1
|
Li Z, Zhang Y, Zhao B, Xue Q, Wang C, Wan S, Wang J, Chen X, Qi X. Non-cytopathic bovine viral diarrhea virus (BVDV) inhibits innate immune responses via induction of mitophagy. Vet Res 2024; 55:27. [PMID: 38443986 PMCID: PMC10916263 DOI: 10.1186/s13567-024-01284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the genus Pestivirus within the family Flaviviridae. Mitophagy plays important roles in virus-host interactions. Here, we provide evidence that non-cytopathic (NCP) BVDV shifts the balance of mitochondrial dynamics toward fission and induces mitophagy to inhibit innate immune responses. Mechanistically, NCP BVDV triggers the translocation of dynamin-related protein (Drp1) to mitochondria and stimulates its phosphorylation at Ser616, leading to mitochondrial fission. In parallel, NCP BVDV-induced complete mitophagy via Parkin-dependent pathway contributes to eliminating damaged mitochondria to inhibit MAVS- and mtDNA-cGAS-mediated innate immunity responses, mtROS-mediated inflammatory responses and apoptosis initiation. Importantly, we demonstrate that the LIR motif of ERNS is essential for mitophagy induction. In conclusion, this study is the first to show that NCP BVDV-induced mitophagy plays a central role in promoting cell survival and inhibiting innate immune responses in vitro.
Collapse
Affiliation(s)
- Zhijun Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Ying Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Bao Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Animal Disease Control Center, Xi'an, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chunjiang Wang
- Hebei Veyong Pharmaceutical Co., Ltd, Shijiazhuang, China
| | - Siyu Wan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Xiwen Chen
- Animal Disease Prevention and Control & Healthy Breeding Engineering Technology Research Center, Mianyang Normal University, Mianyang, Sichuan, China.
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China.
| |
Collapse
|
2
|
Valente D, Serra O, Carolino N, Gomes J, Coelho AC, Espadinha P, Pais J, Carolino I. A Genome-Wide Association Study for Resistance to Tropical Theileriosis in Two Bovine Portuguese Autochthonous Breeds. Pathogens 2024; 13:71. [PMID: 38251378 PMCID: PMC10819359 DOI: 10.3390/pathogens13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The control of Tropical Theileriosis, a tick-borne disease with a strong impact on cattle breeding, can be facilitated using marker-assisted selection in breeding programs. Genome-wide association studies (GWAS) using high-density arrays are extremely important for the ongoing process of identifying genomic variants associated with resistance to Theileria annulata infection. In this work, single-nucleotide polymorphisms (SNPs) were analyzed in the Portuguese autochthonous cattle breeds Alentejana and Mertolenga. In total, 24 SNPs suggestive of significance (p ≤ 10-4) were identified for Alentejana cattle and 20 SNPs were identified for Mertolenga cattle. The genomic regions around these SNPs were further investigated for annotated genes and quantitative trait loci (QTLs) previously described by other authors. Regarding the Alentejana breed, the MAP3K1, CMTM7, SSFA2, and ATG13 genes are located near suggestive SNPs and appear as candidate genes for resistance to Tropical Theileriosis, considering its action in the immune response and resistance to other diseases. On the other hand, in the Mertolenga breed, the UOX gene is also a candidate gene due to its apparent link to the pathogenesis of the disease. These results may represent a first step toward the possibility of including genetic markers for resistance to Tropical Theileriosis in current breed selection programs.
Collapse
Affiliation(s)
- Diana Valente
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Octávio Serra
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Banco Português de Germoplasma Vegetal, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal;
| | - Nuno Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Jacinto Gomes
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Escola Superior Agrária de Elvas, Instituto Politécnico de Portalegre, 7350-092 Elvas, Portugal
| | - Ana Cláudia Coelho
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Pedro Espadinha
- Associação de Criadores de Bovinos da Raça Alentejana, Monforte Herdade da Coutada Real-Assumar, 7450-051 Assumar, Portugal
| | - José Pais
- Associação de Criadores de Bovinos Mertolengos, 7006-806 Évora, Portugal;
| | - Inês Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
3
|
Yuan N, Song Q, Jin Y, Zhang Z, Wu Z, Sheng X, Qi X, Xing K, Xiao L, Wang X. Replication of standard bovine viral diarrhea strain OregonC24Va induces endoplasmic reticulum stress-mediated apoptosis of bovine trophoblast cells. Cell Stress Chaperones 2023; 28:49-60. [PMID: 36441379 PMCID: PMC9877273 DOI: 10.1007/s12192-022-01300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Bovine viral diarrhea (BVD) is a worldwide infectious disease caused by bovine viral diarrhea virus (BVDV) infection, which invades the placenta, causes abortion, produces immune tolerance and continuously infects calves, and causes huge economic losses to the cattle industry. The endoplasmic reticulum (ER) is an important organelle in cells, which is prone to ER stress after being stimulated by pathogens, thus activating the ER stress-related apoptosis. Studies have confirmed that BVDV can utilize the ER of its host to complete its own proliferation and stimulate ER stress to a certain extent. However, the role of ER stress in BVDV infecting bovine placental trophoblast cells (BTCs) and inducing apoptosis is still unclear. We are using the cytopathic strain of BVDV (OregonC24Va), which can cause apoptosis of BTCs, as a model system to determine how ER stress induced by BVDV affects placental toxicity. We show that OregonC24Va can infect BTCs and proliferate in it. With the proliferation of BVDV in BTCs, ER stress-related apoptosis is triggered. The ER stress inhibitor 4-PBA was used to inhibit the ER stress of BTCs, which not only inhibited the proliferation of BVDV, but also reduced the apoptosis of BTCs. The ER stress activator Tg can activate ER stress-related apoptosis, but the proliferation of BVDV does not change in BTCs. Therefore, BVDV utilizes the UPR of activated ER stress to promote the proliferation of BVDV in the early stage of infection, and activates the ER stress-related apoptosis of BTCs in the later stage with the virus proliferation to promote the cell apoptosis and further spread of the virus. Our research provides a new theoretical basis for exploring the placental infection and vertical transmission of BVDV.
Collapse
Affiliation(s)
- Naihan Yuan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Quanjiang Song
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, Lin'an District, 666 Wusu StreetZhejiang Province, Hangzhou, 311300, China
| | - Yan Jin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhenhao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zheng Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
4
|
Identification of differentially expressed gene pathways between cytopathogenic and non-cytopathogenic BVDV-1 strains by analysis of the transcriptome of infected primary bovine cells. Virology 2021; 567:34-46. [PMID: 34953294 DOI: 10.1016/j.virol.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022]
Abstract
The bovine viral diarrhea virus 1 (BVDV-1), belonging to the Pestivirus genus, is characterized by the presence of two biotypes, cytopathogenic (cp) or non-cytopathogenic (ncp). For a better understanding of the host pathogen interactions, we set out to identify transcriptomic signatures of bovine lung primary cells (BPCs) infected with a cp or a ncp strain. For this, we used both a targeted approach by reverse transcription droplet digital PCR and whole genome approach using RNAseq. Data analysis showed 3571 differentially expressed transcripts over time (Fold Change >2) and revealed that the most deregulated pathways for cp strain are signaling pathways involved in responses to viral infection such as inflammatory response or apoptosis pathways. Interestingly, our data analysis revealed a deregulation of Wnt signaling pathway, a pathway described in embryogenesis, that was specifically seen with the BVDV-1 cp but not the ncp suggesting a role of this pathway in viral replication.
Collapse
|
5
|
Reuscher CM, Schmidt L, Netsch A, Lamp B. Characterization of a Cytopathogenic Reporter CSFV. Viruses 2021; 13:1209. [PMID: 34201706 PMCID: PMC8310069 DOI: 10.3390/v13071209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Cytopathogenic (cp) pestiviruses frequently emerge in cattle that are persistently infected with the bovine viral diarrhea virus (BVDV) as a consequence of RNA recombination and mutation. They induce apoptosis in infected tissue cultures, are highly attenuated in the immunocompetent host, and unable to establish persistent infections after diaplacental infections. Cp strains of BVDV have been used as naturally attenuated live vaccines and for species-specific plaque reduction tests for the indirect serological detection of BVDV. Here, we present a genetically engineered cp strain of the classical swine fever virus (CSFV). Cytopathogenicity of the strain was induced by the insertion of ubiquitin embedded in a large NS3 to NS4B duplication. The CSFV RNA genome was stabilized by the inactivation of the NS2 autoprotease, hindering the deletion of the insertion and the reversion to a wild-type genome. Additional insertion of a mCherry gene at the 5'-end of the E2 gene allowed fluorescence-verified plaque reduction assays for CSFV, thus providing a novel, cost-efficient diagnostic tool. This genetically stabilized cp CSFV strain could be further used as a basis for potential new modified live vaccines. Taken together, we applied reverse genetics to rationally fixate a typical cp NS3 duplication in a CSFV genome.
Collapse
Affiliation(s)
- Carina Maria Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Lisa Schmidt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Anette Netsch
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
6
|
Marchica V, Franceschi V, Vescovini R, Storti P, Vicario E, Toscani D, Zorzoli A, Airoldi I, Dalla Palma B, Campanini N, Martella E, Mancini C, Costa F, Donofrio G, Giuliani N. Bovine pestivirus is a new alternative virus for multiple myeloma oncolytic virotherapy. J Hematol Oncol 2020; 13:89. [PMID: 32653014 PMCID: PMC7353805 DOI: 10.1186/s13045-020-00919-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The oncolytic viruses have shown promising results for the treatment of multiple myeloma. However, the use of human viruses is limited by the patients' antiviral immune response. In this study, we investigated an alternative oncolytic strategy using non-human pathogen viruses as the bovine viral diarrhea virus (BVDV) that were able to interact with CD46. METHODS We treated several human myeloma cell lines and non-myeloma cell lines with BVDV to evaluate the expression of CD46 and to study the effect on cell viability by flow cytometry. The possible synergistic effect of bortezomib in combination with BVDV was also tested. Moreover, we infected the bone marrow mononuclear cells obtained from myeloma patients and we checked the BVDV effect on different cell populations, defined by CD138, CD14, CD3, CD19, and CD56 expression evaluated by flow cytometry. Finally, the in vivo BVDV effect was tested in NOD-SCID mice injected subcutaneously with myeloma cell lines. RESULTS Human myeloma cells were selectively sensitive to BVDV treatment with an increase of cell death and, consequently, of apoptotic markers. Consistently, bone marrow mononuclear cells isolated from myeloma patients treated with BVDV, showed a significant selective decrease of the percentage of viable CD138+ cells. Interestingly, bortezomib pre-treatment significantly increased the cytotoxic effect of BVDV in myeloma cell lines with a synergistic effect. Finally, the in vitro data were confirmed in an in vivo myeloma mouse model showing that BVDV treatment significantly reduced the tumoral burden compared to the vehicle. CONCLUSIONS Overall, our data indicate, for the first time, a direct oncolytic effect of the BVDV in human myeloma cells suggesting its possible use as novel alternative anti-myeloma virotherapy strategy.
