1
|
Hardt JJ, Pryanichnikov AA, Homolka N, DeJongh EA, DeJongh DF, Cristoforetti R, Jäkel O, Seco J, Wahl N. The potential of mixed carbon-helium beams for online treatment verification: a simulation and treatment planning study. Phys Med Biol 2024; 69:125028. [PMID: 38697212 DOI: 10.1088/1361-6560/ad46db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Objective.Recently, a new and promising approach for range verification was proposed. This method requires the use of two different ion species. Due to their equal magnetic rigidity, fully ionized carbon and helium ions can be simultaneously accelerated in accelerators like synchrotrons. At sufficiently high treatment energies, helium ions can exit the patient distally, reaching approximately three times the range of carbon ions at an equal energy per nucleon. Therefore, the proposal involves adding a small helium fluence to the carbon ion beam and utilizing helium as an online range probe during radiation therapy. This work aims to develop a software framework for treatment planning and motion verification in range-guided radiation therapy using mixed carbon-helium beams.Approach.The developed framework is based on the open-source treatment planning toolkit matRad. Dose distributions and helium radiographs were simulated using the open-source Monte Carlo package TOPAS. Beam delivery system parameters were obtained from the Heidelberg Ion Therapy Center, and imaging detectors along with reconstruction were facilitated by ProtonVDA. Methods for reconstructing the most likely patient positioning error scenarios and the motion phase of 4DCT are presented for prostate and lung cancer sites.Main results.The developed framework provides the capability to calculate and optimize treatment plans for mixed carbon-helium ion therapy. It can simulate the treatment process and generate helium radiographs for simulated patient geometry, including small beam views. Furthermore, motion reconstruction based on these radiographs seems possible with preliminary validation.Significance.The developed framework can be applied for further experimental work with the promising mixed carbon-helium ion implementation of range-guided radiotherapy. It offers opportunities for adaptation in particle therapy, improving dose accumulation, and enabling patient anatomy reconstruction during radiotherapy.
Collapse
Affiliation(s)
- Jennifer J Hardt
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Alexander A Pryanichnikov
- Department of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Noa Homolka
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Medical Faculty of Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ethan A DeJongh
- ProtonVDA LLC, 1700 Park St Ste 208, Naperville, IL 60563, United States of America
| | - Don F DeJongh
- ProtonVDA LLC, 1700 Park St Ste 208, Naperville, IL 60563, United States of America
| | - Remo Cristoforetti
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Germany
| | - Joao Seco
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Department of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
2
|
Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? LIFE SCIENCES IN SPACE RESEARCH 2021; 30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Protection from cosmic radiation of crews of long-term space missions is now becoming an urgent requirement to allow a safe colonization of the moon and Mars. Epidemiology provides little help to quantify the risk, because the astronaut group is small and as yet mostly involved in low-Earth orbit mission, whilst the usual cohorts used for radiation protection on Earth (e.g. atomic bomb survivors) were exposed to a radiation quality substantially different from the energetic charged particle field found in space. However, there are over 260,000 patients treated with accelerated protons or heavier ions for different types of cancer, and this cohort may be useful for quantifying the effects of space-like radiation in humans. Space radiation protection and particle therapy research also share the same tools and devices, such as accelerators and detectors, as well as several research topics, from nuclear fragmentation cross sections to the radiobiology of densely ionizing radiation. The transfer of the information from the cancer radiotherapy field to space is manifestly complicated, yet the two field should strengthen their relationship and exchange methods and data.
Collapse
Affiliation(s)
- Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany.
| |
Collapse
|
3
|
Burahmah N, Griswold JR, Heilbronn LH, Mirzadeh S. Transport model predictions of 225Ac production cross sections via energetic p, d and α irradiation of 232Th targets. Appl Radiat Isot 2021; 172:109676. [PMID: 33725503 DOI: 10.1016/j.apradiso.2021.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 11/26/2022]
Abstract
Monte Carlo transport codes PHITS and MCNP6 were used to calculate the production cross sections of 225,227Ac, 227,229Th, 223,225Ra, and 229,230,231Pa via the bombardment of a232Th target with energetic protons, deuterons, and α-particles. The incident projectile energies ranged between 10 and 800 MeV/nucleon. When possible, the predicted production cross sections were compared with the available experimental data and other predictions. The degree of the codes' abilities to match the measured data provides a qualitative assessment of the codes' abilities to predict data from similar, but unmeasured, projectile/target systems. In addition, a comparison between calculated cross sections and data may provide insight into possible improvements in the physics models employed by those transport codes.
Collapse
Affiliation(s)
- N Burahmah
- Nuclear Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA; Nuclear and Radiochemistry Group, Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6226, USA.
| | - J R Griswold
- Nuclear and Radiochemistry Group, Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6226, USA
| | - L H Heilbronn
- Nuclear Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA.
| | - S Mirzadeh
- Nuclear and Radiochemistry Group, Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6226, USA
| |
Collapse
|
4
|
Slaba TC, Wilson JW, Werneth CM, Whitman K. Updated deterministic radiation transport for future deep space missions. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:6-18. [PMID: 34756231 DOI: 10.1016/j.lssr.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 06/13/2023]
Abstract
NASA's deterministic transport code HZETRN, and its three-dimensional (3D) counterpart, 3DHZETRN, are being used to characterize the space radiation environment over a wide range of scenarios, including future planned missions to the moon or Mars. Combined with available spaceflight measurements, these tools provide the fundamental input for risk models used to quantify possible astronaut health decrements and satisfy agency limits in support of exploration initiatives. Further research is therefore needed to improve radiation transport and nuclear physics models while at the same time continuing to expand the available measurement database (ground-based and spaceflight) to validate such efforts. In this work, significant updates to the deterministic radiation transport models are presented. Charged muons and pions are fully coupled with the existing solutions developed for neutron and light ion (Z ≤ 2) transport. This update includes the 3D nature of pion production as well as the pion interactions, resulting in further production of energetic nucleons within shielding. Additional updates related to low energy proton recoils in hydrogenous materials and capture/decay processes associated with charged pions at rest are also described. Included in this work is the coupling of single and double-differential cross sections from Geant4 into HZETRN and 3DHZETRN. This enables a direct comparison of deterministic and Monte Carlo transport methodologies using the same nuclear databases for specific interactions. Comparisons between Geant4 and 3DHZETRN are shown and establish that the transport methodologies are in excellent agreement when the same cross sections are used. The deterministic codes are also compared to ISS data, and it is found that the updated 3D procedures are within measurement uncertainty (±5%) at cutoff rigidities below 1 GV, which approaches free space conditions.
Collapse
Affiliation(s)
- T C Slaba
- NASA Langley Research Center, Hampton, VA, USA.
| | - J W Wilson
- Old Dominion University Research Foundation, Norfolk, VA, USA
| | - C M Werneth
- NASA Langley Research Center, Hampton, VA, USA
| | - K Whitman
- University of Houston, Houston, TX, USA
| |
Collapse
|
5
|
Volz L, Kelleter L, Brons S, Burigo L, Graeff C, Niebuhr NI, Radogna R, Scheloske S, Schömers C, Jolly S, Seco J. Experimental exploration of a mixed helium/carbon beam for online treatment monitoring in carbon ion beam therapy. ACTA ACUST UNITED AC 2020; 65:055002. [DOI: 10.1088/1361-6560/ab6e52] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Schuy C, Tessa CL, Horst F, Rovituso M, Durante M, Giraudo M, Bocchini L, Baricco M, Castellero A, Fioreh G, Weber U. Experimental Assessment of Lithium Hydride's Space Radiation Shielding Performance and Monte Carlo Benchmarking. Radiat Res 2018; 191:154-161. [DOI: 10.1667/rr15123.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Christoph Schuy
- GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Chiara La Tessa
- Trento Institute for Fundamental Physics and Applications (TIFPA), Povo, Italy
| | - Felix Horst
- GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Marta Rovituso
- Trento Institute for Fundamental Physics and Applications (TIFPA), Povo, Italy
| | - Marco Durante
- Trento Institute for Fundamental Physics and Applications (TIFPA), Povo, Italy
| | | | | | - Marcello Baricco
- Departments of Chemistry and NIS, University of Torino, Turin, Italy
| | | | - Gianluca Fioreh
- Departments of Chemistry and NIS, University of Torino, Turin, Italy
| | - Uli Weber
- GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| |
Collapse
|
7
|
Génolini Y, Maurin D, Moskalenko IV, Unger M. Current status and desired precision of the isotopic production cross sections relevant to astrophysics of cosmic rays: Li, Be, B, C, and N. PHYSICAL REVIEW. C 2018; 98:034611. [PMID: 34646970 PMCID: PMC8506905 DOI: 10.1103/physrevc.98.034611] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The precision of the current generation of cosmic-ray (CR) experiments, such as AMS-02, PAMELA, CALET, and ISS-CREAM, is now reaching ≈1-3% in a wide range in energy per nucleon from GeV/nucleon to multi-TeV/nucleon. Their correct interpretation could potentially lead to discoveries of new physics and subtle effects that were unthinkable just a decade ago. However, a major obstacle in doing so is the current uncertainty in the isotopic production cross sections that can be as high as 20-50% or even larger in some cases. While there is a recently reached consensus in the astrophysics community that new measurements of cross sections are desirable, no attempt to evaluate the importance of particular reaction channels and their required precision has been made yet. It is, however, clear that it is a huge work that requires an incremental approach. The goal of this study is to provide the ranking of the isotopic cross sections contributing to the production of the most astrophysically important CR Li, Be, B, C, and N species. In this paper, we (i) rank the reaction channels by their importance for a production of a particular isotope, (ii) provide comparisons plots between the models and data used, and (iii) evaluate a generic beam time necessary to reach a 3% precision in the production cross sections pertinent to the AMS-02 experiment. This first road map may become a starting point in the planning of new measurement campaigns that could be carried out in several nuclear and/or particle physics facilities around the world. A comprehensive evaluation of other isotopes Z ⩽ 30 will be a subject of follow-up studies.
Collapse
Affiliation(s)
- Yoann Génolini
- Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels, Belgium
| | - David Maurin
- LPSC, Université Grenoble-Alpes, CNRS/IN2P3, 53 avenue des Martyrs, 38026 Grenoble, France
| | - Igor V. Moskalenko
- W. W. Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, California 94305, USA
| | - Michael Unger
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
8
|
Slaba TC, Bahadori AA, Reddell BD, Singleterry RC, Clowdsley MS, Blattnig SR. Optimal shielding thickness for galactic cosmic ray environments. LIFE SCIENCES IN SPACE RESEARCH 2017; 12:1-15. [PMID: 28212703 DOI: 10.1016/j.lssr.2016.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Models have been extensively used in the past to evaluate and develop material optimization and shield design strategies for astronauts exposed to galactic cosmic rays (GCR) on long duration missions. A persistent conclusion from many of these studies was that passive shielding strategies are inefficient at reducing astronaut exposure levels and the mass required to significantly reduce the exposure is infeasible, given launch and associated cost constraints. An important assumption of this paradigm is that adding shielding mass does not substantially increase astronaut exposure levels. Recent studies with HZETRN have suggested, however, that dose equivalent values actually increase beyond ∼20g/cm2 of aluminum shielding, primarily as a result of neutron build-up in the shielding geometry. In this work, various Monte Carlo (MC) codes and 3DHZETRN are evaluated in slab geometry to verify the existence of a local minimum in the dose equivalent versus aluminum thickness curve near 20g/cm2. The same codes are also evaluated in polyethylene shielding, where no local minimum is observed, to provide a comparison between the two materials. Results are presented so that the physical interactions driving build-up in dose equivalent values can be easily observed and explained. Variation of transport model results for light ions (Z ≤ 2) and neutron-induced target fragments, which contribute significantly to dose equivalent for thick shielding, is also highlighted and indicates that significant uncertainties are still present in the models for some particles. The 3DHZETRN code is then further evaluated over a range of related slab geometries to draw closer connection to more realistic scenarios. Future work will examine these related geometries in more detail.
Collapse
Affiliation(s)
- Tony C Slaba
- NASA Langley Research Center, Hampton VA 23681, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Rovituso M, Schuy C, Weber U, Brons S, Cortés-Giraldo MA, La Tessa C, Piasetzky E, Izraeli D, Schardt D, Toppi M, Scifoni E, Krämer M, Durante M. Fragmentation of 120 and 200 MeV u−14He ions in water and PMMA targets. Phys Med Biol 2017; 62:1310-1326. [DOI: 10.1088/1361-6560/aa5302] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Durante M, Paganetti H. Nuclear physics in particle therapy: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096702. [PMID: 27540827 DOI: 10.1088/0034-4885/79/9/096702] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Collapse
Affiliation(s)
- Marco Durante
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute of Nuclear Physics (INFN), University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy. Department of Physics, University Federico II, Naples, Italy
| | | |
Collapse
|
11
|
Ambroglini F, Battiston R, Burger WJ. Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions. Front Oncol 2016; 6:97. [PMID: 27376023 PMCID: PMC4896949 DOI: 10.3389/fonc.2016.00097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth’s dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European’s Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented.
Collapse
|
12
|
Krämer M, Scifoni E, Schuy C, Rovituso M, Tinganelli W, Maier A, Kaderka R, Kraft-Weyrather W, Brons S, Tessonnier T, Parodi K, Durante M. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Med Phys 2016; 43:1995. [DOI: 10.1118/1.4944593] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
George KA, Hada M, Cucinotta FA. Biological Effectiveness of Accelerated Protons for Chromosome Exchanges. Front Oncol 2015; 5:226. [PMID: 26539409 PMCID: PMC4610205 DOI: 10.3389/fonc.2015.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022] Open
Abstract
We have investigated chromosome exchanges induced in human cells by seven different energies of protons (5-2500 MeV) with LET values ranging from 0.2 to 8 keV/μm. Human lymphocytes were irradiated in vitro and chromosome damage was assessed using three-color fluorescence in situ hybridization chromosome painting in chemically condensed chromosomes collected during the first cell division post irradiation. The relative biological effectiveness (RBE) was calculated from the initial slope of the dose-response curve for chromosome exchanges with respect to low dose and low dose-rate γ-rays (denoted as RBEmax), and relative to acute doses of γ-rays (denoted as RBEγAcute). The linear dose-response term was similar for all energies of protons, suggesting that the decrease in LET with increasing proton energy was balanced by the increase in dose from the production of nuclear secondaries. Secondary particles increase slowly above energies of a few hundred megaelectronvolts. Additional studies of 50 g/cm(2) aluminum shielded high-energy proton beams showed minor differences compared to the unshielded protons and lower RBE values found for shielded in comparison to unshielded beams of 2 or 2.5 GeV. All energies of protons produced a much higher percentage of complex-type chromosome exchanges when compared to acute doses of γ-rays. The implications of these results for space radiation protection and proton therapy are discussed.
Collapse
Affiliation(s)
- Kerry A. George
- Wyle Science, Technology and Engineering Group, Houston, TX, USA
| | - Megumi Hada
- Wyle Science, Technology and Engineering Group, Houston, TX, USA
| | | |
Collapse
|
14
|
Aghara SK, Sriprisan SI, Singleterry RC, Sato T. Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes. LIFE SCIENCES IN SPACE RESEARCH 2015; 4:79-91. [PMID: 26177623 DOI: 10.1016/j.lssr.2014.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/17/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm(2) Al shield followed by 30 g/cm(2) of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E<100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results.
Collapse
Affiliation(s)
- S K Aghara
- University of Massachusetts Lowell, Chemical Engineering, 1 University Avenue, Lowell, MA 01854, United States.
| | - S I Sriprisan
- University of Massachusetts Lowell, Chemical Engineering, 1 University Avenue, Lowell, MA 01854, United States
| | - R C Singleterry
- NASA Langley Research Center, 2 West Reid Street, MS 188E, Hampton, VA 23681, United States
| | - T Sato
- Japan Atomic Energy Agency, 2-4, Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|
15
|
Bahadori AA, Sato T, Slaba TC, Shavers MR, Semones EJ, Van Baalen M, Bolch WE. A comparative study of space radiation organ doses and associated cancer risks using PHITS and HZETRN. Phys Med Biol 2013; 58:7183-207. [DOI: 10.1088/0031-9155/58/20/7183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Rohling H, Sihver L, Priegnitz M, Enghardt W, Fiedler F. Comparison of PHITS, GEANT4, and HIBRAC simulations of depth-dependent yields of β+-emitting nuclei during therapeutic particle irradiation to measured data. Phys Med Biol 2013; 58:6355-68. [DOI: 10.1088/0031-9155/58/18/6355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Sato T, Niita K, Matsuda N, Hashimoto S, Iwamoto Y, Noda S, Ogawa T, Iwase H, Nakashima H, Fukahori T, Okumura K, Kai T, Chiba S, Furuta T, Sihver L. Particle and Heavy Ion Transport code System, PHITS, version 2.52. J NUCL SCI TECHNOL 2013. [DOI: 10.1080/00223131.2013.814553] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Sakama M, Kanai T, Kase Y, Yusa K, Tashiro M, Torikai K, Shimada H, Yamada S, Ohno T, Nakano T. Design of ridge filters for spread-out Bragg peaks with Monte Carlo simulation in carbon ion therapy. Phys Med Biol 2012; 57:6615-33. [PMID: 23022653 DOI: 10.1088/0031-9155/57/20/6615] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spread-out Bragg peaks made by ridge filters or wheel range modulators are used in charged particle therapy with passive methods to achieve uniform biological responses in irradiated tumors. Following the biological responses needed to design the ridge filters, which were developed at the National Institute of Radiological Sciences in Japan, new ridge filters were designed using recent developments in heavy-ion reactions and dosimetry. The Monte Carlo code of Geant4 was used to calculate the qualities of carbon ion beams in a water phantom. The results obtained from the simulation were corrected so that they agreed with the measurements of depth dose distributions. The calculations of biological responses to fragments other than carbon ions were assumed to be for helium ions. The measured dose distributions with the designed ridge filters were compared to the calculated distributions. A beam modifying system using this adaptable method was successively applied to carbon ion therapy at Gunma University.
Collapse
Affiliation(s)
- M Sakama
- Department of Electrical and Electronic Engineering, College of Industrial Technology, Nihon University, 1-2-1, Izumicho, Narashino, Chiba 275-8575 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hansen DC, Lühr A, Sobolevsky N, Bassler N. Optimizing SHIELD-HIT for carbon ion treatment. Phys Med Biol 2012; 57:2393-409. [DOI: 10.1088/0031-9155/57/8/2393] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Seravalli E, Robert C, Bauer J, Stichelbaut F, Kurz C, Smeets J, Van Ngoc Ty C, Schaart DR, Buvat I, Parodi K, Verhaegen F. Monte Carlo calculations of positron emitter yields in proton radiotherapy. Phys Med Biol 2012; 57:1659-73. [PMID: 22398196 DOI: 10.1088/0031-9155/57/6/1659] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Böhlen TT, Cerutti F, Dosanjh M, Ferrari A, Gudowska I, Mairani A, Quesada JM. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy. Phys Med Biol 2010; 55:5833-47. [PMID: 20844337 DOI: 10.1088/0031-9155/55/19/014] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction and G4QMD are benchmarked together with some recently enhanced de-excitation models. For non-differential quantities, discrepancies of some tens of percent are found for both codes. For differential quantities, even larger deviations are found. Implications of these findings for the therapeutic use of carbon ions are discussed.
Collapse
Affiliation(s)
- T T Böhlen
- European Organization for Nuclear Research CERN, CH-1211, Geneva 23, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sihver L, Sato T, Puchalska M, Reitz G. Simulations of the MATROSHKA experiment at the international space station using PHITS. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:351-357. [PMID: 20496176 DOI: 10.1007/s00411-010-0288-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 04/17/2010] [Indexed: 05/29/2023]
Abstract
Concerns about the biological effects of space radiation are increasing rapidly due to the perspective of long-duration manned missions, both in relation to the International Space Station (ISS) and to manned interplanetary missions to Moon and Mars in the future. As a preparation for these long-duration space missions, it is important to ensure an excellent capability to evaluate the impact of space radiation on human health, in order to secure the safety of the astronauts/cosmonauts and minimize their risks. It is therefore necessary to measure the radiation load on the personnel both inside and outside the space vehicles and certify that organ- and tissue-equivalent doses can be simulated as accurate as possible. In this paper, simulations are presented using the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS) (Iwase et al. in J Nucl Sci Tech 39(11):1142-1151, 2002) of long-term dose measurements performed with the European Space Agency-supported MATROSHKA (MTR) experiment (Reitz and Berger in Radiat Prot Dosim 120:442-445, 2006). MATROSHKA is an anthropomorphic phantom containing over 6,000 radiation detectors, mimicking a human head and torso. The MTR experiment, led by the German Aerospace Center (DLR), was launched in January 2004 and has measured the absorbed doses from space radiation both inside and outside the ISS. Comparisons of simulations with measurements outside the ISS are presented. The results indicate that PHITS is a suitable tool for estimation of doses received from cosmic radiation and for study of the shielding of spacecraft against cosmic radiation.
Collapse
Affiliation(s)
- L Sihver
- Chalmers University of Technology, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
23
|
Golovchenko A, Sihver L, Ota S, Skvarč J, Yasuda N, Kodaira S, Timoshenko G, Giacomelli M. Fragmentation of 370MeV/n 20Ne and 470MeV/n 24Mg in light targets. RADIAT MEAS 2010. [DOI: 10.1016/j.radmeas.2010.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Mancusi D, Sihver L, Niita K, Li Q, Sato T, Iwase H, Iwamoto Y, Matsuda N, Sakamoto Y, Nakashima H. Calculation of energy-deposition distributions and microdosimetric estimation of the biological effect of a 9C beam. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2009; 48:135-43. [PMID: 19082837 DOI: 10.1007/s00411-008-0206-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 11/22/2008] [Indexed: 05/24/2023]
Abstract
Among the alternative beams being recently considered for external cancer radiotherapy, (9)C has received some attention because it is expected that its biological effectiveness could be boosted by the beta-delayed emission of two alpha particles and a proton that takes place at the ion-stopping site. Experiments have been performed to characterise this exotic beam physically and models have been developed to estimate quantitatively its biological effect. Here, the particle and heavy-ion transport code system ( PHITS ) is used to calculate energy-deposition and linear energy transfer distributions for a (9)C beam in water and the results are compared with published data. Although PHITS fails to reproduce some of the features of the distributions, it suggests that the decay of (9)C contributes negligibly to the energy-deposition distributions, thus contradicting the previous interpretation of the measured data. We have also performed a microdosimetric calculation to estimate the biological effect of the decay, which was found to be negligible; previous microdosimetric Monte-Carlo calculations were found to be incorrect. An analytical argument, of geometrical nature, confirms this conclusion and gives a theoretical upper bound on the additional biological effectiveness of the decay. However, no explanation can be offered at present for the observed difference in the biological effectiveness between (9)C and (12)C; the reproducibility of this surprising result will be verified in coming experiments.
Collapse
Affiliation(s)
- Davide Mancusi
- Nuclear Engineering, Applied Physics, Chalmers University of Technology, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Niita K, Sato T, Iwase H, Nose H, Nakashima H, Sihver L. PHITS—a particle and heavy ion transport code system. RADIAT MEAS 2006. [DOI: 10.1016/j.radmeas.2006.07.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Sato T, Sihver L, Iwase H, Nakashima H, Niita K. Simulations of an accelerator-based shielding experiment using the particle and heavy-ion transport code system PHITS. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2005; 35:208-13. [PMID: 15934196 DOI: 10.1016/j.asr.2005.01.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In order to estimate the biological effects of HZE particles, an accurate knowledge of the physics of interaction of HZE particles is necessary. Since the heavy ion transport problem is a complex one, there is a need for both experimental and theoretical studies to develop accurate transport models. RIST and JAERI (Japan), GSI (Germany) and Chalmers (Sweden) are therefore currently developing and bench marking the General-Purpose Particle and Heavy-Ion Transport code System (PHITS), which is based on the NMTC and MCNP for nucleon/meson and neutron transport respectively, and the JAM hadron cascade model. PHITS uses JAERI Quantum Molecular Dynamics (JQMD) and the Generalized Evaporation Model (GEM) for calculations of fission and evaporation processes, a model developed at NASA Langley for calculation of total reaction cross sections, and the SPAR model for stopping power calculations. The future development of PHITS includes better parameterization in the JQMD model used for the nucleus-nucleus reactions, and improvement of the models used for calculating total reaction cross sections, and addition of routines for calculating elastic scattering of heavy ions, and inclusion of radioactivity and burn up processes. As a part of an extensive bench marking of PHITS, we have compared energy spectra of secondary neutrons created by reactions of HZE particles with different targets, with thicknesses ranging from <1 to 200 cm. We have also compared simulated and measured spatial, fluence and depth-dose distributions from different high energy heavy ion reactions. In this paper, we report simulations of an accelerator-based shielding experiment, in which a beam of 1 GeV/n Fe-ions has passed through thin slabs of polyethylene, Al, and Pb at an acceptance angle up to 4 degrees.
Collapse
|
28
|
Mokhov NV, Gudima KK, Mashnik SG, Rakhno IL, Striganov SI. Towards a heavy-ion transport capability in the MARS15 code. RADIATION PROTECTION DOSIMETRY 2005; 116:104-8. [PMID: 16604607 DOI: 10.1093/rpd/nci147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In order to meet the challenges of new accelerator and space projects and further improve modelling of radiation effects in microscopic objects, heavy-ion interaction and transport physics have been recently incorporated into the MARS15 Monte Carlo code. A brief description of new modules is given in comparison with experimental data.
Collapse
Affiliation(s)
- N V Mokhov
- Fermi National Accelerator Laboratory, MS 220, Batavia, Illinois 60510-0500, USA.
| | | | | | | | | |
Collapse
|
29
|
Andersen V, Ballarini F, Battistoni G, Campanella M, Carboni M, Cerutti F, Empl A, Fassò A, Ferrari A, Gadioli E, Garzelli MV, Lee K, Ottolenghi A, Pelliccioni M, Pinsky LS, Ranft J, Roesler S, Sala PR, Wilson TL. The FLUKA code for space applications: recent developments. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2004; 34:1302-10. [PMID: 15881773 DOI: 10.1016/j.asr.2003.03.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The FLUKA Monte Carlo transport code is widely used for fundamental research, radioprotection and dosimetry, hybrid nuclear energy system and cosmic ray calculations. The validity of its physical models has been benchmarked against a variety of experimental data over a wide range of energies, ranging from accelerator data to cosmic ray showers in the earth atmosphere. The code is presently undergoing several developments in order to better fit the needs of space applications. The generation of particle spectra according to up-to-date cosmic ray data as well as the effect of the solar and geomagnetic modulation have been implemented and already successfully applied to a variety of problems. The implementation of suitable models for heavy ion nuclear interactions has reached an operational stage. At medium/high energy FLUKA is using the DPMJET model. The major task of incorporating heavy ion interactions from a few GeV/n down to the threshold for inelastic collisions is also progressing and promising results have been obtained using a modified version of the RQMD-2.4 code. This interim solution is now fully operational, while waiting for the development of new models based on the FLUKA hadron-nucleus interaction code, a newly developed QMD code, and the implementation of the Boltzmann master equation theory for low energy ion interactions.
Collapse
|