SubA was upregulated after HvAV-3h infection and the CaN activity was significantly increased after HvAV-3h infection in S. exigua larvae. Interestingly, the SeCaN-BP transcripts were only detectable in the HvAV-3h infected larvae. Further immunoblotting results consistently agree with those obtained by qPCR, indicating that the infection of HvAV-3h causes the upregulated expression of SeCaN-SubA and the appearance of SeCaN-BP. An interaction between the cleaved SeCaN-SubA and SeCaN-BP was detected by co-immunoprecipitation assays, and the expression of SeCaN-BP in Spodoptera frugiperda-9 (Sf9) cells can help to increase the CaN activity of SeCaN-SubA. Further investigations with CaN inhibitors suggested that HvAV-3h. Further investigations with CaN inhibitors suggested that the inhibition on host larval CaN activity can also inhibit the viral replication of HvAV-3h. CONCLUSION The increase in CaN activity caused by HvAV-3h infection might be due to the upregulation of SeCaN-SubA and the induced expression of SeCaN-BP, and increased CaN activity is essential for ascoviral replication. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Lei He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| |
Collapse
|
3
|
Pangrsic T, Vogl C. Balancing presynaptic release and endocytic membrane retrieval at hair cell ribbon synapses. FEBS Lett 2018; 592:3633-3650. [PMID: 30251250 DOI: 10.1002/1873-3468.13258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/07/2022]
Abstract
The timely and reliable processing of auditory and vestibular information within the inner ear requires highly sophisticated sensory transduction pathways. On a cellular level, these demands are met by hair cells, which respond to sound waves - or alterations in body positioning - by releasing glutamate-filled synaptic vesicles (SVs) from their presynaptic active zones with unprecedented speed and exquisite temporal fidelity, thereby initiating the auditory and vestibular pathways. In order to achieve this, hair cells have developed anatomical and molecular specializations, such as the characteristic and name-giving 'synaptic ribbons' - presynaptically anchored dense bodies that tether SVs prior to release - as well as other unique or unconventional synaptic proteins. The tightly orchestrated interplay between these molecular components enables not only ultrafast exocytosis, but similarly rapid and efficient compensatory endocytosis. So far, the knowledge of how endocytosis operates at hair cell ribbon synapses is limited. In this Review, we summarize recent advances in our understanding of the SV cycle and molecular anatomy of hair cell ribbon synapses, with a focus on cochlear inner hair cells.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, University Medical Center Göttingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, University Medical Center Göttingen, Germany
| |
Collapse
|
4
|
Tarasova EO, Gaydukov AE, Balezina OP. Calcineurin and Its Role in Synaptic Transmission. BIOCHEMISTRY (MOSCOW) 2018; 83:674-689. [PMID: 30195324 DOI: 10.1134/s0006297918060056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcineurin (CaN) is a serine/threonine phosphatase widely expressed in different cell types and structures including neurons and synapses. The most studied role of CaN is its involvement in the functioning of postsynaptic structures of central synapses. The role of CaN in the presynaptic structures of central and peripheral synapses is less understood, although it has generated a considerable interest and is a subject of a growing number of studies. The regulatory role of CaN in synaptic vesicle endocytosis in the synapse terminals is actively studied. In recent years, new targets of CaN have been identified and its role in the regulation of enzymes and neurotransmitter secretion in peripheral neuromuscular junctions has been revealed. CaN is the only phosphatase that requires calcium and calmodulin for activation. In this review, we present details of CaN molecular structure and give a detailed description of possible mechanisms of CaN activation involving calcium, enzymes, and endogenous and exogenous inhibitors. Known and newly discovered CaN targets at pre- and postsynaptic levels are described. CaN activity in synaptic structures is discussed in terms of functional involvement of this phosphatase in synaptic transmission and neurotransmitter release.
Collapse
Affiliation(s)
- E O Tarasova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A E Gaydukov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - O P Balezina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
5
|
Kopke DL, Broadie K. FM Dye Cycling at the Synapse: Comparing High Potassium Depolarization, Electrical and Channelrhodopsin Stimulation. J Vis Exp 2018:57765. [PMID: 29889207 PMCID: PMC6101380 DOI: 10.3791/57765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
FM dyes are used to study the synaptic vesicle (SV) cycle. These amphipathic probes have a hydrophilic head and hydrophobic tail, making them water-soluble with the ability to reversibly enter and exit membrane lipid bilayers. These styryl dyes are relatively non-fluorescent in aqueous medium, but insertion into the outer leaflet of the plasma membrane causes a >40X increase in fluorescence. In neuronal synapses, FM dyes are internalized during SV endocytosis, trafficked both within and between SV pools, and released with SV exocytosis, providing a powerful tool to visualize presynaptic stages of neurotransmission. A primary genetic model of glutamatergic synapse development and function is the Drosophila neuromuscular junction (NMJ), where FM dye imaging has been used extensively to quantify SV dynamics in a wide range of mutant conditions. The NMJ synaptic terminal is easily accessible, with a beautiful array of large synaptic boutons ideal for imaging applications. Here, we compare and contrast the three ways to stimulate the Drosophila NMJ to drive activity-dependent FM1-43 dye uptake/release: 1) bath application of high [K+] to depolarize neuromuscular tissues, 2) suction electrode motor nerve stimulation to depolarize the presynaptic nerve terminal, and 3) targeted transgenic expression of channelrhodopsin variants for light-stimulated, spatial control of depolarization. Each of these methods has benefits and disadvantages for the study of genetic mutation effects on the SV cycle at the Drosophila NMJ. We will discuss these advantages and disadvantages to assist the selection of the stimulation approach, together with the methodologies specific to each strategy. In addition to fluorescent imaging, FM dyes can be photoconverted to electron-dense signals visualized using transmission electron microscopy (TEM) to study SV cycle mechanisms at an ultrastructural level. We provide the comparisons of confocal and electron microscopy imaging from the different methods of Drosophila NMJ stimulation, to help guide the selection of future experimental paradigms.
