1
|
Mariam I, Bettiga M, Rova U, Christakopoulos P, Matsakas L, Patel A. Ameliorating microalgal OMEGA production using omics platforms. TRENDS IN PLANT SCIENCE 2024; 29:799-813. [PMID: 38350829 DOI: 10.1016/j.tplants.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Over the past decade, the focus on omega (ω)-3 fatty acids from microalgae has intensified due to their diverse health benefits. Bioprocess optimization has notably increased ω-3 fatty acid yields, yet understanding of the genetic architecture and metabolic pathways of high-yielding strains remains limited. Leveraging genomics, transcriptomics, proteomics, and metabolomics tools can provide vital system-level insights into native ω-3 fatty acid-producing microalgae, further boosting production. In this review, we explore 'omics' studies uncovering alternative pathways for ω-3 fatty acid synthesis and genome-wide regulation in response to cultivation parameters. We also emphasize potential targets to fine-tune in order to enhance yield. Despite progress, an integrated omics platform is essential to overcome current bottlenecks in optimizing the process for ω-3 fatty acid production from microalgae, advancing this crucial field.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
2
|
Remize M, Planchon F, Garnier M, Loh AN, Le Grand F, Bideau A, Lambert C, Corvaisier R, Volety A, Soudant P. A 13CO 2 Enrichment Experiment to Study the Synthesis Pathways of Polyunsaturated Fatty Acids of the Haptophyte Tisochrysis lutea. Mar Drugs 2021; 20:md20010022. [PMID: 35049877 PMCID: PMC8779623 DOI: 10.3390/md20010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
The production of polyunsaturated fatty acids (PUFA) in Tisochrysis lutea was studied using the gradual incorporation of a 13C-enriched isotopic marker, 13CO2, for 24 h during the exponential growth of the algae. The 13C enrichment of eleven fatty acids was followed to understand the synthetic pathways the most likely to form the essential polyunsaturated fatty acids 20:5n-3 (EPA) and 22:6n-3 (DHA) in T. lutea. The fatty acids 16:0, 18:1n-9 + 18:3n-3, 18:2n-6, and 22:5n-6 were the most enriched in 13C. On the contrary, 18:4n-3 and 18:5n-3 were the least enriched in 13C after long chain polyunsaturated fatty acids such as 20:5n-3 or 22:5n-3. The algae appeared to use different routes in parallel to form its polyunsaturated fatty acids. The use of the PKS pathway was hypothesized for polyunsaturated fatty acids with n-6 configuration (such as 22:5n-6) but might also exist for n-3 PUFA (especially 20:5n-3). With regard to the conventional n-3 PUFA pathway, Δ6 desaturation of 18:3n-3 appeared to be the most limiting step for T. lutea, “stopping” at the synthesis of 18:4n-3 and 18:5n-3. These two fatty acids were hypothesized to not undergo any further reaction of elongation and desaturation after being formed and were therefore considered “end-products”. To circumvent this limiting synthetic route, Tisochrysis lutea seemed to have developed an alternative route via Δ8 desaturation to produce longer chain fatty acids such as 20:5n-3 and 22:5n-3. 22:6n-3 presented a lower enrichment and appeared to be produced by a combination of different pathways: the conventional n-3 PUFA pathway by desaturation of 22:5n-3, the alternative route of ω-3 desaturase using 22:5n-6 as precursor, and possibly the PKS pathway. In this study, PKS synthesis looked particularly effective for producing long chain polyunsaturated fatty acids. The rate of enrichment of these compounds hypothetically synthesized by PKS is remarkably fast, making undetectable the 13C incorporation into their precursors. Finally, we identified a protein cluster gathering PKS sequences of proteins that are hypothesized allowing n-3 PUFA synthesis.
Collapse
Affiliation(s)
- Marine Remize
- UMR 6539 LEMAR, CNRS, IRD, Ifremer, University of Brest, 29280 Plouzane, France; (F.P.); (F.L.G.); (A.B.); (C.L.); (R.C.)