Collapse
Affiliation(s)
| | | | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Emanuela Vicario
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS "Istituto Giannina Gaslini", Genoa, Italy
| | - Irma Airoldi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS "Istituto Giannina Gaslini", Genoa, Italy
| | - Benedetta Dalla Palma
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | | | - Eugenia Martella
- Pathology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Cristina Mancini
- Pathology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy.
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy.
| |
Collapse
|
7
|
Lysholm S, Ramabu SS, Berg M, Wensman JJ. First-time detection of bovine viral diarrhoea virus, BVDV-1, in cattle in Botswana. Onderstepoort J Vet Res 2019; 86:e1-e7. [PMID: 31714135 PMCID: PMC6852425 DOI: 10.4102/ojvr.v86i1.1764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022] Open
Abstract
Infectious diseases are serious constraints for improving livestock productivity. Bovine viral diarrhoea virus (BVDV) is a virus causing grave economic losses throughout the cattle producing world. Infection is often not apparent, but the virus can also cause respiratory signs, diarrhoea, reproductive problems and immunosuppression. Risk factors for disease transmission include, but are not limited to, herd size, animal trade and grazing on communal pastures. Several prevalence studies have been conducted in southern Africa, but in Botswana the occurrence is largely unknown. In this study, blood samples were obtained from 100 goats from three villages around the capital city, Gaborone. Also, 364 blood samples from cattle around Gaborone, collected as part of another study, were analysed. The detected antibody prevalence was 0% in goats and 53.6% in cattle when using a competitive enzyme-linked immunoassay. Three animals from two different herds were positive for viral nucleic acids on polymerase chain reaction. The two herds with viraemic animals had significantly higher antibody prevalence compared to the other herds. Also, two of the detected viruses were sequenced and found to be most similar to BVDV-1a. To the authors' knowledge, this is the first time that sequencing has been performed on BVDV isolated in Botswana.
Collapse
Affiliation(s)
- Sara Lysholm
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala.
| | | | | | | |
Collapse
|
8
|
Tian Q, Wang Y, Zhang Q, Luo J, Jiang H, Zhang B, Mei M, Wu F, Wu Y, Peng J, Long T, Luo Y, Guo X. Phosphoprotein Gene Contributes to the Enhanced Apoptosis Induced by Wild-Type Rabies Virus GD-SH-01 In Vitro. Front Microbiol 2017; 8:1697. [PMID: 28928726 PMCID: PMC5591860 DOI: 10.3389/fmicb.2017.01697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
Previous research demonstrated that the matrix protein (M) and glycoprotein (G) of attenuated rabies virus (RABV) strains are involved in the induction of host cell apoptosis. In this work, we show that wild-type (wt) RABV GD-SH-01 induces significantly greater apoptosis than the attenuated strain HEP-Flury. In order to identify the gene(s) accounting for this phenotype, five recombinant RABVs (rRABVs) were constructed by replacing each single gene of HEP-Flury with the corresponding gene of GD-SH-01. By using these rRABVs, we found that not only M and G, but also the phosphoprotein (P) plays an important role in inducing apoptosis. In order to figure out the different role of P gene in inducing apoptosis from the highly divergent background, another rRABV rGDSH-P, which carries the P gene of HEP-Flury in the background of the GD-SH-01 was generated. It was found that infection of NA cells with GD-SH-01 or the recombinant strain rHEP-shP, which carries P gene of GD-SH-01, induced significantly greater apoptosis than HEP-Flury or rGDSH-P in a caspase-dependent pathway that ultimately leads to the activation of the intrinsic apoptotic pathway, which is well characterized with the downregulation of bcl-2, the decrease of mitochondrial membrane potential, the release of mitochondrial cytochrome c, the activation of caspase-9 and caspase-3, and finally the cleavage of poly (ADP-ribose) polymerase. Our results imply that wt P from GD-SH-01 mediates this effect may partly by facilitating viral RNA synthesis but not by viral replication. In sum, we demonstrate a wt RABV strain GD-SH-01 to induce stronger apoptosis than an attenuated RABV HEP-Flury and propose that wt P from GD-SH-01 is involved in this process.
Collapse
Affiliation(s)
- Qin Tian
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yifei Wang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Qiong Zhang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - He Jiang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Boyue Zhang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Mingzhu Mei
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Fan Wu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yuting Wu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Jiaojiao Peng
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Teng Long
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| |
Collapse
|
9
|
Characterization of the Determinants of NS2-3-Independent Virion Morphogenesis of Pestiviruses. J Virol 2015; 89:11668-80. [PMID: 26355097 DOI: 10.1128/jvi.01646-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED A peculiarity of the Flaviviridae is the critical function of nonstructural (NS) proteins for virus particle formation. For pestiviruses, like bovine viral diarrhea virus (BVDV), uncleaved NS2-3 represents an essential factor for virion morphogenesis, while NS3 is an essential component of the viral replicase. Accordingly, in natural pestivirus isolates, processing at the NS2-3 cleavage site is not complete, to allow for virion morphogenesis. Virion morphogenesis of the related hepatitis C virus (HCV) shows a major deviation from that of pestiviruses: while RNA replication also requires free NS3, virion formation does not depend on uncleaved NS2-NS3. Recently, we described a BVDV-1 chimera based on strain NCP7 encompassing the NS2-4B*-coding region of strain Osloss (E. Lattwein, O. Klemens, S. Schwindt, P. Becher, and N. Tautz, J Virol 86:427-437, 2012, doi:10.1128/JVI.06133-11). This chimera allowed for the production of infectious virus particles in the absence of uncleaved NS2-3. The Osloss sequence deviates in the NS2-4B* part from NCP7 in 48 amino acids and also has a ubiquitin insertion between NS2 and NS3. The present study demonstrates that in the NCP7 backbone, only two amino acid exchanges in NS2 (E1576V) and NS3 (V1721A) are sufficient and necessary to allow for efficient NS2-3-independent virion morphogenesis. The adaptation of a bicistronic virus encompassing an internal ribosomal entry site element between the NS2 and NS3 coding sequences to efficient virion morphogenesis led to the identification of additional amino acids in E2, NS2, and NS5B that are critically involved in this process. The surprisingly small requirements for approximating the packaging schemes of pestiviruses and HCV with respect to the NS2-3 region is in favor of a common mechanism in an ancestral virus. IMPORTANCE For positive-strand RNA viruses, the processing products of the viral polyprotein serve in RNA replication as well as virion morphogenesis. For bovine viral diarrhea virus, nonstructural protein NS2-3 is of critical importance to switch between these processes. While free NS3 is essential for RNA replication, uncleaved NS2-3, which accumulates over time in the infected cell, is required for virion morphogenesis. In contrast, the virion morphogenesis of the related hepatitis C virus is independent from uncleaved NS2-NS3. Here, we demonstrate that pestiviruses can adapt to virion morphogenesis in the absence of uncleaved NS2-3 by just two amino acid exchanges. While the mechanism behind this gain of function remains elusive, the fact that it can be achieved by such minor changes is in line with the assumption that an ancestral virus already used this mechanism but lost it in the course of adapting to a new host/infection strategy.
Collapse
|
10
|
Fredericksen F, Carrasco G, Villalba M, Olavarría VH. Cytopathic BVDV-1 strain induces immune marker production in bovine cells through the NF-κB signaling pathway. Mol Immunol 2015; 68:213-22. [PMID: 26330089 DOI: 10.1016/j.molimm.2015.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022]
Abstract
The bovine viral diarrhea virus (BVDV-1) is a pathogen responsible for high economic losses in the cattle industry worldwide. This virus has the capacity to modulate the immune system of several higher vertebrates, but there is little information available on the cell infection mechanism. To further investigate the effects of BVDV-1 on the activation of the immune response, the Madin-Darby bovine kidney cell line was infected with the cytopathic CH001 field isolate of BVDV-1, and the proinflammatory and antiviral cytokine expression profiles were analyzed. The results showed that BVDV-1 was able to induce the production of BCL3, IL-1β, IL-8, IL-15, IL-18, Mx-1, IRF-1, and IRF-7 in a way similar to polyinosinic-polycytidylic acid. Interestingly, all BVDV-1 activities were blocked by pharmacological inhibitors of the NF-κB signaling pathway. These results, together with in silico analyses showing the presence of several regulatory consensus target motifs, suggest that BVDV-1 regulates gene expression in bovines through the activation of several key transcription factors. Collectively, these data identified BVDV-1 as a viral regulator of immune marker expression, even from early infection. Additionally, this is the first report to find BVDV-1 modulating the activation of cytokine production and transcriptions factors mainly through the NF-κB pathway in vertebrates.