Collapse
Affiliation(s)
| | - Kendal Broadie
- Departments of Biological Sciences, Pharmacology, Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center;
| |
Collapse
|
6
|
Pro-apoptotic liposomes-nanobubble conjugate synergistic with paclitaxel: a platform for ultrasound responsive image-guided drug delivery. Sci Rep 2018; 8:2624. [PMID: 29422676 PMCID: PMC5805674 DOI: 10.1038/s41598-018-21084-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/24/2018] [Indexed: 01/02/2023] Open
Abstract
Recently, liposomes-microbubble conjugates have emerged as a promising ultrasound (US)-responsive platform for cancer therapeutics. However, these are limited by their size in terms of tumor penetration. Additionally, there have been no attempts to enhance the smartness of such conjugates which have been used only as passive carriers. The present study explores submicron sized (756 ± 180.0 nm), US-responsive, phosphatidylserine (PS)-based paclitaxel-liposomes-nanobubble conjugates (PSPLBC) with an additional pro-apoptotic effect towards enhanced anti-cancer efficacy and image-guidance. The developed PSPLBC underwent cavitation in response to US-trigger, exhibiting in vitro pulsatile release with a 10-fold increase in cellular internalization as compared to control. The PS-containing formulations were found to be pro-apoptotic and exhibited strong synergism between PS and paclitaxel (Combination Index, CI < 0.1). This resulted in significantly high anti-tumor efficacy both in vitro and in vivo conditions (98.3 ± 0.8% tumor growth inhibition, TGI). Significant reduction in tumor proliferation index and MVD, as well as significant increase in apoptosis, were observed for the treated tumor sections. Further, the intravenous (i.v.) administration of PSPLBC enhanced the tumor US-contrast by 2-fold as compared to SonoVue. These results, show the potential of PSPLBC as a promising non-invasive, pro-apoptotic, smart DDS for US-responsive, image-guided cancer therapeutics.
Collapse
|
7
|
In Vivo Calcium Signaling during Synaptic Refinement at the Drosophila Neuromuscular Junction. J Neurosci 2017; 37:5511-5526. [PMID: 28476946 DOI: 10.1523/jneurosci.2922-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
Abstract
Neural activity plays a key role in pruning aberrant synapses in various neural systems, including the mammalian cortex, where low-frequency (0.01 Hz) calcium oscillations refine topographic maps. However, the activity-dependent molecular mechanisms remain incompletely understood. Activity-dependent pruning also occurs at embryonic Drosophila neuromuscular junctions (NMJs), where low-frequency Ca2+ oscillations are required for synaptic refinement and the response to the muscle-derived chemorepellant Sema2a. We examined embryonic growth cone filopodia in vivo to directly observe their exploration and to analyze the episodic Ca2+ oscillations involved in refinement. Motoneuron filopodia repeatedly contacted off-target muscle fibers over several hours during late embryogenesis, with episodic Ca2+ signals present in both motile filopodia as well as in later-stabilized synaptic boutons. The Ca2+ transients matured over several hours into regular low-frequency (0.03 Hz) oscillations. In vivo imaging of intact embryos of both sexes revealed that the formation of ectopic filopodia is increased in Sema2a heterozygotes. We provide genetic evidence suggesting a complex presynaptic Ca2+-dependent signaling network underlying refinement that involves the phosphatases calcineurin and protein phosphatase-1, as well the serine/threonine kinases CaMKII and PKA. Significantly, this network influenced the neuron's response to the muscle's Sema2a chemorepellant, critical for the removal of off-target contacts.SIGNIFICANCE STATEMENT To address the question of how synaptic connectivity is established during development, we examined the behavior of growth cone filopodia during the exploration of both correct and off-target muscle fibers in Drosophila embryos. We demonstrate that filopodia repeatedly contact off-target muscles over several hours, until they ultimately retract. We show that intracellular signals are observed in motile and stabilized "ectopic" contacts. Several genetic experiments provide insight in the molecular pathway underlying network refinement, which includes oscillatory calcium signals via voltage-gated calcium channels as a key component. Calcium orchestrates the activity of several kinases and phosphatases, which interact in a coordinated fashion to regulate chemorepulsion exerted by the muscle.
Collapse
|
8
|
Wong CO, Chen K, Lin YQ, Chao Y, Duraine L, Lu Z, Yoon WH, Sullivan JM, Broadhead GT, Sumner CJ, Lloyd TE, Macleod GT, Bellen HJ, Venkatachalam K. A TRPV channel in Drosophila motor neurons regulates presynaptic resting Ca2+ levels, synapse growth, and synaptic transmission. Neuron 2014; 84:764-77. [PMID: 25451193 DOI: 10.1016/j.neuron.2014.09.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/30/2022]
Abstract
Presynaptic resting Ca(2+) influences synaptic vesicle (SV) release probability. Here, we report that a TRPV channel, Inactive (Iav), maintains presynaptic resting [Ca(2+)] by promoting Ca(2+) release from the endoplasmic reticulum in Drosophila motor neurons, and is required for both synapse development and neurotransmission. We find that Iav activates the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin, which is essential for presynaptic microtubule stabilization at the neuromuscular junction. Thus, loss of Iav induces destabilization of presynaptic microtubules, resulting in diminished synaptic growth. Interestingly, expression of human TRPV1 in Iav-deficient motor neurons rescues these defects. We also show that the absence of Iav causes lower SV release probability and diminished synaptic transmission, whereas Iav overexpression elevates these synaptic parameters. Together, our findings indicate that Iav acts as a key regulator of synaptic development and function by influencing presynaptic resting [Ca(2+)].
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Kuchuan Chen
- Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Yong Qi Lin
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Lita Duraine
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Zhongmin Lu
- Integrative Biology and Neuroscience program, Florida Atlantic University and Max Planck Florida Institute, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Wan Hee Yoon
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Geoffrey T Broadhead
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Gregory T Macleod
- Department of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Hugo J Bellen
- Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA; Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA; Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA; Graduate Programs in Cell and Regulatory Biology (CRB) and Neuroscience, Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030.
| |
Collapse
|
9
|
Wu XS, Zhang Z, Zhao WD, Wang D, Luo F, Wu LG. Calcineurin is universally involved in vesicle endocytosis at neuronal and nonneuronal secretory cells. Cell Rep 2014; 7:982-8. [PMID: 24835995 DOI: 10.1016/j.celrep.2014.04.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/05/2014] [Accepted: 04/11/2014] [Indexed: 01/28/2023] Open
Abstract
Calcium influx triggers and accelerates endocytosis in nerve terminals and nonneuronal secretory cells. Whether calcium/calmodulin-activated calcineurin, which dephosphorylates endocytic proteins, mediates this process is highly controversial for different cell types, developmental stages, and endocytic forms. Using three preparations that previously produced discrepant results (i.e., large calyx-type synapses, conventional cerebellar synapses, and neuroendocrine chromaffin cells containing large dense-core vesicles), we found that calcineurin gene knockout consistently slowed down endocytosis, regardless of cell type, developmental stage, or endocytic form (rapid or slow). In contrast, calcineurin and calmodulin blockers slowed down endocytosis at a relatively small calcium influx, but did not inhibit endocytosis at a large calcium influx, resulting in false-negative results. These results suggest that calcineurin is universally involved in endocytosis. They may also help explain the discrepancies among previous pharmacological studies. We therefore suggest that calcineurin should be included as a key player in mediating calcium-triggered and -accelerated vesicle endocytosis.