- GREENSEA, Promenade du Sergeant Navarro, 34140 Meze, France
- Correspondence: (M.R.); (P.S.)
| | - Frédéric Planchon
- UMR 6539 LEMAR, CNRS, IRD, Ifremer, University of Brest, 29280 Plouzane, France; (F.P.); (F.L.G.); (A.B.); (C.L.); (R.C.)
| | - Matthieu Garnier
- PBA, Ifremer, Rue de l’Ile d’Yeu, BP 21105, CEDEX 03, 44311 Nantes, France;
| | - Ai Ning Loh
- Center for Marine Science, Department of Earth and Ocean Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Ln, Wilmington, NC 28403, USA;
| | - Fabienne Le Grand
- UMR 6539 LEMAR, CNRS, IRD, Ifremer, University of Brest, 29280 Plouzane, France; (F.P.); (F.L.G.); (A.B.); (C.L.); (R.C.)
| | - Antoine Bideau
- UMR 6539 LEMAR, CNRS, IRD, Ifremer, University of Brest, 29280 Plouzane, France; (F.P.); (F.L.G.); (A.B.); (C.L.); (R.C.)
| | - Christophe Lambert
- UMR 6539 LEMAR, CNRS, IRD, Ifremer, University of Brest, 29280 Plouzane, France; (F.P.); (F.L.G.); (A.B.); (C.L.); (R.C.)
| | - Rudolph Corvaisier
- UMR 6539 LEMAR, CNRS, IRD, Ifremer, University of Brest, 29280 Plouzane, France; (F.P.); (F.L.G.); (A.B.); (C.L.); (R.C.)
| | - Aswani Volety
- 50 Campus Drive, Elon University, Elon, NC 27244, USA;
| | - Philippe Soudant
- UMR 6539 LEMAR, CNRS, IRD, Ifremer, University of Brest, 29280 Plouzane, France; (F.P.); (F.L.G.); (A.B.); (C.L.); (R.C.)
- Correspondence: (M.R.); (P.S.)
| |
Collapse
|
3
|
Patel A, Mahboubi A, Horváth IS, Taherzadeh MJ, Rova U, Christakopoulos P, Matsakas L. Volatile Fatty Acids (VFAs) Generated by Anaerobic Digestion Serve as Feedstock for Freshwater and Marine Oleaginous Microorganisms to Produce Biodiesel and Added-Value Compounds. Front Microbiol 2021; 12:614612. [PMID: 33584617 PMCID: PMC7876238 DOI: 10.3389/fmicb.2021.614612] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
Given an increasing focus on environmental sustainability, microbial oils have been suggested as an alternative to petroleum-based products. However, microbial oil production relies on the use of costly sugar-based feedstocks. Substrate limitation, elevated costs, and risk of contamination have sparked the search for alternatives to sugar-based platforms. Volatile fatty acids are generated during anaerobic digestion of organic waste and are considered a promising substrate for microbial oil production. In the present study, two freshwater and one marine microalga along with two thraustochytrids were evaluated for their potential to produce lipids when cultivated on volatile fatty acids generated from food waste via anaerobic digestion using a membrane bioreactor. Freshwater microalgae Auxenochlorella protothecoides and Chlorella sorokiniana synthesized lipids rich in palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), and linoleic acid (C18:2). This composition corresponds to that of soybean and jatropha oils, which are used as biodiesel feedstock. Production of added-value polyunsaturated fatty acids (PUFA) mainly omega-3 fatty acids was examined in three different marine strains: Aurantiochytrium sp. T66, Schizochytrium limacinum SR21, and Crypthecodinium cohnii. Only Aurantiochytrium sp. T66 seemed promising, generating 43.19% docosahexaenoic acid (DHA) and 13.56% docosapentaenoic acid (DPA) in total lipids. In summary, we show that A. protothecoides, C. sorokiniana, and Aurantiochytrium sp. T66 can be used for microbial oil production from food waste material.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | | | | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
4
|
Identification of Polyunsaturated Fatty Acids Synthesis Pathways in the Toxic Dinophyte Alexandrium minutum Using 13C-Labelling. Biomolecules 2020; 10:biom10101428. [PMID: 33050104 PMCID: PMC7600785 DOI: 10.3390/biom10101428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