Collapse
Affiliation(s)
- Fernanda Fredericksen
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Gonzalo Carrasco
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
11
|
Palomares RA, Sakamoto K, Walz HL, Brock KV, Hurley DJ. Acute infection with bovine viral diarrhea virus of low or high virulence leads to depletion and redistribution of WC1(+) γδ T cells in lymphoid tissues of beef calves. Vet Immunol Immunopathol 2015; 167:190-5. [PMID: 26282369 DOI: 10.1016/j.vetimm.2015.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/05/2015] [Accepted: 07/30/2015] [Indexed: 11/16/2022]
Abstract
The objective of this study was to determine the abundance and distribution of γδ T lymphocytes in lymphoid tissue during acute infection with high (HV) or low virulence (LV) non-cytopathic bovine viral diarrhea virus (BVDV) in beef calves. This study was performed using tissue samples from a previous experiment in which thirty beef calves were randomly assigned to 1 of 3 groups: LV [n=10; animals inoculated intranasally (IN) with LV BVDV-1a (strain SD-1)], HV [n=10; animals inoculated IN with HV BVDV-2 (strain 1373)], and control (n=10; animals inoculated with cell culture medium). On day 5 post inoculation, animals were euthanized, and samples from spleen and mesenteric lymph nodes (MLN) were collected to assess the abundance of WC1(+) γδ T cells. A higher proportion of calves challenged with BVDV showed signs of apoptosis and cytophagy in MLN and spleen samples compared to the control group. A significantly lower number of γδ T cells was observed in spleen and MLN from calves in HV and LV groups than in the control calves (P<0.05). In conclusion, acute infection with HV or LV BVDV resulted in depletion of WC1(+) γδ T cells in mucosal and systemic lymphoid tissues at five days after challenge in beef calves. This reduction in γδ T cells in the studied lymphoid tissues could be also due to lymphocyte trafficking to other tissues.
Collapse
Affiliation(s)
- Roberto A Palomares
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States.
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States
| | - Heather L Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Kenny V Brock
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - David J Hurley
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States
| |
Collapse
|
12
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
13
|
Castro EF, Campos RH, Cavallaro LV. Stability of the resistance to the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus. PLoS One 2014; 9:e100528. [PMID: 24950191 PMCID: PMC4065067 DOI: 10.1371/journal.pone.0100528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1–5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1–5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1–5) remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.
Collapse
Affiliation(s)
- Eliana F. Castro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rodolfo H. Campos
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía V. Cavallaro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
14
|
Abstract
Bovine viral diarrhea virus (BVDV) continues to be of economic significance to the livestock industry in terms of acute disease and fetal loss. Many of the lesions relating to BVDV infection have been well described previously. The virus is perpetuated in herds through the presence of calves that are persistently infected. Relationships between various species and biotypes of BVDV and host defenses are increasingly understood. Understanding of the host defense mechanisms of innate immunity and adaptive immunity continues to improve, and the effects of the virus on these immune mechanisms are being used to explain how persistent infection develops. The noncytopathic biotype of BVDV plays the major role in its effects on the host defenses by inhibiting various aspects of the innate immune system and creation of immunotolerance in the fetus during early gestation. Recent advances have allowed for development of affordable test strategies to identify and remove persistently infected animals. With these improved tests and removal strategies, the livestock industry can begin more widespread effective control programs.
Collapse
Affiliation(s)
- B. W. Brodersen
- Nebraska Veterinary Diagnostic Center, University of Nebraska–Lincoln, Lincoln, NE, USA
| |
Collapse
|
15
|
Morphogenesis of pestiviruses: new insights from ultrastructural studies of strain Giraffe-1. J Virol 2013; 88:2717-24. [PMID: 24352462 DOI: 10.1128/jvi.03237-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge on the morphogenesis of pestiviruses is limited due to low virus production in infected cells. In order to localize virion morphogenesis and replication sites of pestiviruses and to examine intracellular virion transport, a cell culture model was established to facilitate ultrastructural studies. Based on results of virus growth kinetic analysis and quantification of viral RNA, pestivirus strain Giraffe-1 turned out to be a suitable candidate for studies on virion generation and export from culture cells. Using conventional transmission electron microscopy and single-tilt electron tomography, we found virions located predominately in the lumen of the endoplasmic reticulum (ER) in infected cells and were able to depict the budding process of virions at ER membranes. Colocalization of the viral core protein and the envelope glycoprotein E2 with the ER marker protein disulfide isomerase (PDI) was demonstrated by immunogold labeling of cryosections. Moreover, pestivirions could be shown in transport vesicles and the Golgi complex and during exocytosis. Interestingly, viral capsid protein and double-stranded RNA (dsRNA) were detected in multivesicular bodies (MVBs), which implies that the endosomal compartment plays a role in pestiviral replication. Significant cellular membrane alterations such as those described for members of the Flavivirus and Hepacivirus genera were not found. Based on the gained morphological data, we present a consistent model of pestivirus morphogenesis.
Collapse
|
16
|
Abstract
Pestiviruses cause economically important diseases among domestic ruminants and pigs, but they may also infect a wide spectrum of wild species of even-toed ungulates (Artiodactyla). Bovine viral diarrhea virus (BVDV) and Border disease virus of sheep infect their hosts either transiently or persistently. Cellular and humoral immunotolerance to the infecting strain is a unique feature of persistent infection (PI) by ruminant pestiviruses. Persistence, caused by transplacental infection early in fetal development, depends on virally encoded interferon antagonists that inactivate the host's innate immune response to the virus without globally interfering with its function against other viruses. At epidemiological equilibrium, approximately 1-2% of animals are PI. Successful BVDV control programs show that removal of PI animals results in viral extinction in the host population. The nucleotide sequences of ruminant pestiviruses change little during persistent infection. Nevertheless, they display large heterogeneity, pointing to a long history of virus-host coevolution in which avirulent strains are more successful.
Collapse
Affiliation(s)
- Matthias Schweizer
- Institute of Veterinary Virology, University of Bern, CH-3001 Bern, Switzerland; ,
| | | |
Collapse
|
17
|
Expression of type I interferon-induced antiviral state and pro-apoptosis markers during experimental infection with low or high virulence bovine viral diarrhea virus in beef calves. Virus Res 2013; 173:260-9. [PMID: 23458997 DOI: 10.1016/j.virusres.2013.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/01/2013] [Accepted: 02/20/2013] [Indexed: 12/23/2022]
Abstract
The objective of this study was to compare the mRNA expression of host genes involved in type-I interferon-induced antiviral state (IFN-α, IFN-β, Mx-1, PKR, OAS-1 and ISG-15), and apoptosis (caspase-3, -8, and -9), after experimental infection of beef calves with low or high virulence noncytopathic (ncp) bovine viral diarrhea virus (BVDV) strains. Thirty BVDV-naïve, clinically normal calves were randomly assigned to three groups. Calves were intranasally inoculated with low (LV; n=10, strain SD-1) or high (HV; n=10, strain 1373) virulence ncp BVDV or BVDV-free cell culture medium (Control, n=10). Quantitative RT-PCR was used to determine the target gene expression in tracheo-bronchial lymph nodes and spleen 5 days after infection. Interferon-α and -β mRNA levels were up-regulated in tracheo-bronchial lymph nodes (P<0.05) in the HV group, but not in the LV group, compared with the control group. There was an up-regulation of type I interferon-induced genes in spleen and tracheo-bronchial lymph nodes of HV and LV groups, compared with the control group (P<0.01). mRNA levels of OAS-1 and ISG-15 were significantly higher in LV than HV calves (P<0.05). A significant up-regulation of caspase-8 and -9 was observed in tracheo-bronchial lymph nodes in the LV group (P=0.01), but not in the HV group. In conclusion, experimental infection with either high or low virulence BVDV strains induced a significant expression of the type I interferon-induced genes in beef calves. There was a differential expression of some interferon-induced genes (OAS-1 and ISG-15) and pro-apoptosis markers based on BVDV virulence and genotype.
Collapse
|
18
|
Hilbe M, Girao V, Bachofen C, Schweizer M, Zlinszky K, Ehrensperger F. Apoptosis in Bovine viral diarrhea virus (BVDV)-induced mucosal disease lesions: a histological, immunohistological, and virological investigation. Vet Pathol 2012; 50:46-55. [PMID: 22700847 DOI: 10.1177/0300985812447826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cattle persistently infected with a noncytopathic Bovine viral diarrhea virus (BVDV) are at risk of developing fatal "mucosal disease" (MD). The authors investigated the role of various apoptosis pathways in the pathogenesis of lesions in animals suffering from MD. Therefore, they compared the expression of caspase-3, caspase-8, caspase-9, and Bcl-2L1 (Bcl-x) in tissues of 6 BVDV-free control animals, 7 persistently infected (PI) animals that showed no signs of MD (non-MD PI animals), and 11 animals with MD and correlated the staining with the localization of mucosal lesions. Caspase-3 and -9 staining were markedly stronger in MD cases and were associated with mucosal lesions, even though non-MD PI animals and negative controls also expressed caspase-9. Conversely, caspase-8 was not elevated in any of the animals analyzed. Interestingly, Bcl-x also colocalized with mucosal lesions in the MD cases. However, Bcl-x was similarly expressed in tissues from all 3 groups, and thus, its role in apoptosis needs to be clarified. This study clearly illustrates ex vivo that the activation of the intrinsic, but not the extrinsic, apoptosis pathway is a key element in the pathogenesis of MD lesions observed in cattle persistently infected with BVDV. However, whether direct induction of apoptosis in infected cells or indirect effects induced by the virus are responsible for the lesions observed remains to be established.
Collapse
Affiliation(s)
- M Hilbe
- Institute of Veterinary Pathology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
19
|
Construction of chimeric bovine viral diarrhea viruses containing glycoprotein Erns of heterologous pestiviruses and evaluation of the chimeras as potential marker vaccines against BVDV. Vaccine 2012; 30:3843-8. [DOI: 10.1016/j.vaccine.2012.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/21/2022]
|
20
|
Sakoda Y. [Pestivirus]. Uirusu 2011; 61:239-248. [PMID: 22916570 DOI: 10.2222/jsv.61.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Members of the genus Pestivirus, are causative agents of economically important diseases for livestock and wild animals that occur worldwide, such as bovine viral diarrhea, classical swine fever, and border disease of sheep. Pestivirus have novel insertions of host genes in the viral genome and functions of unique viral proteins, N(pro) and E(rns), related to the pathogenicity although genomic structure is closely related to the other viruses of Flaviviridae family, especially hepatitis C virus. In this review, recent studies on the molecular basis of pathogenicity of pestivirus infections were summarized.
Collapse
Affiliation(s)
- Yoshihiro Sakoda
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Sapporo 060-0818, Japan.
| |
Collapse
|
21
|
Pestivirus virion morphogenesis in the absence of uncleaved nonstructural protein 2-3. J Virol 2011; 86:427-37. [PMID: 22031952 DOI: 10.1128/jvi.06133-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The family Flaviviridae contains three genera of positive-strand RNA viruses, namely, Flavivirus, Hepacivirus (e.g., hepatitis C virus [HCV]), and Pestivirus. Pestiviruses, like bovine viral diarrhea virus (BVDV), bear a striking degree of similarity to HCV concerning polyprotein organization, processing, and function. Along this line, in both systems, release of nonstructural protein 3 (NS3) is essential for viral RNA replication. However, both viruses differ significantly with respect to processing efficiency at the NS2/3 cleavage site and abundance as well as functional relevance of uncleaved NS2-3. In BVDV-infected cells, significant amounts of NS2-3 accumulate at late time points postinfection and play an essential but ill-defined role in the production of infectious virions. In contrast, complete cleavage of the HCV NS2-3 counterpart has been reported, and unprocessed NS2-3 is not required throughout the life cycle of HCV, at least in cell culture. Here we describe the selection and characterization of the first pestiviral genome with the capability to complete productive infection in the absence of uncleaved NS2-3. Despite the insertion of a ubiquitin gene or an internal ribosomal entry site between the NS2 and NS3 coding sequences, the selected chimeric BVDV-1 genomes gave rise to infectious virus progeny. In this context, a mutation in the N-terminal third of NS2 was identified as a critical determinant for efficient production of infectious virions in the absence of uncleaved NS2-3. These findings challenge a previously accepted dogma for pestivirus replication and provide new implications for virion morphogenesis of pestiviruses and HCV.
Collapse
|
22
|
Pankraz A, Preis S, Thiel HJ, Gallei A, Becher P. A single point mutation in nonstructural protein NS2 of bovine viral diarrhea virus results in temperature-sensitive attenuation of viral cytopathogenicity. J Virol 2009; 83:12415-23. [PMID: 19776121 PMCID: PMC2786742 DOI: 10.1128/jvi.01487-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/15/2009] [Indexed: 11/20/2022] Open
Abstract
For Bovine viral diarrhea virus (BVDV), the type species of the genus Pestivirus in the family Flaviviridae, cytopathogenic (cp) and noncytopathogenic (ncp) viruses are distinguished according to their effect on cultured cells. It has been established that cytopathogenicity of BVDV correlates with efficient production of viral nonstructural protein NS3 and with enhanced viral RNA synthesis. Here, we describe generation and characterization of a temperature-sensitive (ts) mutant of cp BVDV strain CP7, termed TS2.7. Infection of bovine cells with TS2.7 and the parent CP7 at 33 degrees C resulted in efficient viral replication and a cytopathic effect. In contrast, the ability of TS2.7 to cause cytopathogenicity at 39.5 degrees C was drastically reduced despite production of high titers of infectious virus. Further experiments, including nucleotide sequencing of the TS2.7 genome and reverse genetics, showed that a Y1338H substitution at residue 193 of NS2 resulted in the temperature-dependent attenuation of cytopathogenicity despite high levels of infectious virus production. Interestingly, TS2.7 and the reconstructed mutant CP7-Y1338H produced NS3 in addition to NS2-3 throughout infection. Compared to the parent CP7, NS2-3 processing was slightly decreased at both temperatures. Quantification of viral RNAs that were accumulated at 10 h postinfection demonstrated that attenuation of the cytopathogenicity of the ts mutants at 39.5 degrees C correlated with reduced amounts of viral RNA, while the efficiency of viral RNA synthesis at 33 degrees C was not affected. Taken together, the results of this study show that a mutation in BVDV NS2 attenuates viral RNA replication and suppresses viral cytopathogenicity at high temperature without altering NS3 expression and infectious virus production in a temperature-dependent manner.
Collapse
Affiliation(s)
- Alexander Pankraz
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Simone Preis
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Heinz-Jürgen Thiel
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Andreas Gallei
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Paul Becher
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| |
Collapse
|
23
|
Apoptosis in lymphoid tissues of calves inoculated with non-cytopathic bovine viral diarrhea virus genotype 1: activation of effector caspase-3 and role of macrophages. J Gen Virol 2009; 90:2650-2659. [DOI: 10.1099/vir.0.012021-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mechanisms responsible for lymphocyte apoptosis in bovine viral diarrhoea have not yet been clarified. Previous work suggests that bovine viral diarrhea virus (BVDV) is only directly responsible for the destruction of a small number of lymphocytes. The aim of this study was to clarify, in vivo, the role of macrophages in lymphocyte destruction through indirect mechanisms linked to the biosynthetic activation of these immunocompetent cells on ileal Peyer's patches, as well as the distribution and quantification of apoptosis. Eight colostrum-deprived calves were inoculated intranasally with a non-cytopathic strain of BVDV genotype 1 and killed in batches of two at 3, 6, 9 and 14 days post-inoculation (p.i.). The progressive depletion of Peyer's patches was found to be due to massive lymphocyte apoptosis, with an increase in cleaved caspase-3 and TUNEL-positive cells. Lymphoid depletion was accompanied, from 3 days p.i., by a significant rise in macrophage numbers both in lymphoid follicles and in interfollicular areas. Some macrophages showed signs of viral infection, together with subcellular changes indicative of phagocyte activation and, in some cases, of secretory activity. However, the number of macrophages that showed positive immunostaining for tumour necrosis factor-α and interleukin-1α, cytokines with a proven ability to induce apoptosis, remained low throughout the experiment in lymphoid follicles, where most apoptotic cells were found. These results thus appear to rule out a major involvement of macrophages and macrophage-secreted chemical mediators in the apoptosis of follicular B lymphocytes during BVDV infection.
Collapse
|
24
|
Gamlen T, Richards KH, Mankouri J, Hudson L, McCauley J, Harris M, Macdonald A. Expression of the NS3 protease of cytopathogenic bovine viral diarrhea virus results in the induction of apoptosis but does not block activation of the beta interferon promoter. J Gen Virol 2009; 91:133-44. [PMID: 19793904 DOI: 10.1099/vir.0.016170-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV; genus Pestivirus) can exist as two biotypes, cytopathogenic (CP) and non-cytopathogenic (NCP). The CP form differs from NCP by the continual expression of free non-structural protein 3 (NS3). CP BVDV infection of cultured cells induces apoptosis, whereas NCP BVDV infection has been reported to block the induction of beta interferon (IFN-beta). To investigate the viral mechanisms underlying these effects, NS3 or NS2-3 proteins of NCP and CP BVDV biotypes, together with the cognate NS3 co-factor NS4A, were expressed in cells, and their effect on apoptosis and induction of IFN-beta was investigated. Expression of NS3/4A resulted in increased activity of caspase-9 and caspase-3, indicating induction of the intrinsic apoptosis pathway. Mutational analysis revealed that a protease-inactive NS3/4A was unable to induce apoptosis, suggesting that NS3 protease activity is required for initiation of apoptosis during CP BVDV infection. The ability of NS2-3 to modulate activation of the IFN-beta promoter was also investigated. These studies confirmed that, unlike the related hepatitis C virus and GB virus-B, BVDV proteases are unable to inhibit TLR3- and RIG-I-dependent activation of the IFN-beta promoter. These data suggest that BVDV NS3/4A is responsible for regulating the levels of cellular apoptosis and provide new insights regarding the viral elements associated with CP biotype pathogenesis.
Collapse
Affiliation(s)
- Toby Gamlen
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Henningson JN, Topliff CL, Gil LHV, Donis RO, Steffen DJ, Charleston B, Eskridge KM, Kelling CL. Effect of the viral protein Npro on virulence of bovine viral diarrhea virus and induction of interferon type I in calves. Am J Vet Res 2009; 70:1117-23. [DOI: 10.2460/ajvr.70.9.1117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Objective—To characterize the influence of the viral protein Npro on virulence of bovine viral diarrhea virus (BVDV) and on type I interferon responses in calves.
Animals—10 calves, 4 to 6 months of age.
Procedures—BVDV virulence and type I interferon responses of calves (n = 5) infected with a noncytopathic BVDV with a deleted Npro were compared with those of calves (5) infected with a noncytopathic BVDV with a functional Npro. Rectal temperatures, clinical signs, platelet counts, and total and differential WBC counts were evaluted daily. Histologic examinations and immunohistochemical analyses of tissues were conducted to assess lesions and distribution of viral antigens, respectively. Serum type I interferon concentrations were determined.
Results—Calves infected with Npro-deleted BVDV developed leukopenia and lymphopenia, without developing increased rectal temperatures or lymphoid depletion of target lymphoid organs. There was minimal antigen deposition in lymphoid organs. Calves infected with Npro BVDV developed increased rectal temperatures, leukopenia, lymphopenia, and lymphoid depletion with marked BVDV antigen deposition in lymphatic tissues. Interferon type I responses were detected in both groups of calves.
Conclusions and Clinical Relevance—Deletion of Npro resulted in attenuation of BVDV as evidenced by reduced virulence in calves, compared with BVDV with a functional Npro. Deletion of Npro did not affect induction of type I interferon. The Npro-deleted BVDV mutant may represent a safe noncytopathic virus candidate for vaccine development.
Collapse
|
26
|
Yamane D, Zahoor MA, Mohamed YM, Azab W, Kato K, Tohya Y, Akashi H. Microarray analysis reveals distinct signaling pathways transcriptionally activated by infection with bovine viral diarrhea virus in different cell types. Virus Res 2009; 142:188-99. [PMID: 19428753 DOI: 10.1016/j.virusres.2009.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 12/01/2022]
Affiliation(s)
- Daisuke Yamane
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Liang D, Chen L, Ansari IH, Gil LH, Topliff CL, Kelling CL, Donis RO. A replicon trans-packaging system reveals the requirement of nonstructural proteins for the assembly of bovine viral diarrhea virus (BVDV) virion. Virology 2009; 387:331-40. [DOI: 10.1016/j.virol.2009.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/28/2008] [Accepted: 02/07/2009] [Indexed: 11/25/2022]
|
28
|
Yamane D, Zahoor MA, Mohamed YM, Azab W, Kato K, Tohya Y, Akashi H. Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 2009; 284:13648-13659. [PMID: 19293152 DOI: 10.1074/jbc.m807498200] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid implicated in diverse cellular functions including survival, proliferation, tumorigenesis, inflammation, and immunity. Sphingosine kinase (SphK) contributes to these functions by converting sphingosine to S1P. We report here that the nonstructural protein NS3 from bovine viral diarrhea virus (BVDV), a close relative of hepatitis C virus (HCV), binds to and inhibits the catalytic activity of SphK1 independently of its serine protease activity, whereas HCV NS3 does not affect SphK1 activity. Uncleaved NS2-3 from BVDV was also found to interact with and inhibit SphK1. We suspect that inhibition of SphK1 activity by BVDV NS3 and NS2-3 may benefit viral replication, because SphK1 inhibition by small interfering RNA, chemical inhibitor, or overexpression of catalytically inactive SphK1 results in enhanced viral replication, although the mechanisms by which SphK1 inhibition leads to enhanced viral replication remain unknown. A role of SphK1 inhibition in viral cytopathogenesis is also suggested as overexpression of SphK1 significantly attenuates the induction of apoptosis in cells infected with cytopathogenic BVDV. These findings suggest that SphK is targeted by this virus to regulate its catalytic activity.
Collapse
Affiliation(s)
- Daisuke Yamane
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Muhammad A Zahoor
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yassir M Mohamed
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Walid Azab
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukinobu Tohya
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
29
|
A pyrazolotriazolopyrimidinamine inhibitor of bovine viral diarrhea virus replication that targets the viral RNA-dependent RNA polymerase. Antiviral Res 2009; 82:141-7. [PMID: 19428605 DOI: 10.1016/j.antiviral.2009.02.192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 02/16/2009] [Accepted: 02/16/2009] [Indexed: 11/23/2022]
Abstract
[7-[3-(1,3-Benzodioxol-5-yl)propyl]-2-(2-furyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] (LZ37) was identified as a selective inhibitor of in vitro bovine viral diarrhea virus (BVDV) replication. The EC(50) values for inhibition of BVDV-induced cytopathic effect (CPE) formation, viral RNA synthesis and production of infectious virus were 4.3+/-0.7microM, 12.9+/-1microM and 5.8+/-0.6microM, respectively. LZ37 proved inactive against the hepatitis C virus and the flavivirus yellow fever. LZ37 inhibits BVDV replication at a time point that coincides with the onset of intracellular viral RNA synthesis. Drug-resistant mutants carried the F224Y mutation in the viral RNA-dependent RNA polymerase (RdRp). LZ37 showed cross-resistance with the imidazopyrrolopyridine AG110 [which selects for the E291G drug resistance mutation] as well as with the imidazopyridine BPIP [which selects for the F224S drug-resistant mutation]. LZ37 did not inhibit the in vitro activity of purified recombinant BVDV RdRp. Molecular modelling revealed that F224 is located near the tip of the finger domain of the RdRp. Docking of LZ37 in the crystal structure of the BVDV RdRp revealed several potential contacts including: (i) hydrophobic contacts of LZ37 with A221, A222, G223, F224 and A392; (ii) a stacking interaction between F224 side chain and the ring system of LZ37 and (iii) a hydrogen bond between the amino function of LZ37 and the O backbone atom of A392. It is concluded that LZ37 interacts with the same binding site as BPIP or VP32947 at the top of the finger domain of the polymerase that is a "hot spot" for inhibition of pestivirus replication.
Collapse
|
30
|
Mätzener P, Magkouras I, Rümenapf T, Peterhans E, Schweizer M. The viral RNase E(rns) prevents IFN type-I triggering by pestiviral single- and double-stranded RNAs. Virus Res 2008; 140:15-23. [PMID: 19041350 DOI: 10.1016/j.virusres.2008.10.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 12/25/2022]
Abstract
Interferon (IFN) type-I is of utmost importance in the innate antiviral defence of eukaryotic cells. The cells express intra- and extracellular receptors that monitor their surroundings for the presence of viral genomes. Bovine viral diarrhoea virus (BVDV), a Pestivirus of the family Flaviviridae, is able to prevent IFN synthesis induced by poly(IC), a synthetic dsRNA. The evasion of innate immunity might be a decisive ability of BVDV to establish persistent infection in its host. We report that ds- as well as ssRNA fragments of viral origin are able to trigger IFN synthesis, and that the viral envelope glycoprotein E(rns), that is also secreted from infected cells, is able to inhibit IFN expression induced by these extracellular viral RNAs. The RNase activity of E(rns) is required for this inhibition, and E(rns) degrades ds- and ssRNA at neutral pH. In addition, cells infected with a cytopathogenic strain of BVDV contain more dsRNA than cells infected with the homologous non-cytopathogenic strain, and the intracellular viral RNA was able to excite the IFN system in a 5'-triphosphate-, i.e. RIG-I-, independent manner. Functionally, E(rns) might represent a decoy receptor that binds and enzymatically degrades viral RNA that otherwise might activate the IFN defence by binding to Toll-like receptors of uninfected cells. Thus, the pestiviral RNase efficiently manipulates the host's self-nonself discrimination to successfully establish and maintain persistence and immunotolerance.
Collapse
Affiliation(s)
- Philippe Mätzener
- Institute of Veterinary Virology, University of Bern, Laenggass-Str. 122, P.O. Box 8466, CH-3001 Bern, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Cytopathogenicity of classical Swine Fever virus correlates with attenuation in the natural host. J Virol 2008; 82:9717-29. [PMID: 18653456 DOI: 10.1128/jvi.00782-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the important livestock pathogens classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV), cytopathogenic (cp) and non-cp viruses are distinguished according to the induction of apoptosis in infected tissue culture cells. However, it is currently unknown whether cp CSFV differs from non-cp CSFV with regard to virulence in the acutely infected host. In this study, we generated helper virus-independent CSFV Alfort-Jiv, which encompasses sequences encoding domain Jiv-90 of cellular J-domain protein interacting with viral protein (Jiv). Expanding the knowledge of BVDV, our results suggest that Jiv acts as a regulating cofactor for the nonstructural (NS) protein NS2 autoprotease of CSFV and initiates NS2-3 cleavage in trans. For Alfort-Jiv, the resulting expression of large amounts of NS3 correlated with increased viral RNA synthesis and viral cytopathogenicity. Moreover, both cp Alfort-Jiv and the parental non-cp CSFV strain Alfort-p447 efficiently replicate in cell culture. Animal experiments demonstrated that in contrast to parental non-cp Alfort-p447, infection with cp Alfort-Jiv did not cause disease in pigs but induced high levels of neutralizing antibodies, thus elucidating that cp CSFV is highly attenuated in its natural host. In contrast to virulent Alfort-p447, the attenuated CSFV strain Alfort-Jiv induces the expression of cellular Mx protein in porcine PK-15 cells. Accordingly, the remarkable difference between cp and non-cp CSFV with regard to the ability to cause classical swine fever in pigs correlates with different effects of cp and non-cp CSFV on cellular antiviral defense mechanisms.
Collapse
|
32
|
Birk AV, Dubovi EJ, Zhang X, Szeto HH. Antiviral activity of geneticin against bovine viral diarrhoea virus. Antivir Chem Chemother 2008; 19:33-40. [PMID: 18610556 DOI: 10.1177/095632020801900105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Aminoglycoside G418 is commonly used to generate stable replicons for RNA viruses, such as hepatitis C virus, West Nile virus, and bovine viral diarrhoea virus (BVDV). This precludes testing 6418's own antiviral activities against those viruses. Here, we report antiviral activity of 6418 against BVDV. METHODS Cell viability and virus yield reduction assays were used to investigate antiviral effects of G418 against BVDV. The expression of viral proteins and RNA were determined by western blot and real-time quantitive PCR, respectively. RESULTS We demonstrated that G418 (50% cytotoxicity concentration of 400 microg/ml) improved cell viability of Madin-Darby bovine kidney cells infected with a cytopathic strain of BVDV (NADL) in a dose-dependent manner with 50% effective concentration of 4 microg/ml. Interestingly, close structural analogues with known properties as translation inhibitors similar to G418 - kanamycin and gentamicin - had no antiviral activity against BVDV. In addition, 6418 inhibits virus yield of two different strains of BVDV (NADL and NY-1) without affecting viral RNA replication and translation or viral NS3 protein processing. CONCLUSION Our data indicate that antiviral activity of G418 could result from interference with either the assembly or release of active virus, rather than the regulation of viral translation and replication. Thus, we propose the use of chemical analogues of G418 as antiviral therapeutics for treatment of viral diseases associated with the Flaviviridae family, such as hepatitis C virus, dengue virus, yellow fever virus, West Nile virus and others.
Collapse
Affiliation(s)
- Alexander V Birk
- Institute of Hepatitis and Viral Research, Doylestown, PA 18902, USA.
| | | | | | | |
Collapse
|
33
|
Hoover S, Striker R. Thiopurines inhibit bovine viral diarrhea virus production in a thiopurine methyltransferase-dependent manner. J Gen Virol 2008; 89:1000-1009. [PMID: 18343842 DOI: 10.1099/vir.0.83381-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The family Flaviviridae comprises positive-strand RNA viral pathogens of humans and livestock with few treatment options. We have previously shown that azathioprine (AZA) has in vitro activity against bovine viral diarrhea virus (BVDV). While the mechanism of inhibition is unknown, AZA and related thiopurine nucleoside analogues have been used as immunosuppressants for decades and both AZA metabolites and cellular genes involved in AZA metabolism have been extensively characterized. Here, we show that only certain riboside metabolites have antiviral activity and identify the most potent known antiviral AZA metabolite as 6-methylmercaptopurine riboside (6MMPr). The antiviral activity of 6MMPr is antagonized by adenosine, and is specific to BVDV and not to the related yellow fever virus. An essential step in the conversion of AZA to 6MMPr is the addition of a methyl group onto the sulfur atom attached to position six of the purine ring. Intracellularly, the methyl group is added by thiopurine methyltransferase (TPMT), an S-adenosyl methionine-dependent methyltransferase. Either chemically bypassing or inhibiting TPMT modulates antiviral activity of AZA metabolites. TPMT exists in several variants with varying levels of activity and since 6MMPr is a potent antiviral, the antiviral activity of AZA may be modulated by host genetics.
Collapse
Affiliation(s)
- Spencer Hoover
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, 1550 Linden Drive, Madison, WI, USA
| | - Rob Striker
- Department of Medicine, University of Wisconsin, Madison, W. S. Middleton Memorial Veteran's Hospital, Madison, WI, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, 1550 Linden Drive, Madison, WI, USA
| |
Collapse
|
34
|
Kameyama KI, Sakoda Y, Matsuno K, Ito A, Tajima M, Nakamura S, Kida H. Cleavage of the NS2-3 protein in the cells of cattle persistently infected with non-cytopathogenic bovine viral diarrhea virus. Microbiol Immunol 2008; 52:277-82. [DOI: 10.1111/j.1348-0421.2008.00013.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Paeshuyse J, Chezal JM, Froeyen M, Leyssen P, Dutartre H, Vrancken R, Canard B, Letellier C, Li T, Mittendorfer H, Koenen F, Kerkhofs P, De Clercq E, Herdewijn P, Puerstinger G, Gueiffier A, Chavignon O, Teulade JC, Neyts J. The imidazopyrrolopyridine analogue AG110 is a novel, highly selective inhibitor of pestiviruses that targets the viral RNA-dependent RNA polymerase at a hot spot for inhibition of viral replication. J Virol 2007; 81:11046-53. [PMID: 17686854 PMCID: PMC2045526 DOI: 10.1128/jvi.00388-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ethyl 2-methylimidazo[1,2-a]pyrrolo[2,3-c]pyridin-8-carboxylate (AG110) was identified as a potent inhibitor of pestivirus replication. The 50% effective concentration values for inhibition of bovine viral diarrhea virus (BVDV)-induced cytopathic effect, viral RNA synthesis, and production of infectious virus were 1.2 +/- 0.5 microM, 5 +/- 1 microM, and 2.3 +/- 0.3 microM, respectively. AG110 proved inactive against the hepatitis C virus and a flavivirus. AG110 inhibits BVDV replication at a time point that coincides with the onset of intracellular viral RNA synthesis. Drug-resistant mutants carry the E291G mutation in the viral RNA-dependent RNA polymerase (RdRp). AG110-resistant virus is cross-resistant to the cyclic urea compound 1453 which also selects for the E291G drug resistance mutation. Moreover, BVDV that carries the F224S mutation (because of resistance to the imidazopyridine 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine [BPIP]and VP32947) is also resistant to AG110. AG110 did not inhibit the in vitro activity of recombinant BVDV RdRp but inhibited the activity of BVDV replication complexes (RCs). Molecular modeling revealed that E291 is located in a small cavity near the tip of the finger domain of the RdRp about 7 A away from F224. Docking of AG110 in the crystal structure of the BVDV RdRp revealed several potential contacts including with Y257. The E291G mutation might enable the free rotation of Y257, which might in turn destabilize the backbone of the loop formed by residues 223 to 226, rendering more mobility to F224 and, hence, reducing the affinity for BPIP and VP32947. It is concluded that a single drug-binding pocket exists within the finger domain region of the BVDV RdRp that consists of two separate but potentially overlapping binding sites rather than two distinct drug-binding pockets.
Collapse
Affiliation(s)
- Jan Paeshuyse
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Paeshuyse J, Leyssen P, Mabery E, Boddeker N, Vrancken R, Froeyen M, Ansari IH, Dutartre H, Rozenski J, Gil LHVG, Letellier C, Lanford R, Canard B, Koenen F, Kerkhofs P, Donis RO, Herdewijn P, Watson J, De Clercq E, Puerstinger G, Neyts J. A novel, highly selective inhibitor of pestivirus replication that targets the viral RNA-dependent RNA polymerase. J Virol 2007; 80:149-60. [PMID: 16352539 PMCID: PMC1317535 DOI: 10.1128/jvi.80.1.149-160.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report on the highly potent and selective antipestivirus activity of 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP). The 50% effective concentration (EC50) for inhibition of bovine viral diarrhea virus (BVDV)-induced cytopathic effect formation was 0.04 +/- 0.01 microM. Comparable reduction of viral RNA synthesis (EC50 = 0.12 +/- 0.02 microM) and production of infectious virus (EC50= 0.074 +/- 0.003 microM) were observed. The selectivity index (ratio of 50% cytostatic concentration/EC50) of BPIP was approximately 2,000. BPIP was inactive against the hepatitis C virus subgenomic replicon and yellow fever virus but demonstrated weak activity against GB virus. Drug-resistant mutants were at least 300-fold less susceptible to BPIP than wild-type virus; showed cross-resistance to N-propyl-N-[2-(2H-1,2,4-triazino[5,6-b]indol-3-ylthio)ethyl]-1-propanamine (VP32947), and carried the F224S mutation in the viral RNA-dependent RNA polymerase (RdRp). When the F224S mutation was introduced into an infectious clone, the drug-resistant phenotype was obtained. BPIP did not inhibit the in vitro activity of recombinant BVDV RdRp, but did inhibit the activity of replication complexes (RCs). Computational docking revealed that F224 is located at the top of the finger domain of the polymerase. Docking of BPIP in the crystal structure of the BVDV RdRp revealed aromatic ring stacking, some hydrophobic contacts, and a hydrogen bond. Since two structurally unrelated compounds, i.e., BPIP and VP32947, target the same region of the BVDV RdRp, this position may be expected to be critical in the functioning of the polymerase or assembly of the RC. The potential of BPIP for the treatment of pestivirus and hepacivirus infections is discussed.
Collapse
Affiliation(s)
- Jan Paeshuyse
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Meyers G, Ege A, Fetzer C, von Freyburg M, Elbers K, Carr V, Prentice H, Charleston B, Schürmann EM. Bovine viral diarrhea virus: prevention of persistent fetal infection by a combination of two mutations affecting Erns RNase and Npro protease. J Virol 2007; 81:3327-38. [PMID: 17215285 PMCID: PMC1866084 DOI: 10.1128/jvi.02372-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Different genetically engineered mutants of bovine viral diarrhea virus (BVDV) were analyzed for the ability to establish infection in the fetuses of pregnant heifers. The virus mutants exhibited either a deletion of the overwhelming part of the genomic region coding for the N-terminal protease N(pro), a deletion of codon 349, which abrogates the RNase activity of the structural glycoprotein E(rns), or a combination of both mutations. Two months after infection of pregnant cattle with wild-type virus or either of the single mutants, the majority of the fetuses contained virus or were aborted or found dead in the uterus. In contrast, the double mutant was not recovered from fetal tissues after a similar challenge, and no dead fetuses were found. This result was verified with a nonrelated BVDV containing similar mutations. After intrauterine challenge with wild-type virus, mutated viruses, and cytopathogenic BVDV, all viruses could be detected in fetal tissue after 5, 7, and 14 days. Type 1 interferon (IFN) could be detected in fetal serum after challenge, except with wild-type noncytopathogenic BVDV. On days 7 and 14 after challenge, the largest quantities of IFN in fetal serum were induced by the N(pro) and RNase-negative double mutant virus. The longer duration of fetal infection with the double mutant resulted in abortion. Therefore, for the first time, we have demonstrated the essential role of both N(pro) and E(rns) RNase in blocking interferon induction and establishing persistent infection by a pestivirus in the natural host.
Collapse
Affiliation(s)
- Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Paul-Ehrlich-Strasse 28, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yamane D, Kato K, Tohya Y, Akashi H. The double-stranded RNA-induced apoptosis pathway is involved in the cytopathogenicity of cytopathogenic Bovine viral diarrhea virus. J Gen Virol 2006; 87:2961-2970. [PMID: 16963755 DOI: 10.1099/vir.0.81820-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV), which is classified in the genus Pestivirus, family Flaviviridae, can be divided into two biotypes according to its ability to induce a cytopathic effect in tissue culture cells. The mechanisms through which cytopathogenic (cp) BVDV induces cell death and non-cytopathogenic (ncp) BVDV causes persistent infection without producing cell death remain unclear. Here, it was found that the overexpression of four apoptosis-related cellular mRNAs in cells infected with cpBVDV could also be caused by synthetic dsRNA. In fact, it was found that the amount of dsRNA produced by cpBVDV considerably exceeded the amount yielded by ncpBVDV. To evaluate the possible involvement of dsRNA in the induction of apoptosis, this study examined whether RNAi-mediated depletion of two dsRNA-reactive cellular factors, dsRNA-dependent protein kinase and 2′,5′-oligoadenylate synthetase 1, resulted in the prevention of cpBVDV-induced apoptosis. Although the induction of apoptosis was reduced after the suppression of either factor alone, the simultaneous silencing of both factors resulted in an almost complete inhibition of apoptosis without affecting viral titre. These results showed that dsRNA is the main trigger of apoptosis in cpBVDV-infected cells and that the cytopathogenicity of BVDV depends on the yield potential of dsRNA. In contrast, ncpBVDV yielded minimal levels of dsRNA, thereby establishing a persistent infection without inducing apoptosis. This report supports the significance of viral dsRNA as a trigger of innate immune responses.
Collapse
Affiliation(s)
- Daisuke Yamane
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukinobu Tohya
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
39
|
Puerstinger G, Paeshuyse J, Herdewijn P, Rozenski J, De Clercq E, Neyts J. Substituted 5-benzyl-2-phenyl-5H-imidazo[4,5-c]pyridines: a new class of pestivirus inhibitors. Bioorg Med Chem Lett 2006; 16:5345-9. [PMID: 16901692 DOI: 10.1016/j.bmcl.2006.07.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/23/2006] [Accepted: 07/25/2006] [Indexed: 12/09/2022]
Abstract
A novel class of inhibitors of pestiviruses (5-substituted 2-phenyl-5H-imidazo[4,5-c]pyridines) is described. Modification of the substituent in position 5 resulted in analogues with high activity (EC(50)<100nM) and selectivity (SI>1000) against the pestivirus BVDV (bovine viral diarrhea virus).