Collapse
Affiliation(s)
- Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Zhen Zhang
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Wei-Dong Zhao
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Dongsheng Wang
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Fujun Luo
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Palmowski P, Rogowska-Wrzesinska A, Williamson J, Beck HC, Mikkelsen JD, Hansen HH, Jensen ON. Acute Phencyclidine Treatment Induces Extensive and Distinct Protein Phosphorylation in Rat Frontal Cortex. J Proteome Res 2014; 13:1578-92. [DOI: 10.1021/pr4010794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pawel Palmowski
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - James Williamson
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Hans C. Beck
- Danish Technological Institute, Kongsvang Allé 29, DK-8000 Aarhus, Denmark
| | | | | | - Ole N. Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
11
|
Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 2013; 76:301-31. [PMID: 24274740 DOI: 10.1146/annurev-physiol-021113-170305] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892; ,
| | | | | | | |
Collapse
|
12
|
Chen X, Zhang Y. Molecular cloning and characterization of the calcineurin subunit A from Plutella xylostella. Int J Mol Sci 2013; 14:20692-703. [PMID: 24132154 PMCID: PMC3821638 DOI: 10.3390/ijms141020692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/26/2022] Open
Abstract
Calcineurin (or PP2B) has been reported to be involved in an array of physiological process in insects, and the calcineurin subunit A (CNA) plays a central role in calcineurin activity. We cloned the CNA gene from Plutella xylostella (PxCNA). This gene contains an ORF of 1488 bp that encodes a 495 amino acid protein, showing 98%, and 80% identities to the CNA of Bombyx mori, and humans respectively. The full-length of PxCNA and its catalytic domain (CNA(1-341), defined as PxCNα) were both expressed in Escherichia coli. Purified recombinant PxCNA displayed no phosphatase activity, whereas recombinant PxCNα showed high phosphatase activity with a Km of 4.6 mM and a kcat of 0.66 S(-1) against pNPP. It could be activated at different degrees by Mn2+, Ni2+, Mg2+, and Ca2+. The optimum reaction pH was about 7.5 and the optimum reaction temperature was around 45 °C. An in vitro inhibition assay showed that okadaic acid (OA) and cantharidin (CTD) competitively inhibited recombinant PxCNα activity with the IC50 values of 8.95 μM and 77.64 μM, respectively. However, unlike previous reports, pyrethroid insecticides were unable to inhibit recombinant PxCNα, indicating that the P. xylostella calcineurin appears not to be sensitive to class II pyrethroid insecticides.
Collapse
Affiliation(s)
- Xi'en Chen
- Key Laboratory of Plant Protection Resources & Pest Management of Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | | |
Collapse
|
13
|
Morgan JR, Comstra HS, Cohen M, Faundez V. Presynaptic membrane retrieval and endosome biology: defining molecularly heterogeneous synaptic vesicles. Cold Spring Harb Perspect Biol 2013; 5:a016915. [PMID: 24086045 DOI: 10.1101/cshperspect.a016915] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The release and uptake of neurotransmitters by synaptic vesicles is a tightly controlled process that occurs in response to diverse stimuli at morphologically disparate synapses. To meet these architectural and functional synaptic demands, it follows that there should be diversity in the mechanisms that control their secretion and retrieval and possibly in the composition of synaptic vesicles within the same terminal. Here we pay particular attention to areas where such diversity is generated, such as the variance in exocytosis/endocytosis coupling, SNAREs defining functionally diverse synaptic vesicle populations and the adaptor-dependent sorting machineries capable of generating vesicle diversity. We argue that there are various synaptic vesicle recycling pathways at any given synapse and discuss several lines of evidence that support the role of the endosome in synaptic vesicle recycling.
Collapse
Affiliation(s)
- Jennifer R Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | | | | | |
Collapse
|
14
|
Thakur A, Joshi N, Shanmugam T, Banerjee R. Proapoptotic miltefosine nanovesicles show synergism with paclitaxel: Implications for glioblastoma multiforme therapy. Cancer Lett 2012; 334:274-83. [PMID: 22935677 DOI: 10.1016/j.canlet.2012.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 11/19/2022]
Abstract
Hexadecylphosphocholine (HePC) or miltefosine based proapoptotic lipid nanovesicles encapsulating paclitaxel for synergistic anticancer effect of paclitaxel and miltefosine in chemoresistant human glioblastoma multiforme (U-87 MG) overexpressing multidrug resistance 1 (MDR1) gene product P-glycoprotein (P-gp), were developed in this study. The nanovesicles had 100-200nm size and a negative zeta potential (∼-25mV) and optimized for miltefosine content based on their physiochemical properties. With a high encapsulation efficiency of 94%, the nanovesicles showed sustained release of paclitaxel in nasal fluid and triggered release in the cerebrospinal fluid. Synergistic action of paclitaxel and miltefosine was observed with a low IC50 of 162±5nM. The nanovesicle also overcame drug resistance and showed ATP dependent uptake via clathrin mediated pathway in glioblastoma cells. An improved therapeutic efficacy in comparison to Taxol®, the current clinical formulation of paclitaxel was observed. Efficient brain uptake of the nanovesicles upon intranasal administration was observed in vivo and the nanovesicles were also found to be able to cross blood brain barrier. These studies therefore suggest the therapeutic potential of proapoptotic lipid nanovesicles and their feasibility for intranasal administration in the treatment of chemoresistant glioblastoma.