The synthetic pathways responsible for the production of the polyunsaturated fatty acids 22:6n-3 and 20:5n-3 were studied in the Dinophyte Alexandrium minutum. The purpose of this work was to follow the progressive incorporation of an isotopic label (13CO2) into 11 fatty acids to better understand the fatty acid synthesis pathways in A. minutum. The Dinophyte growth was monitored for 54 h using high-frequency sampling. A. minutum presented a growth in two phases. A lag phase was observed during the first 30 h of development and had been associated with the probable temporary encystment of Dinophyte cells. An exponential growth phase was then observed after t30. A. minutum rapidly incorporated 13C into 22:6n-3, which ended up being the most 13C-enriched polyunsaturated fatty acid (PUFA) in this experiment, with a higher 13C atomic enrichment than 18:4n-3, 18:5n-3, 20:5n-3, and 22:5n-3. Overall, the 13C atomic enrichment (AE) was inversely proportional to number of carbons in n-3 PUFA. C18 PUFAs, 18:4n-3, and 18:5n-3, were indeed among the least 13C-enriched FAs during this experiment. They were assumed to be produced by the n-3 PUFA pathway. However, they could not be further elongated or desaturated to produce n-3 C20-C22 PUFA, because the AEs of the n-3 C18 PUFAs were lower than those of the n-3 C20-C22 PUFAs. Thus, the especially high atomic enrichment of 22:6n-3 (55.8% and 54.9% in neutral lipids (NLs) and polar lipids (PLs), respectively) led us to hypothesize that this major PUFA was synthesized by an O2-independent Polyketide Synthase (PKS) pathway. Another parallel PKS, independent of the one leading to 22:6n-3, was also supposed to produce 20:5n-3. The inverse order of the 13C atomic enrichment for n-3 PUFAs was also suspected to be related to the possible β-oxidation of long-chain n-3 PUFAs occurring during A. minutum encystment.
Collapse
|
5
|
Lv M, Wang F, Zeng L, Bi Y, Cui J, Liu L, Bi Y, Chen L, Zhang W. Identification and metabolomic analysis of a starch-deficient Crypthecodinium cohnii mutant reveals multiple mechanisms relevant to enhanced growth and lipid accumulation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Karnaouri A, Chalima A, Kalogiannis KG, Varamogianni-Mamatsi D, Lappas A, Topakas E. Utilization of lignocellulosic biomass towards the production of omega-3 fatty acids by the heterotrophic marine microalga Crypthecodinium cohnii. BIORESOURCE TECHNOLOGY 2020; 303:122899. [PMID: 32028216 DOI: 10.1016/j.biortech.2020.122899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Omega-3 fatty acids have become a commodity of high nutritional and commercial value; intensive fishing and its environmental and social cost has led researchers to seeking alternative more sustainable ways of producing them. Heterotrophic microalgae such as Crypthecodinium cohnii, a marine dinoflagellate, have the ability to utilize various substrates and accumulate high amounts of docosahexaenoic acid (DHA). In this work, a mild oxidative organosolv pretreatment of beechwood pulps was employed that allowed up to 95% of lignin removal in a single stage, thus yielding a cellulose-rich solid fraction. The enzymatic hydrolysates were evaluated for their ability to support the growth and lipid accumulation of C. cohnii in batch and fed-batch cultures; the results verified the successful microalgae growth, while DHA reached up to 43.5% of the cell's total lipids. The proposed bioprocess demonstrated the utilization of non-edible biomass towards high added value food supplements in a sustainable and efficient manner.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece
| | - Angelina Chalima
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece
| | - Konstantinos G Kalogiannis
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th Km Harilaou‑Thermi Road, Thermi, 57001, Thessaloniki, Greece
| | - Despoina Varamogianni-Mamatsi
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece
| | - Angelos Lappas
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th Km Harilaou‑Thermi Road, Thermi, 57001, Thessaloniki, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden.
| |
Collapse
|
7
|
Song P, Kuryatov A, Axelsen PH. Biosynthesis of uniformly carbon isotope-labeled docosahexaenoic acid in Crypthecodinium cohnii. AMB Express 2020; 10:45. [PMID: 32162160 PMCID: PMC7065296 DOI: 10.1186/s13568-020-00981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 11/10/2022] Open
Abstract
Docosahexaenoic acid (DHA) enriched in brain can yield many important degradation products after the attack of hydroxyl radicals, which is known to serve as a nutraceutical and neuroprotective effects. Oxidative stress is a commonly observed feature of Alzheimer's disease (AD). Therefore, uniformly radiolabeled DHA plays an important role in studying the oxidative fate of DHA in vivo and vitro. However, carbon isotope labeled DHA isn't commercially available now. The heterotrophic microalgae Crypthecodinium cohnii (C. cohnii) has been identified as a prolific producer of DHA. In this study, the growth rate and DHA production in C. cohnii were optimized in a new defined media, and the biosynthesis of U-13C-DHA from U-13C-glucose and U-14C-DHA from U-14C-glucose were analyzed by HPLC-MS/MS. Approximately 40 nmoles of U-13C-DHA with higher isotopic purity of 96.8% was produced in a 300 μL batch, and ~ 0.23 μCi of U-14C-DHA with significant specific activity of 5-6 Ci/mol was produced in a 300 μL batch. It was found that C. cohnii had the optimal growth and DHA accumulation at 25 °C in this defined media (C/N = 10). An efficient protocol for the biosynthesis of U-13C-DHA and U-14C-DHA were set up firstly, which provides the basic support for the analysis of oxidative degradation products of DHA in AD.
Collapse
Affiliation(s)
- Pingping Song
- School of Biological Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Alexander Kuryatov
- Department of Pharmacology, Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul H Axelsen
- Department of Pharmacology, Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
The Dark Side of Microalgae Biotechnology: A Heterotrophic Biorefinery Platform Directed to ω-3 Rich Lipid Production. Microorganisms 2019; 7:microorganisms7120670. [PMID: 31835511 PMCID: PMC6956277 DOI: 10.3390/microorganisms7120670] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Microbial oils have been considered a renewable feedstock for bioenergy not competing with food crops for arable land, freshwater and biodiverse natural landscapes. Microalgal oils may also have other purposes (niche markets) besides biofuels production such as pharmaceutical, nutraceutical, cosmetic and food industries. The polyunsaturated fatty acids (PUFAs) obtained from oleaginous microalgae show benefits over other PUFAs sources such as fish oils, being odorless, and non-dependent on fish stocks. Heterotrophic microalgae can use low-cost substrates such as organic wastes/residues containing carbon, simultaneously producing PUFAs together with other lipids that can be further converted into bioenergy, for combined heat and power (CHP), or liquid biofuels, to be integrated in the transportation system. This review analyses the different strategies that have been recently used to cultivate and further process heterotrophic microalgae for lipids, with emphasis on omega-3 rich compounds. It also highlights the importance of studying an integrated process approach based on the use of low-cost substrates associated to the microalgal biomass biorefinery, identifying the best sustainability methodology to be applied to the whole integrated system.
Collapse
|
9
|
Cui J, Diao J, Sun T, Shi M, Liu L, Wang F, Chen L, Zhang W. 13C Metabolic Flux Analysis of Enhanced Lipid Accumulation Modulated by Ethanolamine in Crypthecodinium cohnii. Front Microbiol 2018; 9:956. [PMID: 29867861 PMCID: PMC5963191 DOI: 10.3389/fmicb.2018.00956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Abstract
The heterotrophic microalga Crypthecodinium cohnii has attracted considerable attention due to its capability of accumulating lipids with a high fraction of docosahexaenoic acid (DHA). In our previous study, ethanolamine (ETA) was identified as an effective chemical modulator for lipid accumulation in C. cohnii. In this study, to gain a better understanding of the lipid metabolism and mechanism for the positive effects of modulator ETA, metabolic flux analysis was performed using 13C-labeled glucose with and without 1 mM ETA modulator. The analysis of flux distribution showed that with the addition of ETA, flux in glycolysis pathway and citrate pyruvate cycle was strengthened while flux in pentose phosphate pathway was decreased. In addition, flux in TCA cycle was slightly decreased compared with the control without ETA. The enzyme activity of malic enzyme (ME) was significantly increased, suggesting that NADP+-dependent ME might be the major source of NADPH for lipid accumulation. The flux information obtained by this study could be valuable for the further efforts in improving lipid accumulation and DHA production in C. cohnii.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Liangsen Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Comparative metabolomic analysis of Crypthecodinium cohnii in response to different dissolved oxygen levels during docosahexaenoic acid fermentation. Biochem Biophys Res Commun 2018; 499:941-947. [DOI: 10.1016/j.bbrc.2018.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 11/21/2022]
|
11
|
Isleten-Hosoglu M, Elibol M. Peyniraltı Suyu ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium cohnii ile Biyokütle ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi. ACTA ACUST UNITED AC 2017. [DOI: 10.24323/akademik-gida.345256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
De novo transcriptomic and metabolomic analysis of docosahexaenoic acid (DHA)-producing Crypthecodinium cohnii during fed-batch fermentation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Jang SH, Jeong HJ, Kwon JE. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Lee JV, Furman R, Axelsen PH. Biosynthesis of uniformly labeled 13C- and 14C-arachidonic acid in Mortierella alpina. BIORESOURCE TECHNOLOGY 2017; 227:142-146. [PMID: 28013130 PMCID: PMC5237611 DOI: 10.1016/j.biortech.2016.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Arachidonic acid (ARA) is one of the most abundant polyunsaturated fatty acids (PUFAs) in the mammalian brain. Many enzymatically- and nonenzymatically-produced metabolic products have important and potent pharmacological properties. However, uniformly isotope labeled forms of ARA are not commercially available for studying the metabolic fates of ARA. This study describes a simple and efficient protocol for the biosynthesis of U-13C-ARA from U-13C-glucose, and U-14C-ARA from U-14C-glucose by Mortierella alpina. The protocols yield approximately 100nmol quantities of U-13C-ARA with an isotopic purity of 95% from a 500μl batch volume, and approximately 2μCi quantities of U-14C-ARA with an apparent specific activity in excess of 1200Ci/mol from a 250μl batch volume.
Collapse
Affiliation(s)
- Jin V Lee
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ran Furman
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Paul H Axelsen
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, United States; Departments of Biochemistry and Biophysics, and Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
15
|
Sun D, Zhang Z, Mao X, Wu T, Jiang Y, Liu J, Chen F. Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN. BIORESOURCE TECHNOLOGY 2017; 228:227-234. [PMID: 28064135 DOI: 10.1016/j.biortech.2016.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
In the present study, light illumination was found to be efficient in elevating the total fatty acid content in a newly isolated heterotrophic microalga, Crypthecodinium sp. SUN. Under light illumination, the highest total fatty acid and DHA contents were achieved at 96h as 24.9% of dry weight and 82.8mgg-1 dry weight, respectively, which were equivalent to 1.46-fold and 1.68-fold of those under the dark conditions. The elevation of total fatty acid content was mainly contributed by an increase of neutral lipids at the expense of starches. Moreover, light was found to alter the cell metabolism and led to a higher specific growth rate, higher glucose consumption rate and lower non-motile cell percentage. This is the first report that light can promote the total fatty acids accumulation in Crypthecodinium without growth inhibition.
Collapse
Affiliation(s)
- Dongzhe Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Zhao Zhang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yue Jiang
- Runke Bioengineering Co. Ltd., Zhangzhou, Fujian, China
| | - Jin Liu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Beld J, Abbriano R, Finzel K, Hildebrand M, Burkart MD. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids. MOLECULAR BIOSYSTEMS 2016; 12:1299-312. [PMID: 26886879 DOI: 10.1039/c5mb00804b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short precursors now gives us easy access to these extended molecules.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
17
|
Liu B, Liu J, Sun P, Ma X, Jiang Y, Chen F. Sesamol Enhances Cell Growth and the Biosynthesis and Accumulation of Docosahexaenoic Acid in the Microalga Crypthecodinium cohnii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5640-5. [PMID: 26017014 DOI: 10.1021/acs.jafc.5b01441] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Sesamol is a strong antioxidant phenolic compound found in sesame seed. It possesses the ability to scavenge intracellular reactive oxygen species (ROS) and to inhibit malic enzyme activity and NADPH supply, resulting possibly in cell proliferation and alteration in the fatty acid composition. In the present study, the effect of sesamol on the growth and accumulation of docosahexaenoic acid (DHA) was investigated in the marine microalga Crypthecodinium cohnii, a prolific producer of DHA. C. cohnii showed a great decrease in the intracellular ROS level with the addition of sesamol. In contrast, the biomass concentration, DHA content (% of total fatty acids), and DHA productivity were significantly increased by 44.20, 11.25, and 20.00%, respectively (P < 0.01). Taken together, this work represents the first report of employing sesamol for enhanced production of DHA by C. cohnii, providing valuable insights into this alga for future biotechnological applications.
Collapse
Affiliation(s)
- Bin Liu
- †School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jin Liu
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
- #Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland 21202, United States
| | - Peipei Sun
- †School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
| | - Xiaonian Ma
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yue Jiang
- ⊥School of Food Science, Jiangnan University, Wuxi 214122, China
| | - Feng Chen
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
- ΔSingapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore 138602
| |
Collapse
|
18
|
Sui X, Niu X, Shi M, Pei G, Li J, Chen L, Wang J, Zhang W. Metabolomic analysis reveals mechanism of antioxidant butylated hydroxyanisole on lipid accumulation in Crypthecodinium cohnii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12477-84. [PMID: 25436856 DOI: 10.1021/jf503671m] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The heterotrophic dinoflagellate alga Crypthecodinium cohnii is known to accumulate lipids with a high fraction of docosahexaenoic acid (DHA). In this study, we first evaluated two antioxidant compounds, butylated hydroxyanisole (BHA) and propyl gallate (PG), for their effects on lipid accumulation in C. cohnii. The results showed that antioxidant BHA could increase lipid accumulation in C. cohnii by 8.80% at a final concentration of 30 μM, while PG had no obvious effect on lipid accumulation at the tested concentrations. To decipher the molecular mechanism responsible for the increased lipid accumulation by BHA, we employed an integrated GC-MS and LC-MS metabolomic approach to determine the time-series metabolic profiles with or without BHA, and then subjected the metabolomic data to a principal component analysis (PCA) and a weighted gene coexpression network analysis (WGCNA) network analyses to identify the key metabolic modules and metabolites possibly relevant to the increased lipid accumulation. LC-MS analysis showed that several metabolites, including NADPH, could be important for the stimulation role of BHA on lipid accumulation. Meanwhile GC-MS and network analyses allowed identification of eight metabolic modules and nine hub metabolites possibly relevant to the stimulation role of BHA in C. cohnii. The study provided a metabolomics view of the BHA mode of action on lipid accumulation in C. cohnii, and the information could be valuable for a better understanding of antioxidant effects on lipid accumulation in other microalgae as well.
Collapse
Affiliation(s)
- Xiao Sui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Van Dolah FM, Zippay ML, Pezzolesi L, Rein KS, Johnson JG, Morey JS, Wang Z, Pistocchi R. Subcellular localization of dinoflagellate polyketide synthases and fatty acid synthase activity. JOURNAL OF PHYCOLOGY 2013; 49:1118-1127. [PMID: 27007632 DOI: 10.1111/jpy.12120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/25/2013] [Indexed: 06/05/2023]
Abstract
Dinoflagellates are prolific producers of polyketide secondary metabolites. Dinoflagellate polyketide synthases (PKSs) have sequence similarity to Type I PKSs, megasynthases that encode all catalytic domains on a single polypeptide. However, in dinoflagellate PKSs identified to date, each catalytic domain resides on a separate transcript, suggesting multiprotein complexes similar to Type II PKSs. Here, we provide evidence through coimmunoprecipitation that single-domain ketosynthase and ketoreductase proteins interact, suggesting a predicted multiprotein complex. In Karenia brevis (C.C. Davis) Gert Hansen & Ø. Moestrup, previously observed chloroplast localization of PKSs suggested that brevetoxin biosynthesis may take place in the chloroplast. Here, we report that PKSs are present in both cytosol and chloroplast. Furthermore, brevetoxin is not present in isolated chloroplasts, raising the question of what chloroplast-localized PKS enzymes might be doing. Antibodies to K. brevis PKSs recognize cytosolic and chloroplast proteins in Ostreopsis cf. ovata Fukuyo, and Coolia monotis Meunier, which produce different suites of polyketide toxins, suggesting that these PKSs may share common pathways. Since PKSs are closely related to fatty acid synthases (FAS), we sought to determine if fatty acid biosynthesis colocalizes with either chloroplast or cytosolic PKSs. [(3) H]acetate labeling showed fatty acids are synthesized in the cytosol, with little incorporation in chloroplasts, consistent with a Type I FAS system. However, although 29 sequences in a K. brevis expressed sequence tag database have similarity (BLASTx e-value <10(-10) ) to PKSs, no transcripts for either Type I (cytosolic) or Type II (chloroplast) FAS are present. Further characterization of the FAS complexes may help to elucidate the functions of the PKS enzymes identified in dinoflagellates.
Collapse
Affiliation(s)
- Frances M Van Dolah
- Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412, USA
- Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina, 29412, USA
| | - Mackenzie L Zippay
- Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412, USA
- Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina, 29412, USA
| | - Laura Pezzolesi
- Interdepartmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna, 48123, Italy
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Jillian G Johnson
- Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412, USA
- Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina, 29412, USA
| | - Jeanine S Morey
- Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412, USA
| | - Zhihong Wang
- Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412, USA
| | - Rossella Pistocchi
- Interdepartmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna, 48123, Italy
| |
Collapse
|
20
|
Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 2011; 91:31-46. [PMID: 21567179 PMCID: PMC3114082 DOI: 10.1007/s00253-011-3311-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/20/2023]
Abstract
Microalgae of numerous heterotrophic genera (obligate or facultative) exhibit considerable metabolic versatility and flexibility but are currently underexploited in the biotechnological manufacturing of known plant-derived compounds, novel high-value biomolecules or enriched biomass. Highly efficient production of microalgal biomass without the need for light is now feasible in inexpensive, well-defined mineral medium, typically supplemented with glucose. Cell densities of more than 100 g l(-1) cell dry weight have been achieved with Chlorella, Crypthecodinium and Galdieria species while controlling the addition of organic sources of carbon and energy in fedbatch mode. The ability of microalgae to adapt their metabolism to varying culture conditions provides opportunities to modify, control and thereby maximise the formation of targeted compounds with non-recombinant microalgae. This review outlines the critical aspects of cultivation technology and current best practices in the heterotrophic high-cell-density cultivation of microalgae. The primary topics include (1) the characteristics of microalgae that make them suitable for heterotrophic cultivation, (2) the appropriate chemical composition of mineral growth media, (3) the different strategies for fedbatch cultivations and (4) the principles behind the customisation of biomass composition. The review confirms that, although fundamental knowledge is now available, the development of efficient, economically feasible large-scale bioprocesses remains an obstacle to the commercialisation of this promising technology.
Collapse
Affiliation(s)
- Fabian Bumbak
- Institute of Biotechnology, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| | - Stella Cook
- Institute of Biotechnology, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| | - Vilém Zachleder
- Laboratory of Cell Cycles of Algae, Institute of Microbiology of AS CR, 37981 Třeboň, Czech Republic
| | - Silas Hauser
- Institute of Biotechnology, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| | - Karin Kovar
- Institute of Biotechnology, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| |
Collapse
|
21
|
Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 2010; 37:1271-87. [DOI: 10.1007/s10295-010-0884-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/18/2010] [Indexed: 11/30/2022]
|
22
|
Lopes da Silva T, Reis A. The use of multi-parameter flow cytometry to study the impact of n-dodecane additions to marine dinoflagellate microalga Crypthecodinium cohnii batch fermentations and DHA production. J Ind Microbiol Biotechnol 2008; 35:875-87. [DOI: 10.1007/s10295-008-0360-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/17/2008] [Indexed: 11/25/2022]
|
23
|
Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto Y, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H. Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol Lett 2006; 28:197-202. [PMID: 16489498 DOI: 10.1007/s10529-005-5335-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 10/25/2022]
Abstract
A thraustochytrid-like microorganism (strain 12B) was isolated from the mangrove area of Okinawa, Japan. On the basis of its ectoplasmic net structure and biflagellate zoospores we determined strain 12B to be a novel member of the phylum Labyrinthulomycota in the kingdom Protoctista. When grown on glucose/seawater at 28 degrees C, it had a lipid content of 58% with docosahexaenoic acid (DHA; 22:6 n-3) at 43% of the total fatty acids. It had a growth rate of 0.38 h(-1). The DHA production rate of 2.8 +/- 0.7 g l(-1) day(-1) is the highest value reported for any microorganism.
Collapse
Affiliation(s)
- Zakia Perveen
- Laboratory of Environmental Molecular Biology, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Kita-ku, 060-0810, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
da Silva TL, Mendes A, Mendes RL, Calado V, Alves SS, Vasconcelos JMT, Reis A. Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA production. J Ind Microbiol Biotechnol 2006; 33:408-16. [PMID: 16501933 DOI: 10.1007/s10295-006-0081-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 01/05/2006] [Indexed: 11/26/2022]
Abstract
The potential use of n-dodecane as an oxygen vector for enhancement of Crypthecodinium cohnii growth and docosahexaenoic acid (DHA) production was studied. The volumetric fraction of oxygen vector influenced the gas-liquid volumetric mass transfer coefficient k (L) a positively. The k (L) a increased almost linearly with the increase of volumetric fraction of n-dodecane up to 1%. The stirring rate showed a higher influence on the k (L) a than the aeration rate. The effects of this hydrocarbon on C. cohnii growth and DHA production were then investigated. A control batch fermentation without n-dodecane addition (CF) and a batch fermentation where n-dodecane 1% (v/v) was added (DF) were carried out simultaneously under the same experimental conditions. It was found that, before 86.7 h of fermentation, the biomass concentration, the specific growth rate, the DHA, and total fatty acids (TFA) production were higher in the CF. After this fermentation time, the biomass concentration, the DHA and TFA production were higher in the DF. The highest DHA content of biomass (6.14%), DHA percentage of TFA (51%), and DHA production volumetric rate r (DHA) (9.75 mg l(-1 )h(-1)) were obtained at the end of the fermentation with n-dodecane (135.2 h). The dissolved oxygen tension (DOT) was always higher in the DF, indicating a better oxygen transfer due to the oxygen vector presence. However, since the other C. cohnii unsaturated fatty acids percentages did not increase with the oxygen availability increase due to the n-dodecane presence, a desaturase oxygen-dependent mechanism involved in the C. cohnii DHA biosynthesis was not considered to explain the DHA production increase. A selective extraction through the n-dodecane was suggested.
Collapse
Affiliation(s)
- Teresa Lopes da Silva
- Instituto Nacional de Engenharia, Tecnologia e Inovação, Departamento de Biotecnologia, Unidade de Bioengenharia e Bioprocessos, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
25
|
Guschina IA, Harwood JL. Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 2006; 45:160-86. [PMID: 16492482 DOI: 10.1016/j.plipres.2006.01.001] [Citation(s) in RCA: 446] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/04/2006] [Indexed: 11/29/2022]
Abstract
Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.
Collapse
Affiliation(s)
- Irina A Guschina
- School of Biosciences, Cardiff University, P.O. Box 911, Cardiff CF10 3US, UK
| | | |
Collapse
|
26
|
Kwok ACM, Wong JTY. Lipid Biosynthesis and its Coordination with Cell Cycle Progression. ACTA ACUST UNITED AC 2005; 46:1973-86. [PMID: 16239308 DOI: 10.1093/pcp/pci213] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The activation of cell cycle regulators at the G1/S boundary has been linked to the cellular protein synthesis rate. It is conceivable that regulatory mechanisms are required to allow cells to coordinate the synthesis of other macromolecules with cell cycle progression. The availability of highly synchronized cells and flow cytometric methods facilitates investigation of the dynamics of lipid synthesis in the entire cell cycle of the heterotrophic dinoflagellate Crypthecodinium cohnii. Flow cytograms of Nile red-stained cells revealed a stepwise increase in the polar lipid content and a continuous increase in neutral lipid content in the dinoflagellate cell cycle. A cell cycle delay at early G1, but not G2/M, was observed upon inhibition of lipid synthesis. However, lipid synthesis continued during cell cycle arrest at the G1/S transition. A cell cycle delay was not observed when inhibitors of cellulose synthesis and fatty acid synthesis were added after the late G1 phase of the cell cycle. This implicates a commitment point that monitors the synthesis of fatty acids at the late G1 phase of the dinoflagellate cell cycle. Reduction of the glucose concentration in the medium down-regulated the G1 cell size with a concomitant forward shift of the commitment point. Inhibition of lipid synthesis up-regulated cellulose synthesis and resulted in an increase in cellulosic contents, while an inhibition of cellulose synthesis had no effects on lipid synthesis. Fatty acid synthesis and cellulose synthesis are apparently coupled to the cell cycle via independent pathways.
Collapse
Affiliation(s)
- Alvin C M Kwok
- Department of Biology, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, PR China
| | | |
Collapse
|
27
|
Affiliation(s)
- Bradley S Moore
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| |
Collapse
|