1
|
Wu T, Wu H, Wang Q, He X, Shi P, Yu B, Cong H, Shen Y. Current status and future developments of biopolymer microspheres in the field of pharmaceutical preparation. Adv Colloid Interface Sci 2024; 334:103317. [PMID: 39461111 DOI: 10.1016/j.cis.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Polymer composite microspheres offer several advantages including highly designable structural properties, adjustable micro-nano particle size distribution, easy surface modification, large specific surface area, and high stability. These features make them valuable in various fields such as medicine, sensing, optics, and display technologies, with significant applications in clinical diagnostics, pathological imaging, and drug delivery in the medical field. Currently, microspheres are primarily used in biomedical research as long-acting controlled-release agents and targeted delivery systems, and are widely applied in bone tissue repair, cancer treatment, and wound healing. Different types of polymer microspheres offer distinct advantages and application prospects. Efforts are ongoing to transition successful experimental research to industrial production by expanding various fabrication technologies. This article provides an overview of materials used in microsphere manufacturing, different fabrication methods, modification techniques to enhance their properties and applications, and discusses the role of microspheres in drug delivery engineering.
Collapse
Affiliation(s)
- Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangqiong He
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Pengbao Shi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Park S, Ha MK, Lee Y, Song J, Yoon TH. Effects of Immune Cell Heterogeneity and Protein Corona on the Cellular Association and Cytotoxicity of Gold Nanoparticles: A Single-Cell-Based, High-Dimensional Mass Cytometry Study. ACS NANOSCIENCE AU 2023; 3:323-334. [PMID: 37601916 PMCID: PMC10436372 DOI: 10.1021/acsnanoscienceau.3c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 08/22/2023]
Abstract
Understanding how nanoparticles (NPs) interact with biological systems is important in many biomedical research areas. However, the heterogeneous nature of biological systems, including the existence of numerous cell types and multitudes of key environmental factors, makes these interactions extremely challenging to investigate precisely. Here, using a single-cell-based, high-dimensional mass cytometry approach, we demonstrated that the presence of protein corona has significant influences on the cellular associations and cytotoxicity of gold NPs for human immune cells, and those effects vary significantly with the types of immune cells and their subsets. The altered surface functionality of protein corona reduced the cytotoxicity and cellular association of gold NPs in most cell types (e.g., monocytes, dendritic cells, B cells, natural killer (NK) cells, and T cells) and those immune cells selected different endocytosis pathways such as receptor-mediated endocytosis, phagocytosis, and micropinocytosis. However, even slight alterations in the major cell type (phagocytic cells and non-phagocytic cells) and T cell subsets (e.g., memory and naive T cells) resulted in significant protein corona-dependent variations in their cellular dose of gold NPs. Especially, naive T killer cells exhibited additional heterogeneity than memory T killer cells, with clusters exhibiting distinct cellular association patterns in single-cell contour plots. This multi-parametric analysis of mass cytometry data established a conceptual framework for a more holistic understanding of how the human immune system responds to external stimuli, paving the way for the application of precisely engineered NPs as promising tools of nanomedicine under various clinical settings, including targeted drug delivery and vaccine development.
Collapse
Affiliation(s)
- Sehee Park
- Department
of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic
of Korea
| | - My Kieu Ha
- Department
of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic
of Korea
| | - Yangsoon Lee
- Department
of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Republic
of Korea
| | - Jaewoo Song
- Department
of Laboratory Medicine, College of Medicine, Yonsei University, Seoul 03722, Republic
of Korea
| | - Tae Hyun Yoon
- Department
of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic
of Korea
- Research
Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic
of Korea
- Institute
of Next Generation Material Design, Hanyang
University, Seoul 04763, Republic of Korea
- Yoon
Idea
Lab. Co. Ltd, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Zhu S, Li Z, Zheng D, Yu Y, Xiang J, Ma X, Xu D, Qiu J, Yang Z, Wang Z, Li J, Sun H, Chen W, Meng X, Lu Y, Ren Q. A cancer cell membrane coated, doxorubicin and microRNA co-encapsulated nanoplatform for colorectal cancer theranostics. Mol Ther Oncolytics 2022; 28:182-196. [PMID: 36820302 PMCID: PMC9937835 DOI: 10.1016/j.omto.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Endogenous microRNAs (miRNA) in tumors are currently under exhaustive investigation as potential therapeutic agents for cancer treatment. Nevertheless, RNase degradation, inefficient and untargeted delivery, limited biological effect, and currently unclear side effects remain unsettled issues that frustrate clinical application. To address this, a versatile targeted delivery system for multiple therapeutic and diagnostic agents should be adapted for miRNA. In this study, we developed membrane-coated PLGA-b-PEG DC-chol nanoparticles (m-PPDCNPs) co-encapsulating doxorubicin (Dox) and miRNA-190-Cy7. Such a system showed low biotoxicity, high loading efficiency, and superior targeting ability. Systematic delivery of m-PPDCNPs in mouse models showed exceptionally specific tumor accumulation. Sustained release of miR-190 inhibited tumor angiogenesis, tumor growth, and migration by regulating a large group of angiogenic effectors. Moreover, m-PPDCNPs also enhanced the sensitivity of Dox by suppressing TGF-β signal in colorectal cancer cell lines and mouse models. Together, our results demonstrate a stimulating and promising m-PPDCNPs nanoplatform for colorectal cancer theranostics.
Collapse
Affiliation(s)
- Sihao Zhu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ziyuan Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dongye Zheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yue Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Xiang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiao Ma
- Research Group Signal Transduction, Department of Psychiatry, Ludwig Maximilian University of Munich, Nussbaumstr.7, 80336 Munich, Germany
| | - Dongqing Xu
- Department of Pediatric Hematology/Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiajun Qiu
- Department of Otolaryngology Head and Neck Surgery, the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ziyu Yang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiyi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Li
- Laboratory Animal Center, Peking University, Beijing 100871, China
| | - Hongfang Sun
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu Province, China,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, Gansu Province, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing 100142, China,Corresponding author.
| | - Yanye Lu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China,Corresponding author.
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China,Corresponding author.
| |
Collapse
|
4
|
Westphalen H, Kalugin D, Abdelrasoul A. Structure, function, and adsorption of highly abundant blood proteins and its critical influence on hemodialysis patients: A critical review. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
5
|
Xie X, Wang J, Zhang L, Zeng S, Su X, Chen Q. Bioresorbable Depot for Sustained Release of Immunostimulatory Resiquimod in Suppressing Both Primary Triple-Negative Breast Tumors and Metastatic Occurrence. Bioconjug Chem 2021; 32:1008-1016. [PMID: 33882675 DOI: 10.1021/acs.bioconjchem.1c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In light of immune facilities trafficking toward the pathological sites along upward gradient of immunostimulatory cytokines, a localized resiquimod (Toll-like receptor 7/8 agonist) release depot was manufactured for pursuit of precision immunostimulation toward intractable triple-negative breast carcinoma. In principle, resiquimod/poly(lactic-co-glycolic acid) microspheres were fabricated and embedded into injectable and biodegradable poly(ethylene glycol) (PEG)-based hydrogel. The subsequent investigations approved persistent retention of immunostimulatory resiquimod in tumors upon peritumoral administration, which consequently led to localized and consistent secretion of immunostimulatory cytokines. Initially, not only innate tumor phagocytosis but also adaptive antitumor immunities were successfully cultivated for in situ suppression of the growth of primary solid tumors, more importantly, capable of inhibiting distant pulmonary metastasis, as evidenced by observation of enormous lymphocytes selectively gathering in the pulmonary artery. Hence, our presented study provided an important clinical indication of using immunostimulatory drugs to activate potent innate and adaptive antitumor immunities for precision antitumor therapy. Further immunomodulatory strategies, such as checkpoint blockage and tumor immunogenicity, could also be complementary for development of advanced antitumor immunotherapeutics in treatment of a number of intractable tumors.
Collapse
Affiliation(s)
- Xizhe Xie
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Liuwei Zhang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Shuang Zeng
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Xiaohui Su
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Qixian Chen
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
6
|
Lundqvist M, Cedervall T. Three Decades of Research about the Corona Around Nanoparticles: Lessons Learned and Where to Go Now. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000892. [PMID: 33107223 DOI: 10.1002/smll.202000892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/02/2020] [Indexed: 06/11/2023]
Abstract
The research about how a nanoparticle (NP) interacts with a complex biological solution has been conducted, according to the literature, for almost three decades. A significant amount of data has been generated, especially in the last one and a half decade. First, it became its own research field which was later divided into many subresearch fields. This outlook does not aim to be a comprehensive review of the field or any of its subresearch fields. There is too much data published to attempt that. Instead, here it has been tried to highlight what, in the opinion, is the main step taken during these three decades. Thereafter, the weaknesses and end are pointed out with what needs to be the main focus for the future to understand the protein corona formation in the bloodstream, which is a prerequisite for the developing of true target specific drug-delivering nanoparticles.
Collapse
|
7
|
Kaufman G, Whitescarver RA, Nunes L, Palmer XL, Skrtic D, Tutak W. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissue regeneration. ACTA ACUST UNITED AC 2018; 13:025006. [PMID: 29364821 DOI: 10.1088/1748-605x/aa91d9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by ImageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within three days of incubation, fibroblast spheroids interacted with the fibers, and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment.
Collapse
Affiliation(s)
- Gili Kaufman
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, United States of America
| | | | | | | | | | | |
Collapse
|
8
|
Schuster T, Mühlstein A, Yaghootfam C, Maksimenko O, Shipulo E, Gelperina S, Kreuter J, Gieselmann V, Matzner U. Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A. J Control Release 2017; 253:1-10. [DOI: 10.1016/j.jconrel.2017.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
|
9
|
Pederzoli F, Tosi G, Vandelli MA, Belletti D, Forni F, Ruozi B. Protein corona and nanoparticles: how can we investigate on? WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1467] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/19/2017] [Accepted: 02/13/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Francesca Pederzoli
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Giovanni Tosi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | | | - Daniela Belletti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Flavio Forni
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Barbara Ruozi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
10
|
Bacakova M, Pajorova J, Stranska D, Hadraba D, Lopot F, Riedel T, Brynda E, Zaloudkova M, Bacakova L. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells. Int J Nanomedicine 2017; 12:1143-1160. [PMID: 28223803 PMCID: PMC5310638 DOI: 10.2147/ijn.s121299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide-co-glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.
Collapse
Affiliation(s)
- Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences; Second Faculty of Medicine, Charles University, Prague
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences; Second Faculty of Medicine, Charles University, Prague
| | | | - Daniel Hadraba
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences; Department of Anatomy and Biomechanics, Faculty of Physical Education and Sport, Charles University
| | - Frantisek Lopot
- Department of Anatomy and Biomechanics, Faculty of Physical Education and Sport, Charles University
| | - Tomas Riedel
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry
| | - Eduard Brynda
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry
| | - Margit Zaloudkova
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences
| |
Collapse
|
11
|
Chen X, Liu L, Jiang C. Charge-reversal nanoparticles: novel targeted drug delivery carriers. Acta Pharm Sin B 2016; 6:261-7. [PMID: 27471667 PMCID: PMC4951588 DOI: 10.1016/j.apsb.2016.05.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 01/31/2023] Open
Abstract
Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).
Collapse
Key Words
- Abs, integrin aVb3 mAbs
- B-PDEAEA, poly[(2-acryloyl) ethyl (p-boronic acid benzyl) diethylammonium bromide]
- BPS, bridged polysilsesquioxanexerogel
- BSA, bovine serum albumin
- CA4, combretastatin A4
- CAPL, charge reversible pullulan-based
- CHPNH2, cationic cholesteryl group–bearing pullulans
- CMC, carboxymethyl cellulose
- CPLAs, cationic polylactides
- Cancer therapy
- Charge-reversal nanoparticles
- Cit, citraconic anhydride
- Cya, cysteamine hydrochloride
- DAP, 2,3-diamino-propionate
- DCL, dimethyl maleamidic acid-ε-caprolactone
- DDS, drug delivery system
- DM, dimyristeroyl
- DMA, 2,3-dimethylmaleic anhydride
- DMPA, dimethylol propionic acid
- DOX, doxorubicin
- Drug delivery carriers
- FITC, fluorescein isothiocyanate
- GO, graphene oxide
- GSH, glutathione
- Glu, glutamic acid
- HCC, hepatocellular carcinoma
- HEP, 1,4-bis(2-hydroxyethyl) piperazine
- HMP, p-hydroxylmethylenephenol
- His, histidine
- MG, microgels
- MMPs, matrix metalloproteinases
- MNP, magnetic nanoparticles
- NPs, nanoparticles
- Nanotechnology
- PAEP, poly(allyl ethylene phosphate)
- PAH, poly(allylamine) hydrochloride
- PBAE, poly(β-amino ester)
- PCL, poly(ε-caprolactone)
- PDADMAC, poly(diallyldimethylammonium chloride)
- PEG, polyethylene glycol
- PEI, polyethylenimine
- PEO, poly(ethylene oxide)
- PK, protein kinase
- PLA, ploylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PLL, poly(l-lysine)
- PMA, poly(methacrylic acid)
- PS, pH sensitive
- PSS, poly(sodium 4-styrenesulfonate)
- PSSS, poly(styrene-co-4-styrene-sulfonate)
- PTX, paclitaxel
- PU, polyurethane
- PVPON, poly(N-vinylpyrrolidone)
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- Stimuli responsive
- TMA, 2-(mercaptoethyl) trimethylammonium chloride
- TUNA, thioundecyl-tetraethyleneglycolester-o-nitrobenzy-lethyldimethyl ammonium bromide
- pA-F, fluorescein-labeled polyanion
Collapse
Affiliation(s)
- Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lisha Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Wang X, Cheng J, Ji G, Peng X, Luo Z. Starch nanoparticles prepared in a two ionic liquid based microemulsion system and their drug loading and release properties. RSC Adv 2016. [DOI: 10.1039/c5ra24495a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br) and 1-octyl-3-methylimidazolium acetate ([C8mim]Ac) were simultaneously used as substitutes for surfactants and the polar phase to prepare ionic liquid microemulsions.
Collapse
Affiliation(s)
- Xinge Wang
- Carbohydrate Lab
- College of Food Science
- South China University of Technology
- Guangzhou
- China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- China
| | - Guangyin Ji
- Carbohydrate Lab
- College of Food Science
- South China University of Technology
- Guangzhou
- China
| | - Xichun Peng
- Department of Food Science and Engineering
- College of Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Zhigang Luo
- Carbohydrate Lab
- College of Food Science
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
13
|
Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bfopcu.2015.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Wright B, Parmar N, Bozec L, Aguayo SD, Day RM. A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres. J Biomater Appl 2015; 30:147-59. [PMID: 25791685 PMCID: PMC4509882 DOI: 10.1177/0885328215577297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Poly (lactic-co-glycolic) acid microspheres are amenable to a number of biomedical procedures that support delivery of cells, drugs, peptides or genes. Hydrophilisation or wetting of poly (lactic-co-glycolic) acid are an important pre-requisites for attachment of cells and can be achieved via exposure to plasma oxygen or nitrogen, surface hydrolysis with NaOH or chloric acid, immersion in ethanol and water, or prolonged incubation in phosphate buffered saline or cell culture medium. The aim of this study is to develop a simple method for wetting poly (lactic-co-glycolic) acid microspheres for cell delivery applications. A one-step ethanol immersion process that involved addition of serum-supplemented medium and ethanol to PLGA microspheres over 30 min–24 h is described in the present study. This protocol presents a more efficient methodology than conventional two-step wetting procedures. Attachment of human skeletal myoblasts to poly (lactic-co-glycolic) acid microspheres was dependent on extent of wetting, changes in surface topography mediated by ethanol pre-wetting and serum protein adsorption. Ethanol, at 70% (v/v) and 100%, facilitated similar levels of wetting. Wetting with 35% (v/v) ethanol was only achieved after 24 h. Pre-wetting (over 3 h) with 70% (v/v) ethanol allowed significantly greater (p ≤ 0.01) serum protein adsorption to microspheres than wetting with 35% (v/v) ethanol. On serum protein-loaded microspheres, greater numbers of myoblasts attached to constructs wetted with 70% ethanol than those partially wetted with 35% (v/v) ethanol. Microspheres treated with 70% (v/v) ethanol presented a more rugose surface than those treated with 35% (v/v) ethanol, indicating that more efficient myoblast adhesion to the former may be at least partially attributed to differences in surface structure. We conclude that our novel protocol for pre-wetting poly (lactic-co-glycolic) acid microspheres that incorporates biochemical and structural features into this biomaterial can facilitate myoblast delivery for use in clinical settings.
Collapse
Affiliation(s)
- Bernice Wright
- Applied Biomedical Engineering Group, Division of Medicine, University College London
| | - Nina Parmar
- Applied Biomedical Engineering Group, Division of Medicine, University College London
| | - Laurent Bozec
- Division Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London
| | - Sebastian D Aguayo
- Division Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London
| | - Richard M Day
- Applied Biomedical Engineering Group, Division of Medicine, University College London
| |
Collapse
|
15
|
Schwendeman SP, Shah RB, Bailey BA, Schwendeman AS. Injectable controlled release depots for large molecules. J Control Release 2014; 190:240-53. [PMID: 24929039 PMCID: PMC4261190 DOI: 10.1016/j.jconrel.2014.05.057] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/28/2014] [Indexed: 11/23/2022]
Abstract
Biodegradable, injectable depot formulations for long-term controlled drug release have improved therapy for a number of drug molecules and led to over a dozen highly successful pharmaceutical products. Until now, success has been limited to several small molecules and peptides, although remarkable improvements have been accomplished in some of these cases. For example, twice-a-year depot injections with leuprolide are available compared to the once-a-day injection of the solution dosage form. Injectable depots are typically prepared by encapsulation of the drug in poly(lactic-co-glycolic acid) (PLGA), a polymer that is used in children every day as a resorbable suture material, and therefore, highly biocompatible. PLGAs remain today as one of the few "real world" biodegradable synthetic biomaterials used in US FDA-approved parenteral long-acting-release (LAR) products. Despite their success, there remain critical barriers to the more widespread use of PLGA LARproducts, particularly for delivery of more peptides and other large molecular drugs, namely proteins. In this review, we describe key concepts in the development of injectable PLGA controlled-release depots for peptides and proteins, and then use this information to identify key issues impeding greater widespread use of PLGA depots for this class of drugs. Finally, we examine important approaches, particularly those developed in our research laboratory, toward overcoming these barriers to advance commercial LAR development.
Collapse
Affiliation(s)
- Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, The Biointerfaces Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Ronak B Shah
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Brittany A Bailey
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Anna S Schwendeman
- Department of Medicinal Chemistry, The Biointerfaces Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Tailored protein release from biodegradable poly(ε-caprolactone-PEG)-b-poly(ε-caprolactone) multiblock-copolymer implants. Eur J Pharm Biopharm 2014; 87:329-37. [DOI: 10.1016/j.ejpb.2014.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 11/23/2022]
|
17
|
Rabanel JM, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Control Release 2014; 185:71-87. [DOI: 10.1016/j.jconrel.2014.04.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/15/2022]
|
18
|
|
19
|
Lin Q, Pan J, Lin Q, Liu Q. Microwave synthesis and adsorption performance of a novel crosslinked starch microsphere. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 2:517-524. [PMID: 24220192 DOI: 10.1016/j.jhazmat.2013.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/01/2013] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
A new crosslinked starch microsphere (CSM) was synthesized in a microwave-assisted inversed emulsion system with soluble starch (ST) as a raw material, MBAA as a crosslinker, and K2S2O8-NaHSO3 as an initiator. The synthesized starch microsphere was characterized and examined by scanning electron microscope (SEM), FTIR spectroscopy and adsorption isotherms of N2 at 77K. Adsorption performance was investigated in methyl violet solution. The results showed that the maximum adsorption capacity for MV was 99.3mg/g at 298 K, and the adsorption fitted pseudo-second-order kinetic model well with correlation coefficients greater than 0.99. The isothermal data obeyed the Langmuir model better compared to Freundlich model and Tempkin model, and the adsorption was exothermic and spontaneous. pH variations (2.0-10.0) did not significantly affect the adsorption of MV onto CSM.
Collapse
Affiliation(s)
- Qintie Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; National Engineering Laboratory for Rice and By-Product Deep Processing, Center South University of Forestry and Technology, Changsha 41004, PR China.
| | | | | | | |
Collapse
|
20
|
Ghanbarzadeh S, Khorrami A, Pourmoazzen Z, Arami S. Plasma stable, pH-sensitive non-ionic surfactant vesicles simultaneously enhance antiproliferative effect and selectivity of Sirolimus. Pharm Dev Technol 2013; 20:279-87. [DOI: 10.3109/10837450.2013.860553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Izak-Nau E, Voetz M, Eiden S, Duschl A, Puntes VF. Altered characteristics of silica nanoparticles in bovine and human serum: the importance of nanomaterial characterization prior to its toxicological evaluation. Part Fibre Toxicol 2013; 10:56. [PMID: 24206572 PMCID: PMC3829099 DOI: 10.1186/1743-8977-10-56] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/01/2013] [Indexed: 11/10/2022] Open
Abstract
Background Many toxicological studies on silica nanoparticles (NPs) have been reported, however, the literature often shows various conclusions concerning the same material. This is mainly due to a lack of sufficient NPs characterization as synthesized as well as in operando. Many characteristics of NPs may be affected by the chemistry of their surroundings and the presence of inorganic and biological moieties. Consequently, understanding the behavior of NPs at the time of toxicological assay may play a crucial role in the interpretation of its results. The present study examines changes in properties of differently functionalized fluorescent 50 nm silica NPs in a variety of environments and assesses their ability to absorb proteins from cell culture medium containing either bovine or human serum. Methods The colloidal stability depending on surface functionalization of NPs, their concentration and time of exposure was investigated in water, standard biological buffers, and cell culture media by dynamic light scattering (DLS), zeta potential measurements and transmission electron microscopy (TEM). Interactions of the particles with biological media were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in bovine and human serum, and extracted proteins were assessed using matrix-assisted laser desorption/ionization-time of flight technique (MALDI-TOF). Results It was recognized that all of the studied silica NPs tended to agglomerate after relatively short time in buffers and biological media. The agglomeration depended not only on the NPs functionalization but also on their concentration and the incubation time. Agglomeration was much diminished in a medium containing serum. The protein corona formation depended on time and functionalization of NP, and varied significantly in different types of serum. Conclusions Surface charge, ionic strength and biological molecules alter the properties of silica NPs and potentially affect their biological effects. The NPs surface in bovine serum and in human serum varies significantly, and it changes with incubation time. Consequently, the human serum, rather than the animal serum, should be used while conducting in vitro or in vivo studies concerning humans. Moreover, there is a need to pre-incubate NPs in the serum to control the composition of the bio-nano-composite that would be present in the human body.
Collapse
|
22
|
Adsorption of plasma proteins on uncoated PLGA nanoparticles. Eur J Pharm Biopharm 2013; 85:53-60. [DOI: 10.1016/j.ejpb.2012.11.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 01/05/2023]
|
23
|
Casals E, Puntes VF. Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact. Nanomedicine (Lond) 2012; 7:1917-30. [DOI: 10.2217/nnm.12.169] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Physicochemical changes to inorganic nanoparticles (NPs) in biological environments determine their impact. Blood, lymph, mucus, complete cell culture media and other biological fluids contain a large amount and variety of different molecules. NPs dispersed in these fluids are sensitive to such environments. One of the most significant alterations is the formation of the NP–protein corona (PC) as a result of the adsorption of proteins onto the inorganic surface. This process is currently gaining attention in the field of inorganic NPs since this spontaneous coating gives a biological identity to the composite NP–PC and determines the interactions between the NP and the host in living systems. Therefore, knowledge of NP–PC formation is crucial for understanding the evolution, biodistribution and reactivity of NPs inside organisms and, therefore, for the safe design of engineered NPs.
Collapse
Affiliation(s)
- Eudald Casals
- CIN2 (ICN-CSIC), Catalan Institute of Nanotechnology & Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Víctor F Puntes
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
24
|
Carrillo-Conde BR, Ramer-Tait AE, Wannemuehler MJ, Narasimhan B. Chemistry-dependent adsorption of serum proteins onto polyanhydride microparticles differentially influences dendritic cell uptake and activation. Acta Biomater 2012; 8:3618-28. [PMID: 22684115 DOI: 10.1016/j.actbio.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 11/26/2022]
Abstract
The delivery of antigen-loaded microparticles to dendritic cells (DCs) may benefit from surface optimization of the microparticles themselves, thereby exploiting the material properties and introducing signals that mimic pathogens. Following in vivo administration microparticle surface characteristics are likely to be significantly modified as proteins are quickly adsorbed onto their surface. In this work we describe the chemistry-dependent serum protein adsorption patterns on polyanhydride particles and the implications for their molecular interactions with DCs. The enhanced expression of MHC II and CD40 on DCs after incubation with amphiphilic polyanhydride particles, and the increased secretion of IL-6, TNF-α, and IL-12p40 by hydrophobic polyanhydride particles exemplified the chemistry-dependent activation of DCs by sham-coated particles. The presence of proteins such as complement component 3 and IgG further enhanced the adjuvant properties of these vaccine carriers by inducing DC maturation (i.e. increased cell surface molecule expression and cytokine secretion) in a chemistry-dependent manner. Utilizing DCs derived from complement receptor 3-deficient mice (CR3(-/-) mice) identified a requirement for CR3 in the internalization of both sham- and serum-coated particles. These studies provide valuable insights into the rational design of targeted vaccine platforms aimed at inducing robust immune responses and improving vaccine efficacy.
Collapse
|
25
|
Patel B, Gupta V, Ahsan F. PEG–PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. J Control Release 2012; 162:310-20. [DOI: 10.1016/j.jconrel.2012.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
|
26
|
Efthimiadou E, Tziveleka LA, Bilalis P, Kordas G. Novel PLA modification of organic microcontainers based on ring opening polymerization: Synthesis, characterization, biocompatibility and drug loading/release properties. Int J Pharm 2012; 428:134-42. [DOI: 10.1016/j.ijpharm.2012.02.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/16/2012] [Accepted: 02/19/2012] [Indexed: 12/20/2022]
|
27
|
Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 2011; 41:2780-99. [PMID: 22086677 DOI: 10.1039/c1cs15233e] [Citation(s) in RCA: 1139] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanomaterials hold promise as multifunctional diagnostic and therapeutic agents. However, the effective application of nanomaterials is hampered by limited understanding and control over their interactions with complex biological systems. When a nanomaterial enters a physiological environment, it rapidly adsorbs proteins forming what is known as the protein 'corona'. The protein corona alters the size and interfacial composition of a nanomaterial, giving it a biological identity that is distinct from its synthetic identity. The biological identity determines the physiological response including signalling, kinetics, transport, accumulation, and toxicity. The structure and composition of the protein corona depends on the synthetic identity of the nanomaterial (size, shape, and composition), the nature of the physiological environment (blood, interstitial fluid, cell cytoplasm, etc.), and the duration of exposure. In this critical review, we discuss the formation of the protein corona, its structure and composition, and its influence on the physiological response. We also present an 'adsorbome' of 125 plasma proteins that are known to associate with nanomaterials. We further describe how the protein corona is related to the synthetic identity of a nanomaterial, and highlight efforts to control protein-nanomaterial interactions. We conclude by discussing gaps in the understanding of protein-nanomaterial interactions along with strategies to fill them (167 references).
Collapse
Affiliation(s)
- Carl D Walkey
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | |
Collapse
|
28
|
Fenández A, Teijón C, Benito M, Iglesias I, Lozano R, Teijón JM, Blanco MD. Tamoxifen-loaded microspheres based on mixtures of poly(D,L-lactide-co-glycolide) and poly(D,L-lactide) polymers: Effect of polymeric composition on drug release and in vitro antitumoral activity. J Appl Polym Sci 2011. [DOI: 10.1002/app.35327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Severino P, Santana MHA, Pinho SC, Souto EB. Polímeros sintéticos biodegradáveis: matérias-primas e métodos de produção de micropartículas para uso em drug delivery e liberação controlada. POLIMEROS 2011. [DOI: 10.1590/s0104-14282011005000060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Micropartículas produzidas a partir de polímeros sintéticos têm sido amplamente utilizadas na área farmacêutica para encapsulação de princípios ativos. Essas micropartículas apresentam as vantagens de proteção do princípio ativo, mucoadesão e gastrorresistência, melhor biodisponibilidade e maior adesão do paciente ao tratamento. Além disso, utiliza menores quantidade de princípio ativo para obtenção do efeito terapêutico proporcionando diminuição dos efeitos adversos locais, sistêmicos e menor toxidade. Os polímeros sintéticos empregados na produção das micropartículas são classificados biodegradáveis ou não biodegradáveis, sendo os biodegradáveis mais utilizados por não necessitam ser removidos cirurgicamente após o término de sua ação. A produção das micropartículas poliméricas sintéticas para encapsulação tanto de ativos hidrofílicos quanto hidrofóbicos pode ser emulsificação por extração e/ou evaporação do solvente; coacervação; métodos mecânicos e estão revisados neste artigo evidenciando as vantagens, desvantagens e viabilidade de cada metodologia. A escolha da metodologia e do polímero sintético a serem empregados na produção desse sistema dependem da aplicação terapêutica requerida, bem como a simplicidade, reprodutibilidade e factibilidade do aumento de escala da produção.
Collapse
|
30
|
Carrillo-Conde B, Garza A, Anderegg J, Narasimhan B. Protein adsorption on biodegradable polyanhydride microparticles. J Biomed Mater Res A 2010; 95:40-8. [PMID: 20740599 DOI: 10.1002/jbm.a.32815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The in vitro adsorption of plasma proteins on polyanhydride microparticles based on sebacic acid (SA), 1,6-bis(p-carboxyphenoxy)hexane (CPH), and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) was studied. Three model proteins from bovine serum (albumin (BSA), immunoglobulin G (IgG), and fibrinogen (Fg)) were used. The adsorption was studied using X-Ray Photoelectron Spectroscopy and gel electrophoresis. 2D electrophoresis was used to study the adsorption of plasma proteins from bovine serum. Differences in the amount of protein adsorbed were detected as a function of the following: (i) copolymer composition and (ii) specific protein studied. A direct correlation between polymer hydrophobicity and protein adsorbed was observed and higher quantities of Fg and IgG were absorbed. In vitro release studies were performed with ovalbumin-encapsulated microparticles that were incubated with Fg; these studies showed a reduction in the amount of ovalbumin released from the microparticles when Fg is adsorbed on the surface. An understanding of protein adsorption patterns on parenteral delivery devices is valuable in optimizing their in vivo performance.
Collapse
Affiliation(s)
- Brenda Carrillo-Conde
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
31
|
d’Angelo I, Garcia-Fuentes M, Parajó Y, Welle A, Vántus T, Horváth A, Bökönyi G, Kéri G, Alonso MJ. Nanoparticles Based on PLGA:Poloxamer Blends for the Delivery of Proangiogenic Growth Factors. Mol Pharm 2010; 7:1724-33. [DOI: 10.1021/mp1001262] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ivana d’Angelo
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Marcos Garcia-Fuentes
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Yolanda Parajó
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Alexander Welle
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Tibor Vántus
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Anikó Horváth
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Györgyi Bökönyi
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - György Kéri
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Maria José Alonso
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS NANO 2010; 4:3623-32. [PMID: 20553005 DOI: 10.1021/nn901372t] [Citation(s) in RCA: 826] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, we explore the formation of the protein corona after exposure of metallic Au nanoparticles (NPs), with sizes ranging from 4 to 40 nm, to cell culture media containing 10% of fetal bovine serum. Under in vitro cell culture conditions, zeta potential measurements, UV-vis spectroscopy, dynamic light scattering and transmission electron microscope analysis were used to monitor the time evolution of the inorganic NP-protein corona formation and to characterize the stability of the NPs and their surface state at every stage of the experiment. As expected, the red-shift of the surface plasmon resonance peak, as well as the drop of surface charge and the increase of the hydrodynamic diameter indicated the conjugation of proteins to NPs. Remarkably, an evolution from a loosely attached toward an irreversible attached protein corona over time was observed. Mass spectrometry of the digested protein corona revealed albumin as the most abundant component which suggests an improved biocompatibility.
Collapse
Affiliation(s)
- Eudald Casals
- Institut Català de Nanotecnologia, Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
33
|
Abstract
A significant increase in biomedical applications of nanomaterials and their potential toxicity demands versatile analytical techniques to determine protein-nanoparticle (NP) interactions. These diverse analytical techniques are reviewed. Spectroscopic methods play a significant role in studying binding affinity, binding ratio, and binding mechanisms. To elucidate NP-proteome interactions, chromatography and electrophoresis techniques are applied to separate NP-bound proteins and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to identify these proteins. Since NP-protein binding is a dynamic event, surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) are methods of choice to study the kinetics of NP-protein binding.
Collapse
Affiliation(s)
| | | | | | - Bing Yan
- To whom correspondence should be addressed.
| |
Collapse
|
34
|
Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 2009; 61:428-37. [PMID: 19376175 PMCID: PMC3683962 DOI: 10.1016/j.addr.2009.03.009] [Citation(s) in RCA: 1227] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 03/30/2009] [Indexed: 11/28/2022]
Abstract
Proteins bind the surfaces of nanoparticles, and biological materials in general, immediately upon introduction of the materials into a physiological environment. The further biological response of the body is influenced by the nanoparticle-protein complex. The nanoparticle's composition and surface chemistry dictate the extent and specificity of protein binding. Protein binding is one of the key elements that affects biodistribution of the nanoparticles throughout the body. Here we review recent research on nanoparticle physicochemical properties important for protein binding, techniques for isolation and identification of nanoparticle-bound proteins, and how these proteins can influence particle biodistribution and biocompatibility. Understanding the nanoparticle-protein complex is necessary for control and manipulation of protein binding, and allows for improved engineering of nanoparticles with favorable bioavailability and biodistribution.
Collapse
Affiliation(s)
- Parag Aggarwal
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Jennifer B. Hall
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Christopher B. McLeland
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Scott E. McNeil
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
35
|
Wattendorf U, Merkle HP. PEGylation as a tool for the biomedical engineering of surface modified microparticles. J Pharm Sci 2009; 97:4655-69. [PMID: 18306270 DOI: 10.1002/jps.21350] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microparticles are of considerable interest for drug delivery, vaccination and diagnostic imaging. In order to obtain microparticles with long circulation times, or to provide the prerequisite for tissue specific targeting through decoration with suitable ligands, their surfaces need to be modified such that they become repellent to the adsorption of opsonic proteins and resistant to unspecific phagocytosis. The currently most considered strategy relies on the immobilisation of a poly(ethylene glycol) (PEG) corona onto the microparticles' surface. In the first chapter of this review, we discuss the unique physicochemical properties of PEG, which make it the polymer of choice to render the surfaces of microparticles repellent to the adsorption of proteins and resistant to cellular recognition. Furthermore, we present various technologies for the preparation of microparticles with PEGylated surfaces. Another aspect is the decoration of the PEGylated surfaces with suitable ligands for cell specific recognition and targeting. Finally, we review miscellaneous applications of PEGylated microparticles, mainly focusing on the fields of drug delivery, targeting and vaccination. Although still in its infancy, the PEGylation of microparticles holds promise towards future biomedical applications.
Collapse
Affiliation(s)
- Uta Wattendorf
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
36
|
Guerrero S, Muñíz E, Teijón C, Olmo R, Teijón JM, Blanco MD. Ketotifen-loaded microspheres prepared by spray-drying poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) polymers: characterization and in vivo evaluation. J Pharm Sci 2008; 97:3153-69. [PMID: 18023014 DOI: 10.1002/jps.21241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ketotifen (KT) was encapsulated into poly(D,L-lactide) (PLA) and poly(D,L-lactide-co-glycolide) (PLGA 50/50) by spray-drying to investigate the use of biodegradable drug-loaded microspheres as delivery systems in the intraperitoneal cavity. Ketotifen stability was evaluated by HPLC, and degradation was not observed. Drug entrapment efficiency was 74 +/- 7% (82 +/- 8 microg KT/mg for PLA) and 81 +/- 6% (90 +/- 7 microg KT/mg for PLGA 50/50). PLA microspheres released ketotifen (57% of encapsulated KT) in 350 h at two release rates (221 microg/h, 15 min to 2 h; 1.13 microg/h, 5-350 h). A quicker release of ketotifen took place from PLGA 50/50 microspheres (67.4% of encapsulated KT) in 50 h (322 microg/h, 15 min to 2 h; 16.18 microg/h, 5-50 h). After intraperitoneal administration (10 mg KT/kg b.w.), microsphere aggregations were detected in adipose tissue. Ketotifen concentration was determined in plasma by HPLC. The drug released from PLA and PLGA 50/50 microspheres was detected at 384 and 336 h, respectively. Noncompartmental analysis was performed to determine pharmacokinetic parameters. The inclusion of ketotifen in PLGA and PLA microspheres resulted in significant changes in the plasma disposition of the drug. Overall, these ketotifen-loaded microspheres yielded an intraperitoneal drug release that may be suitable for use as delivery systems in the treatment of inflammatory response in portal hypertension.
Collapse
Affiliation(s)
- Sandra Guerrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Liu M, Zhou Z, Wang X, Xu J, Yang K, Cui Q, Chen X, Cao M, Weng J, Zhang Q. Formation of poly(l,d-lactide) spheres with controlled size by direct dialysis. POLYMER 2007. [DOI: 10.1016/j.polymer.2007.07.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. NATURE NANOTECHNOLOGY 2007; 2:469-78. [PMID: 18654343 DOI: 10.1038/nnano.2007.223] [Citation(s) in RCA: 1165] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Most research on the toxicology of nanomaterials has focused on the effects of nanoparticles that enter the body accidentally. There has been much less research on the toxicology of nanoparticles that are used for biomedical applications, such as drug delivery or imaging, in which the nanoparticles are deliberately placed in the body. Moreover, there are no harmonized standards for assessing the toxicity of nanoparticles to the immune system (immunotoxicity). Here we review recent research on immunotoxicity, along with data on a range of nanotechnology-based drugs that are at different stages in the approval process. Research shows that nanoparticles can stimulate and/or suppress the immune responses, and that their compatibility with the immune system is largely determined by their surface chemistry. Modifying these factors can significantly reduce the immunotoxicity of nanoparticles and make them useful platforms for drug delivery.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, NCI-Frederick, 1050 Boyles St, Bldg 469, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
39
|
Tessmar JK, Göpferich AM. Customized PEG-derived copolymers for tissue-engineering applications. Macromol Biosci 2007; 7:23-39. [PMID: 17195277 DOI: 10.1002/mabi.200600096] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
PEG-containing copolymers play a prominent role as biomaterials for different applications ranging from drug delivery to tissue engineering. These custom-designed materials offer enormous possibilities to change the overall characteristics of biomaterials by improving their biocompatibility and solubility, as well as their ability to crystallize in polymer blends and to resist protein adsorption. This article demonstrates various principles of PEG-based material design that are applied to fine tune the properties of biomaterials for different tissue engineering applications. More specifically, strategies are described to develop PEG copolymers with various block compositions and specific bulk properties, including low melting points and improved surface hydrophilicity. Highly hydrated polymer gel networks for promoting cellular growth or suppressing protein adsorption and cell adhesion are introduced. By incorporating selectively cleavable cross-links, these hydrophilic polymers can also serve as smart hydrogel scaffolds, mimicking the natural extracellular matrix for cell cultivation and tissue growth. Ultimately, these developments lead to the creation of biomimetic materials to immobilize bioactive compounds, allowing precise control of cellular adhesion and tissue growth. [image: see text]
Collapse
Affiliation(s)
- Joerg K Tessmar
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany.
| | | |
Collapse
|
40
|
Pitarresi G, Saiano F, Cavallaro G, Mandracchia D, Palumbo FS. A new biodegradable and biocompatible hydrogel with polyaminoacid structure. Int J Pharm 2007; 335:130-137. [PMID: 17141987 DOI: 10.1016/j.ijpharm.2006.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/22/2022]
Abstract
The preparation and physicochemical and biological characterization of a novel polyaminoacid hydrogel have been reported. The alpha,beta-poly(N-2-hydroxyethyl)-dl-aspartamide (PHEA) has been used as a starting polymer for a derivatization reaction with methacrylic anhydride (MA) to give rise to the methacrylate derivative named PHM. Photocrosslinking of PHM has been performed in aqueous solution at 313 nm and in the absence of toxic initiators. PHM-based hydrogel has been characterized by scanning electron microscopy, X-ray diffractometry, swelling measurements in aqueous media; the degradation of PHM-based hydrogel has been evaluated as a function of time in the absence or in the presence of esterase. Besides, the biocompatibility of this hydrogel and of its degradation products has been evaluated by performing in vitro assays on human chronic myelogenous leukaemia cells (K-562), chosen as a model cell line. Finally, ATR-FTIR measurements have showed that interaction between PHM-based hydrogel and each of four plasma proteins (albumin, gamma-globulin, transferrin and fibrinogen) does not cause change in protein conformation thus supporting its potential use as a material to prepare parenteral drug delivery systems.
Collapse
Affiliation(s)
- G Pitarresi
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - F Saiano
- Dipartimento di Ingegneria e Tecnologie Agro-Forestali, Università degli Studi di Palermo, Viale delle Scienze 13, 90128 Palermo, Italy
| | - G Cavallaro
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - D Mandracchia
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy
| | - F S Palumbo
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
41
|
Moffatt S, Cristiano RJ. Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells. Int J Pharm 2006; 321:143-54. [PMID: 16860501 DOI: 10.1016/j.ijpharm.2006.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 11/30/2022]
Abstract
We have investigated the in vitro uptake, toxicity, phenotypic consequences and transfection efficiency of a stealth NGR/PEG/PDBA-coupled-SHA-PEI/pDNA targeting polyplex loaded with PLGA-PEG-PLGA tri-block copolymer in human monocyte-derived dendritic cells (DCs). Modification with PEG effectively shielded and reduced non-specific phagocytosis by immature DCs to approximately 20%. Coupling the NGR cell-specific peptide to the PEGylated polyplex (NGR/PEG/PDBA-SHA-PEI/pDNA) however resulted in specific and enhanced phagocytosis in DCs without any observable toxicity at the optimum concentration of 0.25% of the copolymer. DNase treatment had no effect on DNA integrity in the encapsulated polyplex. Confocal microscopy confirmed intracellular localization of the targeting NGR/PEG/PDBA-SHA-PEI/pDNA microparticles, resulting in more enhanced uptake of the radiolabeled plasmid DNA and approximately 5- and 10-fold increase over the control tri-block Pluronic F68 copolymer and the non-targeting polyplex, respectively. More importantly, phagocytosis of the targeting microparticles neither altered the functionality of immature DCs nor the phenotypic expression of DC-specific cell surface molecules, CD80, CD86, CD40 and CD54 (ICAM-1), suggesting that uptake of the targeting microparticles by themselves did not induce DC maturation. Taken together, these results suggest that PLGA-PEG-PLGA encapsulation of this stealth targeting polyplex has no negative effects on key properties of immature DCs and should pave the way for targeting DCs for vaccination purposes.
Collapse
Affiliation(s)
- Stanley Moffatt
- Department of Genitourinary Medical Oncology, Laboratory of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | |
Collapse
|
42
|
Abraham S, Jeong EH, Arakawa T, Shoji S, Kim KC, Kim I, Go JS. Microfluidics assisted synthesis of well-defined spherical polymeric microcapsules and their utilization as potential encapsulants. LAB ON A CHIP 2006; 6:752-6. [PMID: 16738726 DOI: 10.1039/b518006f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this article, the development of a novel technique to fabricate spherical polymeric microcapsules by utilizing microfluidic technology is presented. Atom transfer radical polymerization (ATRP) was employed to synthesize well-defined amphiphilic block copolymers. An organic polymer solution was constrained to adopt the spherical droplets in a continuous water phase at a T-junction microchannel, and the generation of the droplets was studied quantitatively. The flow conditions of two immiscible solutions were adjusted for the successful generation of the polymer droplets. The morphology of the microcapsules was examined. The efficiency of these polymer microcapsules as containers for the storage and controlled release of loaded molecules was evaluated by encapsulating the microcapsules with Congo-red dye and investigating the release performance using temperature controlled UV-VIS spectroscopy.
Collapse
Affiliation(s)
- Sinoj Abraham
- Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, S. Korea.
| | | | | | | | | | | | | |
Collapse
|
43
|
Charles-Harris M, Navarro M, Engel E, Aparicio C, Ginebra MP, Planell JA. Surface characterization of completely degradable composite scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2005; 16:1125-30. [PMID: 16362211 DOI: 10.1007/s10856-005-4717-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 07/26/2005] [Indexed: 05/05/2023]
Abstract
The goal of this study was to characterise the surface properties of completely degradable composite, polylactic acid and calcium phosphate glass, scaffolds. The composite scaffolds are made by solvent casting or phase-separation, using chloroform and dioxane as a solvent respectively. The surface properties were measured on composite films which were made using the same procedure as for the three-dimensional (3D) scaffolds without the pore-creating step. The surface morphology, roughness, wettability and protein adsorption capacity of the films was measured before and after sterilisation with ethylene oxide. The results reveal the influence of solvent type, glass weight content and sterilisation on the wettability, surface energy and protein adsorption capacity of the materials. The addition of glass particles increase the hydrophylicity, roughness and protein adsorption capacity of the surface. This effect, however, depends on the extent of the coating of the glass particles by the polymer film, which is much higher for dioxane films than for chloroform films. This information can be used to interpret and understand the biological behaviour of the 3D scaffolds made of this composite materials.
Collapse
Affiliation(s)
- M Charles-Harris
- Reference Centre for Bioengineering of Catalonia. Department of Materials Science, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Göppert TM, Müller RH. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 2005; 302:172-86. [PMID: 16098695 DOI: 10.1016/j.ijpharm.2005.06.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 06/06/2005] [Accepted: 06/14/2005] [Indexed: 11/22/2022]
Abstract
The interactions of intravenously injected carriers with plasma proteins are the determining factor for the in vivo fate of the particles. In this study the adsorption kinetics on solid lipid nanoparticles (SLN) were investigated and compared to the adsorption kinetics on previously analyzed polymeric model particles and O/W-emulsions. The adsorbed proteins were determined using two-dimensional polyacrylamide gel electrophoresis (2-DE). Employing diluted human plasma, a transient adsorption of fibrinogen was observed on the surface of SLN stabilized with the surfactant Tego Care 450, which in plasma of higher concentrations was displaced by apolipoproteins. This was in agreement with the "Vroman-effect" previously determined on solid surfaces. It says that in the early stages of adsorption, more plentiful proteins with low affinity are displaced by less plentiful with higher affinity to the surface. Over a period of time (0.5 min to 4 h) more interesting for the organ distribution of long circulating carriers, no relevant changes in the composition of the adsorption patterns of SLN, surface-modified with poloxamine 908 and poloxamer 407, respectively, were detected. This is in contrast to the chemically similar surface-modified polymeric particles but well in agreement with the surface-modified O/W-emulsions. As there is no competitive displacement of apolipoproteins on these modified SLN, the stable adsorption patterns may be better exploited for drug targeting than particles with an adsorption pattern being very dependent on contact time with plasma.
Collapse
Affiliation(s)
- T M Göppert
- The Free University of Berlin, Institute of Pharmacy, Department of Pharmaceutical Technology, Biotechnology and Quality Management, Kelchstr. 31, 12169 Berlin, Germany
| | | |
Collapse
|
45
|
Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 2004; 113:151-70. [PMID: 15380654 DOI: 10.1016/j.jbiotec.2004.06.007] [Citation(s) in RCA: 427] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 06/01/2004] [Accepted: 06/01/2004] [Indexed: 11/29/2022]
Abstract
Biotechnology allows tailor-made production of biopharmaceuticals and biotechnological drugs; however, many of them require special formulation technologies to overcome drug-associated problems. Such potential challenges to solve are: poor solubility, limited chemical stability in vitro and in vivo after administration (i.e. short half-life), poor bioavailability and potentially strong side effects requiring drug enrichment at the site of action (targeting). This review describes the use of nanoparticulate carriers, developed in our research group, as one solution to overcome such delivery problems, i.e. drug nanocrystals, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and lipid-drug conjugate (LDC) nanoparticles, examples of drugs are given. As a recently developed targeting principle, the concept of differential protein adsorption is described (PathFinder Technology) using as example delivery to the brain.
Collapse
Affiliation(s)
- Rainer H Muller
- Department of Pharmaceutics, Biopharmaceutics and Biotechnology, Free University of Berlin, Germany.
| | | |
Collapse
|
46
|
Meng F, Engbers GHM, Gessner A, Müller RH, Feijen J. Pegylated polystyrene particles as a model system for artificial cells. J Biomed Mater Res A 2004; 70:97-106. [PMID: 15174113 DOI: 10.1002/jbm.a.30068] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pegylated polystyrene particles (PS-PEG) were prepared as a model system for artificial cells, by modification of carboxyl polystyrene particles (PS-COOH) with homo- and hetero-bifunctional polyethylene glycols (PEG, MW 1500, 3400, and 5000) containing an amino end group for immobilization and an amino, hydroxyl, or methoxy end group that is exposed at the surface after immobilization. Protein adsorption from human plasma dilutions (85 v %) onto PS-PEG with a PEG surface concentration higher than 40 pmol/cm2 was reduced up to 90-95% compared with protein adsorption onto PS-COOH with a final protein surface concentration of approximately 30 ng/cm2. Two-dimensional gel electrophoresis analyses showed that 30% of the total amount of adsorbed proteins onto PS-PEG are dysopsonins (i.e., nonadhesive proteins like albumin and apolipoproteins). For PS-COOH, <15% of the amount of adsorbed proteins are dysopsonins. In addition, the generation of terminal complement compound (TCC) by PS-PEG particles with a PEG surface concentration lower than approximately 55 pmol/cm2 is not significant. The low protein adsorption, the relatively high percentage of adsorbed dysopsonins, and the low level of complement activation may prevent the uptake of PS-PEG by the mononuclear phagocytic system (MPS) in vivo. Moreover, PS-PEG (PEG surface concentration > approximately 35 pmol/cm2) shows minimal interaction with cultured human umbilical vein endothelial cells (HUVEC), which mimics the endothelial lining of the blood vessel wall.
Collapse
Affiliation(s)
- Fenghua Meng
- Institute for Biomedical Technology (BMTI), Polymer Chemistry and Biomaterials Group, Department of Chemical Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Mandal B, Kempf M, Merkle HP, Walter E. Immobilisation of GM-CSF onto particulate vaccine carrier systems. Int J Pharm 2004; 269:259-65. [PMID: 14698597 DOI: 10.1016/j.ijpharm.2003.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Physical connection of vaccine carriers with immunostimulating cytokines may provide an interesting possibility to enhance the immune response of protective or therapeutic vaccines. As a first evaluation, various aluminium hydroxide adjuvants and poly(D,L-lactide-co-glycolide) (PLGA) microparticulates with modified positively and negatively charged surfaces were prepared to adsorb granulocyte-macrophage colony-stimulating factor (GM-CSF) under different pH conditions. Negatively charged surfaces were chosen to resemble physiological binding of GM-CSF to extracellular glycosaminoglycans, while modified positively charged surfaces may enhance GM-CSF adsorption due to electrostatic interaction. Release of GM-CSF was checked in vitro in a simulated interstitial environment. Anionic and cationic surfaces efficiently attracted GM-CSF to the carrier surface independently of the pH, while the composition of the carrier largely influenced the release of GM-CSF over time. Thus, the adsorption of GM-CSF to aluminium hydroxide adjuvants and PLGA microparticulates provides a simple and efficient possibility to physically connect the cytokine with these commonly used and potential vaccine carriers and may enable its localised delivery to the side of action.
Collapse
Affiliation(s)
- Barnali Mandal
- Department of Chemistry and Applied BioSciences, Drug Formulation & Delivery Group, Swiss Federal Institute of Technology Zurich, ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
48
|
Iwamoto S, Nakagawa K, Sugiura S, Nakajima M. Preparation of gelatin microbeads with a narrow size distribution using microchannel emulsification. AAPS PharmSciTech 2003. [PMID: 12916940 DOI: 10.1007/bf02830623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
The purpose of this study was to prepare monodisperse gelatin microcapsules containing an active agent using microchannel (MC) emulsification, a novel technique for preparing water-in-oil (W/O) and oil-in-water (O/W) emulsions. As the first step in applying MC emulsification to the preparation of monodisperse gelatin microcapsules, simple gelatin microbeads were prepared using this technique. A W/O emulsion with a narrow size distribution containing gelatin in the aqueous phase was created as follows. First, the aqueous disperse phase was fed into the continuous phase through the MCs at 40 degrees C (operating pressure: 3.9 kPa). The emulsion droplets had an average particle diameter of 40.7 microm and a relative standard deviation of 5.1%. The temperature of the collected emulsion was reduced and maintained at 25 degrees C overnight. The gelatin microbeads had a smooth surface after overnight gelation; the average particle diameter was calculated to be 31.6 microm, and the relative standard deviation, 7.3%. The temperature was then lowered to 5 degrees C by rapid air cooling and finally dried. The gelatin beads were dried and could be resuspended well in iso-octane. They had an average particle diameter of 15.6 microm, and a relative standard deviation of 5.9%. Using MC emulsification, we were able to prepare gelatin microbeads with a narrow size distribution. Since this emulsification technique requires only a low-energy input, it may create desirable experimental conditions for microencapsulation of unstable substances such as peptides and proteins. This method is promising for making monodisperse microbeads.
Collapse
Affiliation(s)
- Satoshi Iwamoto
- Reaction & Separation Engineering Laboratory, National Food Research Institute, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | | | | | | |
Collapse
|
49
|
Albertsson AC, Varma IK. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules 2003; 4:1466-86. [PMID: 14606869 DOI: 10.1021/bm034247a] [Citation(s) in RCA: 1187] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aliphatic polyesters prepared by ring-opening polymerization of lactones are now used worldwide as bioresorbable devices in surgery (orthopaedic devices, sutures, stents, tissue engineering, and adhesion barriers) and in pharmacology (control drug delivery). This review presents the various methods of the synthesis of polyesters and tailoring the properties by proper control of molecular weight, composition, and architecture so as to meet the stringent requirements of devices in the medical field. The effect of structure on properties and degradation has been discussed. The applications of these polymers in the biomedical field are described in detail.
Collapse
Affiliation(s)
- Ann-Christine Albertsson
- Department of Fibre and Polymer Technology, The Royal Institute of Technology, S-10044 Stockholm, Sweden
| | | |
Collapse
|
50
|
Fournier E, Passirani C, Montero-Menei CN, Benoit JP. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials 2003; 24:3311-31. [PMID: 12763459 DOI: 10.1016/s0142-9612(03)00161-3] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous polymeric biomaterials are implanted each year in human bodies. Among them, drug delivery devices are potent novel powerful therapeutics for diseases which lack efficient treatments. Controlled release systems are in direct and sustained contact with the tissues, and some of them degrade in situ. Thus, both the material itself and its degradation products must be devoid of toxicity. The knowledge and understanding of the criteria and mechanisms determining the biocompatibility of biomaterials are therefore of great importance. The classical tissue response to a foreign material leads to the encapsulation of the implant, which may impair the drug diffusion in the surrounding tissue and/or cause implant failure. This tissue response depends on different factors, especially on the implantation site. Indeed, several organs possess a particular immunological status, which may reduce the inflammatory and immune reactions. Among them, the central nervous system is of particular interest, since many pathologies still need curative treatments. This review describes the classical foreign body reaction and exposes the particularities of the central nervous system response. The recent in vivo biocompatibility studies of implanted synthetic polymeric drug carriers are summarized in order to illustrate the behavior of different classes of polymers and the methodologies used to evaluate their tolerance.
Collapse
Affiliation(s)
- E Fournier
- Inserm ERIT-M 0104, Ingénierie de la Vectorisation Particulaire, 10, rue André Bocquel, 49100 Angers, France
| | | | | | | |
Collapse
|