Collapse
Affiliation(s)
- Ankita Thakur
- WRCBB, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | | | | | |
Collapse
|
15
|
Koch M, Holt M. Coupling exo- and endocytosis: an essential role for PIP₂ at the synapse. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1114-32. [PMID: 22387937 DOI: 10.1016/j.bbalip.2012.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Chemical synapses are specialist points of contact between two neurons, where information transfer takes place. Communication occurs through the release of neurotransmitter substances from small synaptic vesicles in the presynaptic terminal, which fuse with the presynaptic plasma membrane in response to neuronal stimulation. However, as neurons in the central nervous system typically only possess ~200 vesicles, high levels of release would quickly lead to a depletion in the number of vesicles, as well as leading to an increase in the area of the presynaptic plasma membrane (and possible misalignment with postsynaptic structures). Hence, synaptic vesicle fusion is tightly coupled to a local recycling of synaptic vesicles. For a long time, however, the exact molecular mechanisms coupling fusion and subsequent recycling remained unclear. Recent work now indicates a unique role for the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)), acting together with the vesicular protein synaptotagmin, in coupling these two processes. In this work, we review the evidence for such a mechanism and discuss both the possible advantages and disadvantages for vesicle recycling (and hence signal transduction) in the nervous system. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Marta Koch
- Laboratory of Neurogenetics, VIB Center for the Biology of Disease and K.U. Leuven Center for Human Genetics, O&N4 Herestraat 49, 3000 Leuven, Belgium
| | | |
Collapse
|
16
|
Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles. Nat Neurosci 2011; 15:243-9. [PMID: 22197832 PMCID: PMC3435110 DOI: 10.1038/nn.3013] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022]
Abstract
Synaptotagmin I (syt1) is required for normal rates of synaptic vesicle endo- and exocytosis. However, whether the kinetic defects observed during endocytosis in syt1 knock-out neurons are secondary to defective exocytosis, or whether syt1 directly regulates the rate of vesicle retrieval, remains unresolved. In order to address this question, it is necessary to dissociate these two activities. Here, we have uncoupled the function of syt1 in exo- and endocytosis by re-targeting of the protein, or via mutagenesis of its tandem C2-domains; the impact of these manipulations on exo- and endocytosis were analyzed via electrophysiology, in conjunction with optical imaging of the vesicle cycle. These experiments uncovered a direct role for syt1 in endocytosis. Surprisingly, either C2-domain of syt1 - C2A or C2B - was able to function as Ca2+-sensor for endocytosis. Hence, syt1 functions as a dual Ca2+ sensor for both endo- and exocytosis, potentially coupling these two limbs of the vesicle cycle.
Collapse
|
17
|
Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nat Rev Neurosci 2011; 12:127-38. [DOI: 10.1038/nrn2948] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Akbergenova Y, Bykhovskaia M. Synapsin maintains the reserve vesicle pool and spatial segregation of the recycling pool in Drosophila presynaptic boutons. Brain Res 2007; 1178:52-64. [PMID: 17904536 DOI: 10.1016/j.brainres.2007.08.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 08/09/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
We employed optical detection of the lipophylic dye FM1-43 and focal recordings of quantal release to investigate how synapsin affects vesicle cycling at the neuromuscular junction of synapsin knockout (Syn KO) Drosophila. Loading the dye employing high K+ stimulation, which presumably involves the recycling pool of vesicles in exo/endocytosis, stained the periphery of wild type (WT) boutons, while in Syn KO the dye was redistributed towards the center of the bouton. When endocytosis was promoted by cyclosporin A pretreatment, the dye uptake was significantly enhanced in WT boutons, and the entire boutons were stained, suggesting staining of the reserve vesicle pool. In Syn KO boutons, the same loading paradigm produced fainter staining and significantly faster destaining. When the axon was stimulated electrically, a distinct difference in dye loading patterns was observed in WT boutons at different stimulation frequencies: a low stimulation frequency (3 Hz) produced a ring-shaped staining pattern, while at a higher frequency (10 Hz) the dye was redistributed towards the center of the bouton and the fluorescence intensity was significantly increased. This difference in staining patterns was essentially disrupted in Syn KO boutons, although synapsin did not affect the rate of quantal release. Stimulation of the nerve in the presence of bafilomycin, the blocker of the transmitter uptake, produced significantly stronger depression in Syn KO boutons. These results, taken together, suggest that synapsin maintains the reserve pool of vesicles and segregation between the recycling and reserve pools, and that it mediates mobilization of the reserve pool during intense stimulation.
Collapse
Affiliation(s)
- Yulia Akbergenova
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, PA 18015, USA
| | | |
Collapse
|
19
|
Kidokoro Y. Vesicle trafficking and recycling at the neuromuscular junction: two pathways for endocytosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:145-64. [PMID: 17137927 DOI: 10.1016/s0074-7742(06)75007-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Yoshiaki Kidokoro
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
20
|
Keating DJ, Chen C, Pritchard MA. Alzheimer's disease and endocytic dysfunction: clues from the Down syndrome-related proteins, DSCR1 and ITSN1. Ageing Res Rev 2006; 5:388-401. [PMID: 16442855 DOI: 10.1016/j.arr.2005.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 11/19/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Down syndrome (DS) is a genetically-based disorder which results in multiple conditions for sufferers. Amongst these is a common early incidence of Alzheimer's disease (AD) which usually affects DS individuals by their mid 40s. This fact provides a clue that one or more of the genes located on chromosome 21 may be involved in the onset of AD. Current evidence suggests that endosomal disorders may underlie the earliest pathology of AD, preceding the classical pathological markers of beta-amyloid plaque deposition and neurofibrillary tangles. Therefore, any genes involved in endocytosis and vesicle trafficking which are over-expressed in DS are novel candidates in the pathogenesis of AD. Intersectin-1 (ITSN1) and Down syndrome candidate region 1 (DSCR1) are two such genes. Extensive in vitro data and data from Drosophila indicates that the over-expression of either of these genes or their products results in inhibition or ablation of endocytosis in neuronal as well as non-neuronal cells. This review discusses in detail the known and potential roles of ITSN1 and DSCR1 in DS, AD, endocytosis and vesicle trafficking.
Collapse
Affiliation(s)
- Damien J Keating
- Prince Henry's Institute of Medical Research, Clayton, Vic., Australia
| | | | | |
Collapse
|
21
|
Elhamdani A, Azizi F, Artalejo CR. Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J Neurosci 2006; 26:3030-6. [PMID: 16540581 PMCID: PMC6673983 DOI: 10.1523/jneurosci.5275-05.2006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.
Collapse
Affiliation(s)
- Abdeladim Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
22
|
Smillie KJ, Evans GJO, Cousin MA. Developmental change in the calcium sensor for synaptic vesicle endocytosis in central nerve terminals. J Neurochem 2005; 94:452-8. [PMID: 15998295 PMCID: PMC2040260 DOI: 10.1111/j.1471-4159.2005.03213.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic vesicle endocytosis is stimulated by calcium influx in mature central nerve terminals via activation of the calcium-dependent protein phosphatase, calcineurin. However, in different neuronal preparations calcineurin activity is either inhibitory, stimulatory or irrelevant to the process. We addressed this inconsistency by investigating the requirement for calcineurin activity in synaptic vesicle endocytosis during development, using vesicle recycling assays in isolated nerve terminals. We show that endocytosis occurs independently of calcineurin activity in immature nerve terminals, and that a calcineurin requirement develops 2-4 weeks after birth. Calcineurin-independent endocytosis is not due to the absence of calcineurin activity, since calcineurin is present in immature nerve terminals and its substrate, dynamin I, is dephosphorylated on depolarization. Calcineurin-independent endocytosis is calcium-dependent, since substitution of the divalent cation, barium, inhibits the process. Finally, we demonstrated that in primary neuronal cultures derived from neonatal rats, endocytosis that was initially calcineurin-independent developed a calcineurin requirement on maturation in culture. Our data account for the apparent inconsistencies regarding the role of calcineurin in synaptic vesicle endocytosis, and we propose that an unidentified calcium sensor exists to couple calcium influx to endocytosis in immature nerve terminals.