Collapse
Affiliation(s)
- Gerhard Puerstinger
- Institut für Pharmazie, Abteilung Pharmazeutische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
40
|
Gil LHVG, Ansari IH, Vassilev V, Liang D, Lai VCH, Zhong W, Hong Z, Dubovi EJ, Donis RO. The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism. J Virol 2006; 80:900-11. [PMID: 16378992 PMCID: PMC1346884 DOI: 10.1128/jvi.80.2.900-911.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The alpha/beta interferon (IFN-alpha/beta) system is the first line of defense against viral infection and a critical link between the innate and adaptive immune responses. IFN-alpha/beta secretion is the hallmark of cellular responses to acute RNA virus infections. As part of their survival strategy, many viruses have evolved mechanisms to counteract the host IFN-alpha/beta response. Bovine viral diarrhea virus (BVDV) (genus Pestivirus) was reported to trigger interferon production in infected cultured cells under certain circumstances or to suppress it under others. Our studies with various cultured fibroblasts and epithelial bovine cells indicated that cytopathic (cp) BVDV induces IFN-alpha/beta very inefficiently. Using a set of engineered cp BVDVs expressing mutant Npro and appropriate controls, we found that the IFN-alpha/beta response to infection was dependent on Npro expression and independent of viral replication efficiency. In order to investigate whether the protease activity of Npro is required for IFN-alpha/beta antagonism, we engineered Npro mutants lacking protease activity by replacement of amino acid E22, H49, or C69. We found that E22 and H49 substitutions abolished the ability of Npro to suppress IFN, whereas C69 had no effect, suggesting that the structural integrity of the N terminus of Npro was more important than its catalytic activity for IFN-alpha/beta suppression. A catalytically active mutant with a change at a conserved Npro region near the N terminus (L8P) in both BVDV biotypes did not antagonize IFN-alpha/beta production, confirming its involvement in this process. Taken together, these results not only provide direct evidence for the role of Npro in blocking IFN-alpha/beta induction, but also implicate the amino-terminal domain of the protein in this function.
Collapse
Affiliation(s)
- Laura H V G Gil
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 68583-0905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Werling D, Ruryk A, Heaney J, Moeller E, Brownlie J. Ability to differentiate between cp and ncp BVDV by microarrays: towards an application in clinical veterinary medicine? Vet Immunol Immunopathol 2005; 108:157-64. [PMID: 16102843 DOI: 10.1016/j.vetimm.2005.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Microarray expression profiling provides a comprehensive portrait of the transcriptional world enabling us to view the organism as a 'system' that is more than the sum of its parts. The vigilance of cells to environmental change, the alacrity of the transcriptional response, the short half-life of cellular mRNA and the genome-scale nature of the investigation collectively explain the power of this method. These same features pose the most significant experimental design and execution issues which, unless surmounted, predictably generate a distorted image of the transcriptome. Conversely, the expression profile of a properly conceived and conducted microarray experiment can be used for hypothesis testing: disclosure of the metabolic and biosynthetic pathways that underlie adaptation of the organism to infectious processes; the identification of co-ordinately regulated genes; the regulatory circuits and signal transduction systems that mediate the adaptive response; and temporal features of developmental programmes. The study of viral pathogenesis by microarray expression profiling poses special challenges and opportunities. Although the technical hurdles are many, obtaining expression profiles of an organism growing in tissue will probably reveal strategies for growth and survival of the virus in the host's cells. Here, we show data obtained using a tailored microarray system based on synthetic polynucleotides derived from human sequences (SIRS-Lab GmbH, Jena, Germany) to study the effect of cytopathogenic (cpe) and non-cytopathogenic (ncp) bovine viral diarrhoea virus (BVDV) infection of bovine macrophages, focusing on intracellular signalling molecules. Of the 575 genes present on the array, more than 70% showed a reaction with the oligonuleotides spotted on the array, and 26 genes were differentially expressed comparing cDNA derived from cpe and ncp infected cells. These data will help to further understand our knowledge regarding BVDV infection, and will especially help to understand differences in cellular responses to cpe and ncp biotypes.
Collapse
Affiliation(s)
- Dirk Werling
- Royal Veterinary College, Department of Pathology and Infectious Diseases, Hawkshead Lane, Hatfield AL9 7TA, UK.
| | | | | | | | | |
Collapse
|
42
|
Bauhofer O, Summerfield A, McCullough KC, Ruggli N. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells. Virology 2005; 343:93-105. [PMID: 16154171 DOI: 10.1016/j.virol.2005.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 06/25/2005] [Accepted: 08/12/2005] [Indexed: 11/18/2022]
Abstract
Classical swine fever virus (CSFV) is a noncytopathogenic (ncp) positive-sense RNA virus that replicates in myeloid cells including macrophages and dendritic cells (DC). The virus does not induce type I interferon (IFN-alpha/beta), which in macrophages has been related to the presence of the viral Npro gene. In the present work, the role of viral double-stranded (ds)RNA and Npro in the virus-host cell interaction has been analyzed. Higher levels of detectable dsRNA were produced by a genetically engineered cytopathogenic (cp) CSFV compared with ncp CSFV, and cp CSFV induced IFN-alpha/beta in PK-15 cells. With DC, there was only a small difference in the levels of dsRNA between the cp and ncp viruses, and no IFN-alpha/beta was produced. However, the cp virus induced a higher degree of DC maturation, in terms of CD80/86 and MHC II expression. Npro deletion mutants induced an increase in DC maturation and IFN-alpha/beta production-for both ncp and cp viruses-despite reduced replication efficiency in the DC. Deletion of Npro did not influence dsRNA levels, indicating that the interference was downstream of dsRNA turnover regulation. In conclusion, the capacity of CSFV to replicate in myeloid DC, and prevent IFN-alpha/beta induction and DC maturation, requires both regulated dsRNA levels and the presence of viral Npro.
Collapse
Affiliation(s)
- Oliver Bauhofer
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland.
| | | | | | | |
Collapse
|
43
|
Gil LHVG, van Olphen AL, Mittal SK, Donis RO. Modulation of PKR activity in cells infected by bovine viral diarrhea virus. Virus Res 2005; 116:69-77. [PMID: 16194578 DOI: 10.1016/j.virusres.2005.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 01/12/2023]
Abstract
Bovine viral diarrhea virus is an important animal pathogen. The cytopathic and noncytopathic biotypes of the virus are associated with distinct pathologic entities. A striking difference between the two biotypes is viral RNA accumulation in infected cells. Viral dsRNA is thought to activate protein kinase PKR; an important mediator of innate immunity. In this study, we investigated PKR activation and its consequences in BVDV-infected cells. Infection with cp BVDV was found to induce PKR activation, eIF2alpha phosphorylation, translation inhibition and NF-kappaB activation. In contrast, PKR activity and eIF2alpha phosphorylation were not induced during infection with the ncp BVDV. In addition, cells infected with ncp BVDV showed no PKR phosphorylation in response to infection with the unrelated poliovirus whereas uninfected ncp BVDV cells when infected with poliovirus showed high levels of phosphorylated PKR. Cells infected with ncp BVDV failed to respond to synthetic dsRNA (poly I:C) treatment with NF-kappaB activation. However, the NF-kappaB response to bacterial lipopolysaccarides (LPS) was normal in these cells, suggesting a specific suppression of antiviral response signaling in ncp BVDV infected cells. These results indicate that ncp BVDV has evolved specific mechanisms to prevent activation of PKR and its antiviral effectors, most likely to facilitate the establishment and maintenance of persistent infection.
Collapse
Affiliation(s)
- Laura H V G Gil
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 68583-0905, USA
| | | | | | | |
Collapse
|
44
|
Yamane D, Nagai M, Ogawa Y, Tohya Y, Akashi H. Enhancement of apoptosis via an extrinsic factor, TNF-alpha, in cells infected with cytopathic bovine viral diarrhea virus. Microbes Infect 2005; 7:1482-91. [PMID: 16055364 DOI: 10.1016/j.micinf.2005.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Revised: 05/02/2005] [Accepted: 05/09/2005] [Indexed: 11/15/2022]
Abstract
Isolates of bovine viral diarrhea virus (BVDV) are divided into cytopathic (cp) and noncytopathic (ncp) biotypes according to their effect on cultured cells. Calves persistently infected with ncp BVDV are known to develop lethal mucosal disease (MD) after superinfection by cp BVDV. Although the UV-irradiated supernatant of cp BVDV-infected cells has been reported to have no capacity to induce cell death, we found that it could enhance cell death through apoptosis. Up-regulation of tumor necrosis factor alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS) mRNAs was detected specifically in cp BVDV-infected primary cell cultures. Suppression of TNF-alpha via antisense oligonucleotide transfection or incubation with a polyclonal antibody against TNF-alpha resulted in attenuation of apoptosis induced by cp BVDV, suggesting that TNF-alpha participates in apoptosis execution. Although TNF-alpha is one of the iNOS-inducible factors, the iNOS up-regulation was not regulated by TNF-alpha. And iNOS was revealed to serve as anti-apoptotic factor, contrary to our expectation. In addition, the expression level of both TNF-alpha and iNOS mRNAs in the ncp BVDV-infected cells was kept lower than that in the mock-infected cells, suggesting that ncp BVDV reduced or interfered with the factor triggering the expression of both mRNAs. These characteristic mRNA transcriptions would help to explain why BVDV acts differently in cells as well as in vivo, depending on its biotype. To elucidate viral factors inducing TNF-alpha and iNOS may be critical to understand the mechanism of MD development, which closely correlates with cp BVDV-induced apoptosis.
Collapse
Affiliation(s)
- D Yamane
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
45
|
Horscroft N, Bellows D, Ansari I, Lai VCH, Dempsey S, Liang D, Donis R, Zhong W, Hong Z. Establishment of a subgenomic replicon for bovine viral diarrhea virus in Huh-7 cells and modulation of interferon-regulated factor 3-mediated antiviral response. J Virol 2005; 79:2788-96. [PMID: 15708997 PMCID: PMC548457 DOI: 10.1128/jvi.79.5.2788-2796.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We describe the development of a selectable, bi-cistronic subgenomic replicon for bovine viral diarrhea virus (BVDV) in Huh-7 cells, similar to that established for hepatitis C virus (HCV). The selection marker and reporter (Luc-Ubi-Neo) in the BVDV replicon was fused with the amino-terminal protease N(pro), and expression of the nonstructural proteins (NS3 to NS5B) was driven by an encephalomyocarditis virus internal ribosome entry site. This BVDV replicon allows us to compare RNA replication of these two related viruses in a similar cellular background and to identify antiviral molecules specific for HCV RNA replication. The BVDV replicon showed similar sensitivity as the HCV replicon to interferons (alpha, beta, and gamma) and 2'-beta-C-methyl ribonucleoside inhibitors. Known nonnucleoside inhibitor molecules specific for either HCV or BVDV can be easily distinguished by using the parallel replicon systems. The HCV replicon has been shown to block, via the NS3/4A serine protease, Sendai virus-induced activation of interferon regulatory factor 3 (IRF-3), a key antiviral signaling molecule. Similar suppression of IRF-3-mediated responses was also observed with the Huh-7-BVDV replicon but was independent of NS3/4A protease activity. Instead, the amino-terminal cysteine protease N(pro) of BVDV appears to be, at least partly, responsible for suppressing IRF-3 activation induced by Sendai virus infection. This result suggests that different viruses, including those closely related, may have developed unique mechanisms for evading host antiviral responses. The parallel BVDV and HCV replicon systems provide robust counterscreens to distinguish viral specificity of small-molecule inhibitors of viral replication and to study the interactions of the viral replication machinery with the host cell innate immune system.
Collapse
Affiliation(s)
- Nigel Horscroft
- Valeant Pharmaceuticals International, 3300 Hyland Ave., Costa Mesa, CA 92626, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lackner T, Müller A, Pankraz A, Becher P, Thiel HJ, Gorbalenya AE, Tautz N. Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J Virol 2004; 78:10765-75. [PMID: 15367643 PMCID: PMC516412 DOI: 10.1128/jvi.78.19.10765-10775.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 05/24/2004] [Indexed: 12/31/2022] Open
Abstract
Pestiviruses belong to the family Flaviviridae, and their genome is a single-stranded RNA of positive polarity encoding one large polyprotein which is further processed into mature proteins. Noncytopathogenic (noncp) strains of the pestivirus bovine viral diarrhea virus (BVDV) can establish persistent infection. In persistently infected animals, noncp BVDVs occasionally acquire mutations in viral nonstructural protein 2 (NS2) that give rise to cytopathogenic (cp) BVDV variants, and, eventually, lead to the onset of lethal disease. A molecular marker of cp BVDV infection is a high-level expression of the replicative NS3 protease/helicase that together with NS2 is derived from NS2-3. Here, we present evidence for NS2-3 autoprocessing by a newly identified cysteine protease in NS2 that is distantly related to the NS2-3 autoprotease of hepatitis C and GB viruses. The vital role of this autoprotease in BVDV infection was established, implying an essential function for NS3 in pestiviral RNA replication which cannot be supplied by its NS2-3 precursor. Accordingly, and contrary to a current paradigm, we detected almost complete cleavage of NS2-3 in noncp BVDV at early hours of infection. At 6 to 9 h postinfection, NS2-3 autoprocessing diminished to barely detectable levels for noncp BVDV but decreased only moderately for cp BVDV. Viral RNA synthesis rates strictly correlated with different NS3 levels in noncp and cp BVDV-infected cells, implicating the NS2 autoprotease in RNA replication control. The biotype-specific modulation of NS2-3 autoprocessing indicates a crucial role of the NS2 autoprotease in the pathogenicity of BVDV.
Collapse
Affiliation(s)
- T Lackner
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität Giessen, Frankfurter Strasse 107, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Ansari IH, Chen LM, Liang D, Gil LH, Zhong W, Donis RO. Involvement of a bovine viral diarrhea virus NS5B locus in virion assembly. J Virol 2004; 78:9612-23. [PMID: 15331694 PMCID: PMC515013 DOI: 10.1128/jvi.78.18.9612-9623.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A novel mutant of bovine viral diarrhea virus (BVDV) was found with a virion assembly phenotype attributable to an insertion into the NS5B polymerase locus. This mutant, termed 5B-741, was engineered by reverse genetics to express NS5B with a C-terminal peptide tag of 22 amino acids. Electroporation of bovine cells with genomic RNA from this mutant showed levels RNA synthesis which were regarded as sufficient for infectivity, yet infectious virions were not produced. Pseudorevertants of mutant 5B-741 that released infectious virions and formed plaques revealed a single nucleotide change (T12369C). This change resulted in a leucine-to-proline substitution within the NS5B tag (L726P). Genetic analysis revealed that indeed a single nucleotide change encoding proline at NS5B position 726 in the pseudorevertant polyprotein mediated recovery of virion assembly function without improving genomic RNA accumulation levels. A subgenomic BVDV reporter replicon (rNS3-5B) was used to analyze the consequences of alterations of the genomic region encoding the NS5B C terminus on replication and assembly. Interestingly, rNS3-5B-L726P (revertant) replicated with the same efficiency as the rNS3-5B-741 mutant but produced 10 times more virions in a trans-packaging assay. These results indicated that impairment of assembly function in 5B-741 was independent of RNA accumulation levels and agreed with the observations from the full-length mutant and revertant genomes. Finally, we recapitulated the packaging defect of 5B-741 with a vaccinia virus expression system to eliminate possible unwanted interactions between the helper virus and the packaged replicon. Taken together, these studies revealed an unexpected role of NS5B in infectious virion assembly.
Collapse
Affiliation(s)
- Israrul H Ansari
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 68583-0905, USA
| | | | | | | | | | | |
Collapse
|
48
|
Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J Virol 2004. [PMID: 15367643 DOI: 10.1128/jvi.78.19.10765–10775.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pestiviruses belong to the family Flaviviridae, and their genome is a single-stranded RNA of positive polarity encoding one large polyprotein which is further processed into mature proteins. Noncytopathogenic (noncp) strains of the pestivirus bovine viral diarrhea virus (BVDV) can establish persistent infection. In persistently infected animals, noncp BVDVs occasionally acquire mutations in viral nonstructural protein 2 (NS2) that give rise to cytopathogenic (cp) BVDV variants, and, eventually, lead to the onset of lethal disease. A molecular marker of cp BVDV infection is a high-level expression of the replicative NS3 protease/helicase that together with NS2 is derived from NS2-3. Here, we present evidence for NS2-3 autoprocessing by a newly identified cysteine protease in NS2 that is distantly related to the NS2-3 autoprotease of hepatitis C and GB viruses. The vital role of this autoprotease in BVDV infection was established, implying an essential function for NS3 in pestiviral RNA replication which cannot be supplied by its NS2-3 precursor. Accordingly, and contrary to a current paradigm, we detected almost complete cleavage of NS2-3 in noncp BVDV at early hours of infection. At 6 to 9 h postinfection, NS2-3 autoprocessing diminished to barely detectable levels for noncp BVDV but decreased only moderately for cp BVDV. Viral RNA synthesis rates strictly correlated with different NS3 levels in noncp and cp BVDV-infected cells, implicating the NS2 autoprotease in RNA replication control. The biotype-specific modulation of NS2-3 autoprocessing indicates a crucial role of the NS2 autoprotease in the pathogenicity of BVDV.
Collapse
|
49
|
Baigent SJ, Goodbourn S, McCauley JW. Differential activation of interferon regulatory factors-3 and -7 by non-cytopathogenic and cytopathogenic bovine viral diarrhoea virus. Vet Immunol Immunopathol 2004; 100:135-44. [PMID: 15207451 DOI: 10.1016/j.vetimm.2004.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Non-cytopathogenic bovine viral diarrhoea virus (ncpBVDV) has previously been shown to inhibit the function of interferon regulatory factor-3 in cultured cells [J. Virol. 76 (2002) 8979]. In this study, we show that, like ncpBVDV, when cells were previously exposed to cytopathogenic BVDV (cpBVDV) the appearance of an IRF-3-DNA complex from nuclear extracts that can be induced by heterologous virus infection was not observed. Infection of cells with ncpBVDV or cpBVDV resulted in neither the translocation of IRF-7 from the cytoplasm to the nucleus of infected cells, nor an inhibition of its nuclear translocation in cells super-infected by Semliki Forest Virus. We conclude that cpBVDV and ncpBVDV both share the ability to inhibit the full function of IRF-3 but neither stimulate or block the nuclear uptake of IRF-7.
Collapse
Affiliation(s)
- Susan J Baigent
- Compton Laboratory, Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | | |
Collapse
|
50
|
Blas-Machado U, Saliki JT, Duffy JC, Caseltine SL. Bovine viral diarrhea virus type 2-induced meningoencephalitis in a heifer. Vet Pathol 2004; 41:190-4. [PMID: 15017036 DOI: 10.1354/vp.41-2-190] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The brain from a 15-month-old, black female Angus, with a 48-hour history of central nervous system disease, was submitted to the Oklahoma Animal Disease Diagnostic Laboratory. Microscopic findings consisted of acute, multifocal meningoencephalitis, with neuronal degeneration and necrosis and gliosis. Viral isolation yielded noncytopathic bovine viral diarrhea virus (BVDV). Virus genotyping classified the virus as BVDV type 2. Immunohistochemical labeling for BVDV antigens with BVD MAb 3.12F1 clone was prominent in the cytoplasm of neurons, glial cells, ependymal epithelium, perivascular macrophages and spindle cells, smooth muscle cells, and intravascular monocytes of the cerebrum and brain stem. Laboratory results support that tissue alterations occurred as a result of BVDV type 2 infection. In the absence of other clinical signs related to BVDV infection and using the microscopic and laboratory evidence presented, we propose that the BVDV type 2 isolated from this case may represent a neurovirulent strain of the virus. To the best of our knowledge, this is the first report of brain lesions and neuronal viral antigen localization in BVDV genotype 2 viral infection, acquired either congenitally or postnatally.
Collapse
Affiliation(s)
- U Blas-Machado
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, PO Box 7001, Stillwater, OK 74076, USA.
| | | | | | | |
Collapse
|