Collapse
Affiliation(s)
| | | | - Michael A. Cousin
- Author to whom correspondence should be addressed, Membrane Biology Group, Division of Biomedical and Clinical Laboratory Sciences, George Square, University of Edinburgh, Edinburgh, UK, EH8 9XD, Tel - +44131 6503259, Fax - +44131 6506527, Email -
| |
Collapse
|
23
|
Silverman-Gavrila LB, Orth PMR, Charlton MP. Phosphorylation-dependent low-frequency depression at phasic synapses of a crayfish motoneuron. J Neurosci 2005; 25:3168-80. [PMID: 15788774 PMCID: PMC6725072 DOI: 10.1523/jneurosci.4908-04.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 02/11/2005] [Accepted: 02/15/2005] [Indexed: 01/24/2023] Open
Abstract
Extremes in presynaptic differentiation can be studied at the crayfish leg extensor muscle where, on the same muscle fiber, one motoneuron makes "phasic" depressing synapses that have a high probability of neurotransmitter release and another motoneuron makes "tonic," low-probability, facilitating synapses. The large motor axons permit intracellular access to presynaptic sites. We examined the role of phosphorylation during low-frequency depression (LFD) in the relatively little studied phasic synapses. LFD occurs with stimulation at 0.2 Hz and develops with time constants of 4 and 105 min to reach >50% depression of transmitter release in 60 min similar to long-term depression in mammals. LFD is not associated with changes in postsynaptic sensitivity to transmitter and thus is a presynaptic event, although it is not accompanied by changes in the presynaptic action potential. Blockade of protein kinases accelerated the slow phase of LFD, but stimulation of kinases reduced depression. Blockade of protein phosphatases 1A/2A reversed the slow phase. When calcineurin was inhibited, both phases of LFD were abolished, and facilitation occurred instead. Immunostaining showed calcineurin-like immunoreactivity in synaptic terminals. Recovery from LFD occurred in approximately 1 h if stimulation frequency was reduced to 0.0016 Hz. Recovery was blocked by kinase inhibition. This study shows that phosphorylation-dependent mechanisms are involved in LFD and suggests that exocytosis is controlled by conditions that shift the balance between phosphorylated and unphosphorylated substrates. The shift can occur by alteration in the relative activities of protein kinases and phosphatases.
Collapse
|
24
|
Kidokoro Y, Kuromi H, Delgado R, Maureira C, Oliva C, Labarca P. Synaptic vesicle pools and plasticity of synaptic transmission at the Drosophila synapse. ACTA ACUST UNITED AC 2005; 47:18-32. [PMID: 15572160 DOI: 10.1016/j.brainresrev.2004.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2004] [Indexed: 11/25/2022]
Abstract
Our knowledge on the Drosophila neuromuscular synapse is rapidly expanding. Thus, this synapse offers an excellent model for studies of the molecular mechanism of synaptic transmission and synaptic plasticity. Two synaptic vesicle (SV) pools have been identified and characterized using a fluorescent styryl dye, FM1-43, to stain SVs. They are termed the exo/endo cycling pool (ECP), which corresponds to the readily releasable pool (RRP) defined electrophysiologically, and the reserve pool (RP). These two pools were identified first in a temperature-sensitive paralytic mutant, shibire, and subsequently confirmed in wild-type larvae. The ECP participates in synaptic transmission during low frequency firing of presynaptic nerves and locates in the periphery of presynaptic boutons in the vicinity of release sites, while SVs in the RP spread toward the center of boutons and are recruited only during tetanic stimulation. These two pools are separately replenished by endocytosis. Cyclic AMP facilitates recruitment of SVs from the RP to the ECP. Activation of presynaptic metabotropic glutamate receptors recruits SVs from the RP and enhances SV release by elevation of the cAMP level. Memory mutants that have defects in the cAMP/PKA cascade, dunce and rutabaga, exhibit reduced levels of recruitment of synaptic SVs from the RP to the ECP and have limited short-term synaptic plasticity. SV mobilization between the two pools could be a key step for changes in synaptic efficacy. Since a variety of mutants that have distinct defects in synaptic transmission are available for detailed studies of synaptic function, this direction of approach in Drosophila seems promising.
Collapse
Affiliation(s)
- Yoshiaki Kidokoro
- Institute for Behavioral Sciences, Gunma University of School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Kumashiro S, Lu YF, Tomizawa K, Matsushita M, Wei FY, Matsui H. Regulation of synaptic vesicle recycling by calcineurin in different vesicle pools. Neurosci Res 2005; 51:435-43. [PMID: 15740806 DOI: 10.1016/j.neures.2004.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 12/21/2004] [Accepted: 12/21/2004] [Indexed: 11/19/2022]
Abstract
The synaptic vesicles keep recycling by the processes of endocytosis and exocytosis to maintain the normal synaptic transmission. The synaptic vesicles are classified as the readily releasable pool (RRP) and the reserve pool (RP). In the endocytosis process, calcineurin (CaN), a Ca2+/calmodulin-dependent protein phosphatase, has been shown to play important roles. However, it is unclear about its roles in different vesicle pools. Here, we investigated the role of CaN in the regulation of vesicle recycling in the RRP and RP. Vesicle recycling was monitored by using fluorescent dyes FM1-43 and FM4-64 in the primary cultures of hippocampal neurons. Inhibition of CaN by FK506 and cyclosporin A suppressed the endocytosis in the RP, but not in the RRP. Inhibition of CaN also restrained the exocytic process triggered by 10 Hz stimulation, but had no effect on 3-5 Hz stimulation-induced exocytosis. FK506 also reduced the total vesicle pool size in the synaptic terminals. A synthesized CaN inhibitory peptide showed the similar effects as FK506 and cyclosporin A. These results revealed a novel mechanism that CaN plays critical roles in the distinct vesicle recycling processes.
Collapse
Affiliation(s)
- Susumu Kumashiro
- Department of Physiology, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Matthies HJG, Broadie K. Techniques to dissect cellular and subcellular function in the Drosophila nervous system. Methods Cell Biol 2004; 71:195-265. [PMID: 12884693 DOI: 10.1016/s0091-679x(03)01011-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich J G Matthies
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
27
|
Abstract
The molecular mechanisms of learning and memory, and the underlying bidirectional changes in synaptic plasticity that sustain them largely implicate protein kinases and phosphatases. Specifically, Ca(2+)-dependent kinases and phosphatases actively control neuronal processing by forming a tightly regulated balance in which they oppose each other. In this balance, calcineurin (PP2B) is a critical protein phosphatase whose main function is to negatively modulate learning, memory, and plasticity. It acts by dephosphorylating numerous substrates in different neuronal compartments. This review outlines some of CN neuronal targets and their implication in synaptic functions, and describes the role of CN in the acquisition, storage, retrieval, and extinction of memory, as well as in bidirectional plasticity.
Collapse
Affiliation(s)
- Isabelle M Mansuy
- Department of Biology, Swiss Federal Institute of Technology, ETH Hönggerberg HPM D24, CH-8093, Zurich, Switzerland
| |
Collapse
|
28
|
Renden RB, Broadie K. Mutation and activation of Galpha s similarly alters pre- and postsynaptic mechanisms modulating neurotransmission. J Neurophysiol 2003; 89:2620-38. [PMID: 12611964 DOI: 10.1152/jn.01072.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Constitutive activation of Galphas in the Drosophila brain abolishes associative learning, a behavioral disruption far worse than that observed in any single cAMP metabolic mutant, suggesting that Galphas is essential for synaptic plasticity. The intent of this study was to examine the role of Galphas in regulating synaptic function by targeting constitutively active Galphas to either pre- or postsynaptic cells and by examining loss-of-function Galphas mutants (dgs) at the glutamatergic neuromuscular junction (NMJ) model synapse. Surprisingly, both loss of Galphas and activation of Galphas in either pre- or postsynaptic compartment similarly increased basal neurotransmission, decreased short-term plasticity (facilitation and augmentation), and abolished posttetanic potentiation. Elevated synaptic function was specific to an evoked neurotransmission pathway because both spontaneous synaptic vesicle fusion frequency and amplitude were unaltered in all mutants. In the postsynaptic cell, the glutamate receptor field was regulated by Galphas activity; based on immunocytochemical studies, GluRIIA receptor subunits were dramatically downregulated (>75% decrease) in both loss and constitutive active Galphas genotypes. In the presynaptic cell, the synaptic vesicle cycle was regulated by Galphas activity; based on FM1-43 dye imaging studies, evoked vesicle fusion rate was increased in both loss and constitutively active Galphas genotypes. An important conclusion of this study is that both increased and decreased Galphas activity very similarly alters pre- and postsynaptic mechanisms. A second important conclusion is that Galphas activity induces transynaptic signaling; targeted Galphas activation in the presynapse downregulates postsynaptic GluRIIA receptors, whereas targeted Galphas activation in the postsynapse enhances presynaptic vesicle cycling.
Collapse
Affiliation(s)
- Robert B Renden
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City 84112-0840, USA
| | | |
Collapse
|
29
|
Cousin MA, Robinson PJ. The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 2001; 24:659-65. [PMID: 11672811 DOI: 10.1016/s0166-2236(00)01930-5] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When nerve terminals in the brain are stimulated, a group of phosphoproteins called the dephosphins are coordinately dephosphorylated by calcineurin, the Ca(2+)-dependent protein phosphatase. Amazingly, the seven presently known dephosphins are not structurally related, yet each has been independently shown to be essential for synaptic vesicle endocytosis (SVE). Nowhere else in biology is there a similar example of the coordinated dephosphorylation of such a large group of proteins each sharing roles in the same biological response. This suggests that dephosphorylation and phosphorylation of the dephosphins is essential for SVE. Recent studies in synaptosomes have confirmed this view, with calcineurin-mediated dephosphorylation of the dephosphins essential for triggering SVE. The phosphorylation cycle of the dephosphins might regulate SVE by targeting the proteins to sites of action and by stimulating the assembly of several large essential endocytic protein complexes.
Collapse
Affiliation(s)
- M A Cousin
- Membrane Biology Group, Division of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, George Square, EH8 9XD, Edinburgh, UK
| | | |
Collapse
|
30
|
Watari E, Shinya E, Kurane S, Takahashi H. Effects of cyclosporin A on cell fusion in a monkey kidney cell line persistently infected with measles virus. Intervirology 2001; 44:209-14. [PMID: 11509881 DOI: 10.1159/000050048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The authors studied the effects of immunosuppressive peptide cyclosporin A (CsA) on cell fusion efficiency in cells persistently infected with measles virus (448-PI-Vero cells). Treatment of 448-PI-Vero cells with 5 microM CsA enhanced the infusion. In addition, the expression of measles virus antigen on cell surface was increased by treatment with CsA. The addition of phenothiazine, an anti-calmodulin drug, enhanced the fusion of 448-PI-Vero cells in the presence of CsA, although treatment with phenothiazine alone did not affect polykaryocyte formation. The enhancement of fusion efficiency in 448-PI-Vero cells by CsA was suppressed by oligopeptide Z-D-Phe-Phe-Gly, a synthetic oligopeptide that inhibits fusion induced by measles virus. Since the cell content of major virus-specific polypeptides, such as hemagglutinin, nucleoprotein or matrix protein is the same as in untreated controls, this fusion enhancement may be related to transport and accumulation of measles virus glycoproteins.
Collapse
Affiliation(s)
- E Watari
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
31
|
Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:237-95. [PMID: 10842755 DOI: 10.1016/s0070-2137(01)80011-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J Aramburu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
32
|
Abstract
The functions of Ca2+ are many and varied within cells, but in the nerve terminals of neurons it has had a very defined role. That is, the influx of extracellular Ca2+ through voltage-dependent Ca2+ channels stimulates neurotransmitter release by exocytosis. For years this was assumed to be the main role for Ca2+ in this specialized subcellular region. However recent studies have shown that Ca2+ also has multiple roles in synaptic-vesicle endocytosis. This review will present evidence for three Ca2+-dependent and -independent steps; a high-affinity Ca2+-dependent triggering step, a Ca2+-independent maintenance phase, and a low-affinity Ca2+-dependent inhibition step. How the control of endocytosis by Ca2+ might impact on different neuronal functions such as synaptic transmission, the nucleation of SV endocytosis, and the repair of damaged membrane is then discussed.
Collapse
Affiliation(s)
- M A Cousin
- Division of Biomechanical and Clinical Laboratory Sciences, University of Edinburgh
| |
Collapse
|
33
|
Kuromi H, Kidokoro Y. Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Neuron 2000; 27:133-43. [PMID: 10939337 DOI: 10.1016/s0896-6273(00)00015-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At Drosophila neuromuscular junctions, there are two synaptic vesicle pools, namely the exo/endo cycling pool (ECP) and the reserve pool (RP). We studied the recruitment process from RP using a fluorescent dye, FMI-43. During high-frequency nerve stimulation, vesicles in RP were recruited for release, and endocytosed vesicles were incorporated into both pools, whereas with low-frequency stimulation, vesicles were incorporated into and released from ECP. Release of vesicles from RP was detected electrophysiologically after emptying vesicles in the ECP of transmitter by a H+ pump inhibitor. Recruitment from RP was depressed by inhibitors of steps in the cAMP/PKA cascade and enhanced by their activators. In rutabaga (rut) with low cAMP levels, mobilization of vesicles from RP during tetanic stimulation was depressed, while it was enhanced in dunce (dnc) with high cAMP levels.
Collapse
Affiliation(s)
- H Kuromi
- Institute for Behavioral Sciences, Gunma University School of Medicine, Maebashi, Japan.
| | | |
Collapse
|
34
|
Abstract
A Drosophila cDNA encoding a structural homolog of mammalian FKBP59 (also identified as FKBP52), a member of the FK506-binding protein (FKBP) class of immunophilins, was isolated. The gene dFKBP59 corresponding to this cDNA has been characterized and mapped to the 30D3-4 region. The predicted amino acid sequence of this cDNA shows that the dFKBP59 protein contains one highly conserved FKBP12-like domain followed by two others with less conservation. Northern hybridization reveals that the dFKBP59 mRNA is expressed throughout the Drosophila life-cycle. In contrast to its mammalian homologs, in situ hybridization detected dFKBP59 expression in specific tissues: the lymph glands, Garland cells and oenocyte cells, which are all specialized tissues in which intensive exocytic/endocytic cycling takes place. Garland cells and oenocytes (also called Drosophila nephrocytes) function in taking up waste material from the hemolymph. Finally, I have mapped an enhancer trap element within the 5' region of dFKBP59 which may help in future studies to address the question of its function during Drosophila development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chromosome Mapping
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA Transposable Elements
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Drosophila/embryology
- Drosophila/genetics
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Exons
- Female
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Immunophilins/genetics
- In Situ Hybridization
- Introns
- Male
- Molecular Sequence Data
- Mutagenesis, Insertional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tacrolimus Binding Proteins
Collapse
Affiliation(s)
- S Zaffran
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
35
|
Abstract
Secretion of neurotransmitter at the synapse and in secretory cells depends on the availability of vesicles for exocytosis. Rapid endocytosis is responsible for initiating local vesicle recycling and is essential during sustained neurotransmission. Although exocytosis is triggered by Ca(2+) influx and modulated by serine/threonine kinases, relatively little is known about the regulation of rapid endocytosis. Our data suggest that rapid endocytosis is controlled by tyrosine phosphorylation. Treatment of bovine adrenal chromaffin cells with tyrphostin 23, a protein tyrosine kinase inhibitor, dramatically slowed the time course of rapid endocytosis. In contrast, there was no effect on either the amount or rate of exocytosis. Application of orthovanadate, Zn(2+), or poly(Glu, Tyr) (4:1), each of which is a tyrosine phosphatase inhibitor, reversed the effect of tyrphostin 23 on rapid endocytosis. Thus rapid endocytosis, like exocytosis, is subject to regulation by intracellular signaling pathways.
Collapse
|
36
|
Abstract
The recycling of synaptic vesicles in nerve terminals involves multiple steps, underlies all aspects of synaptic transmission, and is a key to understanding the basis of synaptic plasticity. The development of styryl dyes as fluorescent molecules that label recycling synaptic vesicles has revolutionized the way in which synaptic vesicle recycling can be investigated, by allowing an examination of processes in neurons that have long been inaccessible. In this review, we evaluate the major aspects of synaptic vesicle recycling that have been revealed and advanced by studies with styryl dyes, focussing upon synaptic vesicle fusion, retrieval, and trafficking. The greatest impact of styryl dyes has been to allow the routine visualization of endocytosis in central nerve terminals for the first time. This has revealed the kinetics of endocytosis, its underlying sequential steps, and its regulation by Ca2+. In studies of exocytosis, styryl dyes have helped distinguish between different modes of vesicle fusion, provided direct support for the quantal nature of exocytosis and endocytosis, and revealed how the probability of exocytosis varies enormously from one nerve terminal to another. Synaptic vesicle labelling with styryl dyes has helped our understanding of vesicle trafficking by allowing better understanding of different synaptic vesicle pools within the nerve terminal, vesicle intermixing, and vesicle clustering at release sites. Finally, the dyes are now being used in innovative ways to reveal further insights into synaptic plasticity.
Collapse
Affiliation(s)
- M A Cousin
- Cell Signalling Unit, Children's Medical Research Institute, Wentworthville, New South Wales, Australia
| | | |
Collapse
|
37
|
The optically determined size of exo/endo cycling vesicle pool correlates with the quantal content at the neuromuscular junction of Drosophila larvae. J Neurosci 1999. [PMID: 10024343 DOI: 10.1523/jneurosci.19-05-01557.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
According to the current theory of synaptic transmission, the amplitude of evoked synaptic potentials correlates with the number of synaptic vesicles released at the presynaptic terminals. Synaptic vesicles in presynaptic boutons constitute two distinct pools, namely, exo/endo cycling and reserve pools (). We defined the vesicles that were endocytosed and exocytosed during high K+ stimulation as the exo/endo cycling vesicle pool. To determine the role of exo/endo cycling vesicle pool in synaptic transmission, we estimated the quantal content electrophysiologically, whereas the pool size was determined optically using fluorescent dye FM1-43. We then manipulated the size of the pool with following treatments. First, to change the state of boutons of nerve terminals, motoneuronal axons were severed. With this treatment, the size of exo/endo cycling vesicle pool decreased together with the quantal content. Second, we promoted the FM1-43 uptake using cyclosporin A, which inhibits calcineurin activities and enhances endocytosis. Cyclosporin A increased the total uptake of FM1-43, but neither the size of exo/endo cycling vesicle pool nor the quantal content changed. Third, we increased the size of exo/endo cycling vesicle pool by forskolin, which enhances synaptic transmission. The forskolin treatment increased both the size of exo/endo cycling vesicle pool and the quantal content. Thus, we found that the quantal content was closely correlated with the size of exo/endo cycling vesicle pool but not necessarily with the total uptake of FM1-43 fluorescence by boutons. The results suggest that vesicles in the exo/endo cycling pool primarily participate in evoked exocytosis of vesicles.
Collapse
|
38
|
Abstract
FM1-43 and similar styryl dyes have proven useful as probes for membrane trafficking because they reversibly stain membranes, are impermeable to membranes, and are more fluorescent when bound to membranes than when in solution. Because these dyes stain membranes in an activity-dependent manner, they are ideal for studies of neurotransmitter release mechanisms such as synaptic vesicle recycling, exocytosis, and endocytosis. FM dyes have been used in conjunction with other techniques such as fluorescent calcium indicator dyes and electrophysiological techniques to elucidate mechanisms of presynaptic calcium homeostasis and modulation of neurotransmitter release. Presynaptic membranes have been marked by FM dyes in studies of synaptogenesis and reinnervation. As a probe for endocytosed membranes, these dyes have been used to examine vacuole formation in yeast. These versatile membrane dyes are useful in a variety of applications.
Collapse
Affiliation(s)
- A J Cochilla
- Department of Physiology and Biophysics, University of Colorado Medical School 80262, USA.
| | | | | |
Collapse
|
39
|
Kuromi H, Kidokoro Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 1998; 20:917-25. [PMID: 9620696 DOI: 10.1016/s0896-6273(00)80473-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a temperature-sensitive Drosophila mutant, shibire, synaptic vesicles are completely depleted in nerve terminals after stimulation at 34 degrees C, but upon returning to 22 degrees C, endocytosis resumes. In this study, synaptic vesicles in the boutons of nerve terminals at the mutant neuromuscular junction were loaded with a fluorescent dye, FM1-43, during vesicle reformation at 22 degrees C after complete depletion at 34 degrees C. We found two distinct pools of synaptic vesicles, namely an exo/endo cycling pool, located in the periphery of the bouton, and a reserve pool, located in its center. Cytochalasin D treatment eliminated the reserve pool and reduced synaptic transmission evoked by high frequency stimulation. Thus, the reserve pool may play a crucial role for sustaining high frequency synaptic transmission.
Collapse
Affiliation(s)
- H Kuromi
- Institute for Behavioral Sciences, Gunma University School of Medicine, Maebashi, Japan
| | | |
Collapse
|
40
|
Bauerfeind R, Takei K, De Camilli P. Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals. J Biol Chem 1997; 272:30984-92. [PMID: 9388246 DOI: 10.1074/jbc.272.49.30984] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Amphiphysin I is an abundant presynaptic protein that interacts via its COOH-terminal src homology 3 (SH3) domain with the GTPase dynamin I and the inositol-5-phosphatase synaptojanin. Both dynamin I and synaptojanin I have a putative role in synaptic vesicle recycling and undergo rapid dephosphorylation in rat brain synaptosomes stimulated to secrete by a depolarizing stimulus. We show here that amphiphysin I also undergoes constitutive phosphorylation and stimulationdependent dephosphorylation. Dephosphorylation of amphiphysin I requires extracellular Ca2+ and is unaffected by pretreatment of synaptosomes with tetanus toxin. Thus, Ca2+ influx, but not synaptic vesicle exocytosis, is required for dephosphorylation. Dephosphorylation of amphiphysin I, like dephosphorylation of dynamin I and synaptojanin I, is inhibited by cyclosporin A and FK-506 (0.5 microM), two drugs that specifically block the Ca2+/calmodulin-dependent phosphatase 2B calcineurin, but not by okadaic acid (1 microM), which blocks protein phosphatases 1 and 2B. We also show by immunogold electron microscopy immunocytochemistry that amphiphysin I is localized in the nerve terminal cytomatrix and is partially associated with endocytic intermediates. These include the clathrin-coated buds and dynamin-coated tubules, which accumulate in nerve terminal membranes incubated in the presence of guanosine 5'-3-O-(thio)triphosphate. These data support the hypothesis that amphiphysin I, dynamin I, and synaptojanin I are physiological partners in some step(s) of synaptic vesicle endocytosis. We hypothesize that the parallel Ca2+-dependent calcineurin-dependent dephosphorylation of amphiphysin I and of its two major binding proteins is part of a process that primes the nerve terminal for endocytosis in response to a burst of exocytosis.
Collapse
Affiliation(s)
- R Bauerfeind
- Department of Cell Biology and the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
41
|
Abstract
FK506 is a new FDA-approved immunosuppressant used for prevention of allograft rejection in, for example, liver and kidney transplantations. FK506 is inactive by itself and requires binding to an FK506 binding protein-12 (FKBP-12), or immunophilin, for activation. In this regard, FK506 is analogous to cyclosporin A, which must bind to its immunophilin (cyclophilin A) to display activity. This FK506-FKBP complex inhibits the activity of the serine/threonine protein phosphatase 2B (calcineurin), the basis for the immunosuppressant action of FK506. The discovery that immunophilins are also present in the nervous system introduces a new level of complexity in the regulation of neuronal function. Two important calcineurin targets in brain are the growth-associated protein GAP-43 and nitric oxide (NO) synthase (NOS). This review focuses on studies showing that systemic administration of FK506 dose-dependently speeds nerve regeneration and functional recovery in rats following a sciatic-nerve crush injury. The effect appears to result from an increased rate of axonal regeneration. The nerve regenerative property of this class of agents is separate from their immunosuppressant action because FK506-related compounds that bind to FKBP-12 but do not inhibit calcineurin are also able to increase nerve regeneration. Thus, FK506's ability to increase nerve regeneration arises via a calcineurin-independent mechanism (i.e., one not involving an increase in GAP-43 phosphorylation). Possible mechanisms of action are discussed in relation to known actions of FKBPs: the interaction of FKBP-12 with two Ca2+ release-channels (the ryanodine and inositol 1,4,5-triphosphate receptors) which is disrupted by FK506, thereby increasing Ca2+ flux; the type 1 receptor for the transforming growth factor-beta (TGF-beta 1), which stimulates nerve growth factor (NGF) synthesis by glial cells, and is a natural ligand for FKBP-12; and the immunophilin FKBP-52/FKBP-59, which has also been identified as a heat-shock protein (HSP-56) and is a component of the nontransformed glucocorticoid receptor. Taken together, studies of FK506 indicate broad functional roles for the immunophilins in the nervous system. Both calcineurin-dependent (e.g., neuroprotection via reduced NO formation) and calcineurin-independent mechanisms (i.e., nerve regeneration) need to be invoked to explain the many different neuronal effects of FK506. This suggests that multiple immunophilins mediate FK506's neuronal effects. Novel, nonimmunosuppressant ligands for FKBPs may represent important new drugs for the treatment of a variety of neurological disorders.
Collapse
Affiliation(s)
- B G Gold
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland 97201, USA
| |
Collapse